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Interpolation plays an important role in nowadays world. By interpolating data, we save time
and money in general. The main areas where interpolation is applied are robotics, automotive,
medicine, biology etc. One of the possible basis splines for interpolation are B-splines, which
are also used in Computer Aided Geometric Design (CAGD) due to their smoothness and local-
ity properties [5]. To fit a curve to a given set of points, B-spline can be used either in interpola-
tion or in approximation [5]. In this work we consider the application of B-splines (cumulative)
for the non-uniform interpolation of quaternions. This requires to overcome some difficulties.
Firstly it is necessary to compute control points (sometimes called de Boor points [4]) to fulfil
the basic interpolation property. Second problem is hidden in non-uniformity of data points as
formulas available for quaternion spline interpolation generally consider uniformly distributed
points [4]. The last problem lies in discretization: to achieve desired maximum error of the
interpolation we have to choose the proper density of interpolation points.

B-spline is a spline function driven by an independent parameter that will be denoted here
by t which usually varies from t = T0 to t = Tn, with T the knot vector (T0,..., Tn) and n
positive integers. The associated B-splines Bk

i of order k (degree = k − 1) are defined by [4]

B1
i (t) =

{
1 Ti ≤ t ≤ Ti+1,

0 otherwise
(1)

for k = 1 and

Bk
i (t) = t−Ti

Ti+k−1−Ti
Bk−1

i (t) + Ti+k−t
Ti+k−ti+1

Bk−1
i+1 (t), k > 1 and i = 0, 1, ..., n. (2)

We can now define B-spline curve [3]. With a given list of control points (also called de Boor
points), pi ∈ Rm (m ≥ 1), 0 ≤ i ≤ n, and a knot vector T, then B-spline interpolation of order
k (degree k − 1) is defined by

P (t) =
n∑

i=0

piB
k
i (t) for T0 ≤ t < Tn. (3)

With a given list of data points Pi ∈ Rm, 0 ≤ i ≤ n, corresponding with the knot vector T, we
can proceed with the B-spline interpolation of order k. First we need to compute control points
so that we ensure

P (Ti) = Pi, (4)



which can be rewritten into the form

p0B
k
0 (Ti) + p1B

k
1 (Ti) + ...+ pnB

k
n(Ti) = Pi, 0 ≤ i ≤ n. (5)

This can be rewritten [5] into condensed matrix form for all rows

Ap = P, (6)

where

A =


Bk

0 (T0) Bk
1 (T0) . . . Bk

n(T0)
Bk

0 (T1) Bk
1 (T1) . . . Bk

n(T1)
...

...
...

...
Bk

0 (Tn) Bk
1 (Tn) . . . Bk

n(Tn)

 , where

{
p = [p0, p1, ..., pn]

T ,

P = [P0, P1, ..., Pn]
T .

(7)

With respect to the previous definitions we can define B-spline quaternion interpolation of or-
der 4 (k = 4, degree = 3), so that we achieve C2 continuity. We consider unit quaternion defi-
nition given by [2] in this work. With a given sequence of data points (data unit quaternions) Qi

(i= 0, 1,...,n), the interpolation can be proceeded by constructing the B-spline quaternion curve
Q(t) which interpolates a given sequence of unit quaternions Qi (i = 0, 1,...,n). The B-spline
quaternion curve is defined as

Q(t) = q
B̃0(t)
−1

n+1∏
i=0

(q−1i−1qi)
B̃i(t), B̃i(t) =

n+1∑
j=i

Bi(t), (8)

where qi are control points (’control quaternions’) and Bi(t) ≡ B4
i (t). To compute the control

points from non-uniform knot vector, we have to start with the condition Q(Ti) = Qi, so we get

q
B̃0(Ti)
0 (q−10 q1)

B̃1(Ti)(q−11 q2)
B̃2(Ti)...(q−1i−2qi−1)

B̃i−1(Ti)...

(q−1i−1qi)
B̃i(Ti)(q−1i qi+1)

B̃i+1(Ti)(q−1i+1qi+2)
B̃i+2(Ti)... = Qi.

(9)

It holds that B̃x(Ti) = 1, 0 ≤ x ≤ i− 1 and B̃y(Ti) = 0, i+2 ≤ y ≤ n+1, following this rule
we get

q0(q
−1
0 q1)(q

−1
1 q2)...(q

−1
i−2qi−1)(q

−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) · 1 = Qi, (10)

which can be rewritten as

qi−1(q
−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) = Qi, for i = 0, 1, 2, ..., n, (11)

Note that for uniformly distributed knot vector T, we can easily write

qi−1(q
−1
i−1qi)

5
6 (q−1i qi+1)

1
6 = Qi. (12)

Eq. (11) forms n+1 equations. Since the dominant term on the left side is (q−1i−1qi)
B̃i(ti) we can

use the iterative refinement procedure for the solution from [3] as

(q−1i−1qi)
B̃i(Ti) = q−1i−1Qi(q

−1
i qi+1)

−B̃i+1(Ti), (13)

q∗i = qi−1(q
−1
i−1Qi(q

−1
i qi+1)

−B̃i+1(Ti))
1

B̃i(Ti) , (14)



Fig. 1. Double wishbone suspension
example [1]
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Fig. 2. Angle θ between two successive data points (Qi

and Qi+1)

which is the iterative solution of the system of equations, assuming q∗i is a next iteration step of
qi. Already known formula for uniform B-splines is analogically given by [3]

q∗i = qi−1(q
−1
i−1Qi(q

−1
i qi+1)

− 1
6 )

6
5 . (15)

Because there are n+1 equations for n+3 unknowns q−1, q0,..., qn+1, two boundary conditions
are needed. The end conditions for natural spline are [3]

Q′′(0) = 0 and Q′′(n) = 0. (16)

When these two boundary conditions are applied to previous equation, we obtain non-linear
system of equations

q−1 = Q0(Q
−1
0 Q1)

−1, (17)

qi−1(q
−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) = Qi, for i = 0, 1, 2, ..., n, (18)
qn+1 = Qn(Q

−1
n−1Qn). (19)

As far as there is no other known method to compute the exact solution, the proposed iterative
method, Eq. (14), is utilized to solve this system. For the initial guess, qi = Qi is considered.
However, due to the non-linearity of the problem, there are some restrictions for the input values
of Qi, but this is not the topic of this conference paper.

We interpolated the orientations of classical double wishbone suspension support (Fig. 1) in
terms of vertical coordinate and we compared it with exact results. We chose the data so that
we ensure almost constant angle θ (Fig. 2) between two successive data points (Qi and Qi+1),
considering θ as an angle of axis-angle representation between two orientations. For the interpo-
lation we used 3 different look-up tables which differed in number of data points:n = 33,n = 49
and n = 98 (see Fig. 2), these data were compared with the data set of 500 members, so that
we can observe the interpolation error trend. The interpolation relative error was computed as
the relative angle between the exact and the interpolated orientation and divided by the constant
angle distance value (Fig. 2) and was denoted by θe. The results are shown in Fig. 3 and 4, the
latter being a zoom of Fig. 3 on the vertical axis.

Figs. 3 and 4 show that we successfully achieved interpolation property, i.e., zero error at
data points. The figures show that the highest interpolation error is at the beginning and at the



-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Z coordinate of the wheel support

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
re

la
ti
v
e

 
e
 e

rr
o

r 
[-

]

98 members

49 members

33 members

Fig. 3. Interpolation error θ [rad]
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Fig. 4. Interpolation error – zoomed

end of the interpolated interval in our case. Whatever the number of interpolation points the
highest interpolation error intervals are always given by the first and last k data points (k = 4
is the order of the interpolation). In case of high demand for low interpolation error at the
beginning or at the end of the interpolated interval it is possible to add more data points at the
beginning and at the end of the look-up table so that higher density of data points is ensured and
the high interpolation error interval becomes smaller, or it is possible to change the boundary
conditions. However, in practise it is not usual to achieve these end positions.

We can also see that the maximum interpolation error θe remains approximately constant
inside the interpolated interval, which means that the main impact on the interpolation error has
the development of angle θ between the two data points and the precision is not dependent on
the relative axis development, considering the axis-angle representation. We can see that for 33
data points (members of look-up table) we achieved θe ≈ 10−4, for 49 data points θe = 3×10−5
and for 98 data points θe is equal to zero inside the interpolated interval. As far as the proposed
interpolation fulfils C2 continuity, we found formulas for the first and second derivative to be
used for dynamics simulation of the suspension.
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