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1. Introduction
Practical experience shows that the random excitation component can affect the system response
and its dynamic stability not only negatively but also positively. For example, the presence
of a certain artificially generated turbulence component can have a positive effect against the
occurrence of resonance. Such mechanisms are usually developed heuristically and are often
not sufficiently justified theoretically. On the other hand, the presence of random excitation can
lead to dangerous interactions with deterministic processes and thus cause a reduction in the
level of dynamic stability in conditions that do not seem serious at first sight (icing on cables or
power lines, road roughness, etc.).

In the sense presented by Bolotin [1], the deterministic LF (as the total time derivative of
a positive definite function), is replaced in the stochastic domain by the adjoint Fokker-Planck
(FP) operator

L{λ(t,u)} =
∂λ(t,u)

∂t
+

n∑
i=1

∂λ(t,u)

∂ui
κi +

1

2

n∑
i,j=1

∂2λ(t,u)

∂ui∂uj
κij, (1)

where κi, κij are the drift and diffusion coefficients of the n-dimensional Markov process and
m depends on the system structure

κi =
m∑
k=1

Aik(t)fik(u) +
1

2

m∑
k,l=1

n∑
p=1

∂fik(u)

∂up
fip(u) · siklp , κij =

m∑
k,l=1

fik(u)fjl(u) · sikjl . (2)

Eqs. (1) and (2) relate to the original stochastic system, the stochastic stability of which is being
assessed

u̇i =
m∑
k−1

(Aik(t) + wik(t))fik(u); u(t0) = u0, (3)

where λ(t,u) is the LF candidate, Aik(t) are the nominal values of the system coefficients,
wik(t) is the Gaussian white noise of cross-intensity sikjl, and fik(u) are the continuous non-
decreasing functions.

Function λ(t,u) should be a continuous positive definite. Its derivatives ∂tλ(t,u) and
∂u,uλ(t,u) should be continuous as well. Let ψ(t,u) = L{λ(t,u)} < 0 in u ∈ Ω and
ψ(t, 0) = 0 or ψ(t, 0) is not defined, λ(t,u) can be considered a Lyapunov function. Thus,
for any ||u0|| 6= 0 function λ(t,u) decreases for t → ∞ and, consequently, the trivial solution
of Eq. (3) is stable in terms of probability.



It should be emphasized that an inappropriate choice of the form of the Lyapunov function
can lead to inconsistent results. Therefore, it should be designed very carefully. However, it is
well known that there is no universal method for constructing the Lyapunov function in either
the deterministic or the stochastic case.

2. Construction of the Lyapunov function
Let us assume that the following first integrals J1, . . . Js satisfy the equations of motion

J1(u) = C1, ..., Js(u) = Cs . (4)

The Lyapunov function can be selected as a linear combination of the first integrals and their
functions. The most convenient selection for practical purposes will obviously be

λ(u) =
s∑

i=1

ai[Ji(u)− Ji(0)] + bi[J
2
i (u)− J2

i (0)], (5)

where ai, bi are unknown constants that must be selected so that the function (5) satisfies the
conditions of the positive definiteness.

The first integrals of the type (4) are most often found in the context of cyclic coordinates.
In such cases, the corresponding Lagrange equation simplifies considerably

d

dt

∂T

∂u̇k
= Dk + Γk, (6)

whereDk and Γk are dissipative and gyroscopic forces, respectively, and T is the kinetic energy.
If the system is subjected to Gaussian parametric random white noises, the system has a

form
L {T} = −

∑
m ·Θm, (7)

where L{·} is the adjoined FP operator and Θm are the homogeneous functions of phase coor-
dinates and white noise intensities active in the system. The stability assessment procedure is
then similar to the deterministic case.

3. Stability of a spherical pendulum

Fig. 1. Outline of a pendulum
with coordinates

A spherical pendulum moves at a constant velocity around a ver-
tical axis in the coordinates ϕ (angle around the vertical axis)
and ξ (angle between the vertical axis and the pendulum sus-
pension) in a horizontal circle, see, e.g., [2]. Small random per-
turbations of this movement can be denoted as u1, u3, see Fig. 1,

ξ = α + u1 ; ξ̇ = u2 ; ϕ̇ = ω + u3, (8)

where α is the angle between the suspension and the vertical in
deterministic state ω2l · cosα = g, ω is the angular velocity of a
circular motion and l denotes the length of the suspension. The
perturbations u1, u2, u3 are assumed to be small.

Two first integrals can be obtained from the general principles of dynamics—total energy
T + Π and the total momentum

T + Π =
1

2
Ml2(ξ̇2 + ϕ̇2 · sin2 ξ)−Mgl · cos ξ , (9a)

∂T

∂ϕ̇
= Ml2ϕ̇ · sin2 ξ . (9b)



Using Eqs. (9), it is possible to construct the Lyapunov function in the form of Eq. (5) and
examine the stability of the pendulum movement. In the given case, it is sufficient to use the
first part of Eq. (5), i.e., bi = 0 (i = 1, 2), which means

λ(u1, u2, u3) = a1 (J1(u)− J1(0)) + a2 (J2(u)− J2(0)) , (10)

where J1, J2 are written in the form originating from the substitution of Eqs. (8) into Eqs. (9)

J1(u) =
1

2
Ml2

(
u22 + (ω + u3)

2 sin2(α + u1)−
2g

l
cos(α + u1)

)
,

J2(u) = Ml2
(

(ω + u3) sin2(α + u1)
)
.

(11)

We shall select the parameters a1, a2 in the form of

a1 = 2
(
Ml2

)−1
, a2 = a

(
Ml2

)−1
.

where a should be determined from the constraint of positive definiteness of the function λ.
Substitution of Eqs. (9) and (11) into (10), and the assumption that ui, i = 1, 2, 3 are small,
yield

λ(u1, u2, u3) =u21ω
(
(a+ ω) cos 2α + ω cos2 α

)
+ u22 + u23 sin2 α+

u1ω(a+ 2ω) sin 2α + u3(a+ 2ω) sin2 α + u1u3(a+ 2ω) sin 2α + . . .
(12)

To make function λ(u1, u2, u3) positive definite, it is necessary to eliminate perturbations ui in
the first power. This occurs if a = −2ω. Function λ as a Lyapunov function, thus, takes the
form

λ(u1, u2, u3) = (u21 · ω2 + u23) sin2 α + u22 +O(u3i ) . (13)

The Lagrange equations of motion can be determined using the expressions for T,Π

ξ̈ − ϕ̇2 sin ξ cos ξ +
g

l
sin ξ = µl(ξ − α)w(t) ,

ϕ̈+ 2ϕ̇ξ̇ · cot ξ = 0 ,
(14)

where parametric (white) noise w(t) has been introduced into the first equation. Its effect is
proportional to the deviation from the basic inclination α. In Eqs. (14) we shall substitute for
ξ, ξ̇, ϕ̇ according to Eqs. (8) and modify this system into the normal form for u1, u2, u3

u̇1 = u2 ,
u̇2 = (ω + u3)

2 sin(α + u1) cos(α + u1)− ω2 cosα sin(α + u1) + µlu1w(t) ,
u̇3 = −2u2(ω + u3) cot(α + u1) .

(15)

In a linearized form

u̇1 = u2 ,

u̇2 = (ω2 cos 2α− g

l
cosα)u1 + ω sin 2α · u3 + µlu1w(t) ,

u̇3 = −2u2 · ω cotgα .

(16)

The general stochastic system is assumed to have a form

u̇i = fi(u) +
m∑
k=1

hik(u) · wk(t) ; u(t0) = u0 , (17)



where the diffusion coefficients κi, κij are as follows:

κi = fi(u) ; κij =
m∑

k,l=1

hik(u)hjl(u) · skl . (18)

In this particular case, the respective coefficients (with m = 1) are

h1,1 = h3,1 = 0 , h2,1 = µlu1 ; f1 = u̇1 , f2 = u̇2 − h2,1w(t) , f3 = u̇3 . (19)

The first two parts of the adjoined FP operator (1) are equivalent to the total time derivative
of the Lyapunov function in the deterministic domain and only the third term with the coeffi-
cients κij represents a supplement introducing the influence of random parametric noises. Their
influence on the stability of the system Eqs. (17) is determined, consequently, exclusively by
the character of matrix h(u) and joint links of white noises wi(t). If, for instance, wi(t) are
independent white noises (sij = 0, i 6= j), the parametric noises are of destabilizing character
only. However, it is also possible to construct such h(u) matrices where the random noises
contribute to improve the stability of the system.

In the case of the spherical pendulum described by Eqs. (15) and LF (13), we obtain

ψ(u) = L{λ(t,u)}

= 2u1u2ω
2 sin2 α + 2u2

(
1

2
(ω + u3)

2 sin 2(α + u1)− ω2 cosα sin(α + u1)

)
−

− 4u2u3(ω + u3) sin2 α cot(α + u1) + u21 · (µl)2s11 .

(20)

The destabilizing effect of the noise w(t) is obvious. The stability of the system, therefore,
depends on the character of other right-hand side terms of Eq. (20). If we construct the function
ψ(u) on the basis of the linearized version of the normal system Eqs. (16), the right-hand side
of Eq. (20) will disappear except for the last term as a result of the character of the first integrals.
This means that in the linearized state the system is not stable. It can be stabilized by inserting
dissipative forces or by an adequate selection of the matrix h(u) and the characteristics of wi(t)
which, naturally, are determined by the physical character of the actual system.

4. Conclusion
The Lyapunov function constructed on the basis of first integrals provides a possibility to work
with the stochastic part of the problem with a much greater overview and to construct math-
ematical models with regard to the stabilizing or destabilizing effects of parametric random
noises. Such properties are due to the fact that the structure of the actual system is fully applied
to the very construction of the basic form of the function. This type of analysis is applicable
to a variety of dynamic stability problems, including naturally the problem of signal and noise
separation in structural health monitoring and various indirect measuring methods.
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