
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Design of movement
detector of measured

EEG data

Pilsen 2022 Josef Yassin Saleh

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2021/2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Josef Yassin SALEH
Osobní číslo: A18B0307P
Studijní program: B3902 Inženýrská informatika
Studijní obor: Informatika
Téma práce: Návrh detektoru pohybu z naměřených EEG dat
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Prostudujte literaturu týkající se detekce pohybu z naměřených EEG dat a dále prostudujte funkci

rehabilitačního robota dostupného na KIV.
2. Navrhněte scénář pro měření EEG dat s využitím zmíněného rehabilitačního robota.
3. Naměřte EEG záznamy u dostatečného počtu osob (5-10), analyzujte naměřená data a zvolte vhod-

né charakteristiky EEG signálu, na základě kterých lze detekovat pohyb.
4. Na základě analýzy z předchozího bodu implementujte detektor pohybu z EEG dat, jehož výstupem

bude informace, zda došlo k pohybu končetiny či nikoliv.
5. Implementaci ověřte na dostupném rehabilitačním robotovi s využitím EEG zesilovače BV-VAMP

a zhodnoťte dosažené výsledky.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná/elektronická

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Ing. Pavel Mautner, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 4. října 2021
Termín odevzdání bakalářské práce: 5. května 2022

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 14. října 2021

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 5th May 2022

Josef Yassin Saleh

Abstract
Uses of BCIs are very versatile and their possibilities are many. One of the

possible uses is to detect movement in EEG data.
Movement detection in EEG data is usually done by extracting feature vec-
tors using Spatial filters. They are then passed to classifiers, that attempt to
classify using gained feature vectors. Goal of this thesis is to choose suitable
Spatial filter to gain feature vectors that were passed to classifier to detect
movement in EEG data.
For this thesis Spatial filter CSP was chosen that passed it’s feature vectors
to LDA and SVM. Experiments have shown that classifiers classified well
on average but there were some exceptions that were probably caused by
subject winking, which resulted in loss of information about movement in
EEG data.

Abstrakt
Použití BCI (Brain Computer Interface) je velmi robustní a jejich možnosti
jsou velmi různorodé. Jedna z možností je detekce pohybu v EEG datech.
Detekce pohybu v EEG datech se většinou provádí pomocí tzv. Spatial filters
(volně přeloženo jako prostorové filtry), které jsou schopny vytvořit přízna-
kové vektory, pomocí kterých je možné klasifikovat. Úkolem této práce bylo
vybrat vhodné metody pro extrakci příznakových vektorů a poté je klasifi-
kovat a pokusit se nalézt pohyb.
Pro extrakci příznakových vektorů, byla použita technika CSP a pro klasi-
fikaci SVM a LDA. Z výsledků bylo možné usoudit, že klasifikace probíhala
vcelku dobře, až na vyjímky, které mohou mít různé důvody, například ztráta
informace kvůli mrknutí měřené osoby.

Acknowledgement

I would like to thank my supervisor of my Bachelor’s thesis Ph.D Ing. Pavel
Mautner for his guidance, help and patience with me. I would also like to
thank everyone who participated in EEG measuring, providing data that
allowed to make this thesis possible.

Contents

1 Introduction 1

2 Theoretical analysis 2
2.1 EEG . 2

2.1.1 What is EEG . 2
2.2 Classifiers . 4

2.2.1 Unsupervised learning 4
2.2.2 Supervised learning 5
2.2.3 Spatial filters . 8

2.3 BCI . 11
2.3.1 Use of BCIs . 11
2.3.2 Possible approaches for EEG classification 11

2.4 EEG measurement . 14
2.4.1 Hardware used . 15
2.4.2 BrainVision . 15

3 Problem analysis 17
3.1 Data acquisition . 17
3.2 Working with data . 17
3.3 Feature vectors . 18
3.4 Results . 18

4 Implementation 20
4.1 Libraries used . 20

4.1.1 Matplotlib . 20
4.1.2 NumPy . 20
4.1.3 Scikit-learn . 21

4.2 MNE . 25
4.2.1 Reading data . 25
4.2.2 Epochs . 28
4.2.3 CSP . 29
4.2.4 Vectorizer . 29

5 Achieved results 30

6 Conclusion 33

vi

Bibliography 35

vii

1 Introduction

Artificial Intelligence (from now on as AI) is used for many things such a
Natural language processing, Image processing and so on. . .
AI in general is used to make work easier and manageable in today’s day
and age. Instead of letting someone process enormous amount of data, it
is more plausible to let a computer do it. AI can also be used in medical
sciences, as medical data are very robust and handling them would be very
difficult for a single person or even a group of people.
One of the uses for AI is so called BCI, which is Brain-Computer Interface.
Using these BCIs, communication between brain and machines is possible. It
is sometimes used as a tool for rehabilitation for paralyzed and disabled[30].
For example creating a movement of prosthetic limbs, restoration of move-
ment for pacients after stroke or possible prediction of seizures and many
more.
Goal of this thesis is to attempt to utilize AI to detect movement in given set
of EEG data using chosen method and get the best results. Part of this work
was measuring EEG of people while they were attempting movement of their
hand on the exercise robot, on which measured subjects were attempting to
move a lever with their arms in given trajectory and concentrate on the arm
movement. While doing so, their brain activity was being measured using
EEG and recorded. Recorded data was be processed and then used as a
base for movement detection.
Structure of the text is as follows: brief explanation on how human brain
works. Then what is EEG, different types of methods for measuring EEG
and what is EEG used for. Following chapter is a short description of cer-
tain types of AI, Unsupervised and Supervised learning to be precise, their
main differences and importance for this thesis. Next chapter is introduc-
tion to BCIs and approaches of using AI in finding information, that is
needed for classification of EEG data. Afterwards, scenario for measuring
EEG is described, this chapter also contains description of actions subjects
were required to perform and components needed for measuring. Following
this chapter is analysis of the given problem with finding movement in EEG
data. This chapter is an overview of what is goal of this thesis and what ap-
proaches were chosen, following that, the practical component of the thesis
is written out. This chapter contains explanation of library components,
their parameters, how to use library components and why the parameters
have been chosen.

1

2 Theoretical analysis

This chapter is going to describe necessary components for creating a pro-
gram that detects movement in EEG data.

• EEG

• BCI

• Classifiers

• EEG measurement

2.1 EEG

2.1.1 What is EEG
EEG stands for Electroencephalography, which is a method of measuring of
electrical activity in the human brain. EEG can be used for diagnosis of
the brain to detect some of the neurological diseases such as epilepsy, brain
tumours, head injuries, sleep disorders, dementia but also can be used to
monitor depth of anesthesia during surgery.
Ascribed procedure for EEG is to put small disks called electrodes on the
surface of the scalp. Each electrode is connected to amplifier and EEG re-
cording device. Signals gathered from brain are converted to wavy forms
and displayed on a computer.
Electrodes detect electrical activity of the brain cells and then they pass the
information onto amplifier. There can be multiple electrodes at the same
time which is called multichannel EEG recordings. There are 2 types of
EEGs, intracranial and scalp. For scalp EEG, electrodes are put on the
scalp. On the other hand, intracranial EEG uses special electrodes that are
implanted in brain and the EEG is measured from the cortical surface.
There is importance in properly placing the electrodes because each brain
lobe processes different types of activities.
One of the approaches is the so-called 10-20 electrode system. "10" and "20"
represent distances between neighbouring electrodes that are either 10 or
20% of the total front-back or right-left distance of the skull. The positions
are determined by two points: nasion, which is the point between the fore-
head and the nose on the level with the eyes. Other point is inion, which is

2

the bony protrusion at the base of the skull on the midline at the back of
the head. Each location of the electrode uses a letter as a marking of lobe
and hemisphere location. There are 5 locations to mark - Frontal, Temporal,
Central, Parietal and Occipital lobes. These are shortened to their first let-
ter, meaning Frontal lobe is shortened to F, Temporal lobe is shortened to
T and so on. . .

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1: Example of EEG, image available here

EEG is a representation of difference between two voltages at two elec-
trodes, that means EEG machine can be set up in several ways for EEG
readings. The way electrodes are placed is called a montage.

Types of montages

• Bipolar montage

• Referential montage

• Average reference montage

Bipolar montage

For this montage, a channel is represented by a pair of adjacent electrodes.
For example "F3-C3" would represent voltage difference between electrode
F3 and C3.

Referential montage

Electrodes in this montage use as a differential electrode one designate elec-
trode.

Average reference montage

The outputs of all of the amplifiers are summed and averaged and this
average is used as a reference [30].

3

https://upload.wikimedia.org/wikipedia/commons/2/21/Eeg_gamma.svg

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 2.2: Example of montage, image available here

2.2 Classifiers
By definition of Merriam-Webster dictionary classification means
Systematic arrangement in groups or categories according to established cri-
teria[2].
Classifying in AI is not different. Classification in AI works on same prin-
ciple as there are data classification classes AI is classifying into, based on
similarity or patterns[20].
There are different types of AI, we will look supervised and unsupervised
learning of AI.

2.2.1 Unsupervised learning
Unsupervised learning AI has to find similarities in data sets and adjusts
the parameters from scratch. These approaches can be used on unlabeled
data to find any similarities[4].

Types of unsupervised learning

Unsupervised learning can be divided into 3 techniques that are widely used:

• Clustering

• Dimension reduction

4

https://upload.wikimedia.org/wikipedia/commons/7/70/21_electrodes_of_International_10-20_system_for_EEG.svg

• Association

Clustering

Clustering is a data mining technique that allows AI to take data and divide
them into groups based on similarities. Clustering algorithms find patterns
and similarities and puts them into given amount of groups. There are few
types of clustering techniques, some of them being:

• Exclusive

• Hierarchical

Exclusive clustering Exclusive clustering works with assumption that
each piece of data can be in only one cluster. Example of that is algorithm
K-means algorithm.

Hierarchical clustering This approach can be divided into 2 groups and
those are agglomerative and divisive algorithms. Agglomerative algorithms
are considered "bottoms-up", that means each data is considered as cluster
and most similar pairs are fused into one cluster and this process is repeated
until there is one cluster left. Divisive algorithms are opposite of that and
are considered "top-down". Divisive algorithms work in an opposite way,
algorithm starts with one cluster and divides data into clusters.

Dimension reduction

This approach is used for data, that carry too many informations. This
particular technique reduces the amount of information while preserving
important factors that AI uses.

Association

Association rules create correlation between variables of given dataset[4].

2.2.2 Supervised learning
Supervised learning is a type of AI that requires a training set. This training
set is used to help to adjust AI’s parameters more accurately. This data
set usually contains data, that is already divided into classification classes,
which helps AI to adjust parameters.

5

Examples of supervised learning

K-Nearest Neighbours

This algorithm places training data to subsets and then takes incoming data
and fits them to nearest subset. Assumption for this algorithm is that
all data with similar features are in the same subset or near the created
subset[3]. Let us assume we have a feature vector X = x1, x2, . . . , xn and
we’re going to classify into class with member that has the least amount of
differences. Technically this could work but in case our class is build up of
anomalies or objects impaired with noise this approach is going to fail. For
that reason the K in the name which represents size of a subset. This subset
is created from K class members with the least amount of differences. Clas-
sification is based on so called voting, which means object is classified into
class with most amount of representation of class members in the subset.
Classification can be also mapped into N -dimensional space where simil-
arity has to be measured using metrics. That means one of the possible
metrics is Eucledian distance, which calculates distance between 2 points in
N -dimensional space. Eucledian distance between point x = x1, x2, . . . , xn

and y = y1, y2, . . . , yn is:

dE(x, y) =
√

Σn
i=1(xi − yi)2

[25]

Naive Bayes

In this approach AI is making use of class conditional independence of Bayes
Theorem. In application probability of features are not dependent on each
other. That means that each feature has equivalent value to the result[3].
Naive Bayes classifier uses features that are available to predict into which
class new object belongs. Let us have a feature vector X = x1, x2, . . . , xn

and a labeled training set, where each object is assigned one of these feature
vectors X. Then for n of these classes applies:

P (ci|x) = P (x|ci)P (ci)
P (x)

where x is the vector describing object that we want to classify and ci is label
of the i-th class. This is how we calculate the probability of object being
classified into i-th class based on it’s feature vector. In order to classify
an object, we need to multiply probabilities (gain product) that attribute

6

would be assigned to class, which would give us:

P (x|cj) =
n∏

i=1
P (xi|cj)

where cj is a representation of a class j. After that we multiply the product
of probabilities of an object x. That gives us:

Yj = P (cj)
n∏

i=1
P (xi|cj)

where Yj is a probability an object x is in class j and of course by choosing
the highest probability is how classified using Naive Bayes[24].

LDA

LDA (Linear Discriminant Analysis) also known as Fisher’s linear discrim-
inant is a special type of supervised learning AI as it uses dimensional re-
duction that is used in unsupervised learning. This algorithm also creates
hyperplanes out of N k-dimensional vectors u into a hyperplanes that divide
the space and defines the classes, where N is the amount of classes and k
is the dimension. This algorithm assumes that each classification class has
Normal distribution of vectors u and division of classes is done by means
of the class values. When classifying a vector y, a linear combination of
it’s parameters are created based on the existing hyperplanes following this
equation:

Y = u1x1 + u2x2 · · · + ukxk[31] (2.1)

SVM

Support Vector Machine is a technique that also uses hyperplanes to di-
vide the space to classify the k-dimensional values into classes. Very useful
feature of SVM is the concept of mapping to higher dimension meaning if
data cannot be separated linearly in given dimension, SVM tries to separate
classes linearly in higher dimension. One of the main difference between
LDA and SVM is that instead of using means of the classes, like LDA does,
SVM uses support vectors. Support vectors are values that are found on the
boundary of classes. When an optimal hyperplane cannot be found SVM
uses Kernel function that helps to map values to higher dimension[31].

This thesis will focus on trying to recognize movement from one set of data

7

for each person. For that reason, each data set is going to be used as train-
ing and test set. Tests, whether AI was able to recognize the movement,
will utilize markers, that are going to be explained in measuring chapter
and their application in epoch chapters. We’re going to be working with
assumption that data is going to be flowing at all time in the future and AI
has to immediately decide if there was movement in data and act according
to it. For that reason neural networks haven’t been chosen as those can be
computationally demanding. This work will attempt to use LDA and SVM
with CSP technique explained further in the thesis.

2.2.3 Spatial filters
Of course there is an issue with how to handle the EEG data properly and
create feature vectors out of them. For this reason technique called Spatial
filtering is used to bring out the features in the EEG data[27].

• PCA

• ICA

• CSP

PCA

One of the methods called Principal Component Analysis is a dimension-
ality reduction-based technique. PCA works well under the condition that
the number of components is known. Despite limited options of working
with data PCA allows user to work with data more quickly and with lesser
memory consumption. There are few modifications but one of the simpler
ways to perform this method is to calculate mean vector v and covariance
matrix d x d A. When these values are computed next step is to calculate
eigenvalues λ1 . . . λd and their eigenvectors u1 . . . ud. After that k-largest ei-
genvalues and their assigned eigenvectors are chosen, where k is the amount
of components, rest of the values is discarded as noise. After that matrix
B of dimension k x k is formed, where its columns are chosen eigenvectors
then preprocess data using:

X ′ = BT (x − u) (2.2)

where x is the data point[27, 31].

8

ICA

Unlike PCA Independent Component Analysis searches for components that
are not correlated to each other. Let’s assume that vector x is result of
linearly mixing a set of statistically independent sources inside the brain:

x = My (2.3)

where M is the unknown mixing matrix and y represents vector of hidden
independent sources. ICA attempts to find matrix W, that contains hidden
resources:

a = Wx (2.4)

where a is the feature vector.
Matrix W is sometimes called as unmixing matrix to express that it’s an
inverse matrix to mixing matrix. There are numerous algorithms for com-
puting the matrix W such as infomax by Bell-Sejnowski[27, 31].

CSP

Unlike ICA and PCA, Common Spatial Patterns is a supervised method.
CSP attempts to find patterns by a process in which that one variance of
filtered data from one class is maximized while on the other side second
class is minimized. This approach allows CSP to classify only into two
classes. However, CSP can be applied recursively which means by classifying
it into 2 classes that could be classified into another 2 subclasses. Further
mathematical formulation will be written for two classes. We have matrix
X that represents one segment of subject doing a task, where X is a N x T
matrix, where N is the amount of channels and T is the number of samples in
time per channel. Mathematically, CSP attempts to find M spatial filters,
given by a N x M matrix W, where each column is a spatial filter that
transforms input using:

XCSP (t) = W T x(t) (2.5)

where x(t) is the vector of signals at the time t of all channels.
To find the filters, first are two classes covariance matrices estimated as:

Rc = 1/K
∑

i

X i
c(X i

c)T (2.6)

where c ∈ {1, 2}, which represents classes and K amount of samples. Then
CSP determines matrix W :

Λ1 = W T R1W (2.7)

9

Λ2 = W T R2W (2.8)

where Λi are diagonal matrices and ∑
i =

1
0Λi = I, where I is the identity

matrix. After that CSP solves the problem of generalized eigenvalue:

R1w = λR2w (2.9)

and generalized eigenvectors w that satisfy the equation above form the
columns of W [18, 27].

This thesis will be focusing on using CSP together with LDA and SVM.
After creating feature vectors from CSP, LDA and SVM will attempt to
classify EEG data into 3 classes: movement of a left hand, movement of
a right hand and resting phase. Reason for choosing CSP for calculating
feature vectors is connected to functionality of the other methods, both as
PCA and ICA are unsupervised methods[30]. Using of the fact that CSP is
supervised, should precise classification accuracy.

10

2.3 BCI
As mentioned before, BCI stands for Brain-Computer Interface which is
connecting computer and human brain and allowing brain to control a com-
puter. There are several types of BCIs, some of them being:

• Invasive BCI - Neurons are stimulated or recorded inside the brain.

• Semi-invasive BCI - Recording and stimulating is happening on the
surface of the brain or nerves.

• Non-invasive BCI - This type uses techniques that don’t penetrate the
skin or skull. [27]

2.3.1 Use of BCIs
As mentioned in introduction, BCIs have many uses, one of them being in
medical field. Possible use is for example, sensory restoration. One example
being cochlear implants for deaf people or retinal implants.
Another possible use is motor restoration, which focuses on moving pros-
thetic limbs using neural signals.
Another possible use is rehabilitation. People that have suffered stroke can
use BCI to convert neural signal to movement in rehabilitative device, pa-
tient can train connecting the neural activity to movement which can speed
up recovery[27].

Goal of this thesis is to create non-invasive BCI, that is capable of recogniz-
ing movement of hand in EEG data, to add to the research of possible ways
to assisted recovery for patients who suffered a stroke and to help accelerate
their recovery.

2.3.2 Possible approaches for EEG classification
Classification of EEG can be tricky because as mentioned before, data at
hand are N -dimensional, where N is amount of channels (electrodes) in
montage. Each channel gives out slightly different values. Not to mention,
it is not an easy task for human to detect movement in EEG. For that reason
many techniques have been developed for handling EEG data:

• ERD/ERS detection

• ERP detection

• SMR detection

11

ERD/ERS detection

ERD/ERS is an abbreviation for Event-Related Desynchronization/Event-
Related Synchronization. As for the description of methods for detection,
usually for this method differences of the potentials from electrodes as the
event is commencing are calculated [28]. There is already a thesis on arm
movement detection using ERD/ERS detection from Ing. Pavel Mochura
(available here).

ERP detection

Another type of brain activity that is very useful to track in EEG is after
some sort of stimuli. One of the examples would be flashing some kind of
light in front of the subject. This is also known as ERP which is Event
Related Potential. One of the examples would be P300 (or P3) which is a
positive signal that occurs approximately 300milliseconds after a some sort
of stimulus rare or unpredictable stimulus such as flashing bar. Another type
of ERP is N100 (or N1) which is negative going potential that is observed
approximately 100 milliseconds after an unpredictable stimulus, usually it
is followed by a positive wave (P200 signal) and many more. . . [27].

SMR detection

This thesis focuses on detecting SMR(Sensory Motor Rhythm) also known
as Mu Rhythm or also Mu wave. These waves are possible to detect around
8-13Hz [22, 23, 33] bandpass and around 13-30Hz [22, 23, 33]) bandpass. One
definition describes SMR as specific type of brain wave activity correlated
with immobility. SMR amplitude decreases with movement and then again
increases when movement dims down[19]. Meaning to detect movement, we
need to detect a dip of amplitude in brain activity with sudden spike. It has
been tested experimentally that vertical movement has been shown in the
bandpass of 13-30Hz and horizontal movement in 8-13 bandpass[33]. For
this thesis 13-30Hz bandpass hasn’t been taken into consideration as move-
ment on the robot (further discussed in the chapter EEG measurement) is
predominantly horizontal[27].

There are other methods but I have chosen to list these methods as they are
known and used in practice. As to why I have chosen detection of SMR is
because thesis on ERD/ERS movement detection has been done and ERP
doesn’t seem to fit the future prospect of this work very well. During experi-
ments(more about it in chapter EEG measurement) there’s a signal to move

12

https://portal.zcu.cz/StagPortletsJSR168/PagesDispatcherServlet?pp_destElement=%23ssSouboryStudentuDivId_1743&pp_locale=cs&pp_reqType=render&pp_portlet=souboryStudentuPagesPortlet&pp_page=souboryStudentuDownloadPage&pp_nameSpace=G623864&soubidno=193342

and so there will be spike of brain activity in data, issue comes when there
isn’t this kind of signal. SMR detection won’t require this kind of signals
for nothing other than training set.

13

2.4 EEG measurement
EEG was measured using custom-created scenario. This scenario had 4
stages with each lasting exactly 10 minutes. Each arm has designated stage
with vibrators and one without. These vibrators are irrelevant for this thesis
and will be used in different research further on, however data collected will
be used nonetheless as vibrators aren’t expected to have significant impact
on the observed phenomena. Scenario was divided into 2 phases, resting
phase and active phase. People that were measured(called patients from
now on for EEG measuring), were measured in KIV neuroinformatic labor-
atory, each patient was measured while sitting and wore a cap with Ag/AgCl
electrodes placed using 10 -20 system, used electrodes were at locations: Fp1,
F3, F4, C3, C4, P3, P4, F7, F8, T3, T4, T5, T6, Cz, Fz, Pz, 17, 18, where
17 is the reference and 18 is the ground. Reference is designated electrode,
in this case electrode that scans brain activity from forehead, and is used as
reference against other electrodes as mentioned in chapter EEG. Ground is
used for subtracting same voltage from every electrode including referential
electrode, doing this will give us differential voltage of electrodes[32].
Patients have moved a lever of an exercise robot that had pre-programmed
trajectory of a ring. Patients differentiated resting phase from active phase
by red diode that was lit indicating resting phase was active, otherwise active
phase was ongoing. During active phase, patients were instructed to move
the lever in given direction. The trajectory was visible on the screen and it
was in a shape of a ring that was approximately 3 pixels wide. Patient had
to follow the trajectory of the ring in their best effort. To ensure correct tra-
jectory was being followed, 2 arrows were shown, one was showing direction
patient had to move the lever. Other one showed what direction patient was
moving the lever and with how much force. Force was indicated with length
of an arrow. In case correct trajectory wasn’t followed robot would block
the movement of the lever until patient moved lever in the correct direction.
Lever could be moved with lightly applying pressure using fingers when pa-
tient stuck to correct directions, while on the other hand, lever couldn’t be
moved so easily if pushed in completely different direction than it is shown
on the screen.
This measuring took usually not longer than a hour and subjects were thor-
oughly acquainted with how the measurement is going to look like and then
gave consent to measurement. I hereby want to thank all the participants
with their patience and willingness that helped me to make this thesis pos-
sible.

14

Figure 2.3: Image of the screen with drawn trajectory and a robot that was
used to gather data
Picture taken from the work has measured EEG using the same device here

2.4.1 Hardware used
BrainAmp DC amplifier from Brain Products was used. Another used part
was a microcontroller STM324F429I-DISCO board. To this board was con-
nected an EKG/EMG shield from Olimex, whose output is an analog signal,
which is passed to an A/D converter of the above mentioned STM board.
An EEG cap fitted with Ag/AgCl electrodes according to a 10-20 system
was used. At the end BrainVision Recorder software was used.

2.4.2 BrainVision
The BrainVision recorder software was used to record EEG data, which saved
each EEG record in three individual, dependent files. There are the *.eeg,
*.vhdr and *.vmrk file. The *.vhdr file contains all important measurement
settings. This means, for example, the number of channels and their desig-
nation, the sampling interval (always 1 KHz was used) or the data type in
which the EEG data is saved (e. g. INT 16). It is basically a header file, so
it refers to the other two files. The *.vmrk file stores all recorded markers
to search for epochs. In our case there are four types of markers,which are
marked with numbers 1, 2, 4 and 8. Marker with number 1 is in the resting
phase, similarly number 2 indicates that the marker is in the middle of the
resting phase. Number 4 indicates the beginning of the active phase and at

15

https://portal.zcu.cz/StagPortletsJSR168/PagesDispatcherServlet?pp_destElement=%23ssSouboryStudentuDivId_1743&pp_locale=cs&pp_reqType=render&pp_portlet=souboryStudentuPagesPortlet&pp_page=souboryStudentuDownloadPage&pp_nameSpace=G623864&soubidno=193342

the end the marker with the number 8 indicates the end of the active phase.
At last, the *.eeg file is binary and stores all EEG data from all measured
chan- nels. Therefore, after only nine minutes of recording, this file size is
approximately 20 MB [1]

16

3 Problem analysis

As mentioned before, the goal of this thesis is to design and implement
movement detection in EEG data, using recording devices and pre-existing
scenario. Future prospect of this thesis could be to help patients that have
suffered injury or disease that limits them in their movement while their
brain is still capable of functioning. This kind of detector could be used for
rehabilitation of people after stroke that are incapable of properly moving
their limbs. As mentioned, post-stroke patients could suffer from motoric
control damage which leads to paralysis of parts of the body[5].
Sequence of actions necessary for detector to function is acquiring EEG
data from patients in a calm environment, then process data, create feature
vectors and then use those vectors for classification.

3.1 Data acquisition
As mentioned in chapter dedicated to measuring EEG, data were measured
in neuroinformatical laboratory. This data have been saved on computer
that was connected to amplifier and together with software data has been
kept in proper format that could’ve been passed to classifier that could fur-
ther process EEG data. At the time of measuring, subject was accompanied
by someone who observed recorded data to ensure everything is going as
planned.

3.2 Working with data
EEG data that were processed using Brain software is in divided into 3
main files that are *.eeg, *.vmrk and *.vhdr (contents of these files were
described in section BrainVision). It goes without saying that all these files
are necessary for the EEG data be usable. For this thesis library named
MNE (will be covered later in section MNE) has been chosen for working
with EEG data. Reason for choosing MNE is that MNE has comprehensive
documentation and many tutorials on how to use MNE components unlike
library named eeglib for example, that doesn’t have sufficient documentation.
MNE takes *.vhdr file and creates an object that represents RAW data in
.fif format. This is divided into so called Epochs. MNE represents Epoch as
an object of chosen time span of EEG data around a marker that has many

17

other important information. Two important information are being used are
data and labels. Data are ndarray, which is N-dimensional array, that has
3 dimensions. Where the dimensions represent: amount of epochs, picked
channels and data in chosen time interval. Labels are 1-dimensional array
that contain markers for given epochs. It goes without saying that size of
first dimension of data array must be equal to the size of the label array.
For further manipulation with data, it is necessary to work with these two
arrays. As mentioned before data and labels are going to be divided into
training set and test set in ratio of 1:4.

3.3 Feature vectors
In this thesis classifiers LDA and SVM are trained on raw data without
any modification and then trained on data with CSP modification. Training
data are taken and are used 4 times for classifiers 2 times for SVM and 2
times for LDA. From section about SMV, we know that there are kernels
that can be used for mapping to higher dimensions. For that reason Grid-
SearchCV from library scikit-learn is used. GridSearchCV is an object that
tests given classifier and all of it’s parameters on labeled data. This way
we can test kernels and other parameters (later in chapter about scikit-learn
SVM). With that being said raw data are passed to:

• GridSearchCV with SVM as classifier and a list of parameters

• LDA

• CSP that passes those data to GridSearchCV with SVM and a list of
parameters

• CSP that passes those data to LDA

Reason for this is to test whether LDA and SVM work better with feature
vectors created by CSP.

3.4 Results
Results of classification can tell us a lot about not only how accurate classifier
was but also what did the classifier labeled data as. This can be useful for
later analysis and possible improvements of either selection of classifier or
feature vectors. Statistics are printed into file called statistics.txt. Metrics

18

used to determine accuracy are precision, recall, f1-score and accuracy (all of
those metrics will be explained in following chapters). Reason for choosing
these metrics is to know, what was classified, accuracy would be of no use
for us if classifier had high accuracy but classified only data from resting
phase.

Figure 3.1: Workflow diagram of this thesis

19

4 Implementation

In this chapter we will describe used libraries, their components that were
outlined in previous chapter, then structure of program and description of
implementation. Finally, we will sum up achieved results.

4.1 Libraries used
Libraries that have been used in this thesis were MNE, Scikit-learn, NumPy
and Matplotlib. Description of libraries is as follows: to start with we de-
scribe Matplotlib and NumPy, then Scikit-learn and then MNE. Reason for
this being that, Matplotlib library has been used when working with data
initially and then the code was deleted. Despite that, various methods to
plot data were used and this library is thus worth mentioning. Each of listed
libraries is using NumPy library as their support pillar, this library is going
to be briefly described to clarify it’s contribution to this thesis. Scikit-learn
library provides classifiers (for example SVM and it’s kernels which are go-
ing to be explained in this chapter) and metrics that were used to classify
data. Library MNE is used to handle EEG data, from loading data, creating
epochs, to using CSP.

4.1.1 Matplotlib
This library was used to visualize information from EEG data and EEG
data itself. Even though visualisation is not available anymore, this library
played helpful role in understanding oversee data in a understandable form.
Matplotlib was used to visualize EEG data and to check if data doesn’t
have any abnormal spikes of potentials. Another use was to display markers
at designated times, when learning MNE library. Also another use was to
display accuracy of classifiers from Scikit-learn library when classifying EEG
data.

4.1.2 NumPy
NumPy is a library that allows most of the libraries to work with N-dimensional
arrays and operations happening on them. Listed libraries are not an ex-
ception of that. For example, Matplotlib uses these N-dimensional arrays
to visualize information. When user reads EEG using MNE, despite EEG

20

being represented as an object, EEG data are represented as N-dimensional
array. Scikit-learn takes N-dimensional arrays as arguments to classify.

4.1.3 Scikit-learn
Scikit-learn provides us with many AI tools, one of them being classifiers
that were used in this thesis. Classifiers LDA and SVM were taken from
this library and are going to be described in following chapters. Before an
explanation of LDA and SVM from Scikit-learn it is necessary to go over a
Pipeline from Scikit-learn, which is a structure that creates a sequence of
data transformations and final estimator. Reason for it that is that classifiers
from Scikit-learn accept data in certain format. After that, GridSearchCV
and it’s uses and it’s relevance for this thesis is going to be explained. An-
other part of this library that was used in this thesis are accuracy metrics,
that are going to be described.

Pipeline

As briefly explained, Pipeline is an object that represents sequence of data
transformations and a final estimator. That means LDA can be used for it’s
ability to reduce dimensions of data and then other classifier can use those
data to classify. There are 2 ways to create a Pipeline using Scikit-learn. One
is using constructor Pipeline and as first parameter pass list of transforma-
tions where the last element has to be a final estimator. Another approach to
create a Pipeline is to use method make_pipeline. Difference between these
two approaches is that make_pipeline assigns name for transformations and
final estimator which is further used for manipulation of their parameters.
This thesis used the second approach as there wasn’t much need for any
special name assigned to estimator or transformations. Only necessary use
of these assigned names would be when passing parameters to GridSearch
(will be explained in further sections). Syntax to access parameters of trans-
formation or estimator is to
name_of_estimator/transformation__parameter
Definition of a transformation, that can be section of a Pipeline, is an object
that implements functions fit and transform. Similarly enough for object to
be an estimator, function fit needs to be implemented. Purpose of these two
methods is as their name suggests. Function fit takes data and labels and
creates a model. Transform function transforms the data[13, 15].

21

LDA

Theoretical background of LDA has been lightly touched in the chapter
about LDA. As mentioned in previous sections, EEG data are three dimen-
sional NumPy arrays. Classifiers from Scikit-learn need 2-dimensional data.
For that reason one of the transformations that was used was a Vectorizer
from MNE library that takes N-dimensional NumPy array and transforms it
into 2-dimensional NumPy array, that contains amount of features and other
dimension represents amount of samples[6]. LDA classifier is created by
calling it’s constructor LinearDiscriminantAnalysis. As strange as it seems
this constructor is called without parameters in this thesis, which means
default parameters are used. Parameter that could be considered suitable
for modification is solver. Parameter solver sets how LDA predicts new
element. Possible options are svd(Single Value Decomposition), lsqr(Least
Square Roots), and eigen(Eigenvalue Decomposition). Default option for
solver parameter is svd.
Reason as why to pick svd is that this method doesn’t calculate covariance
matrix unlike other options. For EEG data that are robust and have a lot
of features, this method should be a good choice[9].

SVM

Support Vector Machine from library Scikit-learn has a bit of problems as
there are two main parameters that have to be chosen. One of them being,
as foreshadowed before, Kernel function and the other one is C -parameter.
Main issue is in this case choosing parameters, for this reason GridSearchCV
was used (will be explained in following sections).
Creation of an object representing SVM classifier is done by calling con-
structor SVC. Here is where parameters of Kernel function and C -parameter
come into play. Possible options for Kernel function(SVC parameter kernel)
are linear, poly, rbf and sigmoid. Each of the kernels is going to be very
briefly explained in further sections but before that C -parameter is going to
be briefly explained.
Scikit-learn offers other implementations for SVM which are for example
LinearSVC and NuSVC for example. Reason for selection of SVC object in-
stead of LinearSVC is rather simple and lies in selection of kernel parameter
of SVC. LinearSVC is very similar to SVC with linear kernel, differences
lie in underlying implementations. While it is true that LinearSVC offers
more precise tuning of parameters but for simpler use of GridSearchCV and
collecting metrics SVC was chosen[12].
As to why NuSVC wasn’t chosen, this version of classifier requires a Nu as

22

a parameter, which represents amount of support vectors that are going to
be used to divide classes. While it might be useful to control amount of
support vectors, for this case where data are robust, letting SVM calculate
amount of support vectors dynamically might be better instead of randomly
trying to guess amount of support vectors[14].

C-parameter

Value of this parameter is a positive integer that represents penalty score for
SVM classifier. Scikit-learn uses this value to refine training of the classifier
model by allowing higher/lower margin hyperplanes that SVM creates[?].
In this thesis range of values 10x, where x ∈ {−3, −2, −1, 0, 1, 2, 3}.

Kernel

SVC uses rbf as a default kernel option. Each kernel uses different function
to map into higher dimension and those are:

• rbf that uses exponential function e−γ∥x − x′∥2

• linear that uses linear function (x, x’)

• poly that uses polynomial function (γ(x, x′) + r)d

• sigmoid that uses sigmoid function tanh(γ(x, x′) + r)

where r is one of the parameteres possibly defined by coef0 in SVC, d is
parameter degree also in SVC and γ is parameter gamma in SVC. Notation
(value, another_value) represents dot product of value and another_value[8,
17].

GridSearchCV

As was mentioned in previous section, SVM is tested on chosen parameters.
To do so, GridSearchCV was used. It is an object that iterates over given
Pipeline or an estimator with list of parameters inputted as a map. In order
for something to be an estimator, implementation of estimator interface is
required. Either estimator object implements score function or it has to be
provided as a parameter scoring. Both score function and scoring parameter
is a strategy that evaluates performance of the cross-validated model on the
test set.
One of the parameters is cv which is cross-validation. Cross-validation is a
technique used to prevent something called overfitting, which is creating a

23

model that can classify data on which it has been trained perfectly but can
fail when it comes to classifying new data. For that reason cross-validation
offers a simple solution, which is dividing training data into k-folds. One fold
is chosen as a test set and the rest of the folds is used as training sets and
then classifier is trained on these combinations of training/test sets. After
each test is done average of all values is returned as result. GridSearchCV
wasn’t used on LDA classifier as there aren’t parameters to test. Cross-
validation wasn’t used on LDA classifier since with each EEG dataset, new
model is created so overfitting shouldn’t occur [10, 11].
GridSearchCV uses cross-validation and tests each parameter it is passed of
an estimator, which makes it perfect for testing which parameters to choose.

Accuracy metrics

To gather statistics from classifiers classification_report, accuracy_score and
precision_recall_fscore_support functions were used. As is mostly conveyed
in the names of the methods, metrics that were collected are: accuracy, pre-
cision, recall and f-score.
First method classification_report creates a string (or a dictionary) that
contains already computed metrics that were mentioned, for further use.
Next method accuracy_score computes accuracy, which tells us how well
was the classifier able to classify the data, of given estimator.
Last method is called precision_recall_fscore_support. It returns last three
of the metrics that are precision, recall and f-score. Support from this func-
tion tells us, how many values from each class were attempted to classify .
Precision is defined as the ratio of true positive data, which are data that
were correctly classified to sum of true positives and false positives, which
are data that were incorrectly classified. Mathematical formula would be:

pr = tp/(tp + fp)

where pr is precision, tp is amount of true positive data and fp is amount
of false positive data. This metric tells us how well was classifier able to
classify into correct class. Recall is defined as a ratio of true positive data
to sum of true positive data and false negative data. Mathematical formula
is:

rec = tp/(tp + fn)

where rec is recall and fn is amount of false negative data. The meaning of
this metric is to find ratio of data that was classified into a class as positive.
Last metric is f-score that is defined as harmonic mean of precision and

24

recall. Mathematical formula is:

fs = 2(prrec)/(pr + rec)

where fs is f-score, pr is precision and rec is recall. This metric is used to
determine the quality of precision and recall[16, 26, 29].

4.2 MNE
This library has been used to handle EEG data and work with them, visu-
alise data using library Matplotlib and manipulates with data for classifiers.
As mentioned in previous chapter about Scikit-learn, Vectorizer, which is a
transformation used to change dimensionality of EEG data is going to be
briefly explained in this chapter. This library also includes a CSP trans-
formation, which is a method for extracting feature vectors that is passed to
classifiers. Main component for working with EEG data is Epoch, which is
also going to be explained as to how was it used and some of it’s parameters.
Explanation of the the library components is going to be used to be divided
into sections Reading data, explanation on working with Epochs and then
will briefly touch on the topic on CSP, Vectorizer.

4.2.1 Reading data
In order to work with EEG data, it is necessary to read them first, which is
done using read_raw_brainvision function. This function reads EEG data
and saves them as the RawBrainVision object. This object offers information
about EEG. For example the electrodes(this library uses channels to describe
which electrodes were used) that were used to measure EEG, type of mont-
age and of course EEG data. Parameters of function read_raw_brainvision
that were relevant to this thesis were vhdr_fname and preload. The first
parameter is a path (can be relative or absolute) to vhdr file (more in sec-
tion BrainVision).
In order to detect Mu wave, EEG data were filtered by Firwin filter on an
interval of 8-13Hz (more about Mu wave in section SMR). This was done
using BrainVision Raw object method filter, where passed parameters were
what kind of filter is going to be used (firwin) and in what bandpass should
the EEG data be kept.
As mentioned in previous chapters, subjects were measured while using their
left and right hand. For that reason both files have been loaded and saved
into Epochs objects.

25

In this thesis there was an issue with setting up lowpass and highpass of
EEG data, which resulted in breaking sampling rate and which resulted in
wrongly set up sampling frequency. For that reason another function called
create_info was used. This function creates an Info object that contains in-
formation about channels that were used, date of measurement and sampling
rate, which was used to replace former Info attribute of Raw object.
Another function worth mentioning is events_from_annotations that ex-
tracts markers (more about markers in chapter BrainVision). This function
returns at what time which marker (MNE library calls markers events) has
appeared. It also returns a map of marker explanations mapped to their
respective numeric labels. Parameter passed to this function is Raw object
we want to extract events from. This is important in next section about
Epochs[7, 21].

26

Figure 4.1: Comparison of raw data and filtered raw data

27

4.2.2 Epochs
Before explaining working with Epochs object it is necessary to explain what
Epoch object represents. As mentioned in previous chapters, Epochs are
clusters of data in given time intervals. There are a few options to create an
Epochs object, two of them being a) using constructor Epochs or b) reading
them from a file. Approach b) is not used in this thesis and is mentioned
only as an example for completeness.
In order to create Epochs object using constructor it is compulsory to pass
parameters: Raw object, to extract necessary informations for Epochs, array
of events (first returned value of method
events_from_annotations). Another parameter is a map of events (other
returned value of events_from_annotations or it’s modification). Based on
this map, every event, that is mentioned in map, will be taken into consider-
ation and there will be a representation of it. Last relevant parameters are
tmin and tmax, which are values that represent start and end of the time
interval respectively.
Use and their manipulation Epochs takes up most of this thesis, since it con-
tains most of the necessary information, one of them being representation of
EEG data. EEG data as mentioned before are a 3-dimensional ndarray and
their dimensions represent: amount of epochs, picked channels and data in
chosen intervals. As mentioned in previous section, both files of EEG data
with subjects using right and left arm were read and saved as Epochs ob-
jects. This way access to data of both arms was made easier. First step was
to take data from Epochs object with event number two and six. In section
BrainVision we mentioned that only existing markers were 1, 2, 4 and 5.
Event number 6 is actually event 5 but all mapping on event 5 has been ar-
tificially changed into mapping on event 6. This is essential as in both files
event number 5 represents movement but doesn’t distinguish which hand
was moved. As for reason why event number 2 was chosen, is because we’re
assuming that person is more relaxed in the middle of rest phase than at
the start of resting. Moving the lever of the robot and suddenly stopping
takes some toll and would show on EEG data. As for choosing event number
5, we’re assuming that intention of movement is highest at the start of the
movement phase because intention of the movement occurs when subjects
realise that rest phase ended. After [] EEG event labels and are collected.
Then EEG data of file with left hand is collected together with their labels.
To work with both these arrays of EEG data and their labels they were
concatenated respectively.

28

Figure 4.2: Example of EEG data Epochs

4.2.3 CSP
CSP from library MNE has been used as a transformation in Pipeline. To
create an object representing CSP it is necessary to call construction CSP
and passs it’s parameters. Parameter to pass is called n_components and it
defines how many components to decompose EEG signals into. N_components
parameter for SVM using CSP has been chosen to be 5. According to MNE
documentation, this value should be chosen based on cross-validation value.
CSP for LDA is 4, which is a default value. As mentioned in previous
chapters cross-validation wasn’t used for LDA. As it is used as a transform-
ation, function transform returns 2-dimensional: array of amount of epochs
and amount of sources. These epochs are averaged by the power of CSP
features.

4.2.4 Vectorizer
Vectorizer is used to convert N-dimensional data into 2-dimensional data,
where first dimension is amount of samples and the other one is array of
features. Since CSP is creating a 2-dimensional data there is no need to use
Vectorizer on classifier using CSP to extract feature vectors.

29

5 Achieved results

Results were collected from two datasets, one dataset is from last year (2021).
This dataset was used for another thesis by Pavel Mochura (available here).
This dataset has been used in this thesis only to test classifiers and have
more data to test with. Second dataset is a dataset collected this year us-
ing scenario explained in section EEG measurement. Results should show
comparison of classifiers accuracies. In the first dataset, data were measured
from 14 people, 9 of them were female and 5 of the male. Their average ages
were 19.6 and 20.6 years respectively (taken from Pavel Mochura’s thesis at
chapter 8, available here). In the second dataset 10 people were measured,
from which 4 were female and 6 were male.
From graphs it seems that classifiers with CSP have better performance
in average. What is also apparent is that classifiers using CSP are on av-
erage better than their respective counterparts without CSP. This means
that choosing CSP has proven to be beneficial for classifying EEG data but
also when it come to precision, recall and f1-score. Tables with informa-
tion about old data are in their respective file attached to this thesis as
table_old_data.pdf. Reason for a separate file for table data is that there
is too much of information and it would be better to have a different file
designated for it.

30

https://portal.zcu.cz/StagPortletsJSR168/PagesDispatcherServlet?pp_destElement=%23ssSouboryStudentuDivId_1743&pp_locale=cs&pp_reqType=render&pp_portlet=souboryStudentuPagesPortlet&pp_page=souboryStudentuDownloadPage&pp_nameSpace=G623864&soubidno=193342
https://portal.zcu.cz/StagPortletsJSR168/PagesDispatcherServlet?pp_destElement=%23ssSouboryStudentuDivId_1743&pp_locale=cs&pp_reqType=render&pp_portlet=souboryStudentuPagesPortlet&pp_page=souboryStudentuDownloadPage&pp_nameSpace=G623864&soubidno=193342

Figure 5.1: Comparison of performance of classifiers on new data and old
data respectively. Accuracies are sorted from worst to best

Figure 5.2: Precisions of the classifiers for new data and old data respectively.
Precisions are also sorted from worst to best

It is pretty apparent from graphs depicted in pictures 5.2 and results
from table 5.1, results are kind of different. This has been done on purpose
to keep the results as robust as they can be because with each run, data are
divided randomly into training set and test set. That means each time there
are different results. In spite of this data are different each run, classifiers
using CSP end up with better results except for some of the anomalies. For
example SVM classifier without feature vectors classifies sometimes with
better accuracy than SVM using CSP but SVM using CSP classifies better
in average.
From the table and graphs depicted, it is uncertain why is the interval of
accuracies so wide. Classifier with accuracy lower than 50% is essentially a

31

Name Accuracy Precision Recall F1-score Support C - parameter Kernel
SVM-Normal 0.4667 [0.5741-0.5455-0.4] [0.6739-0.4-0.4348] [0.62-0.4615-0.4167] [46-45-46] 10 rbf
SVM-CSP 0.5778 [0.6667-0.4318-0.3889] [0.6047-0.4043-0.4468] [0.6341-0.4176-0.4158] [43-47-47] 10 rbf
LDA-Normal 0.4307 [0.5484-0.3929-0.4] [0.3542-0.5238-0.4255] [0.4304-0.449-0.4124] [48-42-47] X
LDA-CSP 0.4526 [0.5484-0.3929-0.4] [0.3542-0.5238-0.4255] [0.4304-0.449-0.4124] [48-42-47] X
SVM-Normal 0.4444 [0.6607-0.4074-0.0] [0.8605-0.7021-0.0] [0.7475-0.5156-0.0] [43-47-48] 1 rbf
SVM-CSP 0.8 [0.7115-0.6-0.7805] [0.7708-0.6279-0.6809] [0.74-0.6136-0.7273] [48-43-47] 1 rbf
LDA-Normal 0.3478 [0.3611-0.3714-0.3284] [0.2955-0.26-0.5] [0.325-0.3059-0.3964] [44-50-44] X
LDA-CSP 0.6739 [0.3611-0.3714-0.3284] [0.2955-0.26-0.5] [0.325-0.3059-0.3964] [44-50-44] X
SVM-Normal 0.6 [0.3115-0.5294-0.3333] [0.4634-0.18-0.4318] [0.3725-0.2687-0.3762] [41-50-44] 10 rbf
SVM-CSP 0.6 [0.4773-0.5714-0.7857] [0.4884-0.4444-0.9362] [0.4828-0.5-0.8544] [43-45-47] 10 rbf
LDA-Normal 0.3778 [0.3871-0.3333-0.4571] [0.2609-0.5476-0.3404] [0.3117-0.4144-0.3902] [46-42-47] X
LDA-CSP 0.5704 [0.3871-0.3333-0.4571] [0.2609-0.5476-0.3404] [0.3117-0.4144-0.3902] [46-42-47] X
SVM-Normal 0.4667 [0.7143-0.3571-0.38] [0.3488-0.1064-0.8444] [0.4688-0.1639-0.5241] [43-47-45] 10 rbf
SVM-CSP 0.5333 [0.6429-0.4194-0.8571] [0.2045-0.9286-0.4898] [0.3103-0.5778-0.6234] [44-42-49] 10 rbf
LDA-Normal 0.3111 [0.3529-0.2609-0.3333] [0.1364-0.2667-0.5217] [0.1967-0.2637-0.4068] [44-45-46] X
LDA-CSP 0.637 [0.3529-0.2609-0.3333] [0.1364-0.2667-0.5217] [0.1967-0.2637-0.4068] [44-45-46] X
SVM-Normal 0.475 [1.0-0.2927-1.0] [0.0-1.0-0.0] [0.0-0.4528-0.0] [47-36-40] 0.001 linear
SVM-CSP 0.625 [0.5741-0.5385-0.3488] [0.6739-0.3333-0.4286] [0.62-0.4118-0.3846] [46-42-35] 0.001 linear
LDA-Normal 0.3496 [0.3333-0.4054-0.3158] [0.381-0.3571-0.3077] [0.3556-0.3797-0.3117] [42-42-39] X
LDA-CSP 0.4797 [0.3333-0.4054-0.3158] [0.381-0.3571-0.3077] [0.3556-0.3797-0.3117] [42-42-39] X
SVM-Normal 0.4578 [0.5455-0.2712-0.2647] [0.125-0.3404-0.4186] [0.2034-0.3019-0.3243] [48-47-43] 1 sigmoid
SVM-CSP 0.4844 [0.4074-0.3021-0.6] [0.2444-0.6744-0.18] [0.3056-0.4173-0.2769] [45-43-50] 1 sigmoid
LDA-Normal 0.3188 [0.3056-0.3-0.3387] [0.25-0.2609-0.4375] [0.275-0.2791-0.3818] [44-46-48] X
LDA-CSP 0.4275 [0.3056-0.3-0.3387] [0.25-0.2609-0.4375] [0.275-0.2791-0.3818] [44-46-48] X
SVM-Normal 0.6 [0.7907-1.0-0.4255] [0.7727-0.0-0.9302] [0.7816-0.0-0.5839] [44-50-43] 1 rbf
SVM-CSP 0.6889 [0.6667-0.7209-0.675] [0.8-0.6889-0.5745] [0.7273-0.7045-0.6207] [45-45-47] 1 rbf
LDA-Normal 0.365 [0.381-0.4359-0.3036] [0.3721-0.3542-0.3696] [0.3765-0.3908-0.3333] [43-48-46] X
LDA-CSP 0.7372 [0.381-0.4359-0.3036] [0.3721-0.3542-0.3696] [0.3765-0.3908-0.3333] [43-48-46] X

Table 5.1: Table of metric accuracies for data measured this year. Three
values in table represent metric value of neutral state, right arm movement
and left arm movement

coin flip machine or worse, while on the other hand, classifier with accuracy
of 80%, can be considered acceptable. There could be many reasons for
that, one of them being invalid data. This thesis attempted to search for
movement in data but if the subject winked as they moved lever of a robot,
information about movement got lost in the EEG data. There could’ve also
been an issue finding movement. This could be because when phases switch
from resting to action phase, before subject moves the lever there is lag
when subject realises it is action phase. Other reason could be poorly chosen
classifier, another approach for classifying could be using logistic regression.
Another possibility could be some kind of pre-processing of data if it is
possible. From precisions of classes we can conclude that when classifier has
a high accuracy, classifier found movement of left and right arm as well as
resting phase.
Another useful metric would be confusion matrix, that would tell us how
the values were classified. Using this metric could be useful for analysis of
EEG data.
Problem with knowing what the best approach is that there isn’t a sure way
to test if the classifier was correct other than analysis of EEG data, which
requires an extensive experience and professional expertise.

32

6 Conclusion

In this bachelor’s thesis I tackled the task of classifying EEG data, choosing
proper feature vectors and collecting the necessary data. One of the items
in the assignment wasn’t done solely by me. That task being creating the
scenario, which wasn’t done only by me, as I was only contributing to it.
In order to work with EEG data I had to get acquainted with what EEG is,
montages, BCIs, some of the approaches to BCI’s, different kinds of classi-
fying algorithms and methods and some of the methods to extract features
from EEG data. It was of course necessary to find people that would be
willing to be measured and provide EEG data for this thesis.
While collecting data, it was our utmost priority to ensure for the quality of
the to be data are as good as possible. For that reason the environment was
calm and we made sure subjects were relaxed and ready for measurement.
After data was collected library MNE was used so EEG data were handled
and using Matplotlib they were displayed. For further work with EEG data,
it was necessary to learn some of the BCIs and methods of working with
EEG data.
BCIs have a variety of different specializations and many are for detecting
movement in EEG data using many other approaches. Some of them are us-
ing a stimulus and are training their classifier models based on timestamps,
where the occured happened. In this thesis detection of SMR was chosen be-
cause there wasn’t any additional stimulus needed for detecting movement.
In order to classify SMR, it was necessary to get acquainted with what SMR
is, how to detect it, at which bandwidth can SMR be detected. Using MNE ’s
functions and object methods helped creating required bandwidth and al-
lowed further work with it.
In order to classify data it was necessary to use some of the classifiers avail-
able from library Scikit-learn which provides many classifiers (for this thesis
SVM and LDA were chosen), their functionality and many statistical met-
rics. There was an issue of working with data as Scikit-learn requires data
in a specifi format. This was fixed using dimension reductions of Vectorizer
and CSP (this component is from MNE).
After classifying, metrics were needed in order to figure out how efficient clas-
sifier was. The used metrics were accuracy, precision, recall and F1-score.
It is necessary to have another metric other than accuracy as classifier could
be classifying into one class perfectly but not into other ones.
Accuracies of classifiers was between 20% - 90%. Reason for such low accur-

33

acy could’ve been because of some disruption in EEG data, another reason
could’ve been not enough of data and many more discussed in previous
chapter.
This thesis could be analysed even further and probably different approaches
could be used or even try the classifiers on another dataset. Another addi-
tion could be classifying different movement and not just the movement of
hands.

34

Bibliography

[1] [online]. README of the data for measurement. Available at:
https://drive.google.com/drive/u/1/folders/
18KRukxcBD-YS5Rn5uRISIBQL-a5XddDC.

[2] Classification [online]. Merriam-Webster. (n.d.). Available at:
https://www.merriam-webster.com/dictionary/classification.

[3] IBM - Supervised learning [online]. Supervised learning. Available at:
https://www.ibm.com/cloud/learn/supervised-learning.

[4] IBM - Unsupervised learning [online]. Unsupervised learning. Available at:
https://www.ibm.com/cloud/learn/supervised-learning.

[5] Post-Stroke Rehabilitation Fact Sheet, Nov 2021. Available at: https:
//www.student.unsw.edu.au/how-do-i-cite-electronic-sources.

[6] MNE Vectorizer Documentation. Available at: https:
//mne.tools/stable/generated/mne.decoding.Vectorizer.html.

[7] Mne.io.raw. Available at:
https://mne.tools/stable/generated/mne.io.Raw.html.

[8] Support Vector Machines Explained, . Available at:
https://scikit-learn.org/stable/modules/svm.html.

[9] Scikit-learn - Linear discriminant analysis, . Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.
discriminant_analysis.LinearDiscriminantAnalysis.html?
highlight=linear+discriminant#sklearn.discriminant_analysis.
LinearDiscriminantAnalysis.

[10] Cross-validation: Evaluating estimator performance, . Available at:
https://scikit-learn.org/stable/modules/cross_validation.html#
cross-validation.

[11] GridSearchCV, . Available at: https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.GridSearchCV.html?
highlight=gridsearch#sklearn.model_selection.GridSearchCV.

[12] LinearSVC, . Available at: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC.

35

https://drive.google.com/drive/u/1/folders/18KRukxcBD-YS5Rn5uRISIBQL-a5XddDC
https://drive.google.com/drive/u/1/folders/18KRukxcBD-YS5Rn5uRISIBQL-a5XddDC
https://www.merriam-webster.com/dictionary/classification
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
https://www.student.unsw.edu.au/how-do-i-cite-electronic-sources
https://www.student.unsw.edu.au/how-do-i-cite-electronic-sources
https://mne.tools/stable/generated/mne.decoding.Vectorizer.html
https://mne.tools/stable/generated/mne.decoding.Vectorizer.html
https://mne.tools/stable/generated/mne.io.Raw.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html?highlight=linear+discriminant#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html?highlight=linear+discriminant#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html?highlight=linear+discriminant#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html?highlight=linear+discriminant#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearch#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC

[13] Sklearn.pipeline.make_pipeline, . Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.
pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline.

[14] NuSVC, . Available at: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC.

[15] Sklearn.pipeline.pipeline, . Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.
pipeline.Pipeline.html#sklearn.pipeline.Pipeline.

[16] Sklearn.metrics.precision_recall_fscore_support, . Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.precision_recall_fscore_support.html#sklearn.metrics.
precision_recall_fscore_support.

[17] SVC, . Available at: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC.

[18] Blankertz, B. et al. Optimizing Spatial filters for Robust EEG
Single-Trial Analysis. IEEE Signal Processing Magazine. 2008, 25, 1,
s. 41–56. doi: 10.1109/MSP.2008.4408441.

[19] Dahan, A. – Ryder, C. H. – Reiner, M. Components of Motor
Deficiencies in ADHD and Possible Interventions. Neuroscience. 2018, 378,
s. 34–53. ISSN 0306-4522. doi:
https://doi.org/10.1016/j.neuroscience.2016.05.040. Available at: https:
//www.sciencedirect.com/science/article/pii/S0306452216301993.
Neurofeedback and Functional Enhancement: Mechanisms, Methodology,
Behavioral and Clinical Applications.

[20] Ing. Pavel Král. Classfiers, recognition and clusterization. Available at:
http://home.zcu.cz/~pkral/uir/pr5-materialy/FThema4-select.pdf.

[21] Gramfort, A. et al. MEG and EEG Data Analysis with MNE-Python.
Frontiers in Neuroscience. 2013, 7, 267, s. 1–13. doi:
10.3389/fnins.2013.00267.

[22] Jeunet, C. et al. Using EEG-based brain computer interface and
neurofeedback targeting sensorimotor rhythms to improve motor skills:
Theoretical background, applications and prospects. Neurophysiologie
Clinique. 2019, 49, 2, s. 125–136. ISSN 0987-7053. doi:
https://doi.org/10.1016/j.neucli.2018.10.068. Available at: https:
//www.sciencedirect.com/science/article/pii/S0987705318302594.
Neurophysiology of Movement: From preparation to action.

36

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://www.sciencedirect.com/science/article/pii/S0306452216301993
https://www.sciencedirect.com/science/article/pii/S0306452216301993
http://home.zcu.cz/~pkral/uir/pr5-materialy/FThema4-select.pdf
https://www.sciencedirect.com/science/article/pii/S0987705318302594
https://www.sciencedirect.com/science/article/pii/S0987705318302594

[23] Kim, Y. et al. Motor Imagery Classification Using Mu and Beta Rhythms
of EEG with Strong Uncorrelating Transform Based Complex Common
Spatial Patterns. Computational Intelligence and Neuroscience. Oct 2016,
2016, s. 1489692. ISSN 1687-5265. doi: 10.1155/2016/1489692. Available
at: https://doi.org/10.1155/2016/1489692.

[24] Kubat, M. Probabilities: Bayesian Classifiers, p. 19–26. Springer, 1
edition, .

[25] Kubat, M. Similarities: Nearest-Neighbor Classifiers, p. 43–46. Springer, 1
edition, .

[26] Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research. 2011, 12, s. 2825–2830.

[27] Rao, R. P. N. Brain-Computer Interfacing an Introduction. 2013, p. 101,
239. doi: https://doi.org/10.1017/CBO9781139032803.

[28] Relvas, V. – Sanches, J. M. – Figueiredo, P. Scalp EEG Continuous
Space ERD/ERS Quantification. In Sanches, J. M. – Micó, L. –
Cardoso, J. S. (Ed.) Pattern Recognition and Image Analysis, p. 616–623,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-38628-2.

[29] Sasaki, Y. The truth of the F-measure. Teach Tutor Mater. 01 2007.

[30] Siuly, S. – Li, Y. – Zhang, Y. EEG Signal Analysis and Classification:
Techniques and Applications. 01 2016, p. 3–5. doi:
10.1007/978-3-319-47653-7.

[31] Subasi, A. – Ismail Gursoy, M. EEG signal classification using PCA,
ICA, LDA and support vector machines. Expert Systems with Applications.
2010, 37, 12, s. 8659–8666. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2010.06.065. Available at: https:
//www.sciencedirect.com/science/article/pii/S0957417410005695.

[32] Teplan, M. Fundamental of EEG Measurement. MEASUREMENT
SCIENCE REVIEW. 01 2002, 2.

[33] Wolpaw, J. R. – McFarland, D. J. Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans.
Proceedings of the National Academy of Sciences of the United States of
America. Dec 2004, 101, 51, s. 17849–17854. ISSN 0027-8424. doi:
10.1073/pnas.0403504101. Available at:
https://pubmed.ncbi.nlm.nih.gov/15585584. 15585584[pmid].

37

https://doi.org/10.1155/2016/1489692
https://www.sciencedirect.com/science/article/pii/S0957417410005695
https://www.sciencedirect.com/science/article/pii/S0957417410005695
https://pubmed.ncbi.nlm.nih.gov/15585584

A The contents of the attached
ZIP file

Folder structure is divided into 4 parts "Aplication_and_libraries", "In-
put_data", "Results" and "Text thesis"

• "Text thesis" contains .pdf file that is eletronic version of thesis on
topic of detecting movement in EEG. It also contains folder LaTex,
that contains build files for LaTex version of thesis.

• "Aplication_and_libraries" contains script main.py, which is starting
point of application

• "Input_data" contains measured data from EEG

• "Results" contains .pdf file that contains table with results generated
after classifying old data

Zip file also contains main.py which is a source file for this thesis.

38

B User guide

In order for correct functionality of script main.py Python3 is needed and
these Python3 libraries:

• MNE

• Scikit-learn

• Matplotlib

• NumPy

Script has 3 functions classify_old_data, classify_new_data and main. Main
function calls first 2 mentioned functions. To run the script command py-
thon3 main.py has to be typed.

39

	Introduction
	Theoretical analysis
	EEG
	What is EEG

	Classifiers
	Unsupervised learning
	Supervised learning
	Spatial filters

	BCI
	Use of BCIs
	Possible approaches for EEG classification

	EEG measurement
	Hardware used
	BrainVision

	Problem analysis
	Data acquisition
	Working with data
	Feature vectors
	Results

	Implementation
	Libraries used
	Matplotlib
	NumPy
	Scikit-learn

	MNE
	Reading data
	Epochs
	CSP
	Vectorizer

	Achieved results
	Conclusion
	Bibliography

