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1. Introduction
Vortex shedding represents one of the most important processes that constantly attract the at-
tention of experimental and theoretical research. A number of non-linear effects arise from
the fluid-structure interaction. The non-stationary response in the vicinity of the lock-in region
has a quasi-periodic character, beating frequency of which varies considerably with the dis-
tance from the lock-in frequency. This property is significantly affected by the assumption of
combined random and harmonic excitation. This paper describes several details that contribute
to the probabilistic characteristics of the system on a time-slow scale using partial response
amplitudes.

2. Mathematical model
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Fig. 1. SDOF system outline

The problem is defined by a strongly nonlinear
SDOF oscillator with additive excitation com-
bining deterministic and random components,
see Fig. 1.

The nonlinear response properties can be
captured by means of the van der Pol equation.
The assumed configuration makes the trivial so-
lution unstable and the limit cycle stable. Thus
it can represent the beating effects and stabiliza-
tion due to a stable limit cycle. The correspond-
ing Stochastic Differential Equation (SDE) can
be written in the normal form

u̇ = v,

v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t),

(1)

where
u, v − the displacement, [m], and velocity, [m s−1];
η, ν − parameters of the damping, [s−1], [s−1m−2];
ω0, ω − the eigen-frequency of the linear SDOF system and frequency of the vortex shedding,

[s−1];
Pω2, ξ(t) − the amplitude of the harmonic excitation force, [ms−2], and the broadband Gaus-

sian random process, [1];
h − the multiplicative constant, [m s−2].



3. Slow-time system
In order to apply the stochastic averaging method [1, 3], displacement and velocity u(t), v(t)
can be written in the form of the first harmonic approximate

u(t) = ac cosωt+ as sinωt , v(t) = −acω sinωt+ asω cosωt (2)

together with an auxiliary condition, which reflects the fact that an additional variable was
introduced

ȧc cosωt+ ȧs sinωt = 0 . (3)

Such an approximation leads to an SDE system for amplitudes ac(τ), as(τ) slowly variable
in time

ȧc =
ω2
0 − ω2

ω
sinωt(ac cosωt+ as sinωt) − Pω sinωt cosωt− h

ω
sinωt · ξ(t)

− sinωt[η − ν(ac cosωt+ as sinωt)2](−ac sinωt+ as cosωt),
(4a)

ȧs = − ω2
0 − ω2

ω
cosωt(ac cosωt+ as sinωt) + Pω cos2 ωt+

h

ω
cosωt · ξ(t)

+ cosωt[η − ν(ac cosωt+ as sinωt)2](−ac sinωt+ as cosωt) ,
(4b)

which gives rise to the Itô averaged system

dac =
π

ω

[
ηac + 2∆as −

1

4
ν · ac(a2c + a2s)

]
dt+

( π
ω2

Φξξ(ω)
)1/2

dBc(t), (5a)

das =
π

ω

[
−2∆ac + ηas −

1

4
ν · as(a2c + a2s)

]
dt+

π

ω
Pω dt+

( π
ω2

Φξξ(ω)
)1/2

dBc(t), (5b)

where Bc(t) is the Wiener process related with input excitation ξ(t).
The closed form solution to Eq. (5) is available for vanishing detuning, ∆ = 0, see [2].

4. Fokker-Planck equation
The reduced FPE for the stationary cross PDF p(ac, as) (left side of the FPE is put to zero) can
be written in the form

∂

∂ac

([
ηac + ∆as −

1

4
ν · ac(a2c + a2s)

]
p

)
− 1

2ω2
Φξξ(ω)

∂2p

∂a2c

+
∂

∂as

([
− ∆ac + ηas −

1

4
ν · as(a2c + a2s) + Pω

]
p

)
− 1

2ω2
Φξξ(ω)

∂2p

∂a2s
= 0

(6)

with zero boundary conditions at the infinity. The unknown PDF is assumed to have the form

p(ac, as) = p0(ac, as)

M,k∑
k,l=0

qkl · ak−lc · als . (7)

In this expression, p0(ac, as) represents the weight function and is selected in the form of the
FPE solution for zero detuning, see [2],

p0(ac, as) = C · exp

(
η

2S

[(
as +

Pω

η

)2

+ a2c −
ν

8η

(
a2c + a2s

)2])
. (8)



The normalizing factor C is to be determined numerically for a particular setting of parameters,
it can be considered C = 1. The powers of ac, as are assembled to form stochastic moments of
k-th order sequentially up to the M -th level; they function as correction terms.

In order to deretmine coefficients qk,l using the Galerkin-Petrov orthogonalization, the ap-
proximate solution Eq. (7) is introduced into the FPE, Eq. (6), multiplied by the factor ϕrs =
ar−sc · ass and integrated in the whole plane R

∞∫∫
−∞

ar−sc ass
∂

∂ac

((
ηac + ∆as −

1

4
νac(a

2
c + a2s)

)
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas

+

∞∫∫
−∞

ar−sc ass
∂

∂as

((
−∆ac + ηas −

1

4
νas(a

2
c + a2s) + Pω

)
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas

−
∞∫∫

−∞

ar−sc assS

[
∂2

∂a2c
+

∂2

∂a2s

](
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas = 0, S =

1

2ω2
Φξξ(ω) .

(9)

Here, M is the upper limit of stochastic moments we want to include into the analysis.
Several steps of the per-partes procedure and usage of homogeneous boundary conditions

and particular forms of the po(ac, as) partial derivatives lead to a formula, which is applicable
for the combined analytical-numerical integration

0 =

∞∫∫
−∞

{[
a%−2c as−2s

(
%(%−1)a2s − s(s−1)a2c

)
S + ∆acas

(
%a2s−sa2c

)] M,k∑
k,l=0

qkla
k−l
c als

− S

[
s

d

das

(
a%ca

s−1
s

M,k∑
k,l=0

qkla
k−l
c als

)
−% d

dac

(
a%−1c ass

M,k∑
k,l=0

qkla
k−l
c als

)]}
p0(ac, as)dacdas ,

s = 0, .., r , r = 0, ..,M , % = (r − s) .

(10)

Further simplification of the expression (10) follows from the symmetry of the problem, so that
the terms involving even powers of ac vanish during integration. Eq. (10) represents a linear
homogeneous algebraic system for 1/2 · (M + 1)(M + 2) unknown coefficients qkl, k, l =
0, ..,M ; k + l ≤M .

Eq. (10) degenerates for s = 0, r = 0. This missing condition can be replaced by Eq. (7),
where setting M = 0 implies q00 = 1. This is equivalent to the condition of normalization of
the resulting PDF.

Performance of the proposed procedure is shown in Fig. 2. Both partial amplitudes ac, as
are shown for six values M = 0, . . . , 5. In each plot, the estimated PDF p(ac, as) is shown on
the left and the value of the correction Galerkin term on the right. It can be seen that the value
of the correction term within the selected domain of (ac, as) increases for increasing M from
approx. ±5% to approx. ±10% for M = 5.

5. Conclusions
The proposed procedure for estimation of PDF based on the partial amplitudes was shown on the
example of the van der Pol equation, which was used for description of the vibrational effects
based on the flow-structure interaction and vortex shedding. Sinmilar procedure is applicable
to a variety of similar problems, namely those connected to traffic induced almost-resonant
vibrations, identification problems and other system which work in a regime close to resonance.



Fig. 2. Values of probability density function Eq. (7) for increasing value of M . Each pair of plots shows
the Galerkin solution p(ac, as) on the left and the correction term value

∑M,k
k,l=0 qkla

k−l
c als on the right.

Values used: ∆ = 0.05, η = 1.6, ν = 1, P = 1, S = 4

The approach based on the partial amplitudes, however, is based on a knowledge of the
stationary solution of the corresponding FPE. For a really general approach, the dependence on
the original time coordinate must be respected. For this purpose, the correction terms used for
the Galerkin approximation has to encompass the time dependency. This topic is going to be
further elaborated in the future.
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