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1. Introduction
Subsystems of flexible multibody systems are often described by models with many degrees
of freedom (DOF) and with proportional damping. Nonlinear couplings between the subsys-
tems make the vibration analyses too time consuming. Then it is desirable to apply one of the
DOF number reduction of the whole system. A suitable and established methods is the modal
synthesis method (MSM) [1, 3, 5]. The classical approach of the MSM is based on the reduc-
tion of the natural modes of conservative models of subsystems respected in dynamic response.
The modal properties of damped subsystems are expressed by complex eigenvalues and com-
plex eigenvectors. The main aim of this contribution is to present the new complex MSM with
DOF number reduction of each proportionally damped subsystem. A variation of the proposed
method modified for rotating mechanical systems with gyroscopic effects has been published
in [7].

2. Mathematical model of the multibody system
Let us consider a multibody system composed of N subsystems linked by generally nonlinear
couplings. Motion equations can be expressed in the matrix form

Miq̈i(t) + Biq̇i(t) + Kiqi(t) = fEi (t) +
N∑

j=1,j 6=i

fCj,i(qi, qj, q̇i, q̇j), i = 1, . . . , N. (1)

Let mass, damping and stiffness matrices Mi, Bi, Ki be symmetric of order ni. In addition,
let the damping matrices meet the proportionality conditions

(v(i)
ν )TBiv

(i)
ν = 2D(i)

ν Ω(i)
ν , ν = 1, . . . , ni, i = 1, . . . , N , (2)

where Ω
(i)
ν are the eigenfrequencies and v

(i)
ν are the eigenvectors of the conservative part of

subsystem model i. These modal values satisfy the orthonormality conditions

(v(i)
ν )TMiv

(i)
ν = 1, (v(i)

ν )TKiv
(i)
ν = (Ω(i)

ν )2, ν = 1, . . . , ni, i = 1, . . . , N. (3)

Damping factors D(i)
ν describe the proportional damping of subsystems. The time dependent

vector fEi (t) expresses excitation of subsystem i. Nonlinear vectors fCj,i express the nonlinear
forces—an action of subsystem j ∈ {1, . . . , N}, j 6= i on subsystem i in case of mutual contact.



The first-order formulation of the equation of motion (1) in the state space ui = [q̇Ti , q
T
i ]T

have the form
Niu̇i(t) + Piui(t) = pi, i = 1, . . . , N, (4)

where

Ni =

[
0 Mi

Mi Bi

]
, Pi =

[
−Mi 0

0 Ki

]
, pi =

 0

fEi (t) +
N∑

j=1,j 6=i

fCj,i(ui,uj)

 . (5)

Modal properties of each individual subsystem i are expressed by the complex diagonal spectral
matrix

Λi = diag[λ
(i)
1 , . . . , λ

(i)
ni
, λ

(i)∗
1 , . . . , λ(i)∗ni

] = diag[Λi,Λ
∗
i ] ∈ C2ni,2ni (6)

and the complex modal matrix

Ui = [u
(i)
1 , . . . , u

(i)
ni
, u

(i)∗
1 , . . . , u(i)∗ni

] = diag[U i,U
∗
i ] ∈ C2ni,2ni . (7)

Complex eigenvalues λ(i)ν with a positive imaginary part and corresponding eigenvectors u
(i)
ν

can be expressed in terms of eigenfrequencies Ω
(i)
ν and eigenvectors v

(i)
ν of the conservative

part of subsystem model i in the form

λ(i)ν =−D(i)
ν Ω(i)

ν + iΩ(i)
ν

√
1− (D

(i)
ν )2, u(i)

ν =

[
λ
(i)
ν q

(i)
ν

q
(i)
ν

]
, ν = 1, . . . , ni, i = 1, . . . , N . (8)

Eigenvectors q
(i)
ν in the original space of generalized coordinates of the subsystems can be

quickly calculated from the relation

q(i)
ν =

1√
i
· v

(i)
ν√

2Ω
(i)
ν

√
1− (D

(i)
ν )2

, ν = 1, . . . , ni, i = 1, . . . , N , (9)

where i is the imaginary unit.

3. Complex modal synthesis method with DOF reduction
Complex MSM with DOF reduction is based on an incomplete transformation of state vectors
ui(t) in (4) into the vectors of complex modal coordinates xi(t) of the subsystems in the form

ui(t) =m Uixi(t) =

mi∑
ν=1

(u(i)
ν x

(i)
ν + u(i)∗

ν x(i)∗ν ), mi ≤ ni, i = 1, . . . .N . (10)

By using orthogonality conditions [1, 4]

mUT
i Ni

mUi = E2mi
, mUT

i Pi
mUi = −mΛi (11)

and the form of eigenvectors u(i)
ν in (8), equations (4) can be written as

ẋi(t)−m Λixi(t) =m QT
i

[
fEi (t) +

N∑
j=1,j 6=i

fCj,i(ui,uj)

]
, i = 1, . . . , N . (12)



Due to the structure of the reduced (master) spectral and modal matrices of the subsystems in
the form

mΛi = diag[λ
(i)
1 , . . . , λ

(i)
mi
, λ

(i)∗
1 , . . . , λ(i)∗mi

] = diag[mΛi,
m Λ

∗
i ] ∈ C2mi,2mi , (13)

mQi = [q
(i)
1 , . . . , q

(i)
mi
, q

(i)∗
1 . . . , q(i)∗

mi
] = [mQi,

mQ
∗
i ] ∈ Cni,2mi (14)

and vector of complex modal coordinates in the form

xi = [x
(i)
1 , . . . , x

(i)
mi
, x

(i)∗
1 , . . . , x(i)∗mi

]T =

[
xi
x∗i

]
, (15)

equations (12) can be divided to

ẋi(t)−m Λixi(t) =m Q
T

i

(
fEi (t) +

N∑
j=1,j 6=i

fCj,i

)
, (16)

ẋ
∗
i (t)−m Λ

∗
ix
∗
i (t) =m Q

∗T
i

(
fEi (t) +

N∑
j=1,j 6=i

fCj,i

)
. (17)

The global form of these equations is

ẋ(t)−m Λx(t) =m Q
T

(fE(t) + fC) , (18)

ẋ
∗
(t)−m Λ

∗
x∗(t) =m Q

∗T
(fE(t) + fC) , (19)

where

mΛ = diag[mΛ1, . . . ,
m ΛN ] ∈ Cm,m , mQ = diag[mQ1, . . . ,

mQN ] ∈ Cn,m , (20)

x(t) =

 x1(t)
...

xN(t)

 , fE(t) =

 fE1 (t)
...

fEN (t)

 , fC =



N∑
j=2

fCj,1(u1,uj)

...
N−1∑
j=1

fCj,N(uN ,uj)


. (21)

Reduced DOF number m =
N∑
i=1

mi corresponds to the dimension of vector x(t) and full DOF

number n =
N∑
i=1

ni correspond to the dimension of vectors fE(t) and fC . According to (10)

and the structure of eigenvectors u(i)
ν in (8), the dynamic response of the arbitrary subsystem i

in the original generalized coordinates is real in the form

qi(t) =m Qixi(t) +m Q
∗
ix
∗
i (t) = 2Re[mQixi(t)] , (22)

q̇i(t) =m Qi
mΛixi(t) +m Q

∗
i
mΛ

∗
ix
∗
i (t) = 2Re[mQi

mΛixi(t)] . (23)

The presented method is illustrated by numerical experiments on the impact-vibration of
two nuclear fuel assemblies in the reactor core excited by coolant pressure fluctuations. The
model of the single FA (see Fig. 1) is created using simple beam-type finite elements [6] and
the computational model of FAs interaction is described in detail in [2].



4. Conclusions
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Fig. 1. Detailed FA model

The new modal synthesis method enables dynamic
analysis of the large multibody systems composed
from linear damped subsystems mutually coupled
by nonlinear discrete couplings. The method is
suitable especially for dynamic analysis of the sys-
tems with clearances between subsystems charac-
terised by impact and friction forces in contact sur-
faces.

Consideration of the chosen master complex
natural modes of each subsystem improves ap-
proximation of the reduced model in comparison
with classical approach of the MSM. Calculation
of complex modal values of the subsystems mod-
els with proportional damping based on real modal
values of their conservative part and the damp-
ing ratios greatly speeds up the calculation time.
These facts have been illustrated by means of nu-
merical experiments with the nuclear fuel assem-
blies in mutual interactions excited by the coolant
pressure pulsations. The concept of fuel assembly
modelling is detailed in [2].
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