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Inverse stamping is a useful tool in engineering. It can be used to 
find the initial blank shape of stamped parts. It is also useful for 
quick and easy analysis of a forming process and its impact on 
the design of a component. Algorithms for inverse stamping are 
commonly available, but in some situations these algorithms can 
collapse or may provide confusing results. This article describes 
improvements to a newly designed inverse stamping algorithm 
which lead to an increase in its robustness. 
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1 INTRODUCTION  

Advantage of the inverse stamping method is short calculation 
time and simple user interface. Compared with standard 
numerical simulation of forming, it needs less inputs. The models 
of forming tools are not required and no forming process 
parameters are needed as well. Therefore, it is not possible to 
perform standard numerical simulation of forming in many 
situations, because all needed inputs are not yet available. The 
inverse stamping is the only one alternative in such cases.    
Inverse stamping [Yu 2005, Mackerle 2004] is a simplified 
method to analyse the forming process of metal sheet bodies 
based on the inverse finite element approach [Lan 2005, Huang 
2006]. Some assumptions are made. Especially, the inverse 
stamping algorithm assumes that all the forming operations are 
done in one step. Real forming processes are usually split into a 
sequence of forming operations. This difference could lead to 
problems in some situations. An example of a problematic 
forming process is described in Figure 1 - Figure 3. The body to 
be formed has three parts. Part A is fixed in space during the 
whole forming process. Part B reaches its final position by 
rotation about its x-axis, see operation 1 in Figure 2. Part C is 
rotated about the x-axis and then about the z-axis, see Operation 
1 in Figure 2, and operation 2 in Figure 3. Part C can pose a 
problem for the inverse stamping algorithm due to two 
consecutive rotations around two different axes. 
 

 
 
Figure 1. Forming step 1 – Operation 0 

 
 
Figure 2. Forming step 2 – Operation 1 

 
Figure 3. Forming step 3 – Operation 2 

2 INVERSE STAMPING ALGORITHM 

The traditional inverse finite element method with unfolding 
technique has three main steps: 

1. The three-dimensional part is projected onto a flat 
plane, i.e. initial guess of the two-dimensional blank 
shape is made. 

2. Two-dimensional finite element method is used for 
iterative improvement of the blank shape. 

3. Important quantities are evaluated. 
  
It was found that some existing algorithms using the inverse 
stamping method are not suitable or applicable for some parts 
with certain shapes (the calculation does not converge or 
collapses). Therefore, it was necessary to design a new algorithm 
for a simplified calculation of residual stress and residual 
deformation in those parts. This new algorithm uses a new 
reduction method (First step - see above) for unfolding the part. 
The development of this algorithm and the unique reduction 
method was described and published in [Kaspar 2021].  The 
second step has the following sub-steps [Azizi 2008], [Farahani 
2014]: 

a. Each element is unfolded 
b. Nodal displacements {Δue} of each element are 

calculated as the difference between unfolded and 
projected nodal coordinates. Nodal forces are 
calculated. 

c. Global stiffness matrix [K] and external forces vector 
{F} are assembled. Increment of nodal displacements 
{Δu} are calculated as a solution of linear equations 
system [K]{Δu}=[F] 

d. Nodal coordinates are updated by adding {Δu} 
e. Material properties are updated 
f. After the convergence criterion is fulfilled, the second 

step is stopped. Otherwise, the algorithm goes to sub-
step b.   

 
Sub-step a. is the key point of the procedure presented in this 
article. In [Shirin 2014] the unfolding of the element is described 
as the rotation of an element about angle α, equation (1), where 
{n} denotes element normal vector and {k} denotes projection 
plane normal vector. 
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    𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠({𝑛}{𝑘})   (1)  

Rotational matrix is given by equation (2). 
    [𝑅] =

[

𝑚1
2𝜇 + 𝑐𝑜𝑠𝛼 𝑚1𝑚2𝜇 − 𝑚3𝑠𝑖𝑛𝛼 𝑚1𝑚3𝜇 + 𝑚2𝑠𝑖𝑛𝛼

𝑚1𝑚2𝜇 + 𝑚3𝑠𝑖𝑛𝛼 𝑚2
2𝜇 + 𝑐𝑜𝑠𝛼 𝑚2𝑚3𝜇 − 𝑚1𝑠𝑖𝑛𝛼

𝑚1𝑚3𝜇 − 𝑚2𝑠𝑖𝑛𝛼 𝑚2𝑚3𝜇 +𝑚1𝑠𝑖𝑛𝛼 𝑚3
2𝜇 + 𝑐𝑜𝑠𝛼

] 

  (2) 

Rotation direction vector is given by equation (4) and angle μ is 
given by equation (3). 

    𝜇 = 1 − 𝑐𝑜𝑠𝛼               (3) 

 

    {𝑚1 𝑚2 𝑚3}𝑇 =
1

‖{𝑛}×{𝑘}‖
{𝑛} × {𝑘}               (4) 

 
The triangular element related to part C with nodes n1, n2, n3 and 
the unfolded element with nodes n1,u, n2,u, n3,u is shown in Figure 
4. Nodal positions n1,u, n2,u, n3,u are obtained using equations (1)-
(4).  
 

 
Figure 4. Element unfolding 
 
The same element related to the initial blank shape is shown in 
Figure 5. 
 

 
Figure 5. Initial blank shape element 
 
From the comparison of the unfolded element and the initial 
blank shape element, Figure 6, it is clear that the unfolded 
element is rotated about 90° compared to the initial blank shape 
element. 

 
Figure 6. Element comparison 

Force vector {Fe} acting on single element is given by equation 
(5), where [Ke] denotes element stiffness matrix and {Δue} is 
vector of element nodes displacements.   
 

    {𝐹𝑒} = [𝐾𝑒]{∆𝑢𝑒}               (5) 

 
Displacements and external forces are calculated for each 
element and vectors {Fe} are arranged into common force vector 
{F} in sub-step b. Distortion of part C occurs in sub-step c. and d., 
when nodal displacements are calculated and nodal positions 
are updated. Force vector {F} tends to rotate elements of part C, 
which cause its distortion. This is shown in Figure 7 and Figure 8, 
with flat shapes after iterations 1-4. The distortion of part C is 
clearly visible.   

 
 

Figure 7. Improvement iteration 1 and 2 

 

Figure 8. Improvement iteration 3 and 4 

3 PROPOSED SOLUTION 

It is common practice in the finite element method to use 
corotational theory when a large deflection problem is solved. 
The idea of this theory is to decompose the element 
configuration into a rigid part and a deformation component. 
This approach is also applicable to the inverse stamping method. 

Figure 9 shows the rigid motion of the unfolded element. The 
green element with nodes n1,u, n2,u, n3,u is the unfolded element. 
The blue element with nodes n’1,u, n’2,u, n’3,u is the unfolded 
element after the rigid motion is removed. The orange element 
with nodes n1,p, n2,p, n3,p is the projected element.  
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Figure 9. Rigid motion of unfolded element 

 

 [Mostafa 2014] proposes a procedure for finding the 
configuration of the element which minimizes nodal 
displacements {Δui}, i=1, 2, 3. This method was added to the 
second step of the inverse stamping algorithm.  
 

The sub-steps of the second stage in our approach are: 
a. Each element is unfolded. 
b. Iteration number is initialized to j=0. 
c. Rigid motions of unfolded elements are removed. 

Nodal positions n’i,u of unfolded elements are stored. 
d. Nodal displacements {Δui} of each element are 

calculated as the difference between nodal positions 
n’i,u and projected nodal positions ni,p. Nodal forces are 
calculated based on nodal displacements. 

e. Global stiffness matrix [K] and external forces vector 
{F} are assembled. Increment of nodal displacements 
{Δu} is calculated as a solution of linear equations 
system [K] {Δu} = [F]. 

f. Projected nodal coordinates are updated by adding 
{Δu}. 

g. Material properties are updated. 
h. Iteration number is increased to j=j+1 
i. After the convergence criterion is fulfilled, the second 

step is stopped. Otherwise, if j<10, then the algorithm 
goes to sub-step c., or else the algorithm goes to sub-
step d.   

The positions of the unfolded element are updated only if j is 
lower than ten. The purpose of this condition is to accelerate the 
solution process. If the unfolded element positions are updated 
in every iteration then the nodal forces calculated based on {Δui} 
could oscillate and it is difficult to achieve convergence. After 
reaching ten iterations, the changes of nodal positions n’i,u are 
small and can be neglected. Figure 10 and Figure 11 shows the 
first four improvement iterations using our new approach. There 
is no distortion of body part C (compared to Figure 7 and Figure 
8). Increased element deformation is noticeable around nodes 
where boundary conditions were applied. Those deformations 
vanish in the next iterations. 

 

 
 
Figure 10. Improvement iterations of our algorithm 

 

 
 

Figure 11. Improvement iterations of our algorithm 

 

In our algorithm, the unfolded elements are oriented based on 
the projected elements. This procedure is successful if the 
quality of the initial projection is good enough. Therefore, the 
first step of the inverse stamping method was solved using the 
algorithm described in [Kaspar 2021]. 

4 RESULTS AND DISCUSSION 

Here we compare the inverse stamping algorithms and classical 
numerical forming simulation. Three different inverse stamping 
algorithms were used – original inverse stamping algorithm, 
newly proposed inverse stamping algorithm and commercial 
software Siemens NX Analyze Formability One-Step (NX AFSO). 

Two sheet metal bodies were used. The first body (body B1) is 
similar to the body in Figure 3. Figure 12 shows equivalent plastic 
strain as a result of numerical simulation. 

 

 

 

Figure 12. Equivalent plastic strain based on numerical simulation, body 

B1 
 

P1: 0.21 

P2: 0.08 



 

 

MM SCIENCE JOURNAL I 2022 I JUNE 

5687 

 

Figure 13 shows equivalent plastic strain as a result of the new 
inverse stamping algorithm. The blue line in Figure 13 represents 
the initial blank shape. Two points, P1 and P2, were chosen as 
reference.  

If the original inverse stamping algorithm is used then the 
solution process fails because of the distortion shown in Figure 
8. 

 

 
 
Figure 13. Equivalent plastic strain based on our new algorithm, body B1 
 

Similar comparisons were made for body B2 which is shown in 
Figure 14. Figure 14 shows equivalent plastic strain as a result of 
numerical simulation. P3 and P4 were chosen as reference 
points. 

 
Figure 14. Equivalent plastic strain based on numerical simulation, body 

B2 

 
Figure 15 shows equivalent plastic strain as a result of the new 
algorithm. 

 

 
 

Figure 15. Equivalent plastic strain based on the new algorithm, body B2 

 

The original algorithm worked well when body B2 was analysed. 
Equivalent plastic strain based on the original algorithm is shown 
in Figure 16.  

 
Figure 16. Equivalent plastic strain based on original algorithm, body B2 
 

Both inverse stamping algorithms provide similar results for 
body B2. Also, the number of iterations is the same for the 
original algorithm and the new one. It should be noted that using 
our new algorithm could lead to a higher number of iterations in 
some cases. Some differences in equivalent plastic strain 
distribution are noticed if inverse stamping and numerical 
simulation are compared. This is caused by simplifications typical 
for inverse stamping. Numerical simulation of body B1 and body 
B2 included two consecutive forming operations. The inverse 
stamping algorithm assumes that all forming operations are 
done at once. Also, other simplifications and assumptions have 
to be made when an inverse stamping algorithm is created. Body 
B1 showed that the original algorithm failed and did not provide 
any results. Our solution increases the robustness of the inverse 
stamping algorithm and can be used for a new class of bodies. 
The resulting equivalent plastic strain of Body B1 is shown in 
Table 1.  

 

Body Point Algorithm 
Eqv. Plast. 
Strain [-] 

No. of 
iterations 

B1 

P1 

Proposed 0.18 13 

Original failed failed 

Simulation 0.21 - 

NX AFOS 0.23 - 

P2 

Proposed 0.06 13 

Original failed failed 

Simulation 0.08 - 

NX AFOS 0.11 - 

Table 1. Results summary of Body B1 

 

The resulting equivalent plastic strain of Body B2 is shown in 
Table 2.  

Body Point Algorithm 
Eqv. Plast. 
Strain [-] 

No. of 
iterations 

B2 

P3 

Proposed 0.30 11 

Original 0.30 11 

Simulation 0.37 - 

NX AFOS 0.35 - 

P4 

Proposed 0.23 11 

Original 0.23 11 

Simulation 0.28 - 

NX AFOS 0.25 - 

Table 2. Results summary of Body B2 

 

P1: 0.18 

P2: 0.06 

P3: 0.37 

P4: 0.28 

P3: 0.30 

P4: 0.23 

P4: 0.23 

P3: 0.30 
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No distortions were observed when commercial software NX 
AFSO was used for analysis of body B1 and B2. Number of 
internal iterations done by this software is unknown. Probably, 
NX AFSO uses similar approach which is presented in this paper. 
Nevertheless, description of its algorithm wasn’t published.    

5 CONCLUSIONS 

Inverse stamping is a useful tool for quick and easy analysis of 
forming effects. Its ease of use depends on the algorithm’s 
reliability and robustness. It was shown that the original inverse 
stamping method could fail in some situations and we designed 
a solution for this problem. The improved algorithm provides 
higher robustness and eliminates the deficiencies of the previous 
algorithm. The number of improvement iterations of the new 
algorithm is comparable with the number of improvement 
iterations of the original algorithm, i.e. the impact on the 
method’s calculation time is low.   

The new algorithm was demonstrated here on the example of 
two bodies. Nevertheless, the authors tested this new algorithm 
on more than ten bodies of different shapes and no problems 
with distortion were observed.  
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