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Abstract—The Normalized Subband Adaptive Filter (NSAF) is a popu-
lar algorithm exhibiting moderate computational complexity and enhanced
convergence speed relative to the ubiquitous Normalized Least Mean
Square (NLMS) algorithm. Traditionally, the NSAF has made use of
sophisticated perfect reconstruction (PR) filter banks and a block updating
scheme, in which the adaptive filter vector is updated once every N
samples, with N being equal to the number of subbands. Here we
argue, first from a theoretical point of view, that an extremely simple
two band filter bank with the simplest possible length 2 FIR filters,
{1,−1} and {1, 1}, can be successfully used either with a sample by
sample adaptive filter update, or with a block update performed for every
second input signal sample. We demonstrate that this scheme actually
works well through simulations. In short we obtain better convergence
performance than the NLMS with a (multiplicative) computationally
complexity proportional to 2M , M being the length of the adaptive filter
to be identified, with the block update and even better performance if we
are willing to accept a computational complexity proportional to 4M .

Keywords—adaptive filter, subband adaptive filter, NLMS, NSAF

I. INTRODUCTION

The main goals in adaptive filter research over the years have
been the conception of algorithms exhibiting fast convergence to the
solution the the Wiener-Hopf (W-H) equation based on signals being
realizations of wide sense stationary stochastic processes while mini-
mizing the algorithms’ computational complexities. The usefulness of
adaptive filters in general as well as surveys of the most important
algorithms and their properties are well documented and available in
standard textbooks on the subject, [1], [2] and [3] being representative
examples.

Unfortunately, the price for better convergence properties is the
increase in computational complexity. The simplest algorithms – in
conceptual, implementational terms as well as in terms of computa-
tional requirements – are the Least Mean Square (LMS) algorithm and
its normalized version, the NLMS algorithm. They are characterized
by a computational complexity proportional to 2M , M being the
length of the adaptive filter to be identified when using the algorithm
in a system identification setting. The price for this simplicity is
poor convergence speed when the input signal is highly colored.
Many papers on improved adaptive filtering algorithms demonstrate
their superior performance relative to the (N)LMS by using first
order autoregressive (AR(1)) signals with high sample to sample
correlation as examples. What we aim to do in this paper is to
devise an improved NLMS-like algorithm making use of simple ideas
based on the Normalized Subband Adaptive Filter (NSAF) [4] and
making use of the important insights of [5], [6] in which for the
first time we presented a quantitative tool for predicting the NSAF’s
convergence speed. Based on this we propose what we have called the
simplified NSAF algorithm with two subbands using extremely simple
filter banks and having a (multiplicative) computational complexity
proportional to either 4M or 2M .

We have organized our paper as follows: In the next section we
present some necessary background on how to interpret adaptive filters
as a Richardson iteration [7] applied to the W-H equation using in-
stantaneous estimates for statistical quantities. Subsequently we show
how the NSAF fits into this framework. This material derives partially
from [5], [6], [8]. Having observed that the NSAF’s convergence is
determined by a preconditioning matrix formed as a linear combination

of Toeplitz matrices, we put forward the idea, in the following section,
that we can design single optimal Toeplitz preconditioning matrices
for signals with given autocorrelation properties. Following this, we
present our proposed algorithm and argue for its superior performance
when compared the NLMS. This is followed by a section in which we
demonstrate the algorithm’s salient properties. Finally, we summarize
and conclude our paper. Note: It is possible to appreciate the results
of this paper without reading all the details of the theoretical
justification for the algorithm. Thus, the main content is a precise
justification for the use of extremely simple filter banks based on
the two 2−tap FIR filters {1,−1} and {1, 1}, the simplest of all
possible high-/low-pass filters. In other words, if one accepts the
NSAF as such, we point out that the simplified version based on
(17) and (18) works quite well. That the complexity is as pointed
out above is almost self evident from these equations.

II. THE WIENER-HOPF EQUATION, RICHARDSON
ITERATIONS AND ADAPTIVE FILTERS

In this paper, we shall find it convenient to deal with the adaptive
filtering problem in a system identification context, i.e., we shall
assume that the input signal to our filter, x(n), gives rise to a so-
called desired signal through the linear model

d(n) = xT (n) · ht + v(n), (1)

where x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T is a length
M column vector (all vectors are assumed to be column vectors
unless explicitly transposed) of input signal samples1 corresponding
to signal x(n) at various time instants, and ht is the length M vector
representing what we shall refer to as the true Wiener filter (to be
found by our adaptive filter algorithm). v(n) is additive noise which
is assumed to be uncorrelated with x(n).

If QT is a full rank M × {M + 2(Lf − 1)} matrix – the
significance of integer parameter Lf will be explained later – we
see, upon multiplying both sides of (1) with QT ¯̃x(n), with ¯̃x(n) =
[x(n+Lf − 1), x(n+Lf − 1), . . . , x(n), x(n− 1), . . . , x(n−M −
1), . . . , x(n − M − Lf + 2]T being an {M + 2(Lf − 1)}-vector,
taking expectations on both sides of the equality sign and making use
of the uncorrelatedness of x(n) and v(n), that ht satisfies what we
will refer to as the preconditioned, augmented Wiener-Hopf equation

QT ¯̃Rht = QT ¯̃rxd, (2)

where ¯̃R is an {M + 2(Lf − 1)} ×M rectangular autocorrelation

1Warning on notation: As is common, we do not use any notation to
distinguish the cases when x(n) is to be interpreted as a random vector and
when it is to be interpreted as a vector of signal samples.978-1-6654-9482-3/22/$31.00 © 2022 IEEE
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matrix of form

¯̃R =



rLf−1 rLf · · · · · · rM+Lf−2

rLf−2 rLf−1 · · · · · · rM+Lf−3

...
...

...
r1 r2 · · · · · · rM
r0 r1 · · · · · · rM−1

r1 r0 r1 · · · rM−2

...
...

. . .
. . .

...
...

...
. . . r1

rM−1 rM−2 · · · · · · r0

rM rM−1 · · · · · · r1

...
...

...
rM+Lf−2 rM+Lf−3 · · · · · · rLf−1



, (3)

with r|m| = E{x(n)x(n+m)} and

¯̃rxd = [rxd(−Lf + 1), . . . , rxd(−1), rxd(0),

rxd(1), . . . , rxd(M − 1), . . . , rxd(M + Lf − 2)]T ,

(4)

with rxd(m) = E{x(n)d(n + m)}. Note that, if we set integer
parameter Lf = 1 and QT = I, I being the M × M identity
matrix, we get the ’ordinary’ W-H equation familiar from any course
on statistical signal processing, i.e.

Rh = rxd, (5)

where R is the autocorrelation matrix of the filter input signal,
R = E{x(n)xT (n)}, and rxd is the cross correlation vector defined
by rxd = E{x(n)d(n)}. We note in passing that ¯̃R embeds the
’ordinary’ M × M autocorrelation matrix R in its middle portion
when Lf > 1. We stress that the solutions to (2) and (5) are identical.

We have previously argued that a conceptually simple way of
deriving the LMS algorithm is to first apply a Richardson iteration
to (5), i.e.2

h(k + 1) = h(k) + µ[rxd −Rh(k)], (6)

with µ being referred to as the step size. Subsequently, the statistical
quantities R and rxd are replaced by their instantaneous estimates at
time k, x(k)xT (k) and x(k)d(k), respectively. With this we have

h(k + 1) = h(k) + µx(k)[d(k)− xT (k)h(k)], (7)

which is recognized as the classical LMS algorithm. Note that we can
also argue in the opposite direction: Based on (7) we can surmise that
x(k)xT (k) and x(k)d(k) are estimates of the true statistical quantities
R and rxd and that the convergence properties of the LMS algorithm
(7) can be deduced from those of (6). This is essentially what is done
in standard textbooks – although presented quite differently from what
is done here – when analyzing the convergence in the mean3 of the
LMS leading to the conclusion that a low eigenvalue spread of R, the
eigenvalue spread being defined as the ratio λmax/λmin, gives rapid
convergence, whereas a high eigenvalue spread for R implies slow
convergence.

Applying a Richardson iteration to (2) yields

h(k + 1) = h(k) + µQT [¯̃rxd −
¯̃Rh(k)]. (8)

We will now point out that the NSAF algorithm that is traditionally
based on sophisticated perfect reconstruction (PR) filter banks [9]
corresponds to (8) when instantaneous estimates are replaced by
underlying true statistical correlation quantities. Thus, we surmise that
the convergence speed of NSAF is dictated by the eigenvalue spread
of QT ¯̃R. This will then form the basis for our simple algorithm based
on two simple filters with unit pulse responses of length 2: {1,−1}
and {1, 1}, i.e. the simplest possible low-/high-pass filters.

2We will prefer k as the iteration index, consequently it will be convenient
also to relate this index to time.

3Which also involves invoking the so called independence hypothesis [3].

III. CONVERGENCE OF NSAF

The NSAF algorithm can be stated as follows [4]:

h(k + 1) = h(k) + µ

L−1∑
i=0

xi(k)ei,D(k)

‖xi(k)‖2 , (9)

where L is the number of subbands in the employed analysis filter
bank characterized by L subband filters whose unit pulse responses
are collected in length Lf column vectors f

i
for i = 0, 1 . . . , L− 1.

xi(k) is the (non-subsampled) vector of M consecutive samples of
input signal x(n) filtered through f

i
. This quantity is computed each

time N new input signal samples are available4, i.e.,

xi(k) = FT
i x̃(kN), (10)

where the M × {M + Lf − 1} filtering matrix has Toeplitz form:

FT
i =



fT

i
0 0 · · · 0

0 fT

i
0 · · ·

...
. . . fT

i

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 fT

i


, (11)

and where x̃(kN) is an input signal vector of length M + Lf − 1

with first element x(kN). With d̄T (n) = [d(n), d(n− 1), . . . , d(n−
Lf + 1)], the other entities of (9) can be expressed in linear algebra
terms as follows:

ei,D(k) = [d̄
T

(kN)f
i
− x̃T (kN)Fih(k)], (12)

and

‖xi(k)‖2 = xTi (k)xi(k) = x̃T (kN)FiF
T
i x̃(kN)

=

M−1∑
m=0

fT

i
x̄(kN −m)x̄T (kN −m)f

i
,

(13)

where x̄(n) is a signal vector of length Lf with x(n) as its first
element. This signal vector’s Lf×Lf associated autocorrelation matrix
to be used below is denoted R̄.

Based on the above we have shown in [5] that, when appropriately
identifying various quantities as instantaneous estimates of underlying
statistical quantities, the NSAF (9) stands in the same relation to (8)
as the LMS algorithm (7) to the Richardson iteration of (6) when
QT is as given below. This means that the convergence speed can be
predicted quantitatively through the eigenvalue spread of QT ¯̃R and
that, when comparing the expected convergence speed to that of the
NLMS algorithm, it is appropriate to compare this eigenvalue spread
to that of R.

The specific form of QT for the NSAF is shown to be [5]

QT =

L−1∑
i=0

QT
i =

L−1∑
i=0

‖f
i
‖−2
R̄

FT
i F̄i

(R)T , (14)

where, still according to [5], F̄i
(R)T is an {M + Lf − 1} × {M +

2(Lf − 1)} matrix having the same structure as FT
i except that the

rows are the unit pulse responses fT

i
flipped in left/right direction, i.e.,

fT

i
·J, where J, the exchange matrix, is the matrix with 1’s along the

antidiagonal and 0’s otherwise. Given the Toeplitz structure of FT
i and

F̄i
(R)T and the length, Lf , of the non-zeros parts of each row, both

QT
i , QT and FT

i F̄i
(R)T will be Toeplitz . The non-zero elements of

the rows of FT
i F̄i

(R)T are given by the correlation of the unit pulse
response f

i
with itself. There will consequently be 2Lf − 1 non-zero

4There is an important distinction to the traditional presentation of NSAF
implicit here in that we decouple the number of subbands, L from the
’subsampling’ factor N which we would more appropriately call the block
size of the algorithm. In the traditional NSAF literature we always have the
situation N = L.
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elements resulting from this correlation. The final unidentified quantity
in (14) is

‖f
i
‖2R̄ = fT

i
R̄f

i
, (15)

where we have used the definition of the R̄-weighted norm of a vector.
Another finding of [5] was that the PR restriction on the filter banks
was not necessary.

IV. OUR ALGORITHM PROPOSAL AND ITS
JUSTIFICATION

A good preconditioner QT in the context of (2) and (8) is such that
QT ¯̃R ≈ I. One way of obtaining such a good preconditioner for an
input signal with specific autocorrelation properties encapsulated in a
specific ¯̃R, is to seek the QT matrix minimizing

||QT ¯̃R− I||2F , (16)

where ‖ · ‖2F denotes the Frobenius norm.
Restricting the QT matrix to be Toeplitz – which seems reasonable

in view of what was stated at the end of the previous section –
it turns out that for low to moderate order autoregressive (AR)
signals we can find extremely simple preconditioners giving perfect
preconditioning. By way of example, consider the AR(1) signal
x(n) = ρx(n − 1) + w(n), where w(n) is white and gaussian
with E{w2(n)} selected such that E{x2(n)} = σ2

x = 1. Solving
the minimization problem in (16) with5 ρ = 0.9, we find that the
first row of QT (keep its Toeplitz structure in mind) is given by
[−4.7368, 9.5263,−4.7368] followed by the appropriate number of
zeros. We have found – through experiments in Matlab – that this
result is independent of Lf as long as it is specified to be larger
than 1 and that it is also independent of M . Thus, we fix Lf = 2
in the following, keeping in mind that this means that the length
of the non-zero parts of the rows of the QT and QT

i matrices are
2Lf − 1 = 3. Also note that any scaled version of this vector, for
example [−0.9945, 2,−0.9945] will do the job that matters, namely
reducing the ratio of the largest to the smallest eigenvalue to 1, i.e.
we have perfect preconditioning with all eigenvalues being equal!
Repeating what was done above, but now with ρ = −0.9, we find
that the vector [0.9945, 2, 0.9945] as the basis for the QT matrix
also provides perfect preconditioning. With M = 32 the original
eigenvalue spread of R with ρ = ±0.9 is 263.1 Of course, doing
the iteration in (8) with an eigenvalue spread of 1 for the coefficient
matrix QT ¯̃R rather than the iteration in (6) with an eigenvalue
spread of 263.1 for R gives dramatic improvements in convergence
speed. It is well known that when selecting a preconditioner, there is
always a tradeoff between computational complexity and performance.
Although the above preconditioners are simple, if we choose them
even simpler by approximation, i.e. we base the QT matrices instead
on the vectors [−1, 2,−1] and [1, 2, 1] for ρ = 0.9 and ρ = −0.9,
respectively, we find that the eigenvalue spread of QT ¯̃R, still with
M = 32, is equal to 3.7. As we see, there is still a dramatic reduction
in the eigenvalue spread relative to the original spread of 263.1 with
an attendant improvement in convergence speed.

Of course, having only one such optimized or approximately
optimized preconditioner works very well when the autocorrelation
is known beforehand. This is mostly not the case and we will
typically use multiple or as, implied by (14), a linear combination of
preconditioners. So, our proposal is to base our NSAF-related iteration
(8) with two QT

i ’s, one based on [−1, 2,−1] and the other based on
[1, 2, 1] .

Again, looking back at the structure of QT as given in (14) and
looking at the FT

i F̄i
(R)T part, it is evident, as is pointed out at the

end of the previous section, that the non-zero part of each row of
this matrix product is the correlation of the unit pulse response of f

i
with itself. With length two unit pulse responses f

0
= [1,−1] and

f
1

= [1, 1] it is evident that the correlation of each of these unit pulse

5Common choice for ρ used in the literature when the objective is to
demonstre the superior performance of some adaptive algorithm relative to
that of the NLMS.

responses with itself is given by [1, 2, 1] and [−1, 2,−1], respectively.
Thus, the NSAF algorithm directly associated with these choices can
be stated explicitly as

h(k + 1) = h(k)

+ µ

1∑
i=0

FT
i x̃(kN)

‖FT
i x̃(kN)‖2

· [d̄T (kN)f
i
− x̃T (kN)Fih(k)],

(17)

where, if we follow the NSAF literature, we have to set N = 2
(since we have two subbands). We point out here, however, that there
is nothing preventing us from also selecting N = 1 in which case
we have a sample-by-sample algorithm just as the NLMS. The signal
vectors involved are defined previously, whereas the FT

i matrices (of
dimension M × {M + 1} since we have set Lf = 2) for i ∈ {0, 1}
are

FT
i =



1 ±1 0 · · · 0
0 1 ±1 · · ·
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 1 ±1

 , (18)

where the minus sign is used for i = 0 and the plus sign is used for i =
1. Given the above, and consequently that the use of these extremely
simple filters does not require any multiplications, it is evident that the
multiplicative complexity (for each new input sample) when N = 1
is proportional to 4M and proportional to 2M if N = 2.

Given the proposed algorithm we now proceed, in a semi-intuitive
way, to explain why we should expect improved convergence speed
relative to the NLMS. For this purpose we examine what happens
when the input signal is 1) white, 2) lowpass, exemplified by an AR(1)
signal with ρ = 0.9 and 3) highpass, exemplified by an AR(1) signal
with ρ = −0.9.

1) If ρ = 0, i.e. we have a white input signal, we would like
to have no preconditioning at all6, since R is already diagonal
with equal entries on its diagonal. Now, the ‖f

i
‖2R̄ = fT

i
R̄f

i
appearing as a denominator in (14) will be equal for i = 0
and i = 1 since R̄ is diagonal. Thus, according to (14) and
with QT

0 and QT
1 based on vectors [−1, 2,−1] and [1, 2, 1], the

preconditioner QT will be diagonal, which corresponds to our
desire of not having any preconditioning at all. Therefore, we
expect the algorithm to work just like the NLMS.

2) If ρ = 0.9, i.e. we have a lowpass signal, we would ideally
– see the discussion above – like to have a single precon-
ditioner QT based on vector [−1, 2,−1]. Since (14) implies
a linear combination of two preconditioners, this cannot be
achieved. However since for lowpass signals ‖f

0
‖2R̄ < ‖f

1
‖2R̄

the resulting preconditioner will be dominated by QT
0 based

on the desired vector, [−1, 2,−1]. In this case the resulting
preconditioner, still with M = 32, results in QT ¯̃R having
an eigenvalue spread of 14.14, which of course is worse than
the 3.7 reported above for a single preconditioner, but still
constitutes a dramatic improvement when comparing to the
original eigenvalue spread of 263.1.

3) If ρ = −0.9, i.e. we have a highpass signal. Based on the same
argument as above, but with ‖f

0
‖2R̄ > ‖f

1
‖2R̄, the resulting

preconditioner will, as desired, be dominated by QT
1 based on

the vector [1, 2, 1]. As in the case above we get an eigenvalue
spread of 14.14.

Based on the above, we would expect significant convergence im-
provements relative to the NLMS for some signal characteristics, and
hopefully some improvements for most other signal characteristics.

V. EXPERIMENTS AND EVALUATION

In this section we present a limited number of illustrative simulation
results in a system identification context where the unknown system

6The eigenvalue spread is already minimal, it cannot be further reduced.
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(the Wiener solution, ht) is assumed to be an FIR filter of length
M = 32. We have two designed versions of the ’true’ filter, first
we specify ht as a lowpass filter, then as a highpass filter. We
obtain these filters through the Matlab commands7 fir1(30,0.4) and
fir1(30,0.4,’high’), respectively. In the implementation of (17), as well
as in the implementation of the NLMS used for comparision, we set
µ = 0.5, the signal d(n) of (1) is generated with E{v2(n)} = σ2

v =
10−4. As performance metric we employ the normalized Mean Square
Deviation (MSD) defined as

MSD(k) =
‖h(k)− ht‖

2

‖ht‖2
, (19)

averaged over 100 runs of the respective algorithms.

We have considered several input signal models:

1. White signal; x(n) = w(n).
2. lowpass signal conforming to x(n) = 0.9x(n− 1) + w(n).
3. highpass signal conforming to x(n) = −0.9x(n− 1) + w(n).
4. Signal conforming to x(n) = 0.1x(n−1)+0.8x(n−2)+w(n),

which has significant lowpass as well as highpass content.
5. Signal conforming to x(n) = 1.6x(n−1)−0.81x(n−2)+w(n),

which is lowpass with a significant peak around ω = 0.5.

As a first indication of convergence speed improvements to be
expected, we have computed the theoretical eigenvalue spread of R

and QT ¯̃R associated with the simplified NSAF. The results are shown
in Table I. As hoped for, we get moderate to significant reductions
in eigenvalue spread which should manifest itself in increased con-
vergence speed. We have also done this for some more complicated
AR(10) and AR(16) signals in which case we get reductions in
eigenvalue spread of about a factor of 10.

Signal model Orig. λmax/λmin Prec. λmax/λmin

No. 1 1.0 1.0
No. 2 263.1 14.14
No. 3 263.1 14.14
No. 4 173.76 93.08
No. 5 1160.90 128.78

TABLE I
EIGENVALUE SPREAD FOR R INDICATIVE OF THE CONVERGENCE SPEED
FOR NLMS AND EIGENVALUE SPREAD FOR QT ¯̃R INDICATIVE OF THE

CONVERGENCE SPEED FOR SIMPLIFIED NSAF.

We now proceed to show some plots of the MSD(k) to see if
the reductions in eigenvalue spreads manifest themselves in improved
convergence speeds relative to the NLMS. In Figure 1 – smpl in the
figure captions refer to the simplified NSAF, i.e. (17) and (18) – we
have shown results for model 2 with ht being lowpass. As we see,
we have significant improvements in convergence speed relative to
the NLMS. We observed similar behavior with the model 3 and ht

being either low- or highpass. Somewhat more modest performance
improvements were observed when ht is highpass with model 2 or ht

is lowpass with model 3. For all the models considered we observed
moderate to good performance improvements relative to the NLMS,
even for N = 2. The least performance improvement we observed
was for model 4 with ht being highpass, see Figure 2 for the MSD(k)
curves. As a final example, we show, in Figure 4 the MSD(k) curves
for an AR(16) signal whose spectrum is shown in Figure 3. Once
again, we observe distinctive improvements in the convergence speed.
In a way, there seems to ”be a free lunch” in the sense that, in the
N = 2 case, we get mostly better convergence speed than the NLMS
without paying a price in terms of increased computational complexity.

7A zero is appended at the end to get filter length M = 32.
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Fig. 2. MSD for model 4 with ht being a highpass filter.

VI. CONCLUSION

From previous insights into the NSAF algorithm [5], [6], we have
been able to suggest simplified NSAF algorithms with very low
computational complexity. We have demonstrated that these algorithms
present advantages in terms of convergence speed relative to the
NLMS while retaining this algorithm’s low computational complexity.
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Fig. 3. Spectrum of AR(16) model with several poles very close to the unit
circle.
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Fig. 4. MSD for AR(16) signal with spectrum as shown in Figure 3 with ht
being a highpass filter.
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