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Abstrakt 

Tato práce obsahuje analýzu a adaptaci vhodných metod zabezpečení, pocházejících ze softwarové domény, 

do světa FPGA. Metoda formalizace bezpečnostní výzvy FPGA je prezentována jazykem FPGASECML, 

specifickým pro danou doménu, vhodným pro modelování hrozeb zaměřených na systém a pro formální 

definování bezpečnostní politiky. Vytvoření vhodných obranných mechanismů vyžaduje inteligenci o 

agentech ohrožení, zejména o jejich motivaci a schopnostech. Konstrukce založené na FPGA jsou, stejně 

jako jakýkoli jiný IT systém, vystaveny různým agentům hrozeb po celou dobu jejich životnosti, což 

naléhavě vyžaduje potřebu vhodné a přizpůsobitelné bezpečnostní strategie. Systematická analýza návrhu 

založená na konceptu STRIDE poskytuje cenné informace o hrozbách a požadovaných mechanismech 

protiopatření. Minimalizace povrchu útoku je jedním z nezbytných kroků k vytvoření odolného designu. 

Konvenční paradigmata řízení přístupu mohou modelovat pravidla řízení přístupu v návrzích FPGA. Výběr 

vhodného závisí na složitosti a bezpečnostních požadavcích návrhu. Formální popis architektury FPGA a 

bezpečnostní politiky podporuje přesnou definici aktiv a jejich možných, povolených a zakázaných interakcí. 

Odstraňuje nejednoznačnost z modelu hrozby a zároveň poskytuje plán implementace. Kontrola modelu 

může být použita k ověření, zda a do jaké míry, je návrh v souladu s uvedenou bezpečnostní politikou. 

Přenesení architektury do vhodného modelu a bezpečnostní politiky do ověřitelných logických vlastností 

může být, jak je uvedeno v této práci, automatizované, zjednodušující proces a zmírňující jeden zdroj chyb. 

Posílení učení může identifikovat potenciální slabiny a kroky, které může útočník podniknout, aby je využil. 

Některé metody zde uvedené mohou být použitelné také v jiných doménách. 

Abstract 

The thesis provides an analysis and adaptation of  appropriate security methods from the software domain 

into the FPGA world and combines them with formal verification methods and machine learning 

techniques. The deployment of  appropriate defense mechanisms requires intelligence about the threat 

agents, especially their motivation and capabilities. FPGA based designs are, like any other IT system, 

exposed to different threat agents throughout the systems lifetime, urging the need for a suitable and 

adaptable security strategy. The systematic analysis of  the design, based on the STRIDE concept, provides 

valuable insight into the threats and the mandated counter mechanisms. Minimizing the attack surface is one 

essential step to create a resilient design. Conventional access control paradigms can model access control 

rules in FPGA designs and thereby restrict the exposure of  sensitive elements to untrustworthy ones. A 

method to formalize the FPGA security challenge is presented. FPGASECML is a domain-specific 

language, suitable for dataflow-centric threat modeling as well as the formal definition of  an enforceable 

security policy. The formal description of  the FPGA architecture and the security policy promotes a precise 

definition of  the assets and their possible, allowed, and prohibited interactions. This removes ambiguity 

from the threat model while providing a blueprint for the implementation. Model transformations allow the 

application of  dedicated and proven tools to answer specific questions while minimizing the workload for 

the user. Model-checking can be applied to verify if, and to a certain degree when, a design complies with 

the stated security policy. Transferring the architecture into a suitable model and the security policy into 

verifiable logic properties can be, as demonstrated in the thesis, automated, simplifying the process and 

mitigating one source of  error. Reinforcement learning, a machine learning method, can identify potential 

weaknesses and the steps an attacker may take to exploit them.  The approach presented uses a Markov 

Decision Process in combination with a Q-learning algorithm. 
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1 Introduction 

The British health system severely disrupted [1], a blackout in the Ukrainian power grid [2], the attempted 

theft of  over a billion US Dollars from the central bank of  Bangladesh [3] – all of  these events and their 

real-life consequences (people not receiving medical care, without power and a potential state bankruptcy) - 

were the result of  cyberattacks against vulnerable it-systems.  Our modern world depends on computers in 

various forms to perform a growing number of  highly sensitive services.  They control our hospitals and 

banks as well as industrial plants, cars, and airplanes. The interconnection between these devices becomes 

denser every year as, for example, electric generators and consumers become connected via the smart grid 

[4]. As more and more assets are controlled by computers and as (remote) access to these assets becomes 

easier via communication networks, the security of  these devices [5] becomes crucial to the prosperity and 

stability of  our society. Standard, hardwired integrated circuits perform most of  these tasks. However, some 

rely, at least in parts, on Field Programmable Gate Arrays (FPGA) – commercial off-the-shelve chips that 

provide the capability to perform massively parallel computation while allowing the fine-grained 

reconfiguration of  their logic circuits. This redefinition can take place as part of  their ordinary operation 

(dynamic reconfiguration) or through maintenance updates of  their configuration. Software security for 

standard server and client software has advanced in recent years, but other domains still lack awareness for 

security problems or sophisticated methods to engineer secure systems. FPGA based systems are one of  

these domains, and this thesis aspires to advance the security engineering efforts by adopting proven 

methods from the software domain while leveraging the unique attributes of  modern FPGAs to improve 

their resilience. These insights are translated into a formal threat (meta-) model. This formalized description 

is further translated into other models, more suitable to identify potential vulnerabilities and adequate 

solutions while minimizing the workload of  their users. 

1.1 On the nature of IT-Security  

A secure system can be defined as one that provides only the required functionality, whose functions operate 

as defined (in scope, the sequence of  operation, and their timing). Only legitimate actors have access to 

functionality and data (an actor can be either a human or another technical system). Legitimate actors are 

those who require access to these assets in order to perform their designated and legitimate assignments.  

The different stakeholders may have different opinions about, e.g., what a necessary operation is or the 

legitimacy of  specific actors.  Therefore, a system can be considered secure by one stakeholder, while others 

consider it insecure.  An attacker intends to gain more insight into and control over the system, forcing it to 

expose more functionality or data as specified, to perform operations that are either not defined 

appropriately or to use functions in ways unintended or unauthorized by the manufacturer, operator or 

legitimate user. The attacker achieves this through the abuse of  existing functionality, by adding, removing, 

or altering functions. Misleading, misdirecting, or forcing legitimate actors (e.g., through social engineering 

[6] or blackmail) is also a common way to work around technical restrictions. A secure system must provide 

a sufficient level of  resilience against these threats as well as the capability to recover from a successful 

attack. 

Two forces determine the resilience of  the system against attacks. The pressure exerted against it by the 

attacker and its capability to withstand this pressure. The attacker's time, knowledge, financial, and technical 

resources, as well as their motivation, determines the pressure against the system. Their access to the target 

and the connectivity between them must be considered as well. The resilience of  the system is the result of  

the architect's skills, the quality of  the implementation, and the determination of  its stakeholders (e.g., 

developer, administrator, owner) to defend it against threats. These stakeholders change throughout a 
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systems lifetime as the parts of  the system are designed, developed, integrated, manufactured, in operation, 

and finally decommissioned. The current set of  stakeholders may not be able to mitigate every security 

problem. An ordinary operator, for example, may not be able to protect a system against an attack without a 

vendor-provided patch. The diverging interests between stakeholders must be taken into account as well as, 

for example, the owner of  a device might want to exhaust its functionality fully. At the same time, the 

manufacturer has a strong motivation to restrict the user's access to protect, for example, his trade secrets or 

the intellectual property of  a third party. The architecture and implementation of  the systems, and therefore 

its capability to resist attacks, is more static and the removal of  security bugs often expensive and potentially 

error-prone in complex systems (Adobes Acrobat and Oracles Java provide an insightful case study for this 

phenomenon in the personal computer domain [7]). The outside pressure, on the other hand, can change 

dramatically in a short time. Modern IT-systems have to be designed with the best knowledge about present 

attacks and potential future threats to resist this dynamic threat landscape. They must further expose as little 

functionality as possible to a potential attacker; they have to be built with appropriate security margins to 

withstand attacks before flaws can be fixed and finally must inhibit the capability to adapt to a changing 

threat landscape throughout their lifetime, including the recovery from a successful attack.  

The failed copy protection scheme of  the PlayStation 3 [8] is an example of a rapid change in the threat 

landscape. For almost four years, this copyright protection mechanism remained unbroken, while those of  

competitors like Microsoft (Xbox 360) and Nintendo (Wii) where broken within months. This security 

streak, however, was not owed to the strength of  the defense mechanism but that users with the required 

skillset lacked the motivation to attack it. The threat environment changed when Sony decided to remove 

the "Other OS "option, which allowed home developers to run their self-developed software under a 

customized version of  Linux (the feature was deemed a security risk by Sony.) Once users with the required 

skillset had a motivation to attack the system, the pressure against the PlayStation 3 security system rose, and 

it was broken within twelve months. Similar lessons can be learned from the Stuxnet virus attacking SCADA 

(Supervisory Control and Data Acquisition) systems for industrial environments [9]. SCADA security was 

not a priority of  the stakeholders; neither manufacturers, industry users, or politicians regarded it as a 

pressing issue before the discovery of  Stuxnet. Therefore, SCADA systems provided little resilience against 

targeted attacks. The zero-day exploits Stuxnet used against Microsoft Windows were regarded as highly 

sophisticated and costly to develop -  while the actual targets, Siemens S7 PLC  (Programmable Logic 

Controller), presumably used in an Iranian nuclear facility, had a significantly lower resilience [10].  Both the 

PlayStation 3 and the S7 security breach came not wholly unexpected. Previous (more or less successful) 

attacks targeted these systems (e.g. [11]) and the exploited vulnerabilities (improper application of  

cryptographic algorithms in the PlayStation case, bad design, and coding practices for the S7) were avoidable 

through a more advanced security development process.  

The dynamic and often fuzzy nature of  IT-Security makes the creation of  a one hundred percent secure 

system a noble but unrealistic goal in the real world. Maximizing the resilience against threats and the 

possibility to recover from many plausible attacks is a more reasonable approach. The improvement of  

Microsoft software in the last ten years, mainly driven by its Security Development Process [12]  (SDL) and 

the advancement made in securing web browsers through improved architectures [13], provide a reason for 

optimism. Knowledge from these domains can provide a better insight into the mechanisms of  attack and 

defense and inspire security research in other domains as well. Analyzing why these tools and processes 

improved the security in their respective domain and transferring them to the domain of  FPGA based 

designs is, therefore, a legitimate approach.  
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1.2 FPGA Security – motivation, current state and challenges 

This section provides an overview of  the motivation and challenges in advancing the security of  FPGA 

based systems. The focus of  this thesis lies on SRAM (Static Random-Access Memory) based FPGAs, but 

this section includes a short comparison between SRAM and flash-based FPGAs under security aspects as 

well. Parts of  this section are based on research previously published in [14] and [15]. 

1.2.1 The motivation to advance FPGA based designs security 

This section examines why the security risks of  an unsecured FPGA design are high and how improvements 

in the FPGA domain may lead to improvements in other areas. 

 FPGAs behave mostly like hardwired integrated circuits. Operating on the low level of  the design, they 

control any functionality above them, including operating systems and applications. They can, unlike 

ordinary ICs, change their behavior to either adapt to new requirements or to subvert the security of  the 

system. Enforcing the development and usage of  secure software is futile if  the hardware layer is insecure. 

When sensitive applications rely on the computing power and flexibility of  an FPGA securing this 

component is therefore essential to the security of  the overall system Among these, most sensitive, 

applications are Firewalls, and Intrusion Detection Systems (IDS) [16], Cryptographic (Co-)Processors and 

Software Defined Radio [17] (SDR). 

Exploiting the FPGA's high flexibility and adaptability opens the opportunity for unique security solutions. 

Designs with an upgrade mechanism for the FPGA configuration can close security vulnerabilities as simple 

(or problematic) as the installation of  the new firmware. Weak algorithms, e.g., cryptography, can be 

replaced by more reliable algorithms if  the excess capacity of  the FPGA is large enough. The system 

architect can also leverage the dynamic runtime reconfiguration of  SRAM based FPGAs, as discussed later 

in this thesis, to limit the potential vulnerabilities exposed to an attacker  

Improving the security of  FPGA based design may provide further insights into the nature of  resilience 

systems and result in tools and methods suitable to secure other domains.  Future systems (either in the 

desktop server or embedded domain) may rely on CPUs (Central Processing Unit) with hundreds of  

processor cores connected through a flexible network-on-a-chip architecture. Knowledge gained through 

the advancement of  FPGA security may ensure the secure and efficient utilization of  these cores as well. 

Finally, the flexibility and interconnectivity of  FPGA make them an interesting case study for the security of  

embedded systems in general. 

The Trusted Computing Base in general and for FPGAs 

The most common definition of  the Trusted Computing Base is    

"as the set of  components (hardware, software, human, . . .) whose correct functioning is sufficient to ensure that the security 

policy is enforced, or, more vividly, whose failure could cause a breach of  the security policy."  

([18], 243) 

That an element is part of  the Trusted Computing Base does not mean that this element functions as 

defined or expected.  Those elements that fail to meet their obligations are still entrusted with sensitive tasks 

but cannot be considered trustworthy.  A prominent example of a crucial TCB component subverting the 

security in the PC world is the alleged theft of  NSA (National Security Agency of  the USA) secrets from a 

private computer through the antivirus software [19]. Both the NSA employee and his antivirus software 

were part of  a trusted computing base. One failed to fulfill  his obligations as he placed sensitive material on 

an unclassified system and the other component failed as it did not only scan for malicious codes but also 
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for us US federal government classification markers  [20] embedded in the document (a third breach 

happened when this classified information about the leak was leaked to the press.) This course of  events is 

not the only possible [21], but this way or another weaponized code found its way into a (presumably state-

sponsored) hacker group, the Shadow Brokers and released into the world (presumably to humiliate their 

counterparts at the NSA.) This information was then used by another entity to launch one of  the most 

devastating cyber attacks to this date – WannaCry. This notorious encryption Trojan caused damage of  up 

to 4 billion US dollars [22] while making only 140,000 US dollars [23] in ransom. The exploit was also part 

of  the NotPetya [24] worm that roiled the world shortly after WannaCry, probably the most devastating 

cyberattack to date. 

 

Figure 1 The FPGAs trusted computing base split into multiple layers 

Figure 1 separates the Trusted Computing Base (TCB) of  an FPGA based design in three vertical blocks. 

The basis of  the TCB is the FPGA hardware itself, vendor-provided and configurable, but mostly a black 

box. The configuration on top of  it defines its behavior if  the FPGA performs its role as expected. The 

software layer has to trust both the FPGA configuration and the FPGA hardware as it  has very few 

mitigation options against any malicious behavior of  the FPGA itself. The Spectre security bug in Intel 

CPUs has demonstrated the severe risk and limited mitigation options of  hardware-based flaws [25, 

26].Each of  these layers can be further separated into multiple components with different capabilities, 

different levels of  trustworthiness, and often sourced through a diverse supply chain. The (Re-) 

configuration control is a particular component that runs vertically through these layers. Where the FPGA 

has only one, unchangeable, or static configuration, this unit can be rather simple, but its complexity grows 

when multiple, partial changes to the FPGA configuration occur over the system's runtime. Depending on 

the systems architecture, changes to the FPGA configuration can be triggered by a hardware component, 

part of  the FPGA configuration, or the software. 

1.2.2 Challenges in securing FPGA based designs 
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Several technical and economic aspects of  FPGA characteristics pose a significant challenge towards the 

creation of  efficient security solutions. One key factor is the limited number of  FPGAs vendors in the 

market, with Xilinx and Intel (former Altera) holding almost 90 percent of  the around 4 Billion Dollar 

market(2016) [27]. The limited number of  vendors results in limited competition and lower incentives for 

innovative designs.  New competitors entering the market require a significant amount of  capital for design 

and production for their chips, as well as for the development of  a toolchain to utilize them. Currently, no 

industrial-grade open-source toolchain exists, but only partial solutions like [28] or work in progress like [29]. 

The lack of  an open development platform for all FPGAs complicates the development of  security 

extensions for research purposes and industrial applications.  The proprietary programming formats used by 

the vendors provide an additional challenge to the development of  security tools and the auditing of  

existing designs for security flaws. Security solutions, suitable for industrial designs, therefore have to be 

built on top of  or supplemental to existing toolchains.  The growing complexity of  FPGA designs 

incorporating third-party intellectual property (IP) and utilizing design paradigms like network-on-a-chip 

expose more functionality to potentially malicious actors and therefore require a higher investment in their 

security to achieve the same level of  resilience. Finally, the FPGAs structure itself  creates some challenges 

towards more secure designs. The heterogonous structure of  FPGAs (two-dimensional programmable logic 

blocks, embedded memory elements, input-output components, flexible interconnections, and special 

purpose parts), the complex communication network between them and the parallel computation 

performed by them has to be considered, the exposure of  sensitive components limited and the remaining 

threats mitigated.  

Comparison of Flash and SRAM based FPGAs under security aspects 

The main advantage of  flash memory-based FPGAs over SRAM based FPGAs is that the configuration, 

once programmed, can remain inside the FPGA. The FPGA configuration is a valuable target for IP-theft 

or tampering, and having the configuration in one place (the nonvolatile storage in SRAM based FPGAs) 

instead of  distributed within the FPGA simplifies this attack. There are, however, other ways an attacker 

might gain access to this valuable information, as explained in greater detail later. These common threats to 

the IP include theft by an employee, attacks against the code repository, and the hacking of  the 

configuration deployment and upgrade mechanisms. The theft of  the binary configuration enables further 

attacks. It is reasonable to assume that Flash-based FPGAs are as vulnerable to attacks against their residing 

configuration as SRAM based FPGAs as they differ only in the storage of  their configuration. [30] presents 

a successful attack against a flash-based ProASIC3. The researchers were able to activate a backdoor that 

was placed in the  FPGA itself  through the application of  an improved power analysis attack. The authors 

conclude that "This way an attacker can extract all the configuration data from the chip, reprogram crypto and access keys, 

modify low-level silicon features, access unencrypted configuration bitstream or permanently damage the device. Clearly, this 

means the device is wide open to intellectual property (IP) theft, fraud, re-programming as well as reverse engineering of  the 

design which allows the introduction of  a new backdoor or Trojan. " 

It is reasonable to assume that the usage of  flash memory-based FPGAs provides some additional 

protection against IP theft and manipulation while providing no advantage against other attack classes, like 

the exploit of  design bugs or the integration of  malicious code.  

1.2.3 FPGA security-related work in academia and industry 

This section provides a compact overview of  security solutions in both the academic world and the industry 

to illustrate the current state of  the art mechanisms and the perceived threats: 
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In conclusion, partial solutions for many security problems exist in both the academic and the commercial 

realm. The primary focus lies on the protection of  intellectual property against theft. One of  the standards 

to protect the IP is IEEE P1735  or, as the authors of  [58] called it "Standardizing Bad Cryptographic Practice. 

"The authors found several security flaws and conclude that their finding "…suggests that the standard requires a 

significant overhaul, and that IP-authors using P1735 encryption should consider themselves at risk. "The number and 

quality of  security flaws found in P1735 raise further questions about the reliability of  standards and tools in 

general and in the niche market of  FPGA development in particular.  

1.3 Related work in adjacent domains 

The approach described in this work operates on the intersection between IT security, model-driven 

development (MDD) model checking, and machine learning. Parts of  this section were previously published 

in [59]. 

Applications Academia Industry 

Cryptographic Algorithms  e.g. [31]  Plenty 

Bitstream Security   [32],[33] 

Bitstream Encryption   

Bitstream Authentication [34] [35] 

Secure Boot  [36] [37, 38] 

IP Protection    

Cloning and IP theft prevention  [39–41] [42–44] 

Watermarking  [45]  

Secure IP-Exchange   [46, 47] 

Secure Design    

Spatial Isolation of  Elements  [48] [49, 50] 

Development Tools in General   [51, 52] [53] 

Secure Operation    

Secure Upgrade and Monitoring  [54] [55] 

Hardware-based information flow control   

Gate Level Information Flow Tracking [56, 57]  
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1.3.1 Model-driven development and security 

Model-driven development [60] is a common technique to master the complexity of  modern systems. 

General-purpose languages like SysML [61] (Systems Modeling Language)  and AADL [62] (Architecture 

Analysis and Design Language) flatten the learning curve, advance best practices, and prevent vendor lock-

in. However, to the author's knowledge, no standardized support for security analysis exists in either of  

these languages. Proposals like [63, 63] for AADL have been made but not widely adopted. Specialists often 

perform  Threat Modeling [64]  informally using tools as simple as paper, whiteboards, or general-purpose 

diagram software. Dedicated threat modeling tools include Microsoft Threat Modeling Tool [65], and 

OWASP (Open Web Application Security Project) Threat Dragon  [66] provides a suitable structure and 

user interface but little automation. 

1.3.2 Formal verification methods 

Formal methods [67] are one crucial set of  tools to ensure the quality of  hard and software [67]. Model-

checking  [68] is a standard method to verify whether a finite state model of  a system satisfies a set of  

formally stated properties. In the security-domain, model-checking can verify security protocols [69]. A 

more recent development is the application of  mathematical proof  assistants [70] to verify the security 

properties of  sophisticated software [71]. Symbolic execution frameworks like Angr [72] and Triton [73] 

allow a more sophisticated security analysis of  binary code [74] than conventional fuzzing  [75] and taint 

analysis (e.g. [76])  tools. Many of  these tools are, however, cumbersome to use, and their application is 

surprisingly limited. While user experience could be improved relatively easy other constraints (like NP-

completeness of  the underlying problem or the halting problem [77]) are insurmountable. 

1.3.3 Machine learning 

Machine learning (ML) has seen a boom in recent years, mainly powered by a trifecta of  big data, parallel 

data processing power provided by GPUs (Graphics Processing Unit), and new ML architectures that utilize 

both.  [78] discusses the application of  machine learning for malware detection from a practitioner's 

perspective. [79] presents both a  comprehensive review of  the scientific literature and many research papers 

with applications ranging from the detection of  malware to automatically generated penetration test plans. 

Machine Learning has also been used to generate malicious inputs with complexity beyond the conventional 

fuzzing [75] methods. [80] presents a Generative Adversarial Networks (GAN) [81, 82] based attack against 

fingerprint scanner. Researchers used a similar attack [83] against the computer vision system of  an electric 

vehicle. Machine learning can also deceive a potential attacker [84].  In [83], the authors use Markov 

Decision Processes (MDP) to craft stealthy attack sequences against a cyber-physical system.  MDPs can 

also detect attacks [85] or serve other defensive purposes.  The Cyber Grand Challenge 2016 [86] 

demonstrated that modern computer programs are, in principle, able to detect, exploit, and patch previously 

unknown vulnerabilities in other cyber systems without human intervention. Analysts assume that military 

contractors and intelligence agencies do most research in this field, and therefore secret [87] Advances in 

other, more visible, domains like games can provide us with valuable insights about the capabilities and 

limits of  current machine learning systems. Millstones for this progress include Chess with Deep Blue 

(Chess) [88], Jeopardy with Watson [89],  Pacman [89] and diverse ATARI 2600 arcade games [90, 91], the 

board game Go [92],  as well as the real-time strategy game  Starcraft II [93] and Quake III [94]. Unresolved, 

but intensely researched problems, like autonomous driving, indicate the limits of  the current technology 

when the problem space becomes too large.    

Advances in other fields of  statistics have provided us with methods to determinate casual effects [95, 96]in 

the absence of  randomized experiments and the exploration of  counterfactual scenarios. Progress in 

probabilistic programming [93, 97] has eased the usage of  Bayesian statistics [98] to, e.g., incorporate 

knowledge about a system as informed priors.  
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The advancement of  machine learning in recent years can and has improved both attacks and defenses of  

cyber-physical systems. The machine learning tools available today must be tailored to the application at 

hand and used with in-depth knowledge of  their strength and limits [99].  

1.3.4 Security engineering in the software and FPGA domain 

Investments in software security by industry and the public sector have improved the resilience of  client- 

and server-based software against attackers [100]. An analysis of  the differences and similarities between 

conventional, software-centric, and FPGA based systems in general and under security aspects is presented 

here to provide further insight.  

The FPGA market is, in comparison to the software domain, a niche market with a limited number of  

vendors, developers, tools, and buyers.  The number of  applications for FPGAs is still small in comparison 

to those in the software domain. From a technical standpoint, FPGAs provide the capability for massive 

parallel computation at a fine granularity, and sophisticated hardware description languages (HDLs) like 

VHDL (Very High Speed Integrated Circuit Hardware Description Language) and Verilog differ 

significantly from general-purpose programming languages like Java and C. There are also similarities. 

Exchangeable descriptions define the system behavior - program code in software, hardware description in 

the FPGA domain. In both domains, a single design can consist of  a number of these descriptions from 

various sources and provide in multiple forms (e.g., binary, source code). Code written for ordinary 

processors might be executed on FPGAs as well, e.g., through standards like the Open Computing 

Language ( OpenCL) [101]. The trend to computer-generated code, observable in both domains (e.g., using 

Matlab/Simulink [102]), improves coding efficiency, allows the creation of  more intricate designs, and 

decreases understanding of  the internals of  the system. The human-written code can be made accessible for 

audit (e.g., peer review), and the limited processing power of  the human brain limits its complexity.  Code 

generators cannot annotate the crucial components of  the code with helpful comments. Even rules can 

result in complex, generated code that is hard to assess.  

Both domains share security-relevant attributes as well. The risk of  flaws in general and a security-related 

flaw in particular increases with the complexity of  the system. In both domains, encryption and obfuscation 

are used to protect intellectual property (the executable or firmware in the software domain and the 

configuration in the FPGA domain). The complexity of  the source code supply chain poses a risk in both 

worlds as malicious or compromised participants in this supply chain may tamper the code on its way to the 

customer [103].  The large and often distributed teams used to create complex systems increase the risk of  

an insider attack. The variety of  stakeholders (e.g., intellectual property owner, device owner, administrator, 

and manufacturer) during the systems lifecycle increases the risk of  an attack. These stakeholders will often 

have competing interests, and this may result in tradeoffs (usability vs. encryption is a classic example of this 

problem) that decrease the security of  the system.  

The most apparent difference between the two domains is the lack of  sophisticated security tools for 

FPGAs. The software developer can rely on a high number of  tools for various tasks, IDApro [104] and 

Ghidra  [105] disassemble and analyze binary code, static analyzers like Fortify[106] identify potential 

security flaws in the source code and a vast amount of  fuzzing tools [75] enable the automatic and dynamic 

testing of  code. Coding standards like the CERT (Computer Emergency Response Team) standards for 

programming languages [107] provide guidelines for [105]developers. Organizations like the Open Web 

Application Security Project (OWASP) [66]collect, improve, and propagate the collective knowledge about 

attacks, vulnerabilities, and counter-measurements in their respective fields. To the author's knowledge, no 

such tools, guidelines, and organizations exist to support the FPGA developer. The FPGA domain can 

benefit from some of  these guidelines, taxonomy's, tools, and best practices. Selected entries from the Top 

25 of  the Common Weakness Enumeration (CWE), developed to provide a taxonomy for common 
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software security flaws, and are used here to illustrate the feasibility of  this approach. As demonstrated in 

later chapters, FPGA configurations are well susceptible to those and other weaknesses already named and 

listed for the software domain, like (the following three quotes are  from [108]): 

"CWE-306: Missing Authentication for Critical Function 

Description Summary 

The software does not perform any authentication for functionality that requires a provable user identity or consumes a significant 

amount of  resources." 

This weakness is not limited to human actors (or users), any hardware component connected to the FPGA 

could make potentially dangerous requests, the mandatory authentication of  this component (e.g., through a 

challenge-response protocol) mitigates this risk.  

"CWE-829: Inclusion of  Functionality from Untrusted Control Sphere 

Description Summary 

The software imports, requires, or includes executable functionality (such as a library) from a source that is outside of  the 

intended control sphere."  

The use of  third-party IP cores and code generator exposes, as discussed in greater detail later, FPGA 

designs to the very same risk.   

"CWE-807: Reliance on Untrusted Inputs in a Security Decision 

Description Summary 

The application uses a protection mechanism that relies on the existence or values of  an input, but the input can be modified by 

an untrusted actor in a way that bypasses the protection mechanism." 

FPGA based designs can suffer from this weakness as well, as illustrated here by an example. An FPGA 

implements an asymmetric cryptographic algorithm and utilizes an external hardware component to create 

cryptographically secure random numbers. If  an attacker gains control over this random number generator 

and reduces the entropy of  its output, the cryptographic operation inside the FPGA could fail as well and 

leave potentially sensitive material vulnerable. 

A significant difference between these domains is the lack of  a standard or quasi-standard security-aware 

development process.  Software companies can refer to the Microsoft Security Development Lifecycle 

[109]or the BSIMM (Building Security In Maturity Model) benchmarking initiative [110] to kick-start and 

improve their security development process. Data gathered through these processes can be used to compare 

them and to gain further insight into the nature of  secure systems[111]. To the author's knowledge, no such 

initiative or de facto standard exists for the FPGA domain.    

It is reasonable to conclude that the tools and methods to create secure software are more advanced than 

those in the FPGA domain.  The security engineering process of  FPGA based designs can, therefore, be 

improved by applying methods and processes inspired by those in the software domain and adapted to not 

only incorporate FPGA specific characteristics fully but to leverage them for innovative security 

mechanisms.  
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1.4 Research gap and contribution of this thesis 

One or more partial solutions for distinct security problems are available from either the academic or the 

commercial realm, but the tools and methods available and applied are less sophisticated and comprehensive 

than those in the software domain. This thesis focus lies on a high-level security analysis of  the design, its 

components, and their interaction. The following contributions to advance the security engineering for 

FPGAs are claimed:  

Contribution 1: Analysis and adaptation of  appropriate security methods from the software domain 

into the FPGA domain 

This thesis provides an analysis and comparison of  the state of  security engineering in the software and 

FPGA domain. A threat taxonomy for FPGAs, as well as system-centric threat modeling techniques, are 

presented. Building blocks for FPGA threat models are introduced to increase the efficiency and 

consistency of  this process. 

Contribution 2: Introduction of  a domain-specific language suitable for the system-centric threat 

model of  an FPGA architecture and the formal definition of  its security policy 

This thesis introduces FPGASECML - a domain-specific modeling language designed to formalize both the 

threat model of  the FPGA architecture and the security policy. A proof  of  concept software to create and 

process these models is presented. 

Contribution 3: Formal, model-based validation of  an FPGA design security attributes 

This thesis presents a method to validate the FPGASECML system model of  a design against a security 

policy using formal temporal logic. A proof  of  concept implementation provides an automatic model to 

model transformation. 

Contribution 4:  Isolation of  FPGA elements with different security levels through Partial Runtime 

Reconfiguration 

This thesis proposes the application of  Partial Runtime Reconfiguration to separate elements of  different 

sensitivity and trustworthiness. The formal validation approach through model checking enables the creation 

and validation of  a secure sequence of  reconfigurations of  the FPGA.  

Contribution 5:  Model-based weakness analysis through reinforcement learning 

This thesis proposes the application of  reinforcement learning to identify potential weaknesses and how an 

attacker may exploit them.  A proof  of  concept implementation generates the required Reinforced learning 

model (based on Markov decision process-based) from any valid FPGASECML description.   
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Figure 2 Structure of the thesis 

1.5 Conclusion 

Resilience against attacks is a crucial attribute of  any IT system, including those relying on FPGAs. The 

existing and proposed security solutions in industry and academia mainly focus on the protection of  

intellectual property. The methods and processes for conventional IT systems are regarded as more 

advanced than those in the FPGA world, but it is possible to adapt some of  these mechanisms to the FPGA 

domain. The following chapters (as outlined in Figure 2) present an analysis and adaptation of  suitable 

security methods from the software domain into the FPGA domain, the formalization of  the security 

challenge by introducing a domain-specific language, suitable to describe the designs architecture and the 

definition of  its security policy. A workflow for the formal validation of  the systems architecture model 

against an FPGA security policy is presented as well as a method to isolate FPGA elements with different 

security sensitivity levels through Partial Runtime Reconfiguration.  Reinforcement learning can identify 

potential weaknesses in the design  
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2 Threat assessment and trustworthiness determination 

Information about the threats a modern system will face throughout its lifetime will always be incomplete 

and fuzzy.  There is also a considerable uncertainty of  how well its multiple elements will withstand these 

threats while fulfilling their obligations. A structured approach to determine these two factors – threats and 

trustworthiness- can minimize this uncertainty and allow an efficient implementation of  security 

mechanisms.  

The first section of  this chapter discusses the principal threat assessment methods used today and their 

suitability for the FPGA domain.  It presents several threat archetypes against FPGA designs and how the 

threat landscape changes across the system lifecycle. The system to be created must be able to deal with 

these threats to be considered secure and trustworthy. The second section presents various methods and 

criteria to assess the trustworthiness of  its components. 

2.1 Assessing the threat of FPGA elements 

The identification and classification of  threats is the foundation for an effective defense against them. This 

section provides a framework for an FPGA specific threat classification, inspired by the extensive work 

already done in the software domain.  

2.1.1 Common threat classification methods 

Today two classifications for threats are commonly used: the CIA triad focusing on the security properties 

of  a system and the Microsoft STRIDE approach analyzing the system from the attackers' point of  view. 

CIA Triad 

The CIA classification focuses on the properties a secure system must maintain:  

• Confidentiality: hiding information from unauthorized actors 

• Integrity: maintaining the assured and expected properties 

• Availability: providing the required services when requested 

A system maintaining these attributes can further provide non-reputability. This fourth property assures the 

correct performance of  an operation.  

Microsoft STRIDE 

Microsoft introduced STRIDE [74] as the attacker-centric alternative to the asset-centric CIA classification. 

STRIDE focuses on the attacker's intention; each letter of  the mnemonic stands for a generic class of  

threats: 

• Spoofing identity: pretending to be someone or something else  

• Tampering with: performing unauthorized changes 

• Repudiation: hiding or denying that something happened 

• Information disclosure: revealing sensitive information to unauthorized actors 

• Denial of  service: making a crucial element of, or the complete system, either temporary or 

permanently unavailable to legitimate actors 

• Elevation of  privilege: gaining control over or getting access to the system or an element of  it 

beyond the legitimate use 
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STRIDE does not aim to be a formal analysis method. It is often possible to attribute a single attack to 

more than one intention. STRIDE is, therefore, best suited to perform initial and nonformal threat analysis. 

Comparison 

A secure system should be able to maintain the CIA properties even under adversarial conditions. STRIDE 

focuses on the attacker's view and their goals and is, therefore, more suitable for threat models. Motivated by 

its success in the software domain, it serves as a basis for the generic threat model for FPGA based designs 

presented later. 

2.1.2 Threat agent archetypes 

A security assessment should identify those who pose a threat to the security of  the system. This section 

discusses the classic threat agents first and presents FPGA specific threat agents second. 

Traditional threat agents 

Not all hackers, or more formally threat agents, are equal, and it is reasonable to separate them in different 

groups. The knowledge about them is often limited and fuzzy (in [18], page 367, the author bemoans the 

lack of  an "international standard burglar "). The traditional hierarchy of  attackers is: 

• Script Kiddies execute prepared programs, shell scripts, and step-by-step instructions to achieve 

their goal. They lack any profound understanding of  both the system they attack and the methods 

they are using. They are unable to customize their tools to a distinct target and to improve the 

performance of  their tools. 

• Hackers/Crackers have a deep technical understanding of  the targeted system. They analyze IT-

systems for weaknesses and have the competence to exploit them on their own. In the past, hackers 

have worked alone. Recent years have seen the rise of  a more professional scene willing to 

collaborate to sell zero-day exploits, easy-to-use exploit packages, rentable botnets, and services like 

support and customization [112].  

• Organized Crime has the financial and organizational means to perform attacks against well-

protected high-value targets like banks [113] or credit card companies. 

• Foreign State/Intelligence Service can invest significant resources in both fiscal and human 

resources.  These capabilities allow them to attack cryptographic methods and hardware 

implementations beyond the reach of  other parties. They can carry out cyber-attacks against well-

secured facilities like the uranium enrichment facilities in Iran [114]. In this realm of  "cloak and 

dagger "[115] operations, the real culprit is often hard to identify,  even for other states [116]. Public 

information often remains fuzzy as, e.g., western intelligence services claim that Russian intelligence 

services are behind the  Islamic State's hacking army [117]. Another example is  North Korean 

alleged involvement in the attack against Sony Pictures. These assessments [118] where leaked by 

the NSA while hard evidence is either missing or remains classified for the foreseeable future.  

This template serves well for a high-level analysis of  general-purpose IT-systems. For a specific domain or a 

distinct application, a more detailed breakdown and analysis of  the threat agents is often mandated. It is 

reasonable to  discriminate attackers by their intention/motivation and their capabilities with regards to their 

budget, the available equipment, knowledge, and time:   

• The available time can be crucial.  Many attacks have a small window of  opportunity, e.g., as a 

patch may remove the exploitable design flaw. Other attacks require extensive knowledge of  a 

system and many rounds of  trial and error before they succeed. Some attacks are only possible at a 

particular stage of  the product lifecycle. Known attacks can become ineffective once detected and 
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mitigated, either by patches or through the introduction of  additional security mechanisms (e.g., 

Firewalls). 

• Financial resources available and the expected return on investment are crucial for attackers 

seeking financial gain through their evil deeds. Analyzing a complex system requires both expensive 

equipment and skilled engineers; a reasonable person or organization will, therefore, only attack a 

target worth the effort.   

• The available equipment is also a significant factor. Some hardware attacks require expensive 

equipment like a focused ion beam microscope to dissect the die of  a chip. Advances in hard- and 

software can lower the cost of  entry and enable new attacks. A low budget or homebrew version 

may be less versatile [119] and not sophisticated enough for professional use but sufficient to carry 

out attacks against legacy systems. Alternative firmware can transform widely available and 

inexpensive devices into powerful hacking tools, like a mobile phone that becomes a GSM base 

station [120]. The same is valid for software tools rendering dedicated devices obsolete (as Ethereal, 

later Wireshark [121], did for network diagnoses). 

• Motivation and Incentives can play a crucial role. Greed is often the motive for an attack but not 

the only one. The security system of  the PlayStation 3 was, as mentioned above, not broken by 

criminals eager to sell pirated software but by enthusiastic hackers craving to restore the "Boot to 

Linux "feature removed by Sony (ironically for security reasons). 

• Knowledge is also a crucial resource.  Knowledge of  the very system is often the critical 

component of a successful attack. An attacker also has to master the tools and mechanisms to carry 

out his attack. 

FPGA specific threat agents 

Applying the criteria from the last section to the FPGA domain, threat agents can be grouped in these, for 

this task more appropriate, categories: 

• Software Hackers can detect and exploit software vulnerabilities. Their knowledge can range from 

low (script kiddie) to high (finding new flaws in the well-protected software system and inventing 

novel ways to exploit them). These threat agents do not rely on specialized hardware. 

• Hardware Tinkerer can manipulate the peripheral hardware around the FPGA, either placing 

probes to gather information replacing elements or looking for side channels. Expensive equipment 

might be necessary for some attacks, but a USB oscilloscope and some probes could be sufficient 

for others. Attacking SMD devices or multilayer PCBs requires manual skills and the appropriate 

equipment. Physical tamper protection like glue can raise the stakes higher. 

• Digital Design Experts with extensive knowledge about the design of  digital circuits in general 

and FPGAs, in particular, can perform attacks against the FPGA configuration once it is retrieved. 

Attacks like these require extensive knowledge of  not only the FPGA hardware and the tools chain, 

as well as access to this, often costly, software (a well-formulated search machine query could 

significantly reduce the cost of  entry for the latter.) 

• Microsystems Engineers capable of  analyzing or manipulating the FPGA chip and storage 

elements holding either the FPGAs configuration or other sensitive data. They can retrieve this data 

from either the FPGA or its peripheral devices.  Their skill requires either specialized equipment 

obtained at high cost or less sophisticated self-made solutions. 

Software Hackers are not unusual these days, but the high equipment costs for an attack at the chip level 

makes the Microsystem Engineer capable of  targeting the FPGA itself  a much rarer opponent. The 

complexity of  modern FPGA-chips, their gate size, and the cost of  the required equipment must be taken 

into account as well. A  reasonable assumption is that attacks against an FPGA this close to the hardware 
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are more expensive than attacks against legacy integrated circuits (IC) produced with a less versatile process 

and more straightforward design (a security advantage of  FPGAs over hardwired ICs). Organizations, e.g., 

competitors, may combine the skills of  multiple threat agents.  Such organizations are the most dangerous 

threat if  they combine several of  these technical capabilities with the capability to coordinate these experts 

efficiently. Depending on the very system under analysis, a more detailed profile, considering the motivation 

and the available resources, for each of  these classes may be created. In the absence of  better intelligence, 

the generic threat agents introduced in this section should serve well for architecture-centric security 

analysis. 

2.1.3 The FPGA threat landscape throughout the systems lifecycle 

The threat landscape changes as the FPGA systems move from its development to the decommissioning 

phase. This section discusses multiple threats the system faces at each step of  the lifecycle. This section 

builds upon and extends an analysis already published in [14]. The practitioner may extend the list of  threats 

presented to fit a specific scenario and changes in the threat landscape. 

Design and development 

Moles planting malicious code inside the code, dissatisfied employees leaking trade secrets, and outside 

hacker tampering with the code repository are among the threats to be mitigated at this stage. Following the 

STRIDE mnemonic, these generic threats can be identified: 

• Spoofing the identity of  a legitimate developer or supplier an attacker can access and alter the 

source code or the specification  

• Spoofing the identity of  a crucial IT component, an attacker can sneak malicious information into 

the development process or retrieve sensitive information from it. 

• Tampering with data: an attacker can change the systems source code or specification, either to 

add functionality to be exploited later or to weaken the systems resilience 

• Tampering with the built tools: an attacker can sneak malicious code inside the product without 

changing the source code. 

• Tampering with the IT infrastructure: an attacker can leak information about the product and 

sneak malicious code into the product. 

• Repudiation: scrubbing or manipulating access logs to the code repository and other sensitive 

parts of  the development infrastructure can hide an attack.   

• Information disclosure: disclosing the source code, the specification, and information about the 

used IT infrastructure enables further attacks. 

• Denial of  service: an attacker could leave a legacy system in a vulnerable state by making its source 

code or the built system temporarily or permanently unavailable.  

• Elevation of  privilege: legitimate user (developer, administrator, janitor) may escalate their access 

privileges to perform attacks (e.g., a janitor attacking the code repository) 

The stakeholders at this stage can mitigate these threats by securing the crucial IT components (Server, 

Workstation, Network) and operations by technological and organizational means (as described in [122]). 

Manufacturing 

Complex supply chains and manufacturing processes, including the complete outsourcing of  this step to 

contract manufacturers, create multiple potential vulnerabilities. The stakeholders must mitigate these threats 

by securing the manufacturing process and the supply chain, relying on security mechanisms and processes 

not unique to the FPGA domain and, therefore, outside the scope of  this thesis. 
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Deployment, operation, and maintenance 

Once the product has arrived at its destination, it must be installed, configured, and maintained. An attacker 

may exploit an opportunity provided by the system's physical location, connectivity, configuration, and or 

maintenance status. The stakeholders can mitigate these threats through the creation of  a resilient system, 

shipped with a secure default configuration, and created with the ability to recover from a security breach. 

The methods presented in this thesis are focused on this effort.  

Decommission 

Decommissioned devices can provide valuable insights into the system's inner workings and may even 

contain sensitive data. The establishment of  a secure decommissioning process mitigates these threats. 

Appropriate steps to decommission sensitive devices include the scrubbing of  their content and their 

physical destruction [123]. The methods presented in this thesis support the critical steps of  identifying the 

sensitive data and their location in the system. 

2.2 Assessing the trustworthiness of a design element 

The complete and formal verification of  any nontrivial design, as performed on the SLE4 microkernel  

[124],  could provide certainty whether a system satisfies the stated properties.  Such formal proofs come 

with often prohibitive costs and are therefore of  little use in most industrial designs. The dynamic and fuzzy 

threat landscape makes the development of  security metrics [125]  a challenging task, and their application 

can lead to a wrong sense of  security (being 99% "secure "means little if  an attacker finds a way to exploit 

the remaining 1%). However, if  applied carefully and with knowledge of  their limitations, a cautious expert 

can use security metrics to monitor and compare some aspects of  a design's components. Relying on a 

single number to capture the security of  unique designs, either complete or in parts, will not improve their 

security at best and provides a wrong sense of  security at worst.  Heuristics, deducted from experiences in 

software security, can be used to approximate the risk posed by the various design elements – the focus of  

this analysis lies on those elements that define the FPGAs behavior. 

2.2.1 Trustworthiness indicators 

This section discusses several quantitative and qualitative attributes of  an element that can indicate its 

trustworthiness. Examples include the sourcing (distributors, vendors, developers) of  the element, its 

complexity, the implementation layer, built-in security mechanisms, and which kind of  testing and security 

analysis was performed on it. Appendix E provides a detailed discussion of  these indicators. 

2.2.2 Methods to formalize the security assessment 

The use of  checklists and decision trees supports inexperienced users, improves completeness and 

reproducibility of  the assessment process, as well as the soundness of  the assessment itself. Neither of  these 

tools may provide the perfect answer for every case but only reasonable guidance through the most 

common problems. 

Checklists 

Checklists [126] can ensure a consistent security assessment for all elements. The trustworthiness indicator 

presented above, security standards, and recommendations (e.g., minimal length for an encryption key) can 

serve as a basis for this assessment. Personal signoff  on checklists can increase the personal accountability 

of  the assessor.  

A checklist can be as simple as: 

1. Is the source of  the element trustworthy? 

2. Was the element tested for security vulnerabilities? 
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3. Are there known security flaws within this element? 

Decision Trees 

Decision trees can guide and streamline the assessment process. They provide more flexibility than 

checklists, but the tree should not become too broad or deep as this decreases their usability. Decision trees 

can be either manually constructed or derived from previous security assessments through machine learning. 

 

Figure 3 Fragment of a decision tree to assess the trustworthiness of an element  

(assuming that the external code review is more rigorous than the in-house analysis) 

2.2.3 Data-driven security assessments through machine learning 

Predictive maintenance [127, 128] is used in mechanical engineering to reduce repair costs and downtime 

while increasing the lifetime of  industrial machines, wind turbines, and similar devices. This method utilizes 

statistical models to predict which components require maintenance based on the history of  similar devices.   

The trustworthiness assessment of  a component is a nontrivial task that requires an extensive body of  

knowledge and experience. Where objective data and criteria are missing the influence of  anecdotal 

evidence, personal bias, as well as subjective opinions, are often substantial. The lack of  objective criteria 

makes it harder to achieve reliable, comparable, and replicable assessments.  Machine (or statistical) learning 

methods [129] can decrease these effects and support the assessment process. Appendix E outlines such a 

machine learning solution. Supplementing human judgment with a statistical model provides several 

advantages. Statistical learning methods can identify and minimize human bias and therefore improve the 

consistency and reliability of  the security assessment. Knowledge and experience codified in a mathematical 

model aides inexperienced assessors. The assessment process can be sped up by this approach, as the model 

can be run quickly in case of  a security incident or any other change in the underlying database. Analyzing 

the generated (trained) model itself  might provide further insights into the development process. 
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Figure 4 Components of a machine learning workflow 

The primary challenge is the collection of  meaningful and comparable data to create and verify the statistical 

models. Sampling the necessary data for machine learning is a challenge in many areas and the sensitive 

nature of  IT security, and the niche characteristic of  FPGA development is not helpful in this regard. To the 

author's knowledge, no open dataset (like [130]) is available, and neither the errata from manufacturers like 

Intel or AMD nor open-source projects provide the amount and depth necessary for such an analysis. It is, 

therefore, not possible to provide more than an abstract discussion of  this topic here. Another challenge is 

the complexity of  the development process, often distributed along a more or less extensive supply chain 

and deployment landscapes.  Data sources can be grouped into three, coarse-grained classes: in-house, 

partners or associates, and third parties. Collecting the required data in-house should pose the fewest 

problems. Through persuasion, partners like suppliers and professional customers could provide at least 

some of  the required data. Third parties like end customers may be even harder to convince. The same is 

true for competitors that could provide incident reports of  attacks against their systems, as well as security 

researchers and intelligence services that may have information about existing vulnerabilities and developing 

threats. Legal restrictions like privacy and liabilities laws, as well as contractual obligations, are additional 

obstacles on the way to a suitable database. Data acquisition is, unfortunately, not the only challenge. 

Security incidents are often sudden and discrete events with potentially catastrophic results. This 

characteristic limits the use of  statistical models but does not render them completely useless. Older 

elements may be more vulnerable, the given key length of  a cryptographic algorithm provides less security 

over time, and a high error rate of  a deployed device may either indicate an ongoing attack or a security risk 

due to questionable product quality. Statistical learning provides a valuable toolset to verify or reject these 

hypotheses as long as their limits and downsides [105], but the lack of  available data makes them unsuitable 

for this thesis. 

2.3 Conclusion 

The creation of  appropriate defense mechanisms requires a deep understanding of  the system but also of  

the threat agents, especially with regards to their motivation and capabilities. The generic threat agents 

discussed in this chapter provide a suitable starting point for further analysis of  both the design under 
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review and the threats against it.  FPGAs based designs are, like any other IT system, exposed to different 

threat agents throughout their lifetime, urging the need for a suitable and adaptable security strategy for each 

step of  the way. It is sensible to enumerate several generic threats for any FPGA based design using the 

STRIDE approach. The different stages of  the lifecycle play a vital role in the security assessment. The 

design and development phase of  the lifecycle lays the foundation for a secure and resilient system in every 

future stage.  

Assessing the trustworthiness of  the design elements and their supply chain, even if  the result of  this 

analysis is inherently fuzzy, is an important step to improve the security of  the design. The partial 

automatization of  the assessment process through machine learning appears promising as long as the user is 

fully aware of  their pitfalls and restrictions. The lack of  an extensive dataset for training and validation, 

however, blocks this avenue for research.   

The next chapter is devoted to the creation of  a threat model for the entire system. 
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3 On the threat modeling of FPGA based designs 

A practical and efficient defense against attacks requires knowledge about the attacker, the assets worth 

defending, and the system containing them. This chapter discusses various ways of  threat modeling and 

their applicability and limitations with regards to FPGA based designs. Parts of  this chapter are based and 

built upon research previously published in [14]. 

3.1 The motivation for threat modeling 

The general tendency to elaborate, interconnected systems, and the growing number [131] of  attacks against 

IT-systems combined with the potential damage of  these attacks motivate the search for better security 

solutions for FPGA based systems; cost efficiency dictates that this step should require as little resources as 

possible. Modern FPGA can contain logic circuits with the equivalent of  several million gates. Standardized 

interfaces like AMBA [132] or Whisbone [133] simplify the integration of  third-party IP cores. This 

incorporation of  black-box components combined with new paradigms like Network-on-a-chip provides 

the base for more robust designs, but the complexity of  these designs introduces new security challenges. 

Third-party elements can contain malicious code, endangering the security of  the whole system. The 

installation of  new functionality and the upgrade of  existing blocks of  reconfigurable logic over Wide Area 

Networks (e.g., the internet) extend the system defense perimeter way beyond the FPGA. The complexity 

of  the FPGA designs makes the detection and mitigation of  security-relevant bugs more challenging.  Partial 

Runtime Reconfiguration further increases the risk of  a security incident, as discussed in greater detail later.  

Discarding these new opportunities is not an option either as it would reduce the capabilities of  the FPGA 

significantly. Therefore, new approaches -balancing security, functionality, and efficiency- are necessary. 

These new methods must incorporate the knowledge about secure systems in general as well as the FPGA 

specific attributes and must empower their users to apply this knowledge to the very system to be created or 

reviewed. Threat modeling FPGA based designs is one crucial step to achieve this goal as this process 

creates and consolidates the knowledge necessary to identify and mitigate potential weaknesses throughout 

the design lifecycle. 

3.2 Threat modeling basics 

Threat agents (discussed in 2.1.2) require only one path to carry out their attack while the systems creator 

has to make sure that the easiest way to subvert the security of  the system (the weakest link) is still too 

expensive for them. Locating and reinforcing this weakest link is crucial to the overall security of  a system. 

Then the new weakest link has to be found and reinforced, and so on until the design has reached an 

acceptable level of  (assumed) resilience. It is, therefore, necessary to analyze the threats, system weaknesses, 

and assets as well as the appropriate mitigation mechanism. Threat modeling is not restricted to any stage of  

the lifecycle but most efficient if  completed before the implementation starts. 

There are three approaches to Threat Modeling: 

• Asset Centric Threat Modeling focuses on the system assets 

• Attacker Centric Threat Modeling identifies the potential threat agents, their capabilities, and 

intentions (as discussed in chapter 2 and chapter 9) 

• Software Centric Threat Modeling creates and analyses a model of  the system to identify 

potential security vulnerabilities and if  their proper mitigation.  This approach is not limited to the 

software domain but can be used for FPGA based systems as well. It will be, therefore, referred to 

as System Centric Threat Modeling here.  
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All three views: assets, attackers, and the design of  the system are essential to understanding the security 

risks and requirements of  a design. System Centric Threat Modeling creates a simplified model of  the 

design and its data flow, omits implementation details, and focuses on the threat modeling process on the 

interaction between the different elements. This model should contain the assets and their exposure to 

threat agents. It must further contain the security mechanisms used and where they are deployed to protect 

the assets. 

 This chapter determines and analyzes the required building blocks for system-centric threat modeling of  

FPGA based designs. The focus of  this theses lies on a single FPGA configuration.  Systems utilizing 

multiple FPGAs can be modeled by a distinct threat model for each FPGA, treating the others as peripheral 

devices. The model also omits details about the Hardware-Software interface. 

3.3 Limits and constraints of existing threat modeling approaches 

Any security analysis can only provide a snapshot of both the system under review and the threats it faces. 

The threat landscape is subject to change throughout the lifetime of  the system, either through improved 

technology, incautious alterations of  the system, or failing security mechanisms (e.g., a broken encryption 

algorithm). Therefore, an ongoing review of  the threat model throughout all stages of  the product lifecycle 

is necessary – a task simplified by using the predefined structures and building blocks introduced in the next 

chapter. Every model is only a simplified version of  reality, but an incorrect model or one that omits 

essential details can be dangerous. A wrong or outdated model of  the system may result in an incorrect 

security assessment. In [134], the authors describe a method to overcome this shortcoming for software, but 

to the author's knowledge, no commercial tool ever implemented this technique. The model's level of  detail 

and the appropriate level of  analysis have to be determined by the responsible stakeholder. Current threat 

model tools are designed for software systems [64] and lack many of  the features necessary to analyze 

FPGA based architectures, e.g., support for Partial Runtime Reconfiguration (PRR). It is, therefore, 

necessary to extend and adapt them to the FPGA domain. Structuration and formalization of  the model 

increase efficiency and enables further steps (like model-to-model translation) to improve the security of  the 

design after the completion of  the analysis and adaptation phase. 

3.4 Structuring trust and threats 

Systems security often breaks at the interfaces.  The majority of  attackers start at the periphery and moves 

towards central elements. It is, therefore, prudent to split the system into different layers and analyze the 

threats associated with each of  them. This section provides an overview of  the different roles an FPGA can 

perform, a generic set of  threat layers as well as a discussion of  trust boundaries.    

3.4.1 The FPGAs role within the system 

Analyzing the role of  the FPGA within a system also provides first insights into the security requirements 

and threat landscape of  the design. From the systems view, an FPGA can fulfill one or more of  these roles: 

• Preprocessor: The FPGA's massive parallel computing power can reduce the amount of  data to 

be processed by a microcontroller or a DSP (Digital Signal Processor). Examples of such 

applications include software-defined radio [17]. Network Intrusion Detection systems use them to 

perform massive parallel operations on high-speed network traffic [135]. 

• Coprocessor: FPGAs are often used to complement conventional, hardwired processors. 

Examples for this configuration include the implementation of  asymmetric cryptography like 

elliptic curve cryptography (ECC) in the FPGA [136], p 225. 

• Communication Hub: FPGAs allow the parallel computation of  data; they have a flexible 

communication infrastructure and contain hardware blocks for high-speed communication 
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protocols (hardwired IP). These characteristics enable them to serve as connectors between other 

processing components in complex and dynamic environments [16].  

• Standalone data processing:  FPGAs can also serve as standalone processing entities replacing 

DSPs, Microcontrollers, and other ICs. 

Sensitive services must be performed as specified, especially if  the FPGA is part of  the Trusted Computing 

Base of  the overall design. Where the FPGA is, for example, used to route sensitive data, the data flow must 

be correct, and no unauthorized actors must access sensitive information. It is reasonable to invest fewer 

resources (in analysis, design, implementation, and test) if  the FPGAs services are not crucial to the security 

of  the system.  

3.4.2 Structuring threats and threat agents in layers 

 

Figure 5 Schematic with threat layers, with Device 4 and PCB (Printed Circuit Board)  A serving as interfaces between 

different threat layers 

Dividing the system into multiple layers (Figure 5) eases the location of  threat agents and simplifies the 

placement of  appropriate security mechanisms. The FPGAs environment is split by knowledge, equipment, 

and physical location of  threat agents: 

• World: A growing number of  embedded systems have a connection to Wide Area Networks and 

even the internet; Threat agents targeting this connection can attack the system from remote 

locations and maintain anonymity while causing widespread damage. Wire-based diagnostic 

interfaces to the system (like ODB-II in cars[137]) present another point of  entry for hackers from 

this outside world. The risk of  the latter case is not as high as the attacker requires physical access 

to the system. Threat mitigation has to consider all these threats. A physical enclosure (building or 

chassis) can prevent physical access to the system, and some form of  the firewall may prevent 

unauthorized remote access through WANs. 

• System:  The integration of  simple devices into complex systems creates new security challenges. 

Devices from different vendors may comply with different security requirements and standards. 

Replacing or tampering with devices in the system, e.g., through a supply chain attack, can endanger 

the security of  the overall system as well as its FPGA component. Parts of  the system may be 

interchangeable; there may be different configurations of  the same system deployed. 
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• Device: The device itself  may consist of  multiple elements, from different vendors and with 

different levels of  sensitivity. An attacker can target the communication interface between the 

printed circuit boards (PCB) if  the device consists of  multiple, interconnected PCBs. Shared 

resources like memory chips or the power supply provide a port of  entry for the sophisticated 

attacker. Input sanitation, a device enclosure, and further security mechanisms like power filtering 

against power analysis attacks can mitigate these threats from the system. 

• Printed Circuit Board:  The PCB contains the FPGA, auxiliary circuits, and peripheral devices, as 

well as the storage elements for the FPGA configuration or other elements involved in the 

reconfiguration process. An attacker gaining access to the PCB may intercept messages, a replay of  

older transmissions, replace devices, or rewire the connection between them. A physical enclosure 

may protect the PCB. The deeper layers of  the PCB may protect sensitive connections, and glue 

may be applied to protect sensitive ICs.  

• FPGA-Chip:  The FPGAs threat layer  can be, as discussed in 1.2.1, further separated into three 

sub-layers: 

o The very hardware, static and vendor-provided 

o The configuration that can be changed to fit the applications need  

o An optional software layer that might run on top of  an embedded processor (either 

hardwired or defined through the configuration) 

The focus of  the model presented here lies in the configuration layer of  the FPGA, but it is worth 

remembering that a holistic approach to IT security is necessary to protect a system in the real world.  

Depending on the system's complexity and the desired level of  analysis, several layers can be merged, e.g., a 

system that contains a single PCB with the FPGA may omit the separation between System and Device.  

Multiple analyses with different points of  view (e.g., for each device) may be necessary for complex systems. 

Threats against the diverse set of  components within the FPGA itself  and peripheral devices connected to 

it are discussed in greater length later in the next chapter. 

3.4.3 Trust boundaries  

Each non-trivial design consists of  multiple elements with different levels of  exposure to threat agents, level 

of  criticality for the security of  the system, and varying levels of  trustworthiness and resilience. The border 

between elements considered more trustworthy than others are usually called trust boundaries. The threat 

layers presented above are generic trust boundaries, but they are not the only ones. The analyst can assess 

both sides of  the trust boundary based on: 

• The trust placed in the subsystem by storing confidential data or by entrusting it with sensitive 

operations. 

• The exposure of  the element to threat agents, as a component connected to the internet, will face 

more threats than a component deeply embedded in the inner layers of  the design. 

• The (assumed) resilience against intentionally malicious acts.  

An attacker will try to gain control over more trusted elements by bypassing or breaking through these trust 

boundaries. Once in control over the inner circle, an attacker may try to leak sensitive information across the 

trust boundary into parts of  the systems that are less trustworthy, may try to gain further control over the 

system or perform other malicious acts to solidify his influence over the system and remove traces to him. 

Not all violations of  trust boundaries are the direct result of a threat agent’s activity. In side-channel-attacks, 

sensitive data passes trust boundaries; in most cases, without an attacker’s intervention but through the 

intrinsic behavior of  the system (e.g., power signature of  different operations [138]).  
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The trust layers discussed earlier can be used to develop a first, coarse grain, definition of  the system's trust 

boundaries. In some cases, however, a more nuanced analysis will be necessary. The FPGA configuration 

stored in a user-accessible SD-Card, for example, must be treated more carefully than a configuration stored 

in a soldered and glued read-only memory chip, even if  both elements are part of  the same layer (PCB). A 

secured (and trustworthy) connection between the FPGA and the manufacturer's internet server (e.g., for 

upgrades), on the other hand, is an example of communication across different layers that crosses only one 

trust boundary (if  the VPN operates as intended.) The reconfiguration of  FPGA resources can create a 

(temporal) trust boundary if  the new configuration has different security attributes.   

3.4.4 Attack vectors 

Attack vectors are the interface or sequence of  interfaces an attacker uses to carry out his attack. Identifying 

and removing or securing these attack vectors is one important technique to improve the security of  the 

system.  

3.4.5 Legitimate actors  

Everything and everyone interacting with the system is a potential threat agent. Most of  these actors will be 

other technical systems collaborating with the FPGA to perform a common task. The focus of  this analysis 

lies on the FPGA, and this work, therefore, excludes human actors from any further consideration. The 

peripheral devices connected to the FPGA are the sole external actors examined (the behavior of  the 

periphery can be, of  course, controlled by one or more humans).  

Identification and access restriction, even for legitimate actors, are vital methods to minimize the threat 

exposure of  the system. It should further be able to ensure or validate the authenticity and integrity of  its 

actors. Relevant information includes the position of  the actor with regards to the trust boundaries, as well 

as the data and services provided or requested. 

3.5 The attack surface of FPGA based designs 

The term attack surface describes the potentially exploitable functions exposed to an attacker [139]. The 

term originally describes the potential vulnerability of  a server or personal computer but can be applied to 

FPGA based systems as well.  

3.5.1 Determining the attack surface of FPGA based designs 

Determining the attack surface of  a design requires knowledge about threat agents, the current and expected 

threats against FPGA based designs in general, and the very design under review. There are two major 

classes of  attacks: 

• Attacks from the outside: carried out through peripheral devices 

• Attacks from the inside: carried out by through malicious parts of  the configuration 

This attack surface is dynamic and subject to change as the system and its environment changes. The threat 

landscape changes throughout the FPGAs lifecycle as different actors gain and lose access to the system.  

New attacks, circumventing defense mechanisms (e.g., physical protection), can expose additional 

functionality to an attacker. Updates or a change in the system parameters may close existing security holes 

or exposes new (exploitable) functionality.   

It is necessary to assess the design from the viewpoints of  the threat agents to determine the attack surface 

of  FPGA based designs. An assessment like these requires knowledge about their position within the 

different threat layers (physical access, remote access, access to the FPGA or only to the system), their 

motivation, and the target assets. The system-centric threat model introduced later can be used to perform a 
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more detailed analysis using this intelligence (as well as any other appropriate assumption about potential 

threat agents). The primary goal of  this assessment is to find any functionality and data exposed to a 

potential attacker and to develop efficient ways to mitigate the risks of  this exposure. 

3.5.2 Reducing the attack surface of FPGA based designs 

Several commonly used design practices reduce the attack surface of  the design. Each one of  these 

principles requires detailed knowledge about the systems architecture, assets, data flow, and threat agents.  

The design is as simple as possible: A simple design makes the presence of  security bugs less and their 

detection more likely. Developers often use sophisticated designs to scare off  attackers – an approach called 

security through obscurity. Increased knowledge of  the system, advanced analysis tools, leaked specification, 

and design documents may decrease the effectiveness of  this approach and increase the chances of  an 

attacker. Further limiting factors of  this approach is the limited knowledge about threats at the design and 

development phase, the life expectancy of  the system and limited patch capabilities. Therefore, a simple 

design providing the same services poses a lower risk of  security-relevant bugs and must, therefore, be 

considered superior to an intricate design.      

Sensitive assets are protected. Knowledge of  the present and future threats are limited, making a 

quantized analysis of  the security properties hard. Determining the valuable assets of  the system (data, 

processing elements, communication interfaces) qualitatively, however, is a feasible task. The design and its 

stakeholders must protect these sensitive elements (entrusted to perform critical services or data) against 

threats.  

Elements are classified in different levels of  trustworthiness and handled accordingly. Those 

elements considered as highly trustworthy can perform sensitive operations without further precautions, 

while those of  low trustworthiness (e.g., encrypted IP core from an unknown vendor) mandate greater 

caution even if  they only perform in low to medium level operations. 

The exposure of  sensitive elements is as small as possible. Access to any asset should be limited to an 

absolute minimum, even for legitimate actors. Threat agents could exploit any interface between the FPGA 

and the periphery and within the FPGA configuration. Limiting access denies an attacker insight into a 

system and reduces the risk of  an escalation of  privilege attack. Smaller interfaces are also simpler to verify, 

and this minimization of  exposure also limits the damage when legitimate actors are compromised or 

engage in undesired actions.  

Interaction between elements entrusted with tasks of  different sensitivity is either prohibited or 

limited. It is reasonable to assume that critical elements are more thoroughly designed and tested than 

minor ones. Elements entrusted with tasks of  low sensitivity should be considered as less trustworthy and 

not interact with elements performing tasks of  high sensitivity. 

Shared resources are sanitized before being used by an element with lower trustworthiness. Sharing 

resources between elements of  different sensitivity and trustworthiness often creates problems. Partial 

Runtime Reconfiguration creates a new challenge as it allows the reuse of  FPGA resources over time.  The 

reconfiguration can result in the crossing of  a trust boundary. Sanitization of  the FPGA resources can limit 

the exposure of  sensitive data to untrustworthy elements or of  untrustworthy data to sensitive elements. 

3.6 Conclusion 

The term threat modeling comprises different approaches and techniques like asset-centric threat modeling, 

attacker centric threat modeling, and system-centric threat modeling.  Experience from the software domain 
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indicates that system-centric threat modeling is best suited for developers as it enables them to identify the 

potential weak points of  their design as well as the most suitable threat mitigation strategy by leveraging 

their superior knowledge about the system they create. The general-purpose tools developed for threat 

modeling in the software domain must be adapted and extended to meet the demands of  the FPGA 

domain. The goal of  the threat model process is, for both domains, the creation of  a design that minimizes 

the attack surface and mitigates the remaining threats. The next chapter introduces the necessary 

components to create a system-centric threat model by either analyzing the utilized FPGA primitives or, for 

more complex designs, an abstract representation of  its architecture.  This abstract model then serves as the 

foundation for FPGASECML, the formal security model language introduced in chapters 6 and 7. 
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4 Building blocks for system-centric threat modeling 

The systematic analysis of  the design provides, as discussed in the previous chapter, a valuable insight into 

the threats and the required mitigation mechanisms. This chapter introduces the generic building blocks 

necessary to create practical and consistent threat models for FPGA based design. The starting point of  this 

approach is the application or data flow centric threat modeling paradigm used, for example, in the 

Microsoft Security Development Lifecycle [140]. Parts of  this section are based upon research previously 

published in [14]. 

Building blocks structure the process, speed up the analysis, and reduce the risk of  missed threats and 

misunderstandings between stakeholders. Two approaches are presented: a threat model for the low-level 

components of  the FPGA and a high-level model. This architectural model is more suitable for elaborate 

designs. The latter model is then used to assess the security implications of  different FPGA communication 

paradigm as well as Partial Runtime Reconfiguration(PRR). 

4.1 Choosing a suitable level of abstraction for the model 

Each model has to find the best possible representation to solve the given problem. A too simplistic 

representation of  reality will lead to an overly simplistic and presumably wrong assessment of  the problem; 

a too complicated representation quickly becomes cluttered and thereby lacks the focus necessary to find an 

acceptable solution within a reasonable amount of  time. 

 

Figure 6 FPGA primitives and their abstract representation 

4.1.1 Gate or primitive level analysis 

Low-Level analysis of  the actual primitives utilized has several advantages. No later element of  the build 

chain can inject new bugs or malicious codes, physical attributes like time and power consumption can be 

analyzed as well as the security mechanisms implemented at the hardware level. However, there are also 

downsides to this approach. Not only is the synthesized configuration complex and challenging to assess, 
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but changes during the (often non-deterministic) synthesis process can change the behavior of  the system, 

rendering the previous analysis obsolete and mandating a new round of  low-level security analysis. Probes 

used to observe the internal communication may alter the behavior of  the configuration and can create new 

security challenges, if  not removed or protected. Documentation of  the FPGAs configurations format may 

not be available or incomplete, tools to support the analyses unavailable or unsophisticated. 

4.1.2 Source code analysis 

The HDL code is far more accessible and may even be hardware independent. Code analysis technology 

from the software domain could be transferred into the FPGA world.  However, the source code is not 

always available. The toolchains processing it may not be as trustworthy as desired, and the demand for 

efficient utilization of  the FPGA results in an HDL-code with similar complexity and detail level than the 

binary configuration. It is also more efficient to perform the initial security analysis before any code before 

the start of  the development phase as a later hardening of  the system could require an extensive rework of  

the complete system.  

4.1.3 System-level analysis 

Any model is, at best, a simplified representation of  a real object. In the worst case, it is a complete 

misrepresentation.  The model may not contain the latest changes to the system, built tools could introduce 

new backdoors, and essential information might be missing. Nevertheless, there are more advantages to a 

system-level analysis than downsides. The stakeholders can complete the model-based analysis before the 

creation of  the system; it is hardware independent and, if  done correctly, focuses the attention of  the 

analysis on the structural weaknesses and their mitigation. Detail level and usability, as well as expressiveness 

and hardware independence, have to be balanced to create a useful model (chapter 6), thorough review and 

roundtrip engineering could reduce the gap between the model and the actual system. Appendix B provides 

a lower level analysis of  the FPGA primitives. The next section introduces the building blocks for a high-

level analysis.    

4.2 The system-centric security model and its building blocks 

The heterogeneous structure of  FPGAs, their many fields of  application, and last but not least, their 

flexibility creates a multitude of  serious threats that must be analyzed and adequately mitigated. The 

STRIDE mnemonic, already successfully tested in the software domain, proved to be suitable for this task. 

The user may amend or adapt the analysis performed in this section to improve its fit for a distinct group of  

FPGA hardware and designs. STRIDE is, however, an informal analysis method, not designed to create a 

logically consistent and mathematically verifiable model of  the weaknesses of  the system but to encourage 

the analyst to consider the multiple and various threats in an uncomplicated way. By aggregating low-level 

primitives into high-level elements, the threat model becomes more applicable to real-life designs. These 

blocks are proposed (explained in greater detail in Appendix C): 

• FPGAModules are representing cohesive blocks of  the reconfigurable logic accessible through 

one or more interfaces and (in designs that use runtime reconfiguration) interchangeable within 

specified limits. FPGAModules come in two forms:  

o Processing Blocks (PB): operating within the FPGA 

o IO Blocks (IOB): Processing Blocks with access to the periphery 

• Slots: representing disjunction sets of  FPGA primitives to be utilized by a distinct set of  

FPGAModules     

• Communication Networks: connecting the Slots and thereby the FPGAModules that use them  

• Configuration Control and Storage (CC): representing those crucial components entrusted with 

the configuration. 
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The next sections informally discuss these components, while chapter 7 introduces a domain-specific 

modeling language (FPGASECML) to describe these components and their security-relevant attributes 

formally.  

4.3 Threat model representation of a single FPGAModule 

The model organizes the information necessary to assess an FPGAModules role in the design into three 

categories: 

• The assets they contain and that an attacker may target. They can be further  dissected into: 

o Data they contain, their sensitivity and  the type of  access (read, write) 

o Services they provide and their sensitivity 

• The security mechanism they deploy to protect their assets.  They can mitigate attacks originating 

from other FPGAModules and (for IO Blocks only) from peripheral devices. 

• The FPGA resources that utilize or access to fulfill their tasks (LUTs, BRAM, IO pins).  

The representation of  the FPGAModule should enable the analyst to assess its criticality and whether the 

deployed security mechanisms are adequate. The description may also include additional information like the 

trustworthiness or the mechanism deployed to protect the FPGAModules configuration might. There are 

multiple ways to collect and present this information from whiteboards to index cards to dedicated tools.  

4.4 Threat modeling the communication between FPGAModules 

This section provides an informal security analysis of  different communication paradigm. 

4.4.1 Point-to-point connection between FPGAModules 

There is neither a shared Communication Network nor a central component controlling the communication 

between the elements. There are only point-to-point connections between the FPGAModules.  

Graphical Model 

 

Figure 7 Graphic Model of an exemplary design with direct point-to-point connections between the FPGAModules 

The graphical representation shows the design as a directed graph (Figure 7). The FPGAModules are the 

nodes in this representation, and the directed edges between them indicate the data flow between them.  

Security Implications 
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This unstructured approach can hide sensitive elements within a “sea of  elements“ of  lesser sensitivity. 

Reverse Engineering and targeted alteration of  intricate, unstructured designs are more demanding than for 

the more structured approaches discussed later. However, a reverse engineer can exploit the following hints: 

• Some elements require distinct hard blocks or access to peripheral devices. 

• Floorplanning used to avoid conflicts and to reduce development time restricts the resource 

utilization of  different elements. 

• Timing constraints, necessary for the correct operation of  circuits, restrict the utilization of  

FPGA resources that collaborate on a task  

• Cryptographic algorithms like AES, DES, and RSA, rely on similar structures (e.g., Feistel ciphers, 

Substitution-Permutation Networks or distinct mathematical operations) and utilize similar 

primitives (shift registers, BRAMs) for storage and processing. An attacker targeting the 

cryptographic services of  the FPGA will try to find these patterns in the register transfer logic. 

Machine learning could support this process, and dedicated obfuscators may cloak these hints; randomized 

resource utilization could also prevent successful attacks against the current configuration of  the FPGA.  

4.4.2 Pipelining 

ISO/IEC/IEEE 24765:2010  [141, 141] defines a pipeline as:  

 “a software or hardware design technique in which the output of  one process serves as input to a second, the output of  the 

second process serves as input to a third, and so on, often with simultaneity within a single cycle time” 

In this context, a pipeline can be created by using the output of  one FPGAModule as the input of  the next. 

Graphical Model 

The model of  the pipeline (Figure 8) is a series of  FPGAModules, each connected exclusively with its 

predecessor and successor by (elementary) communication networks. The communication between each 

element of  the pipeline is unidirectional.  

Security Implications of this design paradigm  

The separation of  the design in multiple stages eases reverse engineering and the manipulation of  sensitive 

elements. The interconnections between the elements could be the target of  men-in-the-middle attacks like 

eavesdropping or data injection.  

The sensitivity of  the transmitted data can change as it passes through the stages of  the pipeline.  Data 

passing an input sanitization stage is less sensitive, while data leaving a decryption unit is more sensitive than 

the data entering this stage. The unidirectional data communication reduces the complexity and can, 

therefore, simplify the creation of  a suitable security policy and the identification of  the required security 

mechanisms.   
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Figure 8 Model of a pipeline based design 

4.4.3 Bus-based Designs  

Development tools like Xilinx’s EDK and quasi-standardized interfaces like the Advanced Microcontroller 

Bus Architecture (AMBA) make bus-based designs an efficient design paradigm for many FPGA designs. 

Bus-based designs allow the integration of  compatible components from multiple sources, often relying on 

dedicated tools and industry standards. 

Graphical Model 

It is possible to depict a bus as a directed graph where the participants are all connected, but a dedicated 

bus-symbol makes the representation of  this network type cleaner (Figure 9). Implementation constraints 

may limit access to other bus members; the model could reflect these constraints. One example of such a 

constraint is the implementation of  a dedicated firewall integrated into the communication network. The 

model could reflect this constraint by splitting the bus representation into multiple communication 

networks, each one with only those FPGAModules able to communicate with each other. 

 

Figure 9 Model of a bus-based design 
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Security Implications of this design paradigm 

The integration of  third-party elements raises the risk of  malicious code entering the design; this is true for 

both the generated Communication Network and the FPGAModules communicating over it. The 

communication network is also a potential target for men-in-the-middle attacks. The generated structure 

simplifies reverse engineering and malicious alterations. An attacker who lacks knowledge of  the system as a 

whole can tamper with distinct elements or replace them together. By replacing a single, legitimate 

participant of  the bus, an attacker may gain access to and control over the whole bus. He can gather 

information or inject malicious data into other network members and render the bus useless, e.g., by 

flooding it with useless information.  The use of  standardized interfaces and dedicated generators may 

foster the development of  dedicated attack tools applicable to all designs utilizing these interfaces and tools. 

4.4.4 Network on a Chip 

Network on a chip [142] is another approach to tackle the growing complexity of  chip designs.  A 

hierarchical system of  routers, defined in the FPGA configuration, connects the FPGAModules.  

Graphical Model 

The most straightforward model consists of  the Processing Blocks sharing a single Communication 

Network (Figure 10). Elements can access all other members of  the network in this simplified model. 

However, this approach put unnecessary constraints on the selection of  suitable FPGAModules as not all 

nodes might able to communicate with each other. The network can be partitioned in several subnets 

connected via gateways, discussed later in greater detail, with corresponding filter rules reflecting blocked or 

technically impossible communication between FPGAModules. 

 

Figure 10 Network on a Chip consisting of different sub-networks (labeled as CN for Communication Network), each 

connecting two nodes 

Security Implications of this design paradigm 

The risk assessment for bus-based designs is, with minor alterations, applicable to the NoC paradigm. Data 

propagation is not as straightforward in NoCs as it is on buses. Depending on the implementation, not all 

members of  the network might be able to communicate with each other, intercepting messages is harder 

due to the routing.  These attributes of  NoCs allow the creation of  sub-networks mitigating the impact of  a 

maliciously placed FPGAModule or router. The complexity of  the communication network raises the 

capability level necessary for a successful attack. The increased complexity, on the other hand, raises the risk 

of  an implementation error that can result in a security breach.  Extensive testing of  both the critical 
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connections and the efficiency of  the compartmentalization is necessary to ensure the reliability and 

resilience of  the NoC. The threat modeling method presented in this chapter helps to identify these crucial 

components. 

4.4.5 Gateways 

Gateways connect multiple networks. The data flow through this element may or may not be restricted. 

Only a simple gateway ruleset for filtering is to be expected, as the available computational space and 

memory are limited. Such a filtering mechanism can be implemented through a state machine accepting 

(whitelisting) or rejecting (blacklisting) input by predefined rules.  

Graphical Model 

A CN with one or more trust boundaries can be (Figure 11) used to picture gateways that can serve as a 

graphical representation of  a gateway.  

Security implications of gateways  

Gateways can either increase the threats to the communication networks or decrease them, depending on 

their implementation. Gateways increase the threats to the system when they connect networks of  different 

sensitivity and trustworthiness without appropriate restrictions. Gateways decrease the threats when they 

serve as a firewall, separating networks with high sensitivity or trustworthiness from those with lower 

sensitivity or trustworthiness while connecting only those FPGAModules that must communicate with each 

other. Incorrect specification and implementation of  these restrictions (usually defined in a dedicated 

security policy) increase the risk for the system.  

 

Figure 11 Communication Network with different Subnets, the dashed line indicates that CN1.3 restricts the 

communication between {PB1} and {PB3} 

4.5 Modeling Partial Runtime Reconfiguration 

Partial Runtime Reconfiguration introduces several new security challenges. Every additional element 

increases the complexity of  the system and thereby the risk of  a security flaw, as each element has its attack 

surface and may contain either malicious or exploitable functionality. The capacity of  the FPGA is no longer 

the limiting factor for the design, as multiple configurations can share the same resources over time. Side 
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effects can arise from multiple FPGAModules sharing the same FPGA resource over time, as illustrated by 

the following example. 

Example: A BRAM element serves as storage for a cryptographic key by configuration A and as a 

transmission buffer by configuration B later (Figure 12). Using the BRAM content (left by configuration A) 

for padding in configuration 2 leaks sensitive data to the outside world (similar to[143].)  

Dividing the functionality into multiple parts simplifies the reverse engineering process as an attacker can 

identify and target those configurations performing sensitive operations. Comprehensive knowledge of  the 

whole system is no longer required. Limiting the scope of  the attacks to distinct, encapsulated elements 

reduces the risk of  destroying the complete system. Reuse of  modules or tools with known security flaws in 

different designs enables the reuse of  a successful exploit and could motivate the development and 

proliferation of  dedicated attack-toolkits. Attackers can also utilize the reconfiguration control for replacing 

legitimate modules with a malicious one. This approach can circumvent security features, to add new 

functionality, and to gather further information about the system. 

 

Figure 12 Leakage of unencrypted data into the threat layer world  

 through a malicious module 

The additional complexity makes the analysis more demanding; separating the design in two parts eases the 

threat modeling for PRR based designs:  

• The static part of  the FPGA configuration remains unchanged throughout all possible 

configurations. 

• The dynamic part of  the configuration is subject to reconfiguration. 

The static part can, for example, contain: 

• Configuration Control (CC)  managing the (re)configuration process 
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• Communication Network (CN) providing the communication backend 

• Additional IO Blocks (IOB) and Processing Blocks (PB) available throughout all possible 

configurations 

The dynamic part of  configurations consists of  one or more FPGAModules that share the same 

(elementary) FPGA Resources over time (Figure 13 ). These shared resources are encapsulated into 

dedicated groups of  primitives - the Slots. Slots shall have these attributes: 

• Each of  these Slots is a distinct group of   FPGA primitives like IO elements and CLBs 

• each of  these primitives must be part of  only one Slot  

• a single FPGAModule can only occupy each Slot at the same time 

• an FPGAModule must utilize the same Slot  every time 

• Communication Networks link the dynamically utilized Slots with each other, and with the static 

part of  the configuration, they are not subject to reconfiguration. 

 

Figure 13 Model with one Slot used for Partial Runtime Reconfiguration, the names inside the bracket show the 

FPGAModules utilizing these Slots 

It is possible to determine potentially dangerous combinations and avoid them by analyzing those 

FPGAModules sharing a Slot (consecutive) or a communication network (concurrent). This analysis requires 

a form of  temporal logic to describe the reconfiguration process. Thirteen temporal rules can be used to 

describe the temporal relationship between two configurations A and B, using the temporal relations 

presented in [144], page 23: 

• A meets B (B met-by A) 

• A before B (B after A) 

• A overlaps B (B overlapped-by A) 

• A starts B (B started-by A) 

• A during B  (B contains A) 

• A finishes B  (B finished-by A) 

• A equals B 

In the context of  PRR, the above temporal relationships mean that:  
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• The temporal relationship “finishes“ requires that configuration A overwrite all Slots 

utilized by configuration B 

• The temporal relationships “overlaps“, “during“ and “equals“ that both configuration 

share no Slot 

• The temporal relationships “starts“  and “finishes“ imply that A has control over the 

resource utilization of  B, by, e.g., triggering the corresponding reconfiguration process 

This section concludes with an example for each of  the temporal relations (Figure 14). A light grey marks 

Configuration A while configuration B has a darker grey. The rows represent the Slots of  the FPGA design; 

each column represents the state of  the FPGA resources at the distinct time, Slots not utilized yet are 

marked by a dash. 

A threat model considering all possible combinations of  FPGAModules would be too complicated for large 

designs. Later chapters present a formal definition of  the FPGA architecture, the security policy, and 

temporal relations between the different configurations to mitigate this problem.   

4.6 Conclusion  

System-centric threat modeling, already successfully applied in the software world, can be transferred into 

the FPGA domain. The systematic analysis of  the design provides valuable insight into the threats, the 

vulnerable components, the resilience of  the architecture, and the necessary security mechanisms. This 

approach speeds up the analysis and reduces the risk of  missed threats and misunderstandings between 

stakeholders by offering standard building blocks structures. This chapter introduced the components 

necessary to perform system-centric threat modeling for FPGA based designs. Predefined blocks make the 

threat modeling of  FPGA designs more accessible. This process can be executed in several ways, depending 

on the system's security requirements and complexity. For some uncritical and straightforward designs, a 

simple discussion between the developers using a napkin or a blackboard can be sufficient. An organization 

requiring or favoring a more formal approach may prefer standardized documents containing the threat 

model in written form. Chapter 7 presents FPGASECML, a text-based domain-specific language that allows 

a formalized, human-readable representation of  this information that enables the automatic processing and 

transformation of  the model. 
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Figure 14  Examples of different temporal relationships between two configurations 
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5 Modeling access restrictions in FPGA designs 

The creation of  an architecture-centric threat model provides valuable insight into the design vulnerabilities 

and the potential threats against it. This analysis, however, must be translated into tangible actions. Resilient 

designs must separate, vulnerable, highly sensitive parts from potentially hostile or unprotected components. 

A method to describe the mandated and unacceptable combinations is missing for FPGAs. Reframing this 

problem as an access control problem clarifies it and charts a path towards a workable solution.  This 

chapter discusses the suitability of  several universal access control paradigm for this task. It examines how 

access restrictions can reduce the design attack surface and which approach is best suited to formulate the 

access control rules.  Chapters 6 to 8 discuss the formal definition of  the security rules and ways to enforce 

them. Parts of  this chapter are based and extend research previously published in [145]. 

5.1 Components of an access control system 

Every access control system consists of  these components: 

• Objects: to be protected from unauthorized access. 

• Subjects: seeking access to an object.  

• Privileges: defining the kind of  access granted or denied. 

• Rules:  formal statements granting or denying subjects access privileges to objects. 

• Rule Enforcement: ensures that the design is and stays in compliance with the access control 

rules. 

An access control mechanism can also include additional components, for logging purposes, or a monitor to 

detect, report, or stop potentially malicious operations.  

Access privileges can be granted to subjects by their functional requirements, trustworthiness, the task they 

perform, and the security demands of  the design. Tighter restrictions reduce the attack surface while 

increasing the risk that legitimate subjects cannot perform necessary tasks due to a lack of  access privileges.  

The enforcement of  the access control can be either at the discretion of  the object owner (Discretionary 

Access Control- DAC) or a mandatory part of  the system (Mandatory Access Control – MAC). The access 

control mechanism is critical to the security of  the system, as it is very likely that the system is compromised 

after the attacker circumvented it.   

5.2 Generic subjects and their attributes in FPGA based designs 

Knowledge about who (or what) is accessing the assets is the first step to create an access control system. 

For FPGAs, these general subjects can be identified:  

• Human interaction with FPGAs requires a periphery device like a keyboard or a touchscreen. 

Peripheral Devices and their respective IO Blocks invoking services from or providing services 

for the FPGA  

• FPGAModules utilize the FPGAs resources to communicate with other FPGAModules and the 

periphery.  

Techniques to control the access of  humans to technical systems are well established and documented.  

Therefore, human interactions with the system are of  no further concern for the analysis as it focuses on 

the peripheral devices utilized for this process. 
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5.3 FPGAs generic objects and their privileges  

In any access control system, subjects can only access objects if  they have the right privileges. This section 

discusses the FPGA primitives (like lookup tables and BRAM) and their privileges. A working access control 

system may rely only on a subset of  these (object, privileges)-combinations. 

5.3.1 Slots - the FPGA resources 

Subjects can utilize and reconfigure the FPGA resources. The utilization privilege can be further broken 

down into computation, communication, data storage, and data retrieval. A readback operation 

retrieves the current content of  configurable FPGA resources. 

5.3.2 FPGAModules – blocks of reconfigurable logic 

The access privileges to FPGAModules include request service, provide service, store data, and retrieve 

data. They may also enable subjects to gain access to other elements.  

5.3.3 IO Blocks – FPGAModules with access to the periphery 

The access privileges to IO Blocks include the privileges for FPGAModules and provide access to 

Peripheral Devices (PD). This access could be separated further into: read from PD, write to PD, request 

service from PD, and provide service to PD.  

5.3.4 Communication Networks 

Subjects can access the Communication Network to send data to and receive data from other 

participants  

5.3.5 Configuration Control and Storage 

Subjects may want to trigger a reconfiguration, update an existing configuration, install a new configuration 

and retrieve the configuration 

5.4 Minimal (Object, Subject, Privilege)-set 

It is possible to constrain the behavior of  the FPGA by defining which FPGAModule (subject) can utilize 

(privilege) the FPGAs Slots (object).  Access to the communication networks has to be defined at the Slot 

level to achieve this.  

5.5 Modeling access control rules 

This section discusses the suitability of  the most common access control paradigms to the FPGA domain.  

[18] and [146] provide a domain agnostic discussion of  most access control paradigms discussed here. 

5.5.1 Multilevel security 

In multilevel security systems, the subjects are classified into multiple levels reflecting their trustworthiness 

and sensitivity. The most prominent representatives of  the multilevel security paradigm are the Bell- 

LaPadula[147] and the Biba-Model[148].  

Systems following the Bell- LaPadula enforce two simple rules:   

• no element must read data from an element with higher rank 

• no element must write data to an element with lower rank 

Reversing the rules of  the Bell- LaPadula model the Biba model states that  
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• no element must write data to an element with higher rank 

• no element must read data from an element with lower rank 

Bell-LaPadula maintains the confidentiality of  the system's data while neglecting their integrity. Biba 

maintains integrity but neglects the confidentiality property. Both systems are classic examples of mandatory 

access control systems. 

 

Figure 15 Architecture of Slots for Partial Runtime Reconfiguration ensuring the Biba models security properties, as no 

module with a lower rank can write data to a module with a higher rank 

One application of  these paradigms is a pipeline (Figure 15). The system architect can prevent a violation of  

the rules stated above by separating modules in different classes and making sure that only one module of  

each class is present at the time. The data is propagated unidirectional from one stage of  the pipeline to the 

next, either rising or dropping in rank.  

In a design with Partial Runtime Reconfiguration, the data may stay in place as elements with successively 

higher (or lower) rank are utilizing the same resource Slot (Figure 16).  

The multilevel access paradigm is easy to implement, but the lack of  bidirectional communication limits its 

usage significantly. 

5.5.2 Access Control Matrix 

An Access Control Matrix (ACM) is a two-dimensional table that stores the access privileges of  each object 

to each subject (Figure 17). The advantage of  an ACM is that every combination of  subjects and objects is 

defined. The main problem with Access Control Matrices is their size, as every combination of  subject and 

object has to be defined. An ACM for an FPGA design might contain each utilized FPGA resource as a 

subject, and requires a privilege assignment for each FPGAModule; this increases the complexity (and 

memory consumption when used for access control enforcement) of  the access control rules.  The 

application of  ACMs to FPGA based designs should, therefore, be limited to simple designs, designs with a 

dense interaction between subjects and objects, and those rare cases where any missing privilege assignment 

to a (Subject, Object)-combination poses a severe threat. 
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Figure 16 Bell-LaPadula-“Pipelining“ through Partial Runtime Reconfiguration 

 

Figure 17 Access Control Matrix with a column for each object, and a row for each subject 

5.5.3 Access Control List 

 

Figure 18 Access Control List with one entry granting the IOBlock IOB1 read and write access to BRAM1 and the right to 

use Slot1 



 

45 

In Access Control Lists (ACL), each object has a list of  their respective subjects and their privilege (Figure 

18). Avoiding the overhead of  ACMs ACLs are more suitable for designs with a less dense (Subject, Object)-

interaction.  

5.5.4 Role-Based Access Control 

 

Figure 19 Role-based access control description with two subjects and one role 

The Role-Based Access Control (RBAC) paradigm is best suited for complex systems with multiple objects 

performing similar tasks (or roles Figure 19). By assigning the access rules to roles and one or more roles to 

each object, RBAC provides flexibility and allows the reuse of  rules. Roles for FPGA elements can be 

cryptographic operations, reconfiguration control, or being a gateway to a peripheral device. RBAC provides 

little to no advantage for small designs or those whose elements perform disjunctive tasks.  

5.5.5 Attribute-Based Access Control 

Less common than the other access control methods, attribute-based access control provides a method to 

describe the interaction between objects and subjects without enumerating each of  these elements but by 

using their attributes.  

A definition of  Attribute-Based Access Control (ABAC) is: 

“a logical access control methodology where authorization to perform a set of  operations is determined by evaluating attributes 

associated with the subject, object, requested operations, and, in some cases, environment conditions against policy, rules, or 

relationships that describe the allowable operations for a given set of  attributes.“ 

 [149] 

ABAC allows a very abstract and generalized definition of  the access control policy but makes it more 

challenging to find and resolve violations. An analyst might not find a suitable set of attributes for all fields 

of  applications, primarily if  the framework must operate in very diverse contexts, but for this domain, 

ABAC provides a reasonable approach. The trustworthiness indicators presented earlier (section 2.2), on the 

one hand, and the sensitivity of  the operation on the other support ACAB in the formal definition 

introduced later.  

5.6 Access control strategies 

This section discusses several strategies to restrict access to the communication network (concurrent access) 

and FPGA resources (consecutive access).  
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5.6.1 Concurrent access - communication networks  

Multiple strategies can be applied to constrain the participation of  communication networks (CN): 

• Only those elements required for the sensitive operation shall be present in the Communication 

Network (to reduce the internal attack surface) 

• No IO Block (IOB) shall be present during a sensitive operation (to reduce the external attack surface) 

• The design shall remove all elements violating the security policy before the sensitive operation starts 

• Sensitive modules shall be removed from the CN as soon as possible to minimize their exposure to 

(potentially) hostile communication partners 

5.6.2 Consecutive access - resource utilization 

Only trustworthy elements should utilize FPGA Slots that could contain sensitive data. The system architect 

can constrain the usage of  these memory elements (either internal or external) through the following 

strategies: 

• FPGAModules shall not utilize distinct memory elements with insufficient trustworthiness 

• FPGAModules shall not utilize distinct memory elements with lower trustworthiness unless the Slot is 

proper sanitized 

The FPGA should not contain any sensitive data longer than necessary. The design can achieve this, for 

example, by removing all data touched by a sensitive operation after their completion: 

• Sensitive data shall be removed immediately after use 

• Sensitive data shall be removed as soon as possible  

• Sensitive data shall be encrypted, and only trustworthy elements shall have the key 

This approach could lead to conflicts with other non-functional requirements like reliability and 

performance that must be resolved.  

5.7 Conclusion 

The conventional access control paradigms allow the formulation of  FPGA specific access control rules. 

Choosing the most suitable paradigm depends on the complexity and security requirements of  the design.  

The Bell-LaPadula or Biba paradigm might be appropriate for a simple, pipeline-based approach, while a 

more complex design may profit from the higher flexibility of  the access control list or access control 

matrices.  Chapter 7 introduces a domain-specific model language whose access control rules follow the 

Attribute-Based Access Control paradigm.  
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6 Formalizing the FPGA security model 

A model is always a simplified version of  reality; the question is whether it is a useful tool to solve the 

problem at hand. A precise definition of  its purpose, constraints, and limits promotes the creation of  a 

useful model. The method introduced in the following chapters formalizes the analytical work presented in 

the previous chapters. This formalization transforms the ambiguous task of  “create a secure FPGA design“ 

into a set of  formal statements, stated in a domain-specific modeling language. The associated workflow 

provides not only the automatic validation of  the architecture's security properties against the rules of  the 

security policy. It creates additional value by making the search for a design with the mandated level of  

security more accessible.  

Any useful FPGA security model must contain these aspects of  FPGA based designs: 

• The static architectural description.  The focus of  this part lies on the FPGAModules, their assets 

and security mechanisms, how they interact with each other, and the FPGA resources they utilize.  

• The dynamic reconfiguration description defines the changes in the FPGA configuration over time. 

• The security policy that defines the required isolation and permitted interaction between the 

multiple elements of  the design. 

This chapter illustrates the advantages of  a formalized approach through uses cases; it presents the 

requirements for a suitable model and a high-level description of  the mandatory components. Parts of  these 

chapters are based on previously published research [150]. 

6.1 Models, metamodels, and meta-metamodels  

Model-driven engineering [60]  knows multiple layers of  model abstraction (Figure 1).  Each FPGA security 

model (M1) is an abstract representation of  a real-life design (M0). The definition of  all valid models is the 

metamodel (M2), and any further abstraction of  a set of  metamodels is the meta-meta model (M3). This 

meta-meta model often has a recursive definition, removing the need for further layers (M4-M∞.)   

The structure of  the proposed metamodel for FPGA security combines the system-centric threat model and 

the access control paradigm discussed in the previous chapters. It provides a framework for a simple and 

unambiguous description and allows the natural transformation into other models.  

6.2 Metamodel requirements 

The metamodel has to satisfy several requirements to be useful. This section presents the most important of  

them. 

6.2.1 Architecture-centric modeling 

The model should only contain information necessary for its task and omit unnecessary details about, e.g., 

implementation, the supply chain, or details about the FPGA primitive utilized.  

Assumptions and constraints 

These limitations, assumptions, and constraints where made to create a suitable model of  the FPGA 

architecture: 

• All elements meet their physical requirements (like power consumption, timing) 

• Attacks utilizing physical attributes are beyond the scope of  the model 
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• The model does not contain the class of  auxiliary devices  

• The model reflects the system as it was created and maintained 

• A peripheral device is everything outside the very FPGA Primitives (IO-Blocks, LUT, and BRAM); this 

includes hard IP blocks like processors or communication interfaces. 

 

Figure 20 Objects, models and metamodels 

6.2.2 Focused grammar but support for reuses and extensions 

To overcome the limits imposed requirement introduced in 6.2.1, the model should be extendable through 

the reuse of, e.g., the metamodel and by sharing unique identifiers across multiple models. These auxiliary 

models could provide supplementary information about the supply chain of  an FPGAModule or the 

capability and motivation of  the various threat agents (more in Appendix B). 

6.2.3 Support for Model to Model transformation 

It is necessary to translate its content into other representations (as demonstrated in later chapters) to 

retrieve useful information from the descriptive model. This model to model translation enables the user to 

solve FPGA specific security challenges in other, more general, domains. 



 

49 

6.3 Metamodel components 

Each FPGA security model consists of  these three parts: 

• Architecture description: the components of  the design and how they interact with each other: 

o the utilized FPGA primitives, grouped into Slots  

o the FPGAModules with their respective security attribute 

o the communication infrastructure defined through one or more networks  

• Reconfiguration description: when and how the FPGAs configuration changes  

• Security policy:  the mandated or prohibited interaction between FPGAModules 

6.3.1 FPGA Architecture  

The architecture component of  the metamodel reflects the threat model building blocks from 4.2 (and 

Appendix C).  It consists of  these three parts: the parts of  the configuration that perform computations, the 

FPGAModules, the abstract representation of  the FPGAPrimitives (Slots) they utilize to perform their task, 

and the communication infrastructure connecting them. 

FPGA Primitives - Slots 

Slots represent groups of  FPGAPrimitives that are utilized en bloc. The model will not contain which 

FPGAPrimitives are in the Slot, except for BRAM. This omittance simplifies the model, put the focus on 

the architecture, and increases the hardware independence of  the model.  

Reconfigurable Logic - FPGA Modules 

A set of  FPGAModules represents the FPGA configuration. FPGAModules are loosely coupled blocks of  

(tightly connected) reconfigurable logic representing a distinct set of  operations; their description must 

contain a list of  their security-relevant assets (data stored and services provided), the security mechanisms 

implemented and the FPGA resources that they use.  

Communication infrastructure 

A directional graph between the Slots represents the communication infrastructure (CI). An FPGAModule 

based communication model is not expedient as a malicious module utilizing a Slot with access to the 

communication infrastructures could nonetheless communicate with other FPGAModules sharing the same 

network (or subgraph). The communication infrastructure is not subject to reconfiguration. 

6.3.2 Reconfiguration 

There are two ways to describe the reconfiguration process: describing the temporal relationships between 

the FPGAModules or the reconfiguration events that indicate the (partial) reconfiguration of  the FPGA. 

This section presents descriptions for both approaches and a comparison of  their respective advantages and 

disadvantages. 

Configuration based temporal descriptions  

The temporal relationship rules (Figure 14) can describe the direct relationship between FPGAModules. A 

possible description could look like this: {Configuration A after Configuration B} AND {Configuration C 

after Configuration B}, where each configuration contains the current utilization of  each Slot. The problem 

with this solution is that a sophisticated design may contain too many different configurations to enumerate 

and order them all.   
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Reconfiguration events 

Reconfiguration events represent a point in time where a set of  FPGAModules enters (or utilizes) the 

FPGA fabric. A new configuration must not change the state of  each Slot as FPGAModules may only use a 

subset of  these Slots. Therefore, the sequence of  reconfiguration events, starting with the initialization event 

evInit, is necessary to determine the state of  each Slot. The event bases approach limits the expressiveness 

of  the model in regards to the actual configuration while simplifying the description of  the reconfiguration 

process. Reconfiguration events take place consecutively and not parallel. The temporal relation ‘after’ is, 

therefore, the only one necessary to fully describe the relationship between reconfiguration events. The 

sequence of  configuration events can be modeled as a simple, ordered list like: 

({evInit,event1,event2,…,eventN}) 

Configuration based description vs. event-based description 

An event-based description provides a simpler structure and better readability of  the actual reconfiguration 

process but provides no direct information about the actual state of  the FPGA. Using the temporal 

relationship between all possible combinations of  FPGAModules provides this information but is better 

automatically generated than manually entered.  The event-based approach is therefore considered as more 

suitable to describe the dynamic behavior of  the design while the configuration based description is more 

suitable to describe and validate the security policy. 

6.3.3 Security Policy 

The security policy must capture the mandated and invalid interactions between the FPGAModules. This 

section discusses the verifiable properties and intangible attributes, the potential objects for access control 

based security rules, and the level of  abstraction that can describe these rules. The subject, object, privilege 

set is kept as small as possible. 

Verifiable properties of a secure system 

Each model is a simplified representation of  reality and has, therefore, only limited validity. The model 

presented later can verify whether a design satisfies  security properties like: 

• Data flow between elements with conflicting security attributes is restricted. The design 

should expose no element involved in a security-sensitive operation to an element with insufficient 

trustworthiness. Security attributes express both trustworthiness and sensitivity.  Security rules 

describe unacceptable and mandatory combinations of  elements with distinct security attributes. 

• Elements with low trustworthiness are isolated from those with higher trustworthiness. 

Elements of  lower trustworthiness inhibit a higher risk of  compromising the security of  the system 

than those considered more trustworthy. Chapter 2 provides a detailed discussion of  the 

assessment process.  

• The exposure of  the design to peripheral threats is restricted. The design should expose as 

few functionalities as possible to the outside world. This minimization limits the risk of  a successful 

attack from the periphery. This paradigm is of  particular importance to the times where security-

sensitive operations take place. 

• No reconfiguration results in an insecure state. No reconfiguration must result in a violation of  

the system properties introduced above (this property is only applicable to systems using Partial 

Runtime Reconfiguration.) 
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Intangible attributes 

There are specific characteristics of  any design that can be neither precisely quantified nor verified. They are 

the result of  the analyst's judgment. Qualifying these attributes with high, medium, and low can be 

considered sufficient for most designs.  

• Trustworthiness: The trustworthiness of  an element depends on multiple factors.  The 

trustworthiness of  the developer, the complexity of  the code, and the scrutiny of  the code review 

process are relevant indicators. The analyst can make this classification, as discussed in Chapter 2, 

by examining the element itself, its development process, the supply chain relative to the threat 

landscape it faces.   

• Sensitivity: The sensitivity of  data or service cannot be derived from a mathematical formula or 

deducted from logical statements.  The impact of  a security breach has to be manually assessed for 

this assignment. Intangibles will dominate this assessment, and different stakeholders may offer 

different assessments based on their respective interests – it is then up to the analysts to find the 

right balance between these conflicting views. 

• The resilience of  a defense mechanism: Threat mitigation requires the implementation of  

suitable security mechanisms. Based on experience and threat intelligence, these mechanisms can be 

considered as appropriate, or not – a quantitative assessment is hard as the threat landscape is 

dynamic and knowledge about the threat agent’s motivation and capabilities limited. The 

assessment is further complicated if  details about the strength of  these security mechanisms are 

missing, incomplete or wrong (e.g., if  provided by a not that trustworthy third party). 

Access control objects  

The security policy is enforced by restricting the resource utilization of  FPGAModules and the 

communication between them.   

Resource utilization 

Defining and enforcing the access to critical components is, as stated earlier, an essential mechanism to 

improve the security of  an IT system. Access control is crucial for FPGA designs with dynamic 

reconfiguration where the design complexity is inherently higher, and no reconfiguration should result in an 

insecure state. Constraining the resource utilization is necessary to avoid the reuse of  FPGA primitives 

containing sensitive data by elements with insufficient trustworthiness. Restricting the configuration flow 

means restricting the access to the communication networks by denying untrustworthy elements access to 

the other elements of  the network. Security restriction may be eased or lifted after a highly sensitive 

operation is completed to improve the efficiency of  the design. New slots may be added to the design to 

compartmentalize sensitive operations. 

Communication 

IO Blocks and Processing Blocks connected through a communication network can transfer data to and 

invoke operations at each other.  These interactions may exceed expected and legal operations if  an 

FPGAModule is under the influence of  a threat agent. Access to the communication networks must be 

limited to restrict this cooperation to trustworthy elements only. These constraints must be derived from the 

security requirements of  the design and reflected in its architecture. Restricting the data flow between Slots 

or the spatial separation of  networks might be necessary where resource utilization control alone is not 

sufficient. 

Different scopes of security rules 

Security rules can have different scopes: 
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• Security Attributes: the scope of  security rules can be limited to all FPGAModules with a 

distinctive set of  security attributes. 

• Programmable Logic - IO Blocks and Processing Blocks: the scope of  security rules can be 

limited to specific FPGAModule (IO Block or Processing Blocks) addressed explicitly through their 

unique identifier. This approach is less flexible than the indirect address via security attributes but 

simplifies the process for simple designs and unique FPGAModules 

• Utilized resources – FPGA Primitives: the scope of  security rules can be limited to particular 

Slots, addressed explicitly through its unique identifier. 

6.4 Conclusion 

Formalizing the architectural model and the security policy removes ambiguity and provides a solid base for 

further analysis, both manual and automatic. The domain-specific description language FPGASECML 

language introduced in the next chapter implements these requirements and provides a framework for 

further analysis and processing.  
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7 FPGASECML - A domain-specific language for FPGA security 

models  

There are multiple ways to satisfy most of  the requirements laid out in the previous chapter – a simple 

spreadsheet in excel, a Viso diagram, or a UML profile – each with their advantages and disadvantages. This 

chapter introduces the text-based domain-specific modeling language (DSL) that makes it easy to formulate 

the model, read and interface it with other tools. The DSL called FPGASECML, its various components, 

and its application are discussed, and an example demonstrates the capabilities of  the metamodel and the 

proof  of  concept implementation. A discussion of  current restrictions and possible extensions concludes 

the chapter.  

Appendix D presents the grammar as well as the validation rules and semantic of  this language in greater 

detail and may serve the reader as a reference in this chapter and the next. 

7.1 Implementation 

 

Figure 21 Simplified architecture of the FPGASECML proof of concept implementation 

The model language uses a context-free grammar (Figure 21). This approach increases the readability of  the 

model while serving as a base for automated processing (as discussed in the next chapters.) 

The implementation relies on Xtext/Xtend [151], a DSL development toolkit that generates the necessary 

code to parse and process context-free grammars in Java. The generated parser/lexer uses Antlr [152].  The 

processed model is accessible through the Eclipse Modeling Framework (EMF) [153] compatible classes. 

Xtend is a Java Virtual Machine (JVM) based language with specific improvements over conventional Java. 

Xtext is a toolkit mainly developed for the Eclipse IDE (Figure 22), but its code can also be used in IDEA 

or as a standalone program with a command-line interface. Graphviz's [154] dot-notation allows the creation 

of  diagrams without IDE lock-in. The graph models used for these diagrams are also exported as 

GraphML-files [155]  for further processing, for example, in R [156].  The proof  of  concept 
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implementation supports the automatic model to model transformation into NuSMV-Models (Chapter 9) 

and Burlap-models (Chapter 11).  

 

Figure 22 FPGASECML Project in Eclipse 

The implementation follows the “loose grammar strict, validation“-a paradigm to keep the grammar simple. The 

validator imposes further restrictions on the (grammatically valid) model to achieve this goal.  

7.2 Overview 

A model must contain at least one Slot, and each Slot must contain at least one FPGAModule as well as 

evInit the reconfiguration event marking the initial configuration. 

/* 
 This is a minimal but still valid  

FPGASECML model 
*/ 
FPGAArchitecture minimal // this is a comment 
 
FPGAModules:          
Processing Block:  
   sl1_A                               
   utilizes slot: Slot1;   
   provides sensitive services:   
    {   none };            
    contains sensitive data:   
    {   none };                
   bitstream is protected by:  { none }; 
   implements security mechanism: { none } ;  
   bitstream storage:  bstore1 ;  
  ;    
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FPGAResources:       
 Slot Slot1 {};   
Communication:      
Reconfiguration:     
Events:     
 Event evInit loads: { sl1_A }; 
Security Policy:    
// no security policy defined yet 

The name of  the Slot (Slot1) and its initial FPGAModule (sl1_A) are arbitrary.  The security policy can be 

left empty; comments follow the well known C/C++ style. 

7.3 System description 

FPGAModules can be either: 

o Processing Blocks: accessing data, providing services to other components 

o IO Blocks: connecting the design with the periphery 

FPGAResources include: 

• Slots: representing disjunction sets of  FPGA primitives to be utilized by a distinct set of  

FPGAModules     

o Memory: storage elements within a Slot who can be utilized by one or more 

FPGAModule 

The Communication section contains the different networks that can be either: 

• Buses: where each Slot has can send and receive data from all other Slots 

• Networks: providing an elaborate description of  the communication network 

An optional periphery section allows the description of  those (external) devices connected to the FPGA. 

Dynamic Reconfiguration 

The modeler can define the design’s reconfiguration behavior through: 

• Reconfiguration Events: indicate the re-utilization of  at least parts of  the FPGA with a distinct 

set of  FPGAModules 

• Reconfiguration Sequences (optional): independent sequences of  reconfiguration events, subject 

to further security analysis  

7.4 Security Policy 

The security policy is a set of  security rules that must be met by the architecture. Each security rule defines a 

prohibited (or required) combination of  two sets of  FPGAModules with diverging security attributes(see  

D.4.1.3). The system is compliant with the security policy if  it complies with all of  its rules. The definition 

of  the security policy reflects the attribute-based access control paradigm discussed in chapter 5 (and the 

trust boundaries discussed in 3.4.3). 

Each rule defines either a mandated or prohibited consecutive or concurrent combination of  two sets of  

FPGAModules (a ‘prohibit’-security rule represents a trust boundary.) Two classes of  security rules can be 
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identified, one constraining the consecutive utilization for each Slot, and the other one constraining the 

contemporary utilization of  all FPGA Slots: 

• Constrained consecutive utilization restricts the consecutive utilization of  each Slot with 

FPGAModules of  two different sets of  attributes A and B. 

• Constrained contemporary utilization prohibits or requires the simultaneous presence of  or 

communication between any FPGAModules with the attribute set A and FPGAModules with the 

attribute set B. 

Chapter 8.3 contains a detailed discussion of the different forms of  security rules and their application. 

7.5 Example 

 

Figure 23 Schematic of example1’s architecture 

A simple example (Figure 23) illustrates the FPGASECML workflow: 

An FPGA performs two tasks: 

1. Bidirectional data exchange with a remote server. An AES core encrypts and authenticates [157] the 

data flow. An Ethernet interface provides connectivity to the outside world.  

2. Collect and process data from a single sensor. The sensor and FPGA share one PCB. 

Partial Runtime Reconfiguration improves the resource utilization of  the FPGA. An external device 

performs the reconfiguration process (on the same PCB as the FPGA), the same device (Configurationunit) 

also contains the bitstream.  A soft-core IP processor triggers all reconfiguration events. 

7.5.1 Architectural description 
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For the sake of  brevity, only a short fragment of  the FPGASECML model is presented here (Appendix G 

contains the unabridged model.) 

FPGAArchitecture example1   
FPGAModules: 
 
Processing Block: pbProcessor  
 utilizes slot: Slot0 ;  
 provides sensitive services:  {  
  sensitive service encryptedconnection  
    of sensitivity level high ; 
  sensitive service reconfigurationcontrol  
    of sensitivity level high ; 
  } ;  
 contains sensitive data:  {  
   sensitive data sharedsecret  
    of sensitivity level high  
    access type read ;  
  sensitive data software  
   of sensitivity level high  
   access type read ;  
 } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit ; 
 ; 
 
IO Block:  ioConfigurationUnit  
 utilizes slot: Slot1;  
 (…) 
 ; 
  
Processing Block: pbAESUnit  
 utilizes slot: Slot2  ;  
 provides sensitive services:  {  
  sensitive service encryption  
    of sensitivity level high  ; 
  sensitive service decryption of sensitivity level high ; 
 } ;  
 (…)  

;  
 
Processing Block: pbDSP  
 (…) 
 ; 
Processing Block: pbFPU  

(…) 
 ; 
 
IO Block: ioEthernet         
 (…) 
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 ; 
IO Block:  ioSensor 
 (…)   
 ;  
 
(…) 
 
FPGAResources:    
 Slot Slot0 { };                
 Slot Slot1 { };      
 (…) 
 
Communication:         
 Bus nwBUS1 {  Slot0, Slot1, Slot2 , Slot3 , Slot4  } ;     
   
Reconfiguration:                                                
 Events:       
   Event evInit loads:  
    {ioConfigurationUnit,pbProcessor,pbInitS2, 
    pbInitS3,pbInitS4}; 
  (…) 

7.5.2 Architecture analysis 

The FPGASECML implementation creates several charts to speed up the analysis process.  The tool 

generates each of  these charts in the text-based .dot-format. This format can be further processed with the 

established Graphviz toolset [154] (or other tools like Gephi [158] and libraries like NetworkX [159] for 

Python.) 

Communication infrastructure 

 

Figure 24 Communication infrastructure of the design 

Each FPGAModule has read and write access to all other FPGAModules as all Slots share the same bus 

(Figure 24). 
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Threatlayer exposure 

 

Figure 25 IO Blocks of the design and their respective threatlayer 

The FPGAModule ioEthernet exposes (when present) the design to the threat layer WORLD, the modules 

ioConfigurationUnit, and ioSensor expose it to the threatlayer PCB (Figure 25).  

Slot memory 

 

Figure 26 Access to Slot memories 

The modules pbAESUnit and pbDSP have read and write access to the only Slot memory bram1 in Slot2 

(Figure 26). 

Reconfiguration 

Even this small example results in a somewhat complicated reconfiguration flow (Figure 27). The 

reconfiguration flows with and without the ‘triggered by’ statement is identical as the processor initiates all 

reconfiguration events – and this FPGAModule is present in all configurations. 
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Figure 27 Reconfiguration flow 
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7.5.3 Security Policy 

The security policy shall satisfy these four criteria: 

1. No FPGAModule but pbProcessor shall communicate with the ioConfigurationUnit 

2. No FPGAModule shall utilize Slot0 except pbProcessor  

3. Encrypted communication must take place before any sensor operation   

4. The FPGA primitives utilized by the encryption unit shall not be reutilized by any IO Block to 

prevent the leakage of  sensitive data    

This FPGASECML fragment reflects these criteria: 

Security Policy:   
 //1. No element but pbProcessor shall communicate  

// with the ioConfigurationUnit 
 Rule rule1_communication :     
 prohibits communication of{   
  FPGAModule: { ioConfigurationUnit }; 
 } 
 with 
 {       
  NOT FPGAModule: { pbProcessor}; 
 }   
 ;    
   
 
     // 2. No element shall utilize Slot 0 except pbProcessor 
 Rule rule2_peprocessor_after :     
 prohibits utilization of 
 {   
  NOT FPGAModule: { pbProcessor};  
 } 
 after                  
 {       
  FPGAModule: { pbProcessor}; 
 }   
 ;      
 
 (…) 

The complete security policy can be found in Appendix G 

7.5.4 Security analysis 

The design is simple enough to perform ad-hoc analysis of  the security policy: 

No FPGAModule shall utilize Slot 0 but pbProcessor  

The design complies with the rule as no FPGAModule other than pbProcessor utilizes this Slot. 

No element except pbProcessor shall communicate with the pcConfigurationUnit 
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The design violates this rule. ioConfigurationUnit utilizes Slot1, and Slot1  is a member of  bus nwBUS1, 

together with Slot0, Slot2, Slot3, Slot4. Therefore all FPGAModules can send data to or receive data from 

the ioConfigurationUnit. 

Encryptedcommunication must take place before any sensor operation   

The design satisfies this rule if  evCrypto happens before evSensor. 

To prevent the leakage of sensitive data the FPGA primitives utilized by the encryption 

unit shall not be reutilized by any IO Block    

The design satisfies this rule as pbAESUnit shares a Slot with pbDSP and pbInitS2, and none of  those 

FGPGAModules is an IO Block. 

7.5.5 Revised and compliant design 

 

Figure 28 Schematic of the rule1_communication-compliant design 

This section demonstrates how the system has to be revised to make it compliant with the security policy 

(Figure 28). 

No element except pbProcessor shall communicate with the pcConfigurationUnit 

Removing Slot1 from the bus (Figure 29) and the introduction of  a dedicated communication network 

between Slot0 and Slot1 resolves this problem. The changed communication infrastructure is: 

Communication:         
 Bus    nwBUS1 {  Slot0, Slot2 , Slot3 , Slot4  } ;     
 Network reconf { {Slot1} <-> {Slot0} };  
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Figure 29 Graph representation of the compliant communication infrastructure 

Encrypted communication must take place before any sensor operation   

A suitable schedule (e.g., {evInit,evCrypto,evSensor}) resolves this violation. Ensuring that evSensor can 

only be triggered by an element that is the only member of  the evCrypto configuration is another way to 

reach this goal: 

Event evSensor triggered by { pbAESUnit } loads: { ioSensor,pbFPU } ;  

Figure 30 shows the policy compliant reconfiguration flow. 

7.5.6 Conclusion 

The formal description of  the FPGA architecture (FPGAModules, communication networks, and 

reconfiguration flow), as well as the security policy, promotes a precise definition of  the assets and their 

possible, mandated and prohibited interactions. It removes ambiguity from the threat model while providing 

a blueprint for the implementation. This approach enables, as described in the following chapters, the 

rigorous validation of  the security properties. The domain-specific language may be supplemented through 

additional rules when necessary. Model to model translations allows the automatic adaptation of  the model 

content to solve a given problem in another domain. Translations include the dot-models used to create the 

graph diagrams shown in this chapter as well as the more sophisticated translations presented in section 8.3 

(automatic validation of  the design with NuSMV-Models) and chapter 9 (weakness analysis with Burlap-

Models).  
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Figure 30   rule3 compliant reconfiguration flow by asserting that evSensor is  triggered by pbAESUnit 
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8 Validation of the designs security properties 

Simple designs, like the one presented in the previous chapter, can be validated in an unstructured and 

informal way. With a higher complexity of  the design and security policy, however, comes a higher risk of  

undetected or overlooked security violations. This chapter discusses the structured validation of  the 

architectural description against the different classes of  security rules, either manually or automatically. The 

first section presents a number of  scenarios to illustrate the use cases for the rules; the second discusses the 

manual validation of  a single configuration state as well as the validation of  systems with Partial Runtime 

Reconfiguration. The third section presents a workflow for automatic validation via model to model 

transformation and model checking, while the third section discusses strategies to remove violations against 

the security policy.  

In the following, the term FPGAModule set (or simply set) refers to the list of  all FPGAModules of  a 

design or a Slot with distinct security attributes as defined through a security attribute query (as described in 

greater detail in  D.4.1.3). 

8.1 Security rules use cases 

This section presents five different use cases for security rules and their field of  application. The 

corresponding FPGASECML models for each scenario can be found in Appendix F. 

8.1.1 Resource Sanitization 

Removing sensitive data earlier reduces the risk of  leakage of  information attacks. Another module must 

perform this task when the sensitive FPGAModule has no control over its removal from the state 

(preemptive multitasking) or cannot perform the demanded sanitization. Each module providing this service 

must, therefore, have an appropriate security attribute. Additional modules, providing the only sanitization 

for a single Slot, may be added to the design.  An FPGA module with the demanded sanitization attribute 

should remove all sensitive information from the Slot.  

Scenario 

A given design uses a single Slot. FPGAModule A provides an encryption service; a BRAM stores the 

symmetric key. A potentially malicious module B, utilizing the same BRAM after module A, could access 

this secret key either as a whole or in parts (modules utilizing the Slot between modules A and B could 

override parts of  the memory.) Module SAN ensures the sanitization of  the Slot resource. 

8.1.2 Secure setup 

This rule ensures that the appropriate preparation of  the Slot before any sensitive operation takes place. It 

can be either used to remove potentially hazardous data from the system or to perform a particular setup 

procedure (e.g., to establish a secure communication channel) that provides a secure environment. 

Scenario 

A secure setup procedure, performed by Module sl1_CommSetup, must be completed before Module C can 

communicate securely with the world.  

8.1.3 Consecutive exclusion  

These rules prohibit the presence of  FPGAModules with one set of  attributes after FPGAModules with 

another set of  attributes utilized the same Slot.  
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Scenario 

The FPGAModules A, B, and C share the same Slot and operate on the same block ram. A encrypts the 

data; module B generates the Message Authentication Code, and module C transmits the encrypted and 

authenticated data to the outside world. FPGAModule A (accessing unencrypted data) is considered the 

most sensitive operation and the most trustworthy implementation, FPGAModule B has lower 

trustworthiness than A, and C has the lowest trustworthiness. To prevent module C from tampering with or 

transmitting unencrypted and unauthenticated data, C must be utilizing the Slot only after B, and A.   B must 

utilize the Slot only after A to avoid the authentication of  unencrypted data.  

8.1.4 Concurrent exclusion  

It may become necessary to isolate sensitive modules of  (presumable) high trustworthiness from modules 

with lower trustworthiness. This technique reduces the negative influence (e.g., through attacks against a 

common communication network) of  potentially malicious modules to delicate tasks.  

Scenario 

An FPGA design includes modules performing operations of  high sensitivity (Modules A, D, and E) and 

modules with only medium trustworthiness (Modules B, C). The design must prevent modules with low 

trustworthiness from endangering sensitive operations. It is further assumed that the mere presence of  these 

modules endangers the security of  the system. Therefore, modules of  the groups {A, D, E}, and {B, C} 

must never share the FPGA at the same time. Module F is regarded as highly trustworthy and poses neither 

a threat to the high sensitivity objects nor is its operation critical enough to cause serious harm if  attacked. 

8.1.5 Communication exclusion  

The global concurrent exclusion rule might put unnecessary strict constraints on the schedule. It is often 

reasonable to limit the scope of  these rules to those FPGAModules who could interact with each other 

through a communication network (see D.2.3).  

Scenario 

An FPGA design consists of  two independent sections. The first section performs operations of  lower 

security concerns and consists of  Slot 3. The two modules {G, H} that utilize this Slot are of  low and 

medium trustworthiness, respectively. In the second, the more sensitive part has modules performing 

operations of  high sensitivity with high trustworthiness (Modules A, D, and E) and modules with only 

medium trustworthiness (Modules B, C). The design must prevent modules with low trustworthiness from 

endangering sensitive operations. Mixed utilization of  the Slots is permitted as long as they cannot 

communicate with each other. Therefore, the modules of  the groups {A, D, E}, and {B, C, F, G} must 

never be able to communicate with each other. Module F is regarded as highly trustworthy and poses neither 

a threat to the high sensitivity objects nor is its operation critical enough to cause serious harm if  attacked. 

8.2 Manual validation of the security rules 

This section demonstrates how to manually validate the compliance of  the single state and the flow of  

reconfigurations with the security policy. This section also introduces the different forms of  rules that can 

make up the security policy – a detailed discussion of  the underlying grammar can be found in Appendix D.  

8.2.1 Validation of a single FPGA state 

FPGAModules utilize Slots (groups of  FPGA primitives) to perform their operations. The communication 

infrastructure (utilizing FPGA Resources themselves, but the model omits this detail) connects the 

FPGAModules. The current resource utilization of  the FPGA primitive with these FPGAModules forms its 

current “state.“ The following workflow validates the security rules for communication and resource 
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utilization for a single, given state of  the FPGA. A design is compliant if, and only if, it satisfies all rules of  

the security policy. 

Validating communication restriction rules 

Security rule of  the shape restrict the data flow between two sets of  FPGAModules: 

Rule name: 
  prohibits 
  communication of 
   FPGAMODULE_SET_A 
  with 
   FPGAMODULE_SET_B 
  ; 

 

Figure 31 Two designs, one is violating the communication restriction rule and one in compliance. The letter in brackets 

indicates the corresponding FPGAModule set. 

These rules ensure that no FPGAModule with one set of  attributes can communicate with one or more 

FPGAModules with an antagonistically set of  attributes (Figure 31).  The security rule is satisfied if  and 

only if:  

For each pair  
   (ElementA of FPGAMODULE_SET_A, ElementB of FPGAMODULE_SET_B): 
   There is no edge in the communication model with  
    Slot(ElementA) as source and  Slot(ElementB) as target 

Validating communication requirement rules 

Rule name: 
  requires 
  communication of 
   FPGAMODULE_SET_A 
  with 
   FPGAMODULE_SET_B 
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  ;  

These rules are satisfied if, and only if, a communication network connects at least one FPGAModule of  set 

A and one FPGAModule of  set B. 

For any pair  
   (ElementA of FPGAMODULE_SET_A, ElementB of FPGAMODULE_SET_B): 
   There is at least one edge in the communication model with  
    Slot(ElementA) as source and  Slot(ElementB) as target 

Validating resource utilization restrictions 

 

Figure 32 Two designs, one is violating the utilization restriction rule and one in compliance. The letter in brackets 

indicates the corresponding FPGAModule set. 

Validating the resource utilization restrictions means to ensure that the FPGA state does not contain 

FPGAModules with two antagonistically set of  attributes at the same time (Figure 32). Rules of  this shape 

introduce these restrictions: 

Rule name: 
  prohibits 
  presence of 
   FPGAMODULE_SET_A 
  and 
   FPGAMODULE_SET_B 
  ; 

The rule is satisfied if  and only if: 

If FPGAModule of SET_A is present: 
  No FPGAModule of SET_B is present. 
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Validating resource utilization requirements 

Rules of  this shape mandate the presence of  at least one module from both sets if  there is at least one 

module from each set. 

Rule name: 
  requires 
  presence of 
   FPGAMODULE_SET_A 
  and 
   FPGAMODULE_SET_B 
  ; 

These rules mandate that if  one FPGAModule of  Set A is present, another FPGAModule of  set B must be 

present as well (a suitable definition of  the reconfiguration events and their respective FPGAModule list is 

often a better way to ensure the simultaneous presence of  FPGAModules.) 

Validating consecutive utilization rules 

Security rules restricting consecutive utilizations must only be evaluated for systems with Partial Runtime 

Reconfiguration as a single FPGA state has neither a past nor future. 

8.2.2 Validating Partial Runtime Reconfiguration 

The current resource utilization is its state, reconfiguration changes (part) of  the configuration, and thereby 

the state of  the FPGA. Validating the reconfiguration flow means validating a sequence of  consecutively 

visited states, starting with its initial state:  

��������
�	
���
�����
���⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� ������	� (8.1) 

The reconfiguration flow of  the system can be represented as a directed graph with the different states as 

nodes and the reconfiguration events as edges. A graphic representation of  these graphs, as created by the 

FPGASECML proof  of  concept implementation (like Figure 30), can be used to manually validate designs 

with a limited number of  reconfigurable resources and reconfiguration events. More intricate designs can 

benefit from this approach as well, but the formal workflow, introduced later in this chapter, is more suitable 

for them. 

Validation of the concurrent rules of the policy 

statenew is compliant with the concurrent security rules  

No FPGAModule may join a communication network if  its presence would violate a security rule. The 

graph representation of  the system makes it possible to check each state independently for compliance. The 

transition into these, non-compliant states, must be either prevented a priori through a smart design, blocked 

by the reconfiguration control or at least detected and handled appropriately (e.g., transition of  the system 

into a failure mode) – a combination of  these approaches adds defense in depth where necessary. 

Validating the consecutive utilization restrictions rules of the policy 
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Figure 33 Two reconfiguration flows - one violating the immediate consecutive utilization restriction rule and one in 

compliance with the rule. The letter in brackets indicates the corresponding FPGAModule set. 

An FPGAModule should reutilize no Slot that could contain sensitive data unless the resource (containing 

the sensitive data) is sanitized or the new FPGAModule is considered sufficiently trustworthy. 

Rule name: 
 prohibits 
 utilization of 
  FPGAMODULE_SET_A 
 immediately?(after|before) 
  FPGAMODULE_SET_B 
 ; 

As FPGAMODULE_SET_A after FPGAMODULE_SET_B is equivalent to FPGAMODULE_SET_B 

before FPGAMODULE_SET_A only the before clause must be considered: 

For each FPGAModule in the new state: 
       a) the new state itself would not violate a security rule 
 and 
  b) previous utilization of the resource does not prohibit the    
               resource utilization through the new FPGAModules  

Condition a) is fulfilled if  the state created through the reconfiguration complies with the security policy. 

Condition b can come in two forms. The rule can only impose restrictions on the immediate predecessor's 

Slot utilization (Figure 33): 
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If Slot sl contains FPGAModule from SET_B: 
For each states s that is a direct predecessor of statenew: 
  sl does not contain any FPGAModule from SET_A 

Alternatively, (Figure 34) the complete history of  the Slot utilization has to be examined:  

If Slot sl contains FPGAModule from FPGAMODULE_SET_B: 
Initial state:  
   does not contain FPGAModule from FPGAMODULE_SET_A 
  and  
   For every path p between the initial state and  
   the current state: 
    p does not contain any FPGAModule from FPGAMODULE_SET_A 

 

Figure 34 Two designs, one violating the consecutive utilization restriction rule and one in compliance 

This path can be retrieved through a graph traversal, but the potential presence of  cycles within the graph 

complicates this assessment. The following algorithm is a suitable alternative for a quick, manual assessment 

as it rejects all invalid states (at the price of  rejecting valid states): 

For each Slot in the model:  
 create a list of FPGAModules utilizing the Slot 
 
For each of these lists:  
 Check if two or more FPGAModules in the list have an 
 antagonistically attribute set (ignoring the immediate keyword) 
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Another method to deal with potential cycles is to collapse the strongly connected components of  the 

graph. This simple algorithm can be applied to each of  these components. Each member of  this 

component can utilize the FPGA before or after the other. A second step analyzes the reconfiguration flow 

between these “supernodes.“  

Validating the mandatory utilization rules of the policy 

Mandatory utilization works analogous to the restriction-case but for each Slot that contains an element of  

FPGAMODULE_SET_B either the direct predecessors (immediate-clause) or any path between the initial 

state and state new must contain at least one element of  FPGAMODULE_SET_A  (the simplified approach 

at the end of  the last section could accept invalid combinations.) 

8.2.3 Conclusion 

It is possible to validate the security policy manually, one rule after the other. The reconfiguration graphs 

generated by the FPGASECML proof  of  concept implementation can aid this task. It is also possible to 

write a dedicated tool for the verification process. The next section presents a different approach by 

transforming the FPGASECML model into a model that is verifiable by well-established (and therefore 

trustworthy) model checking software. 

8.3 Automatized validation of the security policy through model checking  

 

Figure 35 Transformation flow from the FPGASECML to the NuSMV-Model 

The manual validation of  the policy, however, remains a tedious and error-prone endeavor. This section 

builds upon the analytic and descriptive methods introduced earlier and applies the well-proven methods 

model-to-model transformation and model checking (via the open-source tool NuSMV) to them (Figure 

35). The automatization of  this process reduces the risk of  an erroneous manual model transformation and 

relieves the user from the numb computations present in the last section. It is acceptable that the model 

checking software will mark secure sequences as insecure as long as it rejects all insecure sequences.  

8.3.1 Workflow 

The workflow (Figure 35) introduced here transforms the vague challenge of  “create a secure system 

architecture“ into the precise task of  validating the model's properties against a set of  logical statements. For 
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this purpose, the software transforms the reconfiguration flow into a set of  state machines, and the security 

policy into a set of  linear temporal logic (LTL) rules. A schedule is secure if  the sequence of  configurations 

utilizing the FPGA resources satisfies formally stated the mandated isolation and interaction between 

elements with different sets of  security attributes. The methods and tools introduced here can perform two 

tasks: the validation of  a given reconfiguration sequence and the generation of  such a sequence (if  it exists.) 

 

Figure 36 Eclipse IDE with FPGASECML-Model (left) and the generated NuSMV Model (right) 

( Appendix H.1 discusses the proof of concept software in greater detail) 

8.3.2 Assumptions and restrictions 

The workflow has, like every model and tool, certain limits and constraints that must be taken into account.  

Security 

The strength of  this approach relies on the validity of  these assumptions: 

1. Isolating critical and trustworthy operations from less critical or less trustworthy operations 

improve the security of  the system. 

2. Constraining the presence of  all reconfigurable elements at any given time achieves the required 

level of  isolation can be  

3. An exhaustive set of  attributes can express the security properties of  each element  

4. A finite set of  rules can describe the required isolation between elements with different security 

characteristics    

5. The protection of  the reconfiguration process itself  is sufficient. 

6. The model to model transformation does not introduce any new errors 

Reconfiguration 

The reconfiguration process is also slightly constrained: 

1. The generated NuSMV model does not consider the ‘triggered by’ statements. The current 

configuration of  the FPGA does not restrict or influence the selection of  the next reconfiguration. 

2. The generated schedule does not consider any functional requirements but uses every 

FPGAModule at least once. 
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The ‘triggered by’ statements (see Appendix D.3) were not incorporated into the model as an attacker may 

circumvent these (soft) restrictions. The model generator could be extended, when necessary, to include 

them. 

8.3.3 A short discussion of Model-checking 

This section provides a short overview of  the temporal logic used to describe the model properties and the 

model checking software NuSMV (new symbolic model verifier) used to validate this model. 

Linear Temporal Logic basics 

There are three common forms to describe temporal logic [160]. Computation Tree Logic (CTL) is based 

on a tree representation of  the temporal properties, Linear Temporal Logic (LTL) based on a linear 

representation of  these attributes and CTL* a superset of  both LTL and CTL. CTL* could not be used as 

the selected model checking software (NuSMV, [161] [162]) does not support it, and a CTL based 

description was regarded as less intuitive for this purpose while providing no significant advantage over 

LTL.  

The NuSMV-models use these temporal modal LTL-operators: 

• G Φ Globally   the term Φ has to be valid in all states 

• X Φ NeXt  the next state has to satisfy the term Φ 

• F Φ Finally    one of  the next states has to satisfy  Φ 

• Y Φ Yesterday  the previous state has to satisfy Φ 

• H Φ  Historically one of  the previous states has to satisfy Φ 

The NuSMV models use these logical connectives: 

• Φ -> ψ  implication   if  Φ is true, ψ has to be true as well 

• ! Φ negation of  the term   Φ must not be true 

• Φ & ψ logical and   Φ and ψ have to be true 

• Φ | ψ logical or   either Φ or ψ has to be true 

The reliability of  the model checking software is a critical factor.  NuSMV is a symbolic model verifier that 

is well established for research and development tasks and available under an open-source license (LGPL 

v2.1).  

NuSMV tries to contradict the validity of  the model properties by finding a counterexample. This feature is 

used, as discussed later in this section, to find a valid sequence of  reconfiguration events by forcing NuSMV 

to contradict the negated security rules. These schedules often contain reconfiguration events that do not 

change the configuration. The user should, therefore, consider an automatically generated schedule as a 

starting point only. LTL rule starts with the keyword LTLSPEC in NuSMV.  

8.3.4 The FPGA architecture representation for model checking 

Model-checking requires the transformation of  the abstract FPGAs design description into a computable 

model. Aggregating low-level resources (like CLBs) to be reconfigured en bloc, into higher-level entities 

(Slots) reduces the number of  possible states and mitigates the combinatorial explosion problem typical for 

model checking problems.  In this model, state machines represent the reconfigurable resources of  the 

FPGA. The different states represent the different FPGAModules that can use a Slot (Figure 37). 
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Figure 37 Four Slots and their utilization during two events 

The state machines accept reconfiguration events as sole input and generate no output. They operate 

independently of  each other. They remain in their present state if  they are not affected by a new 

reconfiguration event.  

Slot 2 from the FPGASECML example in 7.5 is converted into this NuSMV-state machine: 

MODULE Slot2 (reEvent) 
VAR 
 state : {noState1,pbInitS2,pbAESUnit,pbDSP,noState2}; 
ASSIGN 
 init(state) := pbInitS2 ; 
 next(state) := case 
  reEvent =        evCrypto :  pbAESUnit; 
  reEvent =           evDSP :      pbDSP; 
  TRUE : state ; 
 esac; 

The state-entries noState1 and noState2 are generated for technical reasons and do not influence the 

validation process. 

8.3.5 Security rule to LTL-Rule conversion table  

All valid security policy rules follow this pattern:  

Rule name: 
  (requires|prohibits)  
  (utilization|presence|communication) of 
   FPGAMODULE_SET_A 
  (immediately)?(and|with|after|before) 
   FPGAMODULE_SET_B 
  ; 

Every valid security rule has a corresponding LTL rule. The rules for these conversions are (if  both sets (A 

and B) are not empty): 
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Type Keyword 
LTL-Rules 
Prohibit Requires 

Concurrent 
 

communication* 
G!((A1|A2…) & (B1|B2…)) G((A1|A2…)& (B1|B2…)) 

Presence 

Consecutive 
 
 
(to be 
generated 
 for each 
Slot) 

After  

G((B1|B2…) -> !F(A1|A2…)) G((B1|B2…) -> F(A1|A2…)) 

immediately G((B1|B2…) -> !X(A1|A2…)) G((B1|B2…) -> X(A1|A2…)) 

Before  
G((B1|B2…) -> H! (A1|A2…)) 
or 
G((A1|A2…) -> !F(B1|B2…)) 

G((B1|B2…) -> H(A1|A2…)) 
or 
G((A1|A2…) ->F(B1|B2…)) 

immediately 
G((B1|B2…) -> Y! (A1|A2…)) 
or 
G((A1|A2…) -> !X(B1|B2…)) 

G((B1|B2…) -> Y(A1|A2…)) 
or 
G((A1|A2…) -> X(B1|B2…)) 

*),  each edge of  the communication model generates one of  these rules. FPGAModules that cannot 

communicate with each other are thereby not considered in security rules with the communication qualifier  

If  the sets A or B or both are empty: 

Type LTL-Rules 
Prohibit Requires 

concurrent 
 

 
A or B empty: (TRUE) 
 
 

(A is empty)  and  (B is empty) (TRUE) 

Either (A is empty) or (B is empty) (FALSE) 

consecutive 
 

after B is empty (TRUE) 

 (B is not empty) and (A is empty) (FALSE) 

before B is empty (TRUE) 

 (B is not empty) and (A is empty) (FALSE) 

 

Appendix F provides an example for each of  the scenarios outlined at the beginning of  this chapter.   

8.3.6 Conclusion 

Model-checking can be used to verify if, and to a certain degree when, a design complies with the stated 

security policy. Transferring the architecture into a suitable, state machine based model and the security 

policy into verifiable temporal logic properties can be, as demonstrated in this chapter, automated. This step 

mitigates one source of  error. Invalid assumptions about the effectiveness of  security mechanisms, and the 

incorrect assignment of  the security attributes, attacks against lower levels of  the design or faulty 
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implementation of  the elements remain a danger to the system. The model-based validation of  the security 

attributes does, therefore, not replace extensive testing and Donald E.Knuth's famous warning  “beware of  

bugs in the above code; I have only proved it correct, not tried it.“ [163] applies to this problem just as well.  

8.4   Resolving security policy violations  

Modeling the system, formulating the security policy, and determining the potential vulnerabilities, is of  high 

importance but does not improve the resilience of  the system by itself.  The final section of  this chapter 

discusses several strategies to create a secure system within the scope of  the model. 

8.4.1 Security aware resource assignment 

The system architect can isolate FPGAModules with conflicting security properties through the 

introduction of  new communication networks or Slots. These new resources could be reserved exclusively 

for those FPGAModules involved in sensitive operations or considered untrustworthy.   

8.4.2 Implementing additional security mechanisms 

Implementing additional security mechanisms, like resource sanitization, in FPGAModules improves their 

(assumed) resilience and, therefore, trustworthiness. The information derived from the model itself  can limit 

the waste of  precious resources by strengthening only the most vulnerable or exposed components (weakest 

link property of  security) of  the design. The reinforcement learning-based method (Chapter 9) can aid this 

search for the weakest link. 

8.4.3 Blocking of events (or states) 

The configuration control could block reconfiguration events violating the security rules during runtime. 

This strategy requires a single “enforcer“ of  the security policy, capable of  detecting and blocking any 

invalid reconfiguration request. The FPGA might not be able to fulfill its obligations and may end up in a 

complete deadlock as a side effect of  this blocking mechanism.  

8.4.4 Security aware scheduling 

Finding and enforcing a valid sequence of  configurations that complies with both the security policy and the 

mandatory temporal relations between the configurations resolves some violations of  the security policy. 

The system architects could create this scheduling either manually or, as discussed earlier in this chapter, let a 

suitable tool compute the schedule.  A strategy for simple scenarios is to schedule configurations with low 

sensitivity first and those with higher sensitivity later to prevent untrustworthy modules from reading 

sensitive data or to going from a higher sensitivity to lower sensitivity to prevent modules of  low 

trustworthiness from tampering with the state(as described in 5.5.1).   

8.5   Conclusion  

This chapter presented a structured and formalized description of  the design and its security policy. This 

formalized approach allows the validation of  the former against the latter. Different security rules require 

different verification steps. The automatic validation of  the design simplifies the validation process, reduces 

the risk of  an error, and allows a quick adaptation and revalidation of  either the design or the policy.   
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9 Model-based vulnerability analysis through reinforcement 

learning 

 

Figure 38 Transformation flow from the FPGASECML to the BURLAP based reinforcement learning model 

A successful attack against any non-trivial system consists of  a sequence of  consecutively executed actions 

(often called attack vector.) A reasonable attacker will try to find a sequence that minimizes his costs and risk 

(of  detection and failure) and maximizes his reward. Identifying one or more of  these plausible attack 

sequences can help the system architect to identify and mitigate potential weaknesses in the system. This 

chapter examines how the search for successful attack sequences against an FPGA design is a reinforcement 

learning [164, 165] problem. It demonstrates how a system modeled in the FPGASECML (Chapter 7) 

becomes a Markov decision process (MPD) based model processable through well-established 

reinforcement learning algorithms (Figure 38). The limits and challenges of  this approach are discussed, as 

well as possible steps towards more advanced reinforcement learning solutions proposed.  This chapter 

presents a proof  of  concept implementation based on the FPGASECML eclipse plugin introduced earlier 

and the Java library BURLAP. Parts of  this chapter were previously published in [59]. 

9.1 MDP-Representation of the FPGA model 

This section presents the basic terminology of  Markov decision processes, the simplifications made for the 

MDP based model and its components – state, action, reward, and terminal states. 

9.1.1 Markov decision process 

This section provides a short overview of Markov decision processes (Figure 39). Each MDP consist of  

these elements:  
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Figure 39 Schematic of the Markov decision process-based model 

• States: the current state of  the MDP contains all information necessary to determine in combination, 

with an action, the next state of  the model.  

• Actions: to change the current state, the agent can choose from a finite set of  actions. By executing this 

action, the model transitions from the state s to state s’.  All actions are atomic and require the same 

amount of  time.   

• ��(�, �!): The probability that s’ becomes the next state if  the agent chooses action a in state s.  The 

states s and s’ can be identical. In a deterministic MDP  "�(#, #!)  is 1 for a single action (a) and zero 

for all others. 

• Reward or $�(#, #!):  Rewards signal the agent's desirable and undesirable state transitions. The reward 

depends on the current s and the next state s’. The agent receives the reward immediately after the 

execution of  the action. Rewards can be negative (punishment) as well and, not all transitions may result 

in a reward.  

• % or Gamma: a discount factor for future rewards. Gamma has a value between 0 and 1. A typical value 

for gamma is 0.7. 

• & or Epsilon: instructs the agent how often a random action should be used instead of  the most 

efficient one (exploration-exploitation tradeoff). Epsilon must be a positive number smaller or equal to 

1 

The goal of  the agent is to find a policy (also called  '.) The policy is the combination of  states and actions 

that maximizes the reward an agent can collect from a given start state. The optimal policy can be 

determined either through a single run of  an algorithm (planning) or through multiple interaction sequences 

(episodes) between the agent and the environment (learning) 

Metrics 

Many of  these algorithms rely on two metrics to assess a state from an agent’s perspective: its value and its 

quality. Both use the γ- factor (between 0 and 1) to discount future rewards. 

The value of  the state is: 

(
)*(#) ∶=      �-�./∑ "�(#, #!)($�(#, #!) + %(
(#!))2! 3 (9.1) 

The Q-value (quality) of  any state,action-tuple is defined as: 

4(#, �) : = ∑ "�(#, #!)6$�(#, #!) + %(
(#!)7!2  (9.2) 
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Q-learning 

The proof  of  concept implementation uses q-learning, a reinforcement learning algorithm where the agent 

keeps tab of  the Q-values he has already encountered and takes his next action based on this experience. 

1. Initialize the q-table  

2. Initialize the state s with the start state 

3. Repeat until either a final state or the maximal number of  actions permitted is reached: 

3.1. Take action a in the current state s either to 

3.1.1. explore: select at random  

3.1.2. exploit: select a to maximize the expected Q(s, a) 

3.2. Observe the outcome of  this action: the new state s’ and the reward r 

3.3. Update the entry for Q(st,at) according to the learning rate α and the discount factor  γ:    

Q(st,at) ← 61-α7*Q(st,at)+α*((rt*γ)*      a
max Q(st+1,a)) (9.3) 

4.  Repeat the steps 2 and 3 for a given number of  episodes 

The size of  the q-table may increase over time when it adds newly encountered states.   

9.1.2 Simplifications and constraints 

For the sake of  argument (and limited computing power), the MDP model omits several details from the 

FPGASECML metamodel presented earlier. The multiple threat layers of  the model have collapsed into a 

single “WORLD“-node. The attacker has access to all peripheral devices and bitstream storage, independent 

of  their location. The actions in the MDP-model represent a whole class of  attacks;  several operations will 

be necessary to execute each of  these actions in the real world. It is assumed that the success rate is 100% 

for each action (deterministic MDP). The MDP model does not consider internal and external defense 

mechanisms of  the FPGAModules.  The attacker has complete knowledge of  the systems state, and this 

state solely depends on the actions of  the attacker. Some of  these constraints can be lifted through a more 

complicated state representation, while others require more sophisticated methods discussed later in this 

chapter. 

9.1.3 State representation 

In a deterministic MDP, the next state chosen solely depends on the current state and the action the agent 

takes. The state representation must, therefore, not only store the relevant information about the current 

utilization of  the FPGA but all relevant effects of  previously executed actions. 

FPGA 

The generator creates these variables for each Slot: 

• UTIL_slotname (Integer): the current utilization of  the FPGA, represented by the respective 

FPGAModules unique identifier. 

• UTIL_TAMPER_slotname (Boolean): true indicates that the module utilizing the Slot is compromised. 

• SLOT_DATA_slotname (Integer): represents the source FPGAModule of  the data (identified through its 

unique identifier.) 

Periphery 

The generator creates these variables for FPGAModule:: 

• BITSTREAM_TAMPER_fpgamodule (Boolean): is true if  the bitstream storage of  the given 

FPGAModule is under the control of  the attacker 
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• WORLD_DATA_EXPOSURE_fpgamodule (Boolean): is true if   sensitive data  of  the given 

FPGAModule is exfiltrated into the world 

9.1.4 Action 

An agent can choose from a set of  predefined actions to gain and extend control over the system: 

• RECONFIGURE_eventname changes the state of  the FPGA as defined by the given reconfiguration 

event description. 

• ATTACK_NEIGHBOURS_fpgamodulename forces a previously hacked FPGAModule to attack all 

modules he has write-access to, enabling the attacker to exercise total control over them as well. 

Reconfiguration of  these Slots with untampered modules removes the tampered flag. The state remains 

unchanged if  this action is used against an FPGAModule not under the attackers’ control.  

• ATTACK_PERIPHERY_ioblockname forces a (present) IO Block under the control of  the attacker. The 

system remains unchanged if  the IO Block is not present. Reconfiguration of  these Slots with 

untampered modules removes the tampered flag.    

• EXFIL_DATA_fpgamodulename forces a previously hacked FPGAModule to send its sensitive data to 

all other modules which have read access (outgoing edges in the communication model) to it. 

• TAMPER_BITSTREAM_fpgamodulename tampers the FPGAModules storage and forces it under its 

control, FPGAModules already in the FPGA are unaffected by this change. 

• EXFIL_SLOT_DATA_slotname forces the FPGAModule utilizing the given Slot if  already tampered 

with, to send its data to all Slots who can read from data from this Slot. The data is also exfiltrated into 

the “World“ if  an IO Block utilizes the Slot. 
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The actions reflect three of  the five STRIDE criteria implicitly: 

Target Action 

STRIDE 

Tampering 

with 

Information 

Disclosure 

Elevation of  

privilege 

Configuration RECONFIGURE FPGA state   

FPGAModules 

ATTACK_NEIGHBOURS 
neighboring 

FPGAModules 
  

of  control over 

other 

FPGAModules 

ATTACK_PERIPHERY IO Block   
of  control over the  

IO BLock 

EXFIL_DATA   

of  data stored 

within the 

FPGAModule 

of  access to the 

data 

TAMPER_BITSTREAM … configuration     

Slot EXFIL_SLOT_DATA   
of  data stored 

within the Slot 

of  access to the 

data 

of  transmitting the 

data 

 

Spoofing identity, repudiation, and denial of  service attacks might be necessary to carry out one of  these 

actions. 

9.1.5 Terminal states 

Terminal states are, by default, all states where the data of  each FPGAModule is exfiltrated into the world 

(WORLD_DATA_EXPOSURE is true for every FPGAModule).  The code generator does not validate 

whether a terminal state is reachable.  

9.1.6 Reward 

Designing an appropriate reward function for a complex reinforcement learning problem is a nontrivial task. 

This section presents four strategies to create an efficient reward function. 

Rewards based on the perceived value of a security rule violation 

This strategy awards each security rule a value relative to the (assumed) consequences of  the violation. Each 

action resulting in the violation of  the rule receives this previously defined reward. 

Reward-based on the perceived value of the state s’ for the attacker 
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This strategy focuses on the question: „What value does a state create for the attacker?“ 

These questions can serve as a base for this assessment: 

• Which tampered FPGAModules are currently present? 

• What is the value of  each of  these FPGAModules? (services provided, data weighted by their 

sensitivity and kind of  access) 

• What sensitive data has already been exfiltrated and is currently stored in other Slots? 

• Which data has already been exfiltrated to the outside WORLD? 

An agent will try to maximize the reward awarded to him. This strategy encourages him to attack high-value 

targets and spread their data as far as possible. It does not necessarily encourage the agent to move towards 

a terminal state.  

Reward-based on the perceived value change between states s and s’ 

A refinement of  the previous strategy is to encourage the agent to move towards states of  higher value by 

subtracting the value of  the state they are leaving. 

Reaching a terminal state is rewarded; all other steps are punished. 

The most natural solution is to withhold the reward until the agent encounters a terminal state. This strategy 

can be improved by penalizing (negative reward) each action taken until this terminal state. The penalty 

encourages the agent to create an effective security policy.  The disadvantage of  this strategy is that the 

agent receives no information about desirable states until it reaches a terminal state, complicating the policy 

search in complex systems and returning no useful information where the terminal states are unreachable. A 

refinement of  this strategy that penalizes distinct actions by imposing additional costs on the agent is 

discussed later in this chapter.  

9.2 Implementation 

The proof  of  concept implementation transforms a valid FPGASECML-model into Java code compatible 

with the Brown-UMBC reinforcement learning and Planning (BURLAP) library [166] in the version 3.0.1. A 

reimplementation in, e.g., C++, Rust, or Go should lead to better performance (if  there is no demand for 

the algorithmic flexibility provided by BURLAP)  

9.2.1 Deterministic MDP 

The generated code for the deterministic MDP model includes: 

• State-Class, representing the MDP state defined above 

• The sample(State s, Action a)- function to determine s’. 

• The isTerminal (State s) function to determine whether a state is terminal or not. 

• The reward(State s, Action a, State sprime) function is calculating the reward for a given 

transition. Two auxiliary functions to calculate the attackers’ value of  the data exposed to the 

outside world and of  the rest of  the state, respectively. The default reward function generated 

awards 10.000 to the agent when a terminal state is reached and punishes the Agent for every other 

action with -1.000.  

• A factory class FPGADomainFactory. This class generates a Single Agent Domain (SADomain) 

to be used by the reinforcement learning (or planning) algorithms. 

• The main routine to find a suitable policy for this model through the q-learning algorithm. 
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• The code further generates an R-file [167] to aid the statistical evaluation of  the training process.

  

9.2.2 Manual extension of the generated code 

The user can extend the generated JAVA code to, e.g., transform it into a probabilistic MDP. With 

probabilistic transitions activated, an action can either succeed, and the system will enter a new state, or it 

can fail, which means that the system will remain in the original state; there are no side effects or partial 

successes. The user can define the success rate can either for the whole action class or a distinct action (the 

code generator creates the necessary constants by default, and the user may change them before the 

execution of  the model). Executing an action leads to a new state if  in the function sample (State s, Action 

a) a random number (retrieved through Math. Random()) is smaller than the defined success rate.  It is more 

efficient to measure the success rate relative to the action most likely to succeed instead of  absolute 

numbers.  The learning rate of  the reinforcement learning algorithm has to be reduced appropriately once 

this option is activated. A more sophisticated approach to describe probabilistic MDPs is the definition of  

“Reinforcement Scenarios“ in FPGASECML in the next sections. 

9.2.3 FPGASECML defined scenarios 

This deterministic model is simple and requires no further input from the FPGASECML definition, but 

every change of  the MDPs requires a change of  either the generated code or of  the code generator. This is 

problematic as a meaningful analysis requires multiple experiments with different parameters. Each scenario 

is a combination of  MDP parameters like the reward, the success likelihood, and the costs of  the different 

actions. It also contains hyperparameters, like the learning rate. FPGASECML scenarios allow the 

independent definition and evaluation of  these parameters. All scenarios share a set of  parameters like % 

and the exploration-exploitation tradeoff  : . Appendix D provides a detailed description of  the 

FPGASECML-grammar. Appendix H provides an example of  this workflow. 

9.3 Limits and restrictions and extensions of the MDP based analysis  

The MDP based model presented here relies on certain constraints that could be lifted by supplementing 

the presented model. 

Hierarchical learning [168] could combine this high-level model with the low-level activities needed to 

execute the strategy. It is also plausible that the attacker does not know the state of  the system but has to 

guess it from noisy indicators, like side channels [138, 169]. A Partially Observable MDP (POMDP [170] 

can mimic this behavior - BURLAP provides minimal support for them-) Transforming the MDP into a 

stochastic game allows the integration of  multiple actors (e.g., an active defense mechanism.)    

Navigating the vast search space remains the main problem of  reinforcement learning. Limiting the content 

of  the state and the number of  actions eases this problem but restricts the expressiveness of  the model. 

Constraining the search space through transition probabilities and costs is another method but increases the 

number of  experiments. A functional approximation of  the QTable could provide an avenue towards an 

improved RL based weakness analysis. One candidate for this approximation is deep neural networks, whose 

general feasibility has been demonstrated by the DeepQ [91] algorithm. This more recent technique replaces 

the QTable with a neuronal network that approximates the value of  the given state, action combination. 

Suitable neural networks mitigate the state explosion problem and should be able to detect a pattern. They 

may, therefore, be used to extract and abstract information from a feature-rich state, action representation in 

the same way convolution networks extract information, e.g., from a picture  [81].  
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Policy shaping [171] or reward learning [90] provide other avenues to explore. A sufficiently competent and 

autonomous reinforcement learning system could be pitted against real-life systems (preferably in a 

laboratory environment) for further refinement without human interference (similar to AlphaZero [172].) 

These proposals require at least a rudimentary implementation of  the design, and the insight gained from 

attacking this system could be transferred to other systems still in the design and analysis phase.  

Finding the best parameters for the reward and success rates represents an additional challenge. Domain 

experts may have different assessments of  the threat landscape or varying confidence in their assumptions.  

Running a large number of  scenarios with different parameters also increases the chance to find an efficient 

and robust solution.  In later stages of  the development cycle, data from penetration tests and security 

incidents could verify the validity of  the assumptions made. To simplify the creation of  scenarios, the point 

values for cost and success rate could be replaced with distributions (similar to hierarchical learning in 

probabilistic programming) that serve as the source for the actual values of  each run. 

9.4 Further opportunities and challenges 

The vastness of  the search space to be processed to find a (sufficiently) optimal solution remains the central 

problem of  reinforcement learning. Limiting the search space by constraining the content of  the state and 

the number of  actions eases this problem but limits the validity and usefulness of  the model. The still 

exponential growth of  computing power and on-demand cloud-based solutions may provide one building 

block towards more realistic models in the future. Functional approximations of  the Q-Function could 

provide another avenue towards an improved RL based weakness analysis. Deep neural networks, whose 

general feasibility has been demonstrated by the DeepQ [91] algorithm, may be used to extract the 

appropriate information from a feature-rich state/action representation in the same way convolutional 

networks extract information from a picture [81]. Deep neural networks have also shown a (limited) 

capability of  transfer learning, a feature that may allow the user to utilize a neural network pre-trained on 

one system to learn the Q-function of  another, shortening the learning phase in the process. The necessary 

training and validation data could be gathered during penetration tests first and later refined through policy-

shaping or, once the system is sufficiently competent, by pitting it against real-life systems (preferably in a 

laboratory environment) for further refinement without human interference. It is also possible that other 

methods, like evolutionary strategies [173], will enable us to solve this (and similar) problems in the future.  

9.5 Conclusion  

Reinforcement learning can identify potential weaknesses and the steps an attacker may take to exploit them. 

The developer can start the search for weaknesses before the implementation of  the actual system. The 

model-based approach enables the parallelization of  the search process by using multiple instances. It is 

possible to transform any correct FPGASECML based description into the underlying Markov decision 

process. The automatic model-to-model translation reduces the developers’ workload,   decreases the risk of  

errors, and keeps both models in sync. Probabilistic transitions allow the user to evaluate his assumptions 

about the strength of  attack and defense.  Adding more state information as well as actions to the MDP 

model enhances its expressiveness, but the computational costs may exceed the value gained. Adding more 

advanced techniques like Options, Partially Observable MDPs, and stochastic games to the generated code 

can increase the functionality of  the model, but only where the circumstances justify the significant increase 

in complexity. Further advances in the field of  reinforcement learning, maybe in combination with Deep 

Learning, could enable the creation of  an entirely automated penetration tester, able to find and exploit 

weaknesses in real-life systems.  The DSL based approach introduced here could be of  use to bootstrap 

such as system by providing structured information about the systems assets and the interaction between 

them.  
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10 Conclusion 

Resilience against attacks is a crucial attribute for any IT system, including those relying on FPGAs. The 

methods and processes for conventional IT systems are more advanced than those in the FPGA world 

where the primary focus of  manufacturers and security research has lied on the protection of  intellectual 

property. Proven techniques of  the software industry can be transferred into the FPGA domain to close the 

gap, and newly developed techniques can leverage the unique features of  FPGAs to increase the security of  

the system. This thesis presented an analysis and adaptation of  appropriate security methods from the 

software domain into the FPGA world. A method to formalize the FPGA security challenge via 

FPGASECML based models were presented. FPGASECML is a domain-specific language, suitable for a 

system-centric threat modeling and the formal definition of  a security policy. The formal validation of  an 

FPGA security policy where introduced as well as a method to isolate FPGA elements with different 

security sensitivity through Partial Runtime Reconfiguration. A reinforcement learning-based method was 

used to gain further insight into the weakness of  the system and how an attacker may exploit them.  The 

remainder of  this chapter provides a more comprehensive summary. 

Analyzing the existing security features for FPGA based designs leads to the conclusion that solutions for 

many security challenges in FPGA based designs problems are available. However, to the author’s 

knowledge, no integrated development process to develop secure FPGA based designs exist.s The creation 

of  appropriate defense mechanisms requires intelligence about the threat agents, especially their motivation 

and capabilities. The generic threat agents discussed in this thesis provide a starting point for further analysis 

of  both the design under review and the threat agents against it.  FPGA based designs are, like any other IT 

system, exposed to different threat agents throughout the systems lifetime, urging the need for a suitable and 

adaptable security strategy. Assessing the trustworthiness of  the supply chain and the resulting design 

elements, even if  the result of  this analysis is inherently fuzzy, is an important step to improve the security 

of  the design.  This thesis discusses the adaptation of  system-centric threat modeling to the FPGA domain. 

The systematic analysis of  the design, based on the STRIDE concept, provides valuable insight into the 

design threats and the required counter mechanisms. The process speeds up the analysis and reduces the risk 

of  missed threats and misunderstandings by relying on prepared building blocks structures. The most 

common access control paradigms can model access control rules in FPGA designs. Choosing the 

appropriate design paradigm depends on the complexity and security requirements of  the design.  For a 

simple, pipeline based design, the Bell-LaPadula or Biba paradigm might be appropriate, while a more 

complex design requires an access control list or matrix to create an enforceable rule.  The formal definition 

of  the FPGA architecture, the temporal relationship between the configurations and the security rules, 

promotes a precise definition of  the assets and their interaction, removes ambiguity from the threat model, 

provides a blueprint for the implementation and allows an automatized validation of  the security rules. The 

domain-specific language supports standard access control paradigms like Access Control Lists, RBAC, or 

Attribute-Based Access Control.    

The formal description of  the FPGA architecture (FPGAModules, communication networks, and 

reconfiguration process) and the security policy promotes a precise definition of  the assets and their 

possible, allowed, and prohibited interactions. It removes ambiguity from the threat model while providing a 

blueprint for the implementation. It also allows the rigorous validation of  the security policy, as described in 

chapter 8.  

 

Model-checking can be applied to verify if, and to a certain degree when, a design complies with the stated 

security policy. Transferring the architecture into a suitable model and the security policy into verifiable logic 
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properties can be, as demonstrated in this thesis, automated, mitigating one source of  error. The successful 

validation of  the model can be counteracted by wrong assumptions about the effectiveness of  security 

mechanisms and the wrong assignment of  the security attributes, attacks against lower levels of  the design, 

or a faulty implementation. The challenge of  determining and assigning appropriate security attributes and 

their acceptable and unacceptable interactions remains a task best left to experienced humans. 

Reinforcement learning can identify potential weaknesses and the steps an attacker may take to exploit them. 

To achieve this goal, an FPGASECML Model can be transformed into an MDP model, solvable with 

standard algorithms like q-learning. Adding more state information and actions to it improves the 

expressiveness of  the MDP models, but the computational costs may exceed the value gained. It is possible 

to extend the generated code to use more advanced techniques like Options, Partially Observable Markov 

Decision Processes, and stochastic games. Further advances in the field of  reinforcement learning, perhaps 

in combination with Deep Learning, could lead to the creation of  an entirely automated penetration tester, 

able to find and exploit weaknesses in real-life systems.   

FPGAs share some threats and weaknesses with conventional IT-system and knowledge about the 

successful and failed attempts in the vastly more significant software domain can create better tools and 

techniques for them. However, FPGA also provides the opportunity to create innovative security solutions 

by leveraging the dynamic change of  their configuration to limit their exposure to threats and to lead 

attackers astray.  Finally, some of  the methods developed for this thesis may be useful beyond the FPGA 

world as the attribute-based access control approach to security policies that could be used for complicated 

Internet of  things (IoT) configurations or the reinforcement learning-based attacker model that may be 

generalized to test a broader range of  IT-systems.  
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Appendix A Glossary 

ABAC  Attribute Based Access Control 

ACM   Access Control Matrix  

AES  Advanced Encryption Standard 

AMBA   Advanced Microcontroller Bus Architecture 

BRAM  BlockRAM - volatile memory component of  an FPGA 

CAN   Controller Area Network 

CC  Configuration Control and Storage 

CIA   Mnemonic for confidentiality, integrity and availability 

CM   Configuration Management  

CRC   Cyclic Redundancy Check 

CSE   Configuration Storage Elements  

CTL   Computation Tree Logic 

CLB  Configurable Logic Block 

DAC   Discretionary Access Control 

DMA  Direct Memory Access 

DRAM  Distributed RAM – CLBs configured as memory elements 

DoS   Denial-of-service attack 

ECB  Electronic Code Book – unsecure mode of  operation for a block cipher 

FPGA    Field Programmable Gate Arrays  

GSM   Global System for Mobile Communications 

GLM  Generalized linear model 

IP    Intellectual Property  

JTAG   Joint Test Action Group 

LOC   Lines of  Code 

LTL   Linear Temporal Logic 

MDP  Markov Decision Process 

MAC   Mandatory Access Control  
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NoC   Network on a chip 

NSA   National Security Agency 

POMDP Partially Observable MDP 

PCB   Printed Circuit Board 

PLC   Programmable Logic Controller  

PRR   Partial Runtime Reconfiguration 

PUF   Physical Unclonable Functions 

RIPE-MD160  RACE Integrity Primitives Evaluation Message Digest 

RISC   Reduced Instruction Set Computer 

SCADA   Supervisory control and data acquisition 

SHA  Secure Hash Algorithm 

SMD   Surface-mounted device 

SoC   System-on-a-Chip 

SRAM   Static random-access memory 

STRIDE  Mnemonic for Spoofing of  user identity, Tampering, Repudiation, Information disclosure,  

   Denial of  service (D.o.S), Elevation of  privilege 

TCB   Trusted Computing Base 

USB   Universal Serial Bus 

VHDL   VHSIC Hardware Description Language 

WORM  Write once read many 

RNG  Random Number Generator 
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Appendix B The low-level threat model for  FPGAs  

This section presents a systematic security analysis of  low-level components inside the FPGA and its 

periphery.  Further, more abstract, security analysis of  every FPGA based design can use the analysis of  

these low-level components as a foundation. 

B.1 Peripheral Devices, the FPGAs environment  

This subsection introduces the building blocks to threat model the peripheral devices connected to the 

FPGA. First, the security concerns for peripheral devices, in general, are discussed, followed by a more 

detailed nuanced analysis of  the different classes of  peripheral devices. Where a peripheral device combines 

the function of  multiple classes, it is recommended to threat model the peripheral device for each of  these 

classes.  

B.1.1 Peripheral Devices 

Peripheral devices are all devices directly connected to the FPGA. An attacker may try to: 

• Replace the device 

• Bypass the device 

• Alter the behavior of  the device  

• Attack the communication between the device and the FPGA 

General security mechanisms for all peripheral devices include: 

• Physical protection against attacks (e.g., through enclosure or glue) 

• Trustworthy development process and developers 

• Trustworthy supply chain from the developer over manufacturing to the shipment of  the final 

device (Counterfeited microchips pose a severe risk  [174, 175] that must be mitigated 

appropriately.) 

• Authentication of  the identity of  the device  and data transmitted or received 

• Encryption of  any sensitive data stored and transmitted 

• Reliable removal of  sensitive data (as soon as possible) 

• Identification of  its current security state (e.g., ok, under attacker, tampered with) 

Peripheral devices classes are auxiliary devices, memory elements, communications interfaces, and 

processing devices. A single device can also combine the attributes of  several of  these generic classes. 

B.1.2 Auxiliary Devices 

Those devices necessary for a stable operation of  the FPGA but without any further functionally can be 

subsumed into a class of  auxiliary devices: 

• Power Supply: providing a stable power supply for modern FPGAs is a non-trivial task. Different 

voltage rates are required, and multiple IO interfaces have different power requirements. Gaining 

control over the power supply (either of  the overall system, the device, or the FPGA) enables an 

attacker to perform a denial of  service attack or a side-channel attack.  Complex power 

management systems, providing services like energy save modes, increase the attack surface. They 

must, therefore, be treated with the appropriate caution.  
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• Oscillator: provide the clock for the FPGAs operation. Speeding up the oscillator can improve the 

likelihood of  a glitch and can lead to a temporary or persistent DoS attack (e.g., through thermal 

overload). Reducing the frequency of  the oscillator, on the other hand, can ease reverse engineering 

and side-channel attacks (oscilloscope sampling rate vs. device frequency)  

These devices have, if  they perform their task as specified, only a marginal influence on the systems 

behavior and attacks against them mainly support or enable other low-level attacks like timing or power 

analysis, deliberately omitted from the formal model introduced in chapter 7. 

B.1.3 External Memory 

Almost all non-trivial tasks require external memory chips to store data temporarily or persistent. The 

STRIDE approach leads to these main threats against and from memory devices: 

• Spoofing identity: By replacing or bypassing the device of  the memory, an attacker can inject 

malicious code or data into the system. 

• Tampering with data: Altering the data that the data processes processed (this includes code to 

be processed by a CPU) changes the behavior of  the system.  

• Repudiation: Data on the device (e.g., a log file) could be deleted to hide an attack.  

• Information disclosure: Information, otherwise protected by design, could be retrieved from the 

memory chip itself. 

• Denial of  service: Denying access to the memory cripples or disables all services and 

functionality relying on this data. 

• Elevation of  privilege: An attacker can bypass existing security mechanisms and perform actions 

denied to a legitimate actor by tampering with the memory either directly or via the access control 

mechanism. This threat is not limited to the content of  the memory itself  as it could include, for 

example. The addition of  illegal entries to an access control database, for example, grants an 

attacker further control over the system.   

 These attributes are of  particular importance from a security perspective: 

• Volatility: A reboot disrupts any attack tampering with data in a volatile memory area. Tampering 

with persistent data like a flash memory creates a more persistent threat. Detecting (nonvolatile) 

attacks against flash memories, on the other hand, is more straightforward than detecting attacks 

against volatile memory, where a simple power off  removes any traces of  the attack [176]. The 

secure removal of  sensitive data, for example, during the decommissioning process, represents 

another threat limited to nonvolatile memory only.    

• User access: Standard, user-replaceable memory elements like USB Sticks or SD Card can contain 

configuration files and other persistent and sensitive data. Their removability makes these memory 

devices easy to use points of  entry. User removable SDRAMs can be used to perform a cold boot 

attack  [177] by removing them from their socket and reading their content in another device, an 

attack unlikely to succeed with soldered memory elements.  

• Cryptographic Services: Some memory devices provide cryptographic services like encryption or 

authentication. The sensitive nature of  these services requires a careful investigation into the 

trustworthiness of  their implementation and their correct configuration and integration. 

• Data flow: An SD card used to store data of  low sensitivity like a log file (maybe even in write-only 

mode) poses a significantly lower risk than a memory device storing the FPGA configuration or any 

other data to be processed by the FPGA.    
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• Content: The type of  data stored is of  high importance. A single device may hold data of  different 

levels of  sensitivity, like the FPGA configuration and logfiles at the same time. Where the memory 

element contains data of  different levels of  sensitivity, each of  these data sets should be considered 

individually, e.g., by creating a table of  the memory elements content and their respective sensitivity. 

B.1.4 Communication Interface 

Communication Interfaces provide gateways to and from the various threat layers. It is, therefore, vital to 

understand the corresponding endpoints and their location within these layers. A Gigabit Ethernet PHY 

chip, in combination with an FPGA IP-Core, can provide access to the internet or the backplane of  the 

system. The location of  the endpoint(s) determines the exposure of  the system to threat agents. 

The main threats against and from communication interface are: 

• Spoofing the identity of  the communication interface: an attacker can circumvent the security 

mechanisms implemented in the interface and perform further men-in-the-middle attacks by 

replacing the device itself. 

• Spoofing the identity of  the communication partner: an attacker can access the data sent from 

the FPGA and inject data into the FPGA. 

• Tampering with data or the communication interface: An attacker can influence the behavior 

of  the receiver by altering data transmitted through the interface. 

• Repudiation: Deleting log files and buffers on the device can hide an ongoing or past attack. 

• Information disclosure: Information sent to the FPGA can be exposed either through an attack 

against the element or a man-in-the-middle attack during the data transfer. An attacker gaining 

control over the FPGA configuration can reveal sensitive information to unauthorized actors via 

the communication interface. 

• Denial of  service: Jamming the communication via the interface can make the FPGA and its 

communication partner unavailable for other tasks. A threat agent can perform such an attack at 

any communication layer. 

• Elevation of  privilege: By gaining control over the device or by replacing it with a device under 

its control, an attacker can bypass existing security mechanisms and perform actions otherwise 

denied to him. 

These security-relevant attributes of  communication network require particular attention: 

• Data: how sensitive is the data passed through this interface? 

• Trust Boundaries:  does data to and from the peripheral device cross trust boundaries? 

• IO Sanitization: is the data entering or leaving the interface validated? 

• Authentication: is it possible to authenticate the other endpoints and the transmitted data?  

• Encryption: is data encryption demanded and implemented? 

 B.1.4.1 Processing Devices 

Processing Devices like microcontrollers or DSPs perform computations, transfer data, and control 

information to the FPGA or receive them from it. These threats can be identified using the STRIDE 

approach: 
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• Spoofing identity: of  the processing device, an attacker can gather information (sensitive data, 

reverse engineering of  the control flow) and inject malicious data into the FPGA or extract 

sensitive data exchanged between the peripheral device and the FPGA.  

• Tampering with the device: An attacker can tamper with either the FPGA or the processing 

device by tampering with the data exchanged via this device.  

• Information disclosure: A glitch or attack against the processing device, as well as a man-in-the-

middle attack can expose sensitive data. 

• Denial of  service: A DoS attack against processing devices providing essential, security-sensitive 

services could either render the whole system useless or force it to forgo the services provided by 

them. The latter case could leave the FPGA without the mandated security mechanisms. 

• Elevation of  privilege: Gaining unauthorized access to the processing devices, an attacker can 

bypass existing security mechanisms and perform actions denied to a legitimate actor. 

From a security perspective, the following attributes are essential: 

• Provided services: It is essential to identify the security-sensitive services rendered to the system 

and FPGA. When services provided by the processing devices are crucial to the FPGAs security 

(direct or indirect), the processing devices must provide these services as required and show the 

mandated resilience against attacks. Such services include cryptographic operations, input 

sanitization, authentication, or monitoring tasks. 

• Connectivity: a processing device that is collaborating with other elements of  the design can 

provide a connection across trust boundaries. 

• Flexibility: altering the behavior of  the device can endanger the security of  the FPGA (and other 

devices connected to it). It is, therefore, reasonable to consider processing devices with hardwired 

behavior as more resilient against outside threats and less patchable than software-defined 

processing devices. 

• Complexity/attack surface:  it is reasonable to assume that the risk of  security-related bugs 

increases with the complexity of  the system. The analyst should, therefore, treat sophisticated 

processing devices entrusted with sensitive tasks with more caution than simpler processing devices 

performing the same tasks 

• Security mechanisms:  the device may have one or more security mechanisms implemented in the 

hard- or the software, to fend off attacks.  

B.2 FPGA Configuration - Storage and Management 

The configuration of  the FPGA defines its behavior and is, therefore, among the most sensitive 

components of  every FPGA based design. The system must protect all elements entrusted with the 

configurations storage accordingly. All elements outside the FPGA are the periphery. The programming 

path from the configuration to the FPGA can run through one or more peripheral devices, be hidden inside 

the very FPGA package (if  there is an internal nonvolatile memory like in the Spartan 3AN), or a 

combination of  both. The security level provided by the multiple programming paths may vary.    
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B.2.1 FPGA Hardware 

 

Figure 40 FPGA schematic with typical components 

The FPGA (Figure 40) package protects the elements discussed in this section, and a direct attack against 

them will, therefore, be expensive. Attacking them indirectly via the configuration process is more feasible. 

This analysis is, therefore, performed to understand the implications of  maliciously crafted or altered 

configurations. 

B.2.2 Configurable Logic Blocks 

Modern FPGAs can contain logic circuits with the equivalent complexity of  several million gates [178]. This 

user-defined computation is performed primarily by a grid of  Configurable Logic Blocks (CLB). These are, 

in general, lookup-tables with additional functionality to communicate with other elements. Their 

application is not limited to binary logical operations as they can serve as shift registers, distributed ram, and 

connectors between different parts of  the design (e.g., in designs with Partial Runtime Reconfiguration) as 

well. 

• Spoofing the identity of  CLBs could be performed by micro probing the FPGA fabric, but due 

to the size of  the elements, such an attack appears very unlikely. 

• Tampering with data: changing the configuration of  a CLB changes the behavior of  the element 

or the data stored in the CLB. 

• Repudiation: An attacker could destroy the evidence of  the security breach by wiping the 

configuration of  the element or by restoring its original state. If  the compromised CLBs perform 

logging or monitoring purposes, traces of  malicious transactions may be suppressed or removed. 

• Information disclosure: Retrieving the CLB configuration can provide the attacker either with 

their logical function or the memory content stored within them (distributed memory). Getting 

access to the content of  all CLBs and the programmable interconnections discloses the 

configuration. 

• Denial of  service:  Alterations of  the CLB can disrupt the operation they participate in and even 

lead to their physical destruction [179]. These changes render the FPGA, at least in parts, 

temporarily or permanently useless. 
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• Elevation of  privilege: Tampering with CLBs used for security services (e.g., secure configuration 

or input sanitization) can disable these security mechanisms, enabling the attacker to perform 

actions otherwise denied. 

B.2.3 IO-Blocks 

IO-Blocks provide the physical connection to the outside world. Their electrical characteristic is 

configurable to match the physical requirements of  the peripheral device. They are, by their pins, exposed to 

the outside world. Physical tampering with IO Blocks requires less effort than with other FPGA 

components due to this exposure to the PCB threatlayer.   

• Spoofing the identity of  the peripheral device: An attacker can inject malicious data into the 

FPGA by taking the place of  a peripheral device connected to it. 

• Tampering with data:  An attacker can change or suppress data to and from the peripheral 

device.  

• Information disclosure: Taping the IO Pin, (otherwise unprotected) communication between the 

FPGA and its periphery. IO pins can be targeted form inside the FPGA or at the PCB level. 

• Denial of  service:  A deliberate misconfiguration of  the IO Block can lead to the physical 

destruction of  either the IO Pins of  the FPGA, the periphery, or both. An attacker can also try to 

destroy the surrounding CLBs and Interconnections by applying external power to the IO Pin 

(similar to[180].) 

• Elevation of  privilege: An attacker can perform actions denied to legitimate users through a 

man-in-the-middle attack between FPGA and periphery  

B.2.4 Embedded Hard Blocks  

Embedded Hard Blocks are integrated into FPGAs to perform often required tasks, like multiplications, 

more efficiently than a block of  CLBs. Their behavior is, to a certain degree, reconfigurable, but they are not 

as versatile as CLBs. FPGAs can include a variety of  embedded hard blocks like:  

o Embedded Processors like the PowerPC, ARM or other RISC derivate 

o Communication Interfaces, e.g., PCI Express and Gigabit Ethernet 

o Multiply/Add and DSP-Blocks  to speed up mathematical operations 

o BlockRAM to store small to medium amounts of  data inside the FPGA  

Embedded processors can be, under security aspects, treated as processing devices in the last section and 

communication interfaces like the peripheral devices.  Embedded inside the FPGA, they provide a higher 

resilience against physical manipulation as an attacker must gain access to the FPGA itself  (while other 

peripheral devices are more exposed to attackers.) Multiply/Add, and DSP-Blocks provide lesser flexibility 

as CLBs and represent no higher risk from a security perspective. It is, therefore, reasonable to treat them in 

the same way as CLBs. 

B.2.5 BlockRam  

BlockRam is used to store medium-sized amounts of  data inside the FPGA. Applying the STRIDE 

mnemonic leads to these threats: 

• Tampering with data of  the block ram: An attacker can influence the behavior of  the FPGA by 

altering the data stored in the BlockRam. Possible attacks here include the injection of  shellcode 
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for an embedded processor or the zeroing of  a cryptographic key to render the encryption 

mechanism useless. 

• Repudiation: An attacker can remove traces of  an attack or a legitimate transaction through 

changes in the BRAMs content. 

• Information disclosure: An attacker with read-access to the BRAM can reveal sensitive data, like 

cryptographic keys or program code, otherwise protected through the design. 

• Denial of  service: An attacker can inject maliciously crafted content into the block ram to disable 

parts of  the configurations by, e.g., injecting malicious code in an embedded processor. - a simple 

endless loop can be sufficient. 

• Elevation of  privilege: An attacker can bypass the existing security mechanism, like access 

control, and perform actions denied to the legitimate user by directly altering the content of  the 

BRAM.  

B.2.6 Auxiliary Blocks 

Auxiliary Blocks are those elements that are necessary for a stable operation of  the FPGA but with minimal 

influence over the systems services and functions (if  they operate within their specification.)   

Clock management 

FPGA requires a stable clock with a frequency appropriate to their configuration. Clock management 

elements inside the FPGA fulfill this task, often utilizing external oscillators. 

• Spoofing identity: Taking the place of  a legitimate user of  the clock management (e.g., a 

processor or a dedicated monitoring element), an attacker may lay the groundwork for further 

attacks. 

• Tampering with the configuration: An attacker can change the behavior of  the circuit and 

enable further attacks by tampering with the clock management. 

• Repudiation: An attacker can try to avoid detection by a monitoring system through a change in 

clock management. 

• Information disclosure: speeding the clock up or slowing it down can leak information about the 

system to the outside world. The results of  such manipulation include glitches occurring at a 

higher frequency or side-channel attacks enabled by lower frequencies. 

• Denial of  service: Tampering with the system clock can, as mentioned above, lead to a 

malfunction of  the system. 

• Elevation of  privilege: Glitches occurring at clock frequencies outside the specified range may 

enable an elevation of  privilege attack, like the access of  memory segments protected under 

normal circumstances. 

Debugging interface 

It is the nature of  debugging interfaces that they provide access to the most sensitive points of  the system. 

An interface like JTAG (Joint Test Action Group) can be used not only to get information from the system 

under test but to alter their configuration as well as data stored within them. An attacker gaining access to 

the debug interface poses, therefore, a grave threat: 

• Spoofing identity (of  a legitimate actor, e.g., developer or maintenance expert): An attacker can 

impersonate a legitimate actor (e.g., developer or maintenance expert) and abuse the debug interface 

to gain further insight into or control over the system   
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• Tampering with data: An attacker can alter internal data directly through the debug port  

• Tampering with the FPGAs configuration or software: An attacker can change the behavior of  

the FPGA, for example, change sensitive data through malicious alterations to the configuration or 

software. 

• Repudiation: Using the debug port, an attacker can remove traces of  an attack or a legitimate 

transaction. 

• Information disclosure:  The debugging port can expose sensitive information (data, status, and 

configuration) to unauthorized actors with access. 

• Denial of  service: injecting maliciously crafted bitstreams or data into the FPGA can lead to 

either or partial or complete unavailability of  services. Reconfiguring or disabling the programming 

path via the debugging interface is another threat to the availability of  the FPGAs services. 

B.2.7 Programmable Interconnections  

Programmable interconnections within the FPGA provide the flexible communication infrastructure 

between the components described above.  The majority of  the FPGA fabric consists of  these 

interconnections [181]. STRIDE can be used to identify these generic threats: 

• Spoofing Identify: An attacker can spoof  the identity of  an internal or external (connected via IO 

Pins) communication partner by rerouting the FPGA network. 

• Tampering with the interconnection configuration: A malicious actor can alter the source and 

destination of  a connection by changing the interconnections configuration. 

• Repudiation: An attacker can remove traces of  an attack or a legitimate transaction by bypassing 

distinct CLBs and thereby the service they provide (logging, monitoring, or a watchdog service). 

• Information disclosure: Rerouting interconnects can expose sensitive information to either an 

unauthorized element inside or outside (via an IO Block) the FPGA.   

• Denial of  service:  A deliberate misconfiguration of  the FPGA's internal communication 

network interrupts the tasks relying on the affected interconnects. This interruption can be either 

temporary or permanent. 

Elevation of  privilege: An attacker gains further control over the system and performs actions denied to 

legitimate users by rerouting the interconnections to an element (internal or external) under his control 
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Appendix C High-level security analysis of intricate FPGA 

designs 

This section builds upon the security analysis presented in the previous section and introduces the tools for 

a more abstract threat analysis of  the system (Figure 41). This analysis focuses on the various programmable 

logic modules that are using the FPGAs primitives to perform their computations. This approach is more 

suitable for the system-centric threat analysis of  complex systems. The model creator can use instances of  

these primary components: 

• FPGAModules are representing cohesive blocks of  the reconfigurable logic accessible through 

one or more interfaces and (in designs that use runtime reconfiguration) interchangeable within 

specified limits. FPGAModules come in two forms:  

o Processing Blocks: operating within the FPGA 

o IO Blocks: Processing Blocks with access to the periphery 

• Communication Networks: connecting the FPGAModules 

• Configuration Control and Storage (CC): representing those crucial components entrusted with 

the configuration. 

 

Figure 41 FPGA primitives and their abstract representation  

C.1 Configuration Control and Storage (CC) 

The Configuration Control and Storage (CC) subsystem is responsible for the complete or partial 

reconfiguration of  the FPGA.  CC receives a (re)configuration command and loads either a complete or 

partial configuration from a defined programming path (e.g., Flash, JTAG) into the FPGA.  The storage 

elements holding the configurations are part of  this component as well as the upgrade mechanisms and 

security mechanisms like encryption, authentication deployed to protect the configuration. Integrating all 

elements that participate in the reconfiguration process into a single component simplifies the model, but it 
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is also possible to create a distributed representation of  this component. This distributed representation 

stores the storage and security mechanism information within each FPGAModule description. 

C.1.1 Implementation 

The configuration storage can be a part of  the FPGA package (e.g., Xilinx Spartan3AN), inside the FPGA 

(flash ram based FPGAs) or - in most designs- outside the FPGA in an external nonvolatile storage element 

like a flash memory chip. 

The configuration control can be a part of  the FPGA configuration, software running on top of  an 

embedded processor (hard block or IP-core), or an external device controlling the FPGA. The role of  the 

FPGA can, therefore, be either: 

1) Master: the FPGA controls the configuration process 

2) Slave: an external device, e.g., a JTAG interface or a microcontroller, controls the configuration 

process of  the FPGA 

Multiple entities at different stages of  the systems lifecycle may perform Configuration Control 

functionality. A system may utilize a JTAG port at the development stage, a simple hardware connection 

during regular operation, and an external microcontroller, as part of  a maintenance kit, for upgrades and 

diagnoses. A threat model may omit some of  these options for the sake of  simplicity, as most threat models 

are created to avoid security problems of  the system deployed in the field. 

C.1.2 Threats 

Tampering with the CC, an attacker could load configurations that are not trustworthy, bypass built-in 

security mechanisms (like encryption and authentication), or forces the (either partial or complete)   

reconfiguration into a less secure state.  

Using the STRIDE approach these threats against the configuration storage: can be identified 

• Spoofing the identity of  the configuration storage: An attacker can inject a malicious 

configuration into the system by replacing the storage device. 

• Tampering with data of  the configuration storages: An attacker can alter the behavior of  the 

FPGA by tampering with the configuration. 

• Repudiation: An attacker can hide an attack by removing his maliciously crafted configuration 

from the storage or by restoring the original state of  the configuration after an attack. 

• Information disclosure of  the configuration storage: Reading the content of  the configuration 

storage reveals this sensitive content to the attacker. 

• Denial of  service:  Making the configuration storage unavailable prevents the FPGA from (re-

)configuration, rendering it useless or leaving it in a vulnerable state. 

• Elevation of  privilege: An attacker can perform actions denied to the regular user, by replacing 

or altering an existing configuration.  

Threats against the configuration management include: 

• Spoofing the identity of  a configuration management component:  An attacker can inject a 

configuration of  his choice in the FPGA, bypass security mechanisms like bitstream authentication 

and encryption and reveal the configuration files to unauthorized actors. 
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• Tampering with the configuration management: An attacker can force the FPGA into a 

reconfiguration, either to load a maliciously crafted configuration into the FPGA or to exploit  side 

effects of  insecure reconfigurations (see 4.5) 

• Repudiation: Clearing log files or restoring the original configuration of  the CM after an attack 

allows a hacker to cloak his activities.     

• Information disclosure: an attacker can learn which configurations are available, the storage and 

usage of  the data by gaining access to the configuration management. 

• Denial of  service attack:  A successful DoS attack prevents the FPGA from (re-)configuration, 

rendering it useless or leaving it in a vulnerable state. 

• Elevation of  privilege: an attacker can perform actions denied to the regular user by forcing the 

(re)configuration of  the FPGA with a configuration of  his choice.  

C.1.3 Threat Agents 

Using the taxonomy introduced earlier, these threat agents and their activities can be identified: 

• Software Hackers: attacking the software in control of  the configuration 

• Hardware tinkerer: tampering with the hardware along the programming path. 

• Digital Design Experts: tampering with the configuration inside their storage element or the 

FPGA  

• Microsystems Engineer retrieving the configuration from the configuration storage for further 

analysis 

C.1.4 Security Mechanisms 

Security Mechanisms can protect the configuration of  the FPGA from theft, unauthorized changes, and 

malicious replacement: 

Security Property Mechanism 

Confidentiality Symmetric or asymmetric encryption  of  the configuration 

Tamper 
Resistant 
Storage 

Integrity Message Authentication Code 

Availability 
Redundancy 
Safety margins to handle the excessive traffic 

Many FPGAs provide the necessary support for the cryptographic protocols, for example [182] 

C.2 Processing Blocks  

Processing Blocks (PB) represent a distinct configuration of  low-level FPGA primitives. These blocks 

perform distinct tasks together, are utilized at the same time, and are tightly connected. The utilization of  
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FPGA resources can be either static or dynamic. Multiple dynamic PBs can share the same FPGA resource 

over time. 

C.2.1 Implementation 

Processing Blocks consists of  a distinct set of  Configurable Logic Blocks, Embedded Hard Blocks and the 

Interconnections between them. Those parts of  the PB serving as interfaces expose it to threats by other 

FPGAModules and deserve special attention. 

C.2.2 Threats 

An attacker who controls the PB can receive data intended for other design elements, replace functionality, 

or disrupt the operation of  the overall system by sending maliciously crafted messages. The threats posed by 

a single Processing Block strongly depend on its role and position within the configuration, e.g., the 

sensitivity of  the services it provides and its connectivity to other elements. 

C.2.3 Threat Agents 

• Software Hackers attacking –where available- software running on top of  the configuration 

• Digital Design Experts are tampering with the configuration of  the Processing Blocks. 

• Microsystems Engineer probing or manipulating the content of  the PB (an expensive process, 

unlikely to succeed unless previous knowledge indicates a valuable target) 

C.2.4 Security Mechanisms 

Additional security mechanisms should protect the Processing Block and the elements that interact with him 

where the architecture cannot provide the required level of  security. Generic security mechanisms to protect 

a Processing Block and the data entrusted to it include: 

Security Property Mechanism 

Confidentiality 
Symmetric or asymmetric encryption  of  the data 
Obfuscation of  sensitive data stored inside the FPGA 

Integrity 
Message Authentication Code of  data received and sent 
Sanitation  of  the used FPGAResources 
Validation of  received data 

Availability 

Redundancy 
Safety margins to handle the excessive traffic 
DoS-detection and filtering 
Economic message handling  

C.3 IO Blocks  

An IO Block (IOB) provides access to the periphery outside the FPGA. They can be gateways to networks 

(local or global), storage elements (volatile and nonvolatile), or provide additional processing services 

implemented in external devices (e.g., to a microcontroller). IO Blocks are, therefore, Processing Blocks with 

additional access to services and data from beyond one or more trust boundaries.  
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C.3.1 Implementation 

 IO Blocks utilize the same resources as Processing Block plus the low-level IO component (the low-level 

IO-Blocks or other, dedicated hard blocks), providing access to the periphery. 

C.3.2 Threats 

Peripheral Connectors are natural locations for trust boundaries as they are gateways between the FPGA 

and the outside world. An attacker can perform, e.g., a DoS attack or an escalation of  privileges attack by 

gaining access to their periphery.  

C.3.3 Threat Agents 

• Digital Design Experts are analyzing and tampering with the FPGA configuration of  the IO 

Block. 

• Microsystems Engineer probing the  internals of  the Peripheral Device and the FPGA  

• Hardware tinkerer tampering with the external peripheral device, probing the IO pins 

• Software Hacker attacking software running on the peripheral device 

C.3.4 Security Mechanisms 

IO Blocks have a connection to the outside world, and the threat agents associate with it and therefore 

require an additional set of  security mechanisms that operate between the FPGA and its periphery. These 

security mechanisms include: 

 Security Property Mechanism 

Confidentiality Symmetric or asymmetric encryption  of  the data 

Integrity 
Message Authentication Code of  data received and sent 
Sanitation  of  the used FPGAResources 
Validation of  received data 

Availability 
As identified for Processing Blocks plus: 
Overvoltage protection 
Physical protection of  the communication 

 

C.4 Communication networks 

The communication networks (CN) connect the different FPGAModules. CNs can vastly vary in 

complexity and functionality. A simple CN can consist of  bus macros [183] while complex CNs implement 

a bus or network-on-a-chip design paradigm.  Additional CNs can either simplify the task, to meet non-

functional requirements like multiple quality of  service levels, or to improve the security of  the design 

through compartmentation. Different CNs can be connected explicitly through gateways or implicitly 
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through common FPGAModules. Networks across trust boundaries have to be treated with the appropriate 

care to avoid threat agents or security breaches on one side tampering with the security of  the other side. 

Integration tools and code generators, like Xilinx’s EDK [184], are often utilized to create CNs. This code 

generation is not limited to the very communication network but building blocks for bus access and control. 

The use of  compromised or flawed tools for this task could endanger the overall security of  the design. 

Participants to the CN can be classified in masters able to control other participants of  the CN, slaves 

controlled by others and peers who have neither control over other participants, nor are they controlled by 

them. This discrimination seems to be less critical for a security analysis as a compromised “slave“ 

component might not comply with the mandated separation of  control.  

C.4.1 Implementation 

Communication Networks are, in general, formed by a combination of  programmable interconnects and 

Configurable Logic Blocks that may be supplemented by hard-blocks like BRAMs. 

C.4.2 Threats 

An attacker could manipulate the CN to redirect the communication, bypass security mechanisms (like 

firewalls) and services (like encryption), and either intercept, redirect or alter the transmitted data. This 

manipulation must not be restricted to the very design under inspection but can be carried out by 

compromising the tools used to create the CN.  

C.4.3 Threat Agents 

• Software Hackers hiding malicious functionality within the code generators or integration tools 

utilized to generate the CN 

• Digital Design Experts are tampering with the Communication Network configuration. 

• Microsystems Engineer probing communication through the Communication Networks 
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Appendix D FPGASECML grammar and validation  

This appendix provides a short overview of  FPGASECML grammar. 

D.1 Xtext syntax 101 

The parser of  the DSL uses  XText, and the formal definition presented in this appendix follows this syntax. 

[185] presents a short tutorial (it takes about 15 minutes) for Xtext. This section provides the most 

important grammatical rules  to make the following walkthrough more accessible: 

• ‘abc’  String 

• a?  Optional element a 

• a+  One or more a’s 

• a*  Zero or more a’s 

• (a|b|c ) Either subrule a,b or c must be satisfied 

D.1.1 Rules 

Each grammar rule follows the pattern: 

rulename: 
  RULES 
  ; 

D.1.2 References 

Variable assignments define how to access the parsed content in the EMF classes: 

var=rule 

This statement declares that a single object (representing the content of  ‘rule’ to rule is assigned to the 

variable var 

var+=rule* or var+=rule+ 

These statements declare that the variable var represents a  list of  objects (each representing the content of  

one ‘rule’ statement). 

(var?=rule|’terminal’) 

This statement will instruct Xtext to create a boolean variable that is false if  the parser finds the string 

‘terminal’ at this part of  the grammar.   

D.1.3 ID 

The token  ID is used for any alphanumerical string and predefined by Xtext. 
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D.1.4 Name 

var=[rulename]  

The variable name is reserved for unique identifiers of  an object. Any Xtext rule in the metamodel can 

reference to this object using square brackets: 

IOBlock : 
 'IO Block:' name=ID 
 'utilizes slot:'  slotid=[Slot] ';'  

 

This statement defines that each IO Block must have a unique alphanumeric identifier after the declaration 

‘IO Block’ and that a valid statement must reference to a well-defined (FPGA) Slot in this model. It is not 

necessary to declare the Slot before IO Block.  Xtext automatically generates the corresponding validation 

and scoping code. 

D.1.5 Qualified Name 

Elements declared within another element must be addressed with their qualified names. FPGASEC uses 

the common dot notation and therefore defines qualified names as: 

QualifiedName: 
  ID ('.' ID)* 
; 
 

The following term, for example, refers to a model element mem1, defined within the element Slot1: 

Slot1.mem1  

D.1.6 Enum 

Enums are terminal nodes whose value can take one of  the multiple strings. They are easy to validate. The 

values for these strings are either identical with the given rule or match an explicitly assigned string.  

The security_featureENUM, for example, can be either: “encryption,“ „authentication,“ “random,“ or 

“rand“: 

enum security_featureENUM 
 :  
 encryption | authentication | randomization=„random“  
  |randomization=„rand.“ 
 ; 
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D.2 Architecture 

FPGASECML formalizes the analysis presented earlier in this thesis - its architecture descriptions reflect the 

threat modeling blocks introduced in Appendix C, and the security policy implements the ABAC paradigm 

discussed in 5.5.5. Each valid security model contains both FPGA architecture and security policy following 

this scheme: 

Model: 
 'FPGAArchitecture' name=ID  
 'FPGAModules:' 
  fpgaModules+=FPGAModule+ 
 'FPGAResources:' 
  fpga_primitives+=slot+ 
 ('Periphery:'  
  periphery+=peripheral_device+)? 
 'Communication:'  
  communication_infrastructure+=communication* 
 'Reconfiguration:' 
  reconfiguration=reconfiguration 
  rsequences2validate+=recon_sequence* 
 ('Performs tasks:' 
  tasks+=task*)? 
 'Security Policy:' 
  security_policy+=security_rule* 
; 

D.2.1 FPGAModules – IO Elements and Processing Blocks 

An FPGAModule can come in one of  two manifestations: 

FPGAModule: 
IO Block | Processing Block  

; 

Processing Blocks represent a distinct set of  user-defined logic that performs a defined set of  operations 

using the preassigned FPGA resources.  IO Blocks share all attributes of  Processing blocks and add some 

periphery specific information to it. Xtext creates three classes out of  this rule:: 

• FPGAModule that contains all attributes common to IO Blocks and Processing Blocks 

• IO Block that inherits from FPGAModule and contains the periphery specific information 

• Processing Block that also inherits from FPGAModule but does not contain any further 

information. 

 D.2.1.1 Security attributes 

Security attributes include the systems assets, security mechanisms, and information about the storage 

location and defense mechanism of  the configuration. These attributes include the security-sensitive services 

provided and the sensitive data processed or stored by them, the security mechanisms to protect its 

operation as well as those deployed to protect its bitstream (the model calls the binary FPGA configuration 
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bitstream, following Xilinx terminology) and finally the bitstreams storage element itself. IO Blocks and 

Processing Blocks share the same set of  primary security attributes presented here; the IO Block specific 

security attributes are presented later in this section. 

 D.2.1.2 Sensitive services 

The description of  each FPGAModule should contain a list of  the sensitive services qualified by their 

security (sensitivity) level. 

sensitive_service:  
 'none' 
 | ('sensitive service'serviceid=ID 'of sensitivity level.'    
          securityLevel=security_levelENUM';') 
 ; 
 
enum security_levelENUM: 
  low|medium|high 
  ; 

For most applications, the granularity provided by the default levels (low, medium, and high) is sufficient, 

but additional levels may be to the security_levelENUM when necessary.  

 D.2.1.3 Sensitive data 

sensitive_data:  
'sensitive data' dataID=ID 'of sensitivity level' 
   securityLevel=security_levelENUM 
   ('access type' accessType=dataAccesstypeENUM)  
   ('stored in memory' mem+=[Slot_memory | QualifiedName])? 
   ';' 
; 
  
enum dataAccesstypeENUM: 
  read|write|rw|internal 
; 

The sensitive data rule allows the enumeration of  security-relevant data, the access privileges exercised by 

the FPGAModule, and, optional, the Slot memory element used to store it. To model direct memory access 

(DMA), the data storage information can include memory from other Slots. 

(a) Security mechanism 

enum security_mechanismENUM:  
  input_validation | data_encryption | data_authentication  

| resource_sanitization | data_sanitization 
; 

An element may (or should) implement specific security mechanisms to improve its resilience against 

attacks. Supported mechanisms are: 
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• input_validation: the FPGAModule shall validate all received data    

• data_encryption: the FPGAModule shall be encrypted all sent data 

• data_authentication: the FPGAModule shall authenticate all data sent or received 

• resource_sanitization: all memory resources of  the used Slot will get a neutral value during the 

reconfiguration process (e.g., by setting each bit of  a BlockRam to zero). Resource sanitization does 

not affect memory elements accessed via DMA and, therefore, outside the utilized Slots. 

It is possible to extend the list, if  necessary. The current version of  FPGASECML requires a minor change 

in the grammar, but a future version might provide a mechanism for user-defined or model-specific security 

mechanisms.  

(b) Bitstream security 

enum bitstream_security_featureENUM 
 :  
 bitstream_encryption | bitstream_authentication  

| bitstream_randomization | tamper_resistant_storage 
; 

The architects may deploy one or more of  these security mechanisms to protect the binary FPGA 

configuration file  of  the FPGAModule from unauthorized access: 

• bitstream_encryption: the design must encrypt the bitstream to protect the confidentiality of  the 

FPGAModule  

• bitstream_authentication: the design must provide a mechanism to validate the integrity of  the 

FPGAModule  

• bitstream_randomization: the resource utilization shall be randomized to protect the integrity of  

the FPGAModule against targeted alteration while they reside in the FPGA 

• tamper_resistant_storage: the bitstream storage must protect the integrity of  the FPGAModule 

against attacks. 

Extensions to the list could be made to reflect the introduction of  new security mechanisms. 

 D.2.1.4 Processing Blocks 

Processing Blocks can store data, communicate with other FPGAModules, and provide services for the 

system. 

Processing Block :  
  'Processing Block:' name=ID 
  'utilizes slot:'  slotid=[Slot] '; 
  ('provides sensitive services:''{'   
   sensitive_services+=sensitive_service+  
  '}'';') 
  ('contains sensitive data:' ' 
   {' sensitive_data+=sensitive_data+'}'';') 
    'bitstream is protected by:''{'   
     ((bsf+=bitstream_security_featureENUM 
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    (','bsf+=bitstream_security_featureENUM)*)|'none') 
   '}'';') 

('implements security mechanism:' 
   '{'((sec_mech+=security_mechanismENUM 
    (','sec_mech+=security_mechanismENUM)*)|'none')'}'';') 
 ('bitstream storage:' bitstreamstorage=ID ';')  
';' 
; 

 D.2.1.5 IO Blocks 

Processing Blocks are only exposed to other FPGAModules but IO Blocks provide an additional 

connection to the outside world and are thereby exposed to other threat agents. Their description contains 

therefore the same information as Processing Blocks (these parts are marked in italic) plus periphery specific 

information: 

IOBlock : 
 'IO Block:' name=ID  
 'utilizes slot:'  slotid=[Slot] ';' 
 'connected to:'  
   ( '(to be determined)' | '{' pd+=peripheral_device   
   (','pd+=peripheral_device+ )*  '}')  ';' 
 ('connects to threatlayer:' threatlayer=threatlayerENUM ';')?   
 ('availability:' availability=availabilityENUM ';') 
 ('provides sensitive services:''{'  
   sensitive_services+=sensitive_service+ '}'';') 
 ('contains sensitive data:' '{'  
   sensitive_data+=sensitive_data+'}'';') 
 ('bitstream is protected by:''{'  
   ((bsf+=bitstream_security_featureENUM 
   (','bsf+=bitstream_security_featureENUM)*)|'none') '}'';') 
  ('implements peripheral security mechanism:'  
   '{'((peripheral_sec_mech+=security_mechanismENUM  
   ('|'peripheral_sec_mech+=security_mechanismENUM)*) 
   |'none')'}' ';')? 
 ('implements security mechanism:'  
   '{'((sec_mech+=security_mechanismENUM    
   (','sec_mech+=security_mechanismENUM)*)|'none')'}'';') 
 ('bitstream storage:' bitstreamstorage=ID ';') 
 ';' 
;  

The security model focuses on the FPGA design and data flow within them. It is, therefore, reasonable to 

consider only data stored inside the FPGA and functionality available through the IOBlock.  
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enum availabilityENUM returns ID: 
 permanent | temporary | user_removable 
; 

A peripheral device might be either temporary or permanently available. Temporary availability indicates that 

it is removable and might, therefore, be more comfortable to manipulate. Further security concerns could 

arise when the required device is not available when expected.  

(a) IO Block specific security attributes 

Processing Blocks and IO Blocks share the same set of  essential security attributes, but only IO Blocks have 

specific, periphery specific security attributes. 

Threat Layer  

enum threatlayerENUM: 
 FPGA="FPGA"|PCB="PCB"|System="SYSTEM"|World="WORLD" 
; 

The different layers of the FPGAs environment are, as discussed in 3.4.2, populated by different threat 

agents - each one posing different security risks to the system. The enum may be extended to provide a 

more nuanced representation of  the threat landscape. 

Peripheral Security Mechanism  

Additional security mechanisms might be necessary to prevent the threats agents in the periphery from 

endangering the FPGAs security. The list of  peripheral security mechanisms is syntactically identical to the 

FPGAModule security mechanism list, but defense mechanisms listed in this category operate exclusively 

between the Peripheral Device and the FPGA.  A valid enumeration of  peripheral security mechanisms 

must not contain resource_sanitization as this mechanism operates only on the utilized FPGA resources and 

does not operate on sent or received data.  

D.2.2 FPGA Resources 

The FPGA Resource section is reduced to the very essentials to maximize the hardware independence of  

the model.  

 D.2.2.1 Slots 

Slot :  
 'Slot' name=ID  
 '{' var+=Slot_memory* '}' 
 ';' 
; 

Slots represent distinct groups of  disjoint FPGA primitives. This grouping of  a set of  FPGA primitives like 

CLBs and BRAM into Slots simplifies the analysis of  designs with Partial Runtime Reconfiguration. The 
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information about the very set of  primitives that make up the Slot is it is not required for the security 

analysis and therefore omitted from the model.   

 D.2.2.2 Memory 

Slot_memory: 
 'Memory' name=ID';' 
; 

Data stored in FPGA primitives (BRAM or CLBs configured as DRAM) poses a unique security risk as 

unauthorized or untrustworthy FPGAModule utilizing this Slot could gain read or write access to them. 

They could thereby access sensitive data or exercise undue control over sensitive FPGAModules reutilizing 

this memory element later.  

 D.2.2.3 Peripheral Devices 

The periphery section contains information about the world outside the FPGA: 

peripheral_device: 
 'Peripheral Device' name=ID 
 iop=ioport? 
 ('resides at threatlayer:' threatlayer=threatlayerENUM ';')?  
 ('provides sensitive services:'  
   '{' sensitive_services+=security_levelENUM    
   (','sensitive_services+=security_levelENUM)* '}'';')? 
 ('contains sensitive data:' '{'  
   sd+=sensitive_data (',' sd+=sensitive_data )* '}'';')? 
 '{' var+=Slot_memory* '}' 
 ';' 
; 

This part of  the DSL has a purely informational character. The proof  of  concept software performs no 

further evaluation of  this segment. A future version may incorporate this information into the Security 

Policy (via the query presented later) or mandate that each FPGAModules bitstream storage is a fully 

described Peripheral Device. 

D.2.3 Communication infrastructure 

communication: 
bus | network  

; 

The communication infrastructure is static and a set of  directed connections between the subset of  the 

designs Slots. Slot A has read access to Slot B if  A is the source of  an edge that has B as its target. Slot B 

has read access to Slot A. FPGASECML supports two forms of  communication descriptions: 

• Buses 

• Networks  
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The implementation details, as well as the resources used, are omitted from the model for both rules. 

 D.2.3.1 Bus 

bus :  
'Bus' name=ID ('{' slotid+=[Slot] (','slotid+=[Slot])*'}')';' 

; 

Every member has bidirectional (read and write) access to every other bus member on a bus. 

 D.2.3.2 Networks 

Networks are explicitly defined directional graphs with Slots as nodes. This rule provides more flexibility 

than the Bus-description introduced earlier.  Networks also provide the capability to connect two or more 

buses. A dedicated filter clause, excluding connections between distinct Slots, can be used to model gateways 

with firewall functionality.  

Their model representation follows these rules: 

network: 
 'Network' name=ID '{' nc=network_connection '}' cf=comfilter?  
 ';' 
; 
 
network_connection: 
 left=network_sub  
   (write?='-->'|read?='<--'|bid?='<-->')  

right=network_sub  
; 
 
comfilter: 

'without' '{' nc+=network_connection (',' nc+=network_connection)*'}' 
; 
 
network_sub: 
 '{' node+=network_node (','node+=network_node)*'}' 
; 
 
network_node: 
 (Slot=[Slot]|'Bus' bus=[bus]) 
; 

Besides these grammatical rules, a valid com(short for communication) filter must only contain Slots as 

network nodes. 

 D.2.3.3 The communication infrastructure as a graph 

The model representation of  the communication infrastructure is more suitable for declaration than 

evaluation.  Further processing requires its transformation into a single, directed graph with the Slots as 

nodes and the supported data flow represented through directed edges.  



 

114 

(a) Graph grammar 

The (theoretical) grammar for this consolidated graph representation is: 

communication:  
 cp+=comm_pair* 
; 
comm_pair: 
 ([bus]|[network])? a=[Slot] '->' b=[Slot] ';' 
; 

These rules are not part of  the current FPGASECML language. The software could derive such a 

representation during the parser run to create, for example, a visual representation using an EMF 

compatible diagram framework. 

(b) Representation in the proof-of-concept software 

The actual communication model of  the PoC implementation uses the  DefaultDirectedGraph class of  the  

JGraphT [186] library.  

D.3 Modeling Partial Runtime Reconfiguration  

The dynamic segment of  the model contains two sets of  rules. Reconfiguration events overwrite, if  they are 

triggered, the configuration of  the FPGA with their given set of  FPGAModules. The ‘triggered by’ 

statement allows us to assign the privilege to initiate this reconfiguration to a set of  FPGAModules. An 

event that lacks this description is assumed to be caused by an external element. Reconfiguration sequences 

allow the validation of  one or more independent sequences of  reconfiguration events, each starting with the 

FPGA in its initial state. The dedicated event ‘evInit’ tags the initial configuration. 

D.3.1 Event based description of PRR 

event:  
 'Event' name=ID   
   ('triggered by' '{'  
    trigger+=[FPGAModule] (',' trigger+=[FPGAModule])*  
   '}')?  

'loads:' '{'  
   fpgamodules+=[FPGAModule](','fpgamodules+=[FPGAModule])*   

      '}' ';'  
; 

A reconfiguration event indicates (or initiates – depending on the point of  view) a change in the utilization 

of  at least one FPGA Slot. The ‘triggered by’-statement indicates that only a limited number of  

FPGAModules can initiate the reconfiguration process (opposite to, e.g., an external event) associated with 

this event. An event can change the content of  multiple Slots at the same time, and an FPGAModule can be 

part of  multiple configuration events. 

D.3.2 Validation 
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A valid model requires at least an initial configuration, defining the content of  each Slot at startup. This 

event must be called evInit.  Each reconfiguration event must not contain more than one FPGAModule per 

Slot. 

D.3.3 Partial Runtime Reconfiguration as a graph 

The event-based approach is more suitable for declaration than processing. This representation is, therefore, 

transformed into a graph-based reconfiguration model for further use. In this model, the changed utilization 

of  the FPGA (its state) are the nodes, and the reconfiguration events represent the edges between them. 

The initial configuration (indicated by evInit) serves as the root node (Figure 27.)  

(a) Graph grammar 

The grammar for the nodes recon_state is defined as:  

recon_state: 
 '{' rp+=state_pair+ '}'  
; 
 
state_pair: 
 Slot=[Slot] ':' util=[FPGAModule] 
; 

A valid recon_state describes the utilization of  each Slot. The edges between the states can be represented 

as:  

recon_pair: 
 orig=recon_state ':' event=[def::event]  ':' dest=recon_state 
; 

Where necessary, e.g., to create a visual representation using an EMF compatible diagram framework, such a 

representation could be derived during the parser run.  

(b) JGraphT representation 

The actual reconfiguration model of  the PoC implementation is based on the DefaultDirectedGraph class 

of  the  JGraphT [186] library and generated during the parser run.  The software generates two graphs, one 

containing all possible reconfiguration flows, the second constraining the flow to those reconfiguration 

events satisfying ‘triggered by’ statements (events with these statements can only be triggered if  at least one 

FPGAModule with trigger privilege is present.)  
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 D.3.3.2 Event sequences 

recon_sequence: 
 'Sequence' name=ID '{' eventr+=[event] (',' eventr+=[event])*  '}'  
; 

It is possible to include one or more reconfiguration sequences into the model for further analysis. The 

event sequences are independent of  the reconfiguration graph. 

D.4 The formal definition of the security policy 

The security policy is a set of  security rules that must be met by the architecture of  the design. Each security 

rule defines a prohibited (or required) combination of  two sets of  FPGAModules with different sets of  

attributes. The system is compliant with the security policy if  it complies with all of  its rules. The definition 

of  the security policy reflects the attribute-based access control paradigm discussed in chapter 5 (and the 

trust boundaries discussed in 3.4.3). 

D.4.1 Security rules 

The grammar for a security rule is defined as: 

security_rule: 
 'Rule' name=ID ':' 
 (prohibit?='prohibits'|require?='requires') 
 (util?='utilization'|pres?='presence'|com?='communication')'of' 
  nested_sec_attr_A = nested_security_attribute_query  
 ((im?='immediately')?  (before?='before'|after?='after'|'with')) 
   nested_sec_attr_B = nested_security_attribute_query 
 ';' 
; 

Each rule defines a valid consecutive or concurrent combination of  two sets of  FPGAModules. Their 

security attributes (see  D.4.1.3) define each set. A ‘prohibit’-security rule represents a trust boundary. Two 

classes of  security rules are available, one constraining the consecutive utilization for each Slot, and the other 

one constraining the contemporary utilization of  all FPGA Slots. 

 D.4.1.1 Constrained consecutive utilization 

Rule name: 
  (requires|prohibits)  
  utilization of 
   FPGAMODULE_SET_A 
  immediately (before|after) 
   FPGAMODULE_SET_B 
; 

This type of  rule restricts the consecutive utilization of  a Slot with FPGAModules of  two different sets of  

attributes A and B. 
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 D.4.1.2 Constrained contemporary utilization 

Rule name: 
  (requires|prohibits)  
  (presence |communication) of 
   FPGAMODULE_SET_A 
  (and|with) 
   FPGAMODULE_SET_B 
; 

This clause prohibits or requires the simultaneous presence of  or communication between any 

FPGAModules with the attribute set A and FPGAModules with the attribute set B. The smart design of  the 

reconfigurations events is often a better way to achieve this. Security rules constraining the communication 

do not consider the direction of  the data flow, but only the possible exchange of  data in one direction or the 

other. 

Section 8.3 contains a detailed discussion of the different forms of  security rules and their application. 

 D.4.1.3 Querying FPGAModules 

Enforcement of  the security rules requires the creation of  the respective FPGAModule sets. The 

security_attribute_query-clause is used to describe the query of  a single security-relevant attribute. The 

nested_security_attribute_query clause allows more powerful searches by combining these simple queries 

through logical terms.  

(a) Security attribute query 

This clause is used to determine which FPGAModules match the given attributes, for example the sensitivity 

of  the services they perform. Lists of  element are substituted through a stub instead of  their real 

representation to improve the readability of  the grammar. The xtext definition “element (,element)*“ 

becomes elementlist.  FPGAModules can be queried by these attributes:  

security_attribute_query:   
 ( 
 ('FPGAModule:' '{' FPGAModulelist'}' ';')  
 |('utilizes slot:'  '{' Slotlist '}' ';')  
 |('connects to threatlayer:' '{' ( Threatlayerlist | ‘ANY') '}'';') 
 |('availability:''{' Availabiltylist '}'';') 
 |('provides sensitive services:' '{' SensitiveServicesList'}' ';' ) 
 |('sensitive data:'  '{' Datadiscriminatorlist'}'';') 
 |('bitstream is protected by:' 
   '{' Bitstreamsecurityfeaturelist | 'ANY') '}'';') 
   |('implements peripheral security mechanism:'  
       '{'  peripheral security mechanism list | 'ANY')'}' ';') 
 |('implements security mechanism:'  
   '{' Securitymechanismlist  | 'ANY') '}'';') 
 |('bitstream storage:' '{' Bitstreamstoragelist '';')  
 |('has security roles:''{' Rolelist '}'';') 
 |(('at least one')? 'security role contains:'  
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   '{' role_regex=STRING '}'  ';') 
  |('reconfiguration event:' '{' Eventlist '}' ';')  
 |('connected to peripheral device:' '{' Peripheraldevicelist '}'';') 
 |('has trustworthiness:''{' Trustworthinesslist)? '}'';')  

) 
; 

Querying sensitive data is a little bit more complicated than the rest and defined as: 

sensitive_dataDiscriminator: 
  accessType=dataAccesstypeENUM  
  'access to.'  
   (('sensitivity level' securityLevel=security_levelENUM) 
   | ('Slot memory' mem=[Slot_memory | QualifiedName] ) 
) 
';' 
; 

An FPGAModule satisfies the query if  it contains at least one of  the attributes given in the attribute list or 

contains an arbitrary attribute (the ‘ANY-Keyword indicates this).  All queries expect a complete match with 

the attribute except for “at least one security role contains:“ that matches the roles of  the FPGAModules 

with the given regular expression string.  The query: 

at least one security role contains: { "encryption_.*" }; 

matches all FPGAModules with at least one role that starts with the string “encryption_.“   

(b) Nested security attribute query 

Nested security attributes query are built upon the security_attribute_query and combine them with logical 

operators:   

nested_security_attribute_query: 
  aqOR 
; 
aqOR  returns nested_security_attribute_query: 
  aqAnd ({aqOr.left=current} "OR" right=aqAnd)*  
; 
aqAnd  returns nested_security_attribute_query: 
 aqPrimary ({aqAnd.left=current} "AND" right=aqPrimary)* 
; 
 
aqPrimary returns nested_security_attribute_query: 
 aqAtomic  

| '{' nested_security_attribute_query '}'  
| {aqNot} not?="NOT" expression=aqPrimary  

 ; 
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aqAtomic returns nested_security_attribute_query: 
 {security_attribute_query}  value=security_attribute_query 
; 

Evaluation of  this sub-rule results in either a set of  those FPGAModules that satisfies the query or an 

empty set. The proof  of  concept implementation iterates through the list of  all FPGAModules and returns 

the set of  them that satisfy the given nested security attribute query.  

A nested security  query could look like this: 

{  
NOT { FPGAModule: { ioEthernet , pbAESUnit }; }  

 AND { utilizes slot: { Slot1 }; } 
}  
OR  

{ utilizes slot: { Slot2 };}  

This nested query returns a list of  all FPGAModules that utilize Slot2 and all from Slot1 except for 

ioEthernet and pbAESUnit (assuming that those two modules use Slot1.) 

D.4.2 Reinforcement Learning Scenarios 

The instruction to create Probabilistic MDP scenarios is optional and must be declared immediately after 

the security policy. The scenario declaration consists of  two parts – the general definition of  the parameters 

that are valid for all scenarios and the definition of  the different scenarios.  

 D.4.2.1 General Parameters 

All subsequently declared scenarios share these parameters: 

'Security Policy:' 
 security_policy+=security_rule* 
('Probabilistic Reinforcement Learning:' 
('Save episodes with fewer timesteps than'':'  
    rl_tstps_to_save=INT ';')? 
 'Episodes'':' rl_episodes=INT';' 
 'Epsilons' ':' '{' rl_eps+=float (',' rl_eps+=float)* '}' 
 (rl_scenarios+=rl_scenario)*)? 

The first option allows the user to save all episodes with fewer steps in a terminal state as defined  - a feature 

to determine if  there is, e.g., more than one unique solution within a reasonable time. The Episodes integer 

value defines the number of  scenario restarts in each run while the final, general, option determines how 

many different runs are made for each scenario and which epsilon is to be used for each run.  

 D.4.2.2 Scenario description 



 

120 

A scenario is a set of  goals (terminal conditions), rewards (awarded for reaching the terminal states and for 

any other action), the learning rate and a set of  rules to define and modify the success rate of  the predefined 

actions (as presented in 9.1.4.) 

 D.4.2.3 General Parameters 

rl_scenario: 
 'Scenario' name=ID  
 ('Probabilistic' 'MDP' pmdp_off?='off' ';')? 
 'Goal:'  goals=rl_goals  
 'Reward:'  
  'final' ':' final_state_reward=float ';' 
  'other' ':' other_reward=float ';' 
 'Actions:' 
   'default' ('success' 'rate')? ':'  
    default_success_rate=float ';' 
  (actions+=rl_action)* 
  (r_actions+=rl_reconfiguration_action)* 
  (s_exf_actions+=rl_exfiltrate_slot_action)* 
';' 
; 

The scenario description includes an option to run the scenario as a deterministic MDP (e.g., to determine a 

baseline), the Goals that must be fulfilled before the MDP can terminate, and the reward the agents received 

for reaching a terminal state and any other action along the way.   

rl_goals: 
  'exfiltrate' (rl_goal_all?='all'|   
   '{' fmodule+=[FPGAModule] (',' fmodule+=[FPGAModule])* '}' )    
';' 
; 

Scenarios are only an extension to the deterministic MDPs presented earlier, and therefore only support the 

exfiltration of  data from the FPGAModules. 

 D.4.2.4 Actions and their costs, success rate 

The actions of  the MDP can be separated into three classes: those targeting the reconfiguration control, a 

distinct FPGAModule, and those aimed at the Slots of  the FPGA architecture. 

rl_reconfiguration_action: 
 'action' 'RECONFIGURE' event=[event] 'rate' success_rate=float 
 ('cost' '=' cost=float)? 
';' 
; 

This set of  rules allows the user to define the success rate and costs of  a reconfiguration through the 

attacker. 
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rl_exfiltrate_slot_action: 
 'action' 'EXFILTRATE''SLOT' slot=[slot] 'rate' success_rate=float  
('cost' '=' cost=float)?  ';'  
; 

These set of  rules allows the user to define the success rate  and costs of  exfiltration data from a slot 

memory. 

rl_action: 
 'action' action=rl_default_actionENUM  
 'success'(( 'rate''=' success_rate=float) 
 |(sfs+= rl_success_factor*)) 
 ';' 
; 

This rule allows the user to define the success rate of  an action against an FPGAModule either within the 

FPGA (ATTACK_NEIGHBOURS, ATTACK_PERIPHERY, EXFIL_DATA) or outside 

(TAMPER_BITSTREAM).  The success rate can be defined directly for all attacks of  this class. They could 

also be calculated through a group of  factors defined for a set of  FPGAModules. The same queries used for 

the security policy defines these sets as well. 

rl_success_factor: 
 'factor' success_factor=float  
'against'  

'{' nested_sec_attr = nested_security_attribute_query  '}' 
';' 
; 

The success rate for each action and FPGAModule is calculated by multiplying the default success rate with 

all relevant success factors. The calculated success rates are finally divided by the highest calculated success 

rate to fit them in a range between zero and one. 
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Appendix E Data-driven trustworthiness assessments  

This appendix provides a short overview of  the building blocks for a data-driven trustworthiness 

assessment system for FPGAs.  

E.1 Dataset of potential trustworthiness indicators 

The quality of  the model depends on the quality and quantity of  the available data. Collecting and preparing 

security-related data is an essential first step. This section describes the challenges involved in this step, 

possible sources and proposes a structure to collect and store data. The statistical methods proposed in this 

section can process both qualitative data (like lines of  code) and quantitative information (like Vendor A, 

Vendor B)  

E.2 Data structure 

This section outlines the three main categories of  data.  

E.2.1 Element implementation 

The attributes of  the element itself  are of  the highest interest for the security assessment: 

• Is it implementing an existing standard or an in-house specification?  

• How often is this element in use? Is the element a reusable component, or was it tailored for one 

application? 

• How complex is it? The assessor may rely on metrics as simple as Lines of  Code (LOC) or more 

sophisticated forms. 

• In which form is it available?  VHDL or Verilog code, for example, is more accessible to screen for 

possible backdoors than elements only available in binary form.  

E.2.2 Historical data 

The history of  the element can provide further insights: 

• Has the element a trustworthiness assessment? By whom? 

• When was it created, and by whom?  

• How good was the development process at that time and in that organization? 

• The development and test process used which tools?  

• How rigorous was the testing? How many errors did the tester find? 

• How are its maintenance status and history?  (refactoring, bug fixing) 

• Were there previous security incidents?  

• Are there known problems or vulnerabilities? 

• Are there other versions or configurations of  this element in use?   

E.2.3 Related Information 

Related information can be used to supplement or substitute direct information about the element as 

successful attacks against one implementation may indicate problems for other implementations:   

• Which development tools where used? Which Version of  them? 
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• Does it implement a specific standard or specification? 

• Are there known security problems with the tools, specifications, and standards?   

E.3 Model 

Three steps are necessary to create a machine learning model: 

1. Construction of  a function f 

2. Training  (or parametrization9 of  this function  

3. Validation of  fs performance against a set of  validation data 

Libraries like Scikit-learn [187] for Python or dedicated statistic programs like R [167] provide the necessary 

functionality to conduct these steps for many different functions and parameters with a few lines of  code.   

The models should not be too complicated to ease their interpretation and validation. That means that the 

used function f  should be kept simple. It is assumed that a sufficient number of  (Y, X) pairs are available to 

train f. Training minimizes the error between the provided and the calculated response. The model might 

perform only well on the training data; this renders its results useless for unknown datasets and creates an 

inappropriate level of  confidence in the assessment. This phenomenon, called overfitting, can be avoided by 

validating the model against a set of  data not used in the training set. Some models require the usage of  a 

designated validation set (a split of  80/20 between training and validation data is typical). The methods 

proposed in this section support cross-validation, the alternating use of  data for training and validation, 

which avoids this waste of  data. 

E.3.1 Functions 

Suitable statistical learning methods include generalized linear models like linear or logistic regression as well 

as trees based functions. The deployment of  these relatively simple methods eases the plausibility check of  

the model and reduces the risk of  overfitting.     

 E.3.1.1 Linear Regression 

; = <= + <*>* + ⋯ + <�>� (E.1) 

Linear Regression (formula E.1) assumes a linear relationship between the given set of  predictors X and the 

response Y. Parameters < are chosen In the training phase to minimize the error between the given and the 

computed response.  Predictors can be preprocessed by mathematical operations like logarithm or a 

polynomial operation – the relationship between predictor and response remains linear. Qualitative variables 

(Developer A, B) can be represented as binary encoded dummy variables (A=0, B=1).T he influence of  

different predictors can be easily determined from their respective parameters (given that problems like 

collinearity have been adequately addressed.) The quality of  the model can be verified either by a separate 

validation data set or cross-validation. 

 E.3.1.2 Logistic Regression 

log C D(E)
*FD(E)G = <= + <*>* + ⋯ + <�>� (E.2) 

Logistic Regression (formula E.2) can be used to calculate the odds that a set of  predictors belong to a given 

class or not. Multinomial regression supports multiple, independent classes, and ordinal regression accepts 
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multiple classes with a distinct order (High=3, Medium=2, Low=1) between them [188]. Either a validation 

set or cross-validation must be used to verify the quality of  the model. 

 E.3.1.3 Regression and Classification Trees 

Trees based methods can be used for both regression and classification problems. Both decision and 

regression trees can be created automatically through software and validated by using either a validation set 

or cross-validation. Multiclass regression is easy to implement, and the graphical representation of  the tree 

makes it easier to explain and to analyze as models based on linear or logistic regression. Small changes in 

the underlying database can result in vastly different trees.    

 E.3.1.4 Further options 

Neuronal networks [81] are the state of  the art technology for many machine learning problems, but their 

application appears counterproductive in this context. Neuronal Networks require a large number of  data 

for training and validation, they are much harder to interpret, and their flexibility increases the risk of  

overfitting. Ensembles [189], combining multiple (simpler) sub-models, can improve the overall 

performance of  the model, but they increase its complexity and decrease its interpretability. Unsupervised 

learning methods like k-Means could be used to find elements with similar attributes but allow no 

classification or regression of  the result. Advances in reinforcement learning may result in software that can 

automatically test the resilience of  the software, easing or removing the reliance on metadata. Chapter 9 

presents a novel method that applies reinforcement learning to find potential weaknesses in FPGAs 

architecture. 

 E.3.1.5 Response 

The responses can be either an explicit trustworthy assessment or information beneficial to the assessment. 

(a) Classification model 

A classification model may return trustworthy classes like: 

• Trustworthy either  {yes, no}   

• Trustworthy either {High, Medium, Low}.  

(b) Regression model 

Finding the appropriate response to the regression problem is more challenging; candidates for the 

regression models response include: 

• Number of  security-relevant bugs 

• Number of  security incidents 

• Accumulated costs of  security incidents  

• An abstract security score (e.g., 0-100 low trustworthiness, 100-199 medium, more than 

200 high) 

 E.3.1.6 Predictors 

Selecting the right subset of  predictors from the available dataset is a process that requires multiple rounds 

of  selection, training, validation, and model comparison. Methods for the partial automation of  this process 
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exist. In some cases, the predictors may require a certain amount of  preprocessing like normalization or the 

application of  nonlinear operations. 

E.4 Conclusion 

Assessing the trustworthiness of  the design elements and their supply chain, even if  the result of  this 

analysis is inherently fuzzy, is an important step to improve the security of  the design. The partial 

automatization of  the assessment process through machine learning appears promising but requires an 

extensive dataset for training and validation as well as cautious users, fully aware of  their pitfalls and 

restrictions. 
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Appendix F Examples for FPGASECML formal verification 

This section presents five different use cases for security rules, their field of  application, the formulation of 

the policy as well as their representation in LTL. An example of  each class is presented.  

F.1 Resource Sanitization 

Removing sensitive data earlier reduces the risk of  leakage of  information attacks. Another module must 

perform this task when the sensitive FPGAModule has no control over its removal from the state 

(preemptive multitasking) or cannot perform the demanded sanitization. Each module providing this service 

must, therefore, have an appropriate security attribute. Additional modules, providing the only sanitization 

for a single Slot, may be added to the design.  An FPGA module with the demanded sanitization attribute 

should remove all sensitive information from the Slot.  

F.1.1 Security rules 

Rules of  this shape represent the sanitization security requirement: 

Rule name: 
  requires utilization of 
   implements security mechanism:  
    { resource_sanitization } ; 
  immediately after 
   ATTRIBUTES_REQUIRING_RESOURCE_SANITIZATION  
; 

It is also possible to make further restrictions as a system architect might, e.g., only entrust highly 

trustworthy FPGAModules with this sensible task. 

F.1.2 LTL pseudocode 

For each Slot in the architecture: 
    G ({at least one module in this Slot demanding sanitization}  
      -> X {at least one module in this Slot providing sanitization}) 

An FPGAModule removing sensitive data must be scheduled immediately after each module demanding 

sanitization. Both FPGAModules must utilize the same Slot, the code generator, therefore, iterates through 

each Slot and generates the appropriate LTL rule.  It does not generate a rule if  no module requires 

sanitization for this Slot, and the LTL rule is a hard (FALSE) if  no FPGAModule can satisfy the demand.   

F.1.3 Scenario 

A given design uses a single Slot. FPGAModule A provides an encryption service; a BRAM stores the 

symmetric key. A potentially malicious module B, utilizing the same BRAM after module A, could access 

this secret key either as a whole or in parts (modules utilizing the Slot between modules A and B could 

override parts of  the memory.) Module SAN ensures the sanitization of  the Slot resource. 

F.1.4 FPGASECML-Model 
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FPGAArchitecture sanitizationModel 
    
FPGAModules:    
  
 Processing Block: sl1_A                                 
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { bitstream_encryption }; 
   implements security mechanism: { none } ;  
   bitstream storage:   bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rCryptography  }; 
   ;        
     
 Processing Block: sl1_B                                
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none};                
   bitstream is protected by:   { bitstream_encryption }; 
   implements security mechanism: { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:    { low }; 
   assigned security roles:  { none }; 
   ;            
             
 Processing Block: sl1_C    
   utilizes slot: Slot1;  
   provides sensitive services:   { none };            
    contains sensitive data:   { none};                
   bitstream is protected by:   { bitstream_encryption }; 
   implements security mechanism:   
         { resource_sanitization };  
   bitstream storage:   bstore1; 
   trustworthiness:    { medium }; 
   assigned security roles:  { none }; 
   ;  
  
  Processing Block: sl1_SAN                                 
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none};                
   bitstream is protected by:   { bitstream_encryption }; 
   implements security mechanism:   
         { resource_sanitization }; 
   bitstream storage:   bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { none }; 
   ;   
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FPGAResources:         
 Slot Slot1 { };       
              
Communication:       
 
Reconfiguration:                                               
 Events:     
   Event evInit    loads: { sl1_A }; 
   Event ev_B   loads: { sl1_B }; 
    Event ev_C   loads: { sl1_C }; 
    Event ev_SAN  loads: { sl1_SAN }; 
     
  Sequence valid_seq {ev_SAN,ev_B, ev_C} 
  Sequence invalid_seq {ev_B,ev_SAN,ev_B, ev_C} 
     
Security Policy:    
        
 Rule santest :     
 requires utilization of 
 {   
  implements security mechanism: { resource_sanitization } ;  
  AND has trustworthiness: { high  };    
 }      
 immediately  
 after                    
 {     
  has security roles: { rCryptography };    
 } 
 ;      

F.1.5 NuSMV Model to determine a valid schedule 

This NuSMV model returns, if  possible, a valid reconfiguration sequence that uses each FPGAModule at 

least once. 

VAR  
 reEvent : {evInit,ev_B,ev_C,ev_SAN}; 
 mySlot1 : Slot1(reEvent); 
 
LTLSPEC ! ( 
--santest 
G ((mySlot1.state = sl1_A) -> X (mySlot1.state = sl1_SAN)) 
-- force the utilization of each module 
 & F( mySlot1.state=sl1_A ) & F( mySlot1.state=sl1_B ) & F( 
mySlot1.state=sl1_C ) 
 & F( mySlot1.state=sl1_SAN )) 
 
 
MODULE Slot1 (reEvent) 
VAR 
 state : {noState1,sl1_C,sl1_B,sl1_A,sl1_SAN,noState2}; 
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ASSIGN 
 init(state) := sl1_A ; 
 7next(state) := case 
  reEvent =            ev_C :      sl1_C; 
  reEvent =            ev_B :      sl1_B; 
  reEvent =          ev_SAN :    sl1_SAN; 
  TRUE : state ; 
 esac; 

Running this model through NuSMV leads to this result: 

*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:51 2015) 
*** This is NuSMV 2.6.0 (compiled on Wed Oct 14 15:37:51 2015) 
*** Enabled addons are: compass 
*** For more information on NuSMV see <http://nusmv.fbk.eu> 
*** or email to <nusmv-users@list.fbk.eu>. 
*** Please report bugs to <Please report bugs to <nusmv-users@fbk.eu>> 
 
*** Copyright (c) 2010-2014, Fondazione Bruno Kessler 
 
*** This version of NuSMV is linked to the CUDD library version 2.4.1 
*** Copyright (c) 1995-2004, Regents of the University of Colorado 
 
*** This version of NuSMV is linked to the MiniSat SAT solver.  
*** See http://minisat.se/MiniSat.html 
*** Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson 
*** Copyright (c) 2007-2010, Niklas Sorensson 
 
-- specification !(((( G (mySlot1.state = sl1_A ->  X mySlot1.state = 
sl1_SAN) &  F mySlot1.state = sl1_A) &  F mySlot1.state = sl1_B) &  F 
mySlot1.state = sl1_C) &  F mySlot1.state = sl1_SAN)  is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = ev_SAN 
    mySlot1.state = sl1_A 
  -> State: 1.2 <- 
    mySlot1.state = sl1_SAN 
  -> State: 1.3 <- 
    reEvent = ev_C 
  -> State: 1.4 <- 
    reEvent = ev_SAN 
    mySlot1.state = sl1_C 
  -> State: 1.5 <- 
    reEvent = ev_B 
    mySlot1.state = sl1_SAN 
  -> State: 1.6 <- 
    reEvent = ev_SAN 
    mySlot1.state = sl1_B 
  -- Loop starts here 
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  -> State: 1.7 <- 
    mySlot1.state = sl1_SAN 
  -> State: 1.8 <- 

This sequence satisfies the security policy as sl1_A is followed immediately by sl1_SAN, but the frequent 

utilization of  sl1_SAN indicates room for (manual) optimization. The system architect could now use this 

schedule, optimize it, and add it to the model as a reconfiguration sequence and use the model to verify the 

optimized schedule. 

A.1 Secure setup 

This rule ensures that the appropriate preparation of  the Slot before any sensitive operation takes place. It 

can be either used to remove potentially hazardous data from the system or to perform a particular setup 

procedure (e.g., to establish a secure communication channel) that provides a secure environment. 

F.1.6 Security rules 

The security rule for secure setup requirements follows this pattern: 

Rule name: 
  requires 
   FPGAMODULES_PROVIDING_SECURE_SETUP 
  immediately before 
   FPGAMODULES_REQUIRING_SECURE_UPDATE  
; 

F.1.7 LTL Pseudocode 

For each Slot in the architecture: 
  G ((at least one module in this Slot demanding secure setup)  
        -> Y (at least one module in this Slot providing secure setup)) 

F.1.8 Scenario 

A secure setup procedure, performed by Module sl1_CommSetup, must be completed before Module C can 

communicate securely with the world.  

F.1.9 FPGASECML-Model 

FPGAArchitecture secureSetupModel 
    
FPGAModules:    
 IO Block: sl1_C                               
   utilizes slot: Slot1;   
   connected to: (to be determined) ;  
   connects to threatlayer:  WORLD ;    
   availability: permanent ;   
   provides sensitive services: { none };            
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    contains sensitive data:  { none };                
   bitstream is protected by:   
     { bitstream_encryption, tamper_resistant_storage }; 
   implements peripheral security mechanism:  
     { data_sanitization,data_authentication} ;   
   implements security mechanism: { none } ;  
   bitstream storage: test ;   
   trustworthiness: { high }; 
   assigned security roles: { rSensitiveCommunication  }; 
  ;        
     
 Processing Block: sl1_A                                
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:  { none };                
   bitstream is protected by:   
     { bitstream_encryption, tamper_resistant_storage }; 
   implements security mechanism: { none } ;  
   bitstream storage:  bstore1 ;  
   trustworthiness: { medium }; 
   assigned security roles: { none }; 
  ;            
             
 Processing Block: sl1_B    
   utilizes slot: Slot1;  
   provides sensitive services:  { none };     
   contains sensitive data:    { none };   
   bitstream is protected by:   
     { bitstream_encryption, tamper_resistant_storage }; 
   implements security mechanism:  
     { resource_sanitization } ;  
   bitstream storage: TEST1; 
   trustworthiness: { medium }; 
   assigned security roles: { none }; 
  ;  
  
  
  Processing Block: sl1_CommSetup                                 
   utilizes slot: Slot1;   
   provides sensitive services:  { none  };            
    contains sensitive data:      { none  };               
   bitstream is protected by:  { none };  
   implements security mechanism: { none };  
   bitstream storage: bstore1 ;  
   trustworthiness: { high }; 
   assigned security roles: {  rSecureCommSetup }; 
  ;      
        
FPGAResources:         
 Slot Slot1 { };     
               
Communication:      
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Reconfiguration: 
 Events:     
   Event evInit     loads: { sl1_A };   
   Event ev_B    loads: { sl1_B }; 
    Event ev_C    loads: { sl1_C }; 
    Event ev_ComS  loads: { sl1_CommSetup  }; 
     
  Sequence valid_seq  {ev_ComS,ev_C, ev_B} 
  Sequence invalid_seq {ev_C,ev_B } 
     
Security Policy:    
         
 Rule secure_setup_test :           
 requires utilization of 
 {   
  has security roles: { rSecureCommSetup };  
 }      
 immediately  
 before                  
 {     
  has security roles: { rSensitiveCommunication };   
 } 
 ;      

 F.1.9.1 NuSMV model to validate the sequence [ev_ComS,ev_C, ev_B] 

MODULE main 
VAR  
 reEvent :{evInit,ev_B,ev_C,ev_ComS}; 
 state : { state_0, state_1, state_2}; 
 mySlot1 : Slot1(reEvent); 
ASSIGN 
 init(state) := state_0; 
 init(reEvent) :=ev_ComS; 
 next(state) := case 
  state=state_0  : state_1; 
   TRUE : state; 
 esac; 
 next(reEvent):= case 
  state=state_0 : ev_C; 
  state=state_1 : ev_B; 
   TRUE : reEvent; 
 esac; 
  
--secure_setup_test 
LTLSPEC G ((mySlot1.state = sl1_C) -> Y (mySlot1.state = sl1_CommSetup)) 
 
MODULE Slot1 (reEvent) 
VAR 
 state : {noState1,sl1_A,sl1_C,sl1_CommSetup,sl1_B,noState2}; 
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ASSIGN 
 init(state) := sl1_A ; 
 next(state) := case 
  reEvent =            ev_C : sl1_C; 
  reEvent =         ev_ComS : sl1_CommSetup; 
  reEvent =            ev_B : sl1_B; 
  TRUE : state ; 
 esac; 

Validated by NuSMV: 

-- specification  G (mySlot1.state = sl1_C ->  Y mySlot1.state = 
sl1_CommSetup)  is true 

 F.1.9.2 NuSMV model to evaluate the invalid sequence {ev_C,ev_B} 

The sequence evInit,evC, evB violates the security policy. Adapting the main-Module to the new 

sequence results in: 

MODULE main 
VAR  
 reEvent :{evInit,ev_B,ev_C,ev_ComS}; 
 state : { state_0, state_1}; 
 mySlot1 : Slot1(reEvent); 
ASSIGN 
 init(state)    := state_0; 
 init(reEvent) := ev_C; 
 next(state)   := case 
   TRUE   : state; 
 esac; 
 next(reEvent):= case 
  state=state_0 : ev_B; 
   TRUE : reEvent; 
 esac; 

NuSMV confirms this suspicion: 

-- specification  G (mySlot1.state = sl1_C ->  Y mySlot1.state = 
sl1_CommSetup)  is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = ev_C 
    state = state_0 
    mySlot1.state = sl1_A 
  -> State: 1.2 <- 
    reEvent = ev_B 
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    mySlot1.state = sl1_C 
  -- Loop starts here 
  -> State: 1.3 <- 
    mySlot1.state = sl1_B 
  -> State: 1.4 <- 

F.2 Consecutive exclusion  

These rules prohibit the presence of  FPGAModules with one set of  attributes after FPGAModules with 

another set of  attributes utilized the same Slot.  

F.2.1 Security rules 

Consecutive exclusion is enforced with the terms: 

AFTER-Clause: 

 Rule name :     
 prohibits utilization of { ATTRIBUTE_SET_A }      
 after      { ATTRIBUTE_SET_B };      

BEFORE-Clause: 

Rule name :     
 prohibits utilization of { ATTRIBUTE_SET_A }      
 before       { ATTRIBUTE_SET_B };  

F.2.2 LTL pseudocode 

AFTER-Clause: 

For each Slot s: 
      G({any FPGAModule with ATTRIBUTE_SET_B utilizing s }  
      ->!F{ any FPGAModule with ATTRIBUTE_SET_A utilizing s }) 

BEFORE-Clause: 

For each Slot s: 
      G({any FPGAModule with ATTRIBUTE_SET_B utilizing s }  
      ->H!{ any FPGAModule with ATTRIBUTE_SET_A utilizing s }) 
Or 
      G({any FPGAModule with ATTRIBUTE_SET_A utilizing s }  
      ->!F{ any FPGAModule with ATTRIBUTE_SET_B utilizing s }) 

F.2.3 Scenario 



 

135 

The FPGAModules A, B, and C share the same Slot and operate on the same block ram. A encrypts the 

data; module B generates the Message Authentication Code, and module C transmits the encrypted and 

authenticated data to the outside world. FPGAModule A (accessing unencrypted data) is considered the 

most sensitive operation and the most trustworthy implementation, FPGAModule B has lower 

trustworthiness than A, and C has the lowest trustworthiness. To prevent module C from tampering with or 

transmitting unencrypted and unauthenticated data, C must be utilizing the Slot only after B, and A.   B must 

utilize the Slot only after A to avoid the authentication of  unencrypted data.  

F.2.4 FPGASECML-Model 

FPGAArchitecture utilizationMODEL 
 
FPGAModules:       
 Processing Block: sl1_INIT                             
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rINIT}; 
   ;        
 
 Processing Block: sl1_A                               
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rHighSensitivityOp }; 
   ;            
     
 Processing Block: sl2_B                                
   utilizes slot: Slot1;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none };  
   bitstream storage:    bstore1;  
   trustworthiness:    { medium }; 
   assigned security roles:  { rMediumSensitivityOp }; 
   ;            
             
 Processing Block: sl1_C    
   utilizes slot: Slot1;  
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
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   implements security mechanism: { none } ;  
   bitstream storage:   bstore1; 
   trustworthiness:    { low }; 
   assigned security roles:  {  rLowSensitivityOp }; 
   ;  
       
FPGAResources:         
 Slot Slot1 { };   
     
              
Communication:      
Bus b1 {Slot1};          
 
Reconfiguration:  
 Events:     
   Event evInit    loads: { sl1_INIT }; 
   Event ev_A    loads: { sl1_A }; 
   Event ev_B   loads: { sl2_B }; 
    Event ev_C   loads: { sl1_C }; 
     
  Sequence valid_seq  { ev_A,ev_B, ev_C } 
  Sequence invalid_seq { ev_C,ev_B, ev_A } 
      
Security Policy:        
        
 Rule util_1 :     
 prohibits utilization of 
 {     
  has trustworthiness: { high };   
 }      
 after 
 {      
  has trustworthiness: { medium,low };  
 };      
  
 Rule util_2 :     
 prohibits utilization of 
 {     
  has trustworthiness: { medium,high };   
 }      
 after 
 {      
  has trustworthiness: { low };  
 }; 
    
 Rule util_3 :     
 prohibits utilization of 
 {     
  has trustworthiness: { low };     
 }      
 before 
 {  
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  has trustworthiness: { medium,high};     
 } 

This policy mixes before and after-clauses to demonstrate the transformation in both cases. The readability 

would benefit from a uniform use of  the after clause. 

 F.2.4.1 NuSMV Model to determine a valid schedule 

This NuSMV model returns, if  possible, a valid reconfiguration sequence that uses each FPGAModule at 

least once. 

MODULE main 
VAR  
 reEvent : {evInit,ev_A,ev_B,ev_C}; 
 mySlot1 : Slot1(reEvent); 
 
LTLSPEC ! ( 
--util_1 
G ((mySlot1.state = sl2_B | mySlot1.state = sl1_C) ->  !F (mySlot1.state = 
sl1_INIT | mySlot1.state = sl1_A)) 
 
&  
--util_2 
G ((mySlot1.state = sl1_C) ->  !F (mySlot1.state = sl1_INIT | mySlot1.state 
= sl1_A | mySlot1.state = sl2_B)) 
 
&  
--util_3 
G ((mySlot1.state = sl1_INIT | mySlot1.state = sl1_A | mySlot1.state = 
sl2_B) -> H!(mySlot1.state = sl1_C)) 
 
-- force the utilization of each module 
 & F( mySlot1.state=sl1_INIT ) & F( mySlot1.state=sl1_A ) & F( 
mySlot1.state=sl2_B ) 
 & F( mySlot1.state=sl1_C )) 
 
MODULE Slot1 (reEvent) 
VAR state : {noState1,sl2_B,sl1_INIT,sl1_A,sl1_C,noState2}; 
ASSIGN 
 init(state) := sl1_INIT ; 
 next(state) := case 
  reEvent =            ev_B :      sl2_B; 
  reEvent =            ev_A :      sl1_A; 
  reEvent =            ev_C :      sl1_C; 
  TRUE : state ; 
 esac; 

This NuSMV model returns, if  possible, a valid reconfiguration sequence that uses each module at least 

once. 
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Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = evInit 
    mySlot1.state = sl1_INIT 
  -> State: 1.2 <- 
    reEvent = ev_A 
  -> State: 1.3 <- 
    reEvent = ev_B 
    mySlot1.state = sl1_A 
  -> State: 1.4 <- 
    reEvent = ev_C 
    mySlot1.state = sl2_B 
  -- Loop starts here 
  -> State: 1.5 <- 
    mySlot1.state = sl1_C 
  -- Loop starts here 
  -> State: 1.6 <- 
  -> State: 1.7 <- 

 F.2.4.2 NuSMV module to validate the sequence {ev_C,ev_B, ev_A }  

The model with the reconfiguration event sequence {ev_C,ev_B, ev_A } does not satisfies the security 

policy: 

-- specification  G ((mySlot1.state = sl2_B | mySlot1.state = sl1_C) -> !( 
F (mySlot1.state = sl1_INIT | mySlot1.state = sl1_A)))  is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = ev_C 
    state = state_0 
    mySlot1.state = sl1_INIT 
  -> State: 1.2 <- 
    reEvent = ev_B 
    state = state_1 
    mySlot1.state = sl1_C 
  -> State: 1.3 <- 
    reEvent = ev_A 
    mySlot1.state = sl2_B 
  -- Loop starts here 
  -> State: 1.4 <- 
    mySlot1.state = sl1_A 
  -- Loop starts here 
  -> State: 1.5 <- 
  -> State: 1.6 <- 
 
-- specification  G (mySlot1.state = sl1_C -> !( F ((mySlot1.state = 
sl1_INIT | mySlot1.state = sl1_A) | mySlot1.state = sl2_B)))  is false 
-- as demonstrated by the following execution sequence 
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Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 2.1 <- 
    reEvent = ev_C 
    state = state_0 
    mySlot1.state = sl1_INIT 
  -> State: 2.2 <- 
    reEvent = ev_B 
    state = state_1 
    mySlot1.state = sl1_C 
  -> State: 2.3 <- 
    reEvent = ev_A 
    mySlot1.state = sl2_B 
  -- Loop starts here 
  -> State: 2.4 <- 
    mySlot1.state = sl1_A 
  -> State: 2.5 <- 
 
-- specification  G (((mySlot1.state = sl1_INIT | mySlot1.state = sl1_A) | 
mySlot1.state = sl2_B) ->  H !(mySlot1.state = sl1_C))  is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 3.1 <- 
    reEvent = ev_C 
    state = state_0 
    mySlot1.state = sl1_INIT 
  -> State: 3.2 <- 
    reEvent = ev_B 
    state = state_1 
    mySlot1.state = sl1_C 
  -> State: 3.3 <- 
    reEvent = ev_A 
    mySlot1.state = sl2_B 
  -- Loop starts here 
  -> State: 3.4 <- 
    mySlot1.state = sl1_A 
  -> State: 3.5 <- 

F.3 Concurrent exclusion  

It may become necessary to isolate sensitive modules of  (presumable) high trustworthiness from modules 

with lower trustworthiness. This technique reduces the negative influence (e.g., through attacks against a 

common communication network) of  potentially malicious modules to delicate tasks.  

F.3.1 Security Rules 

Rules of  this shape force the design to exclude the concurrent present of  FPGAModules from set A and B: 

Rule name: 
 prohibits 
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  presence of 
   FPGAMODULE_SET_A 
  and 
   FPGAMODULE_SET_B 
; 

F.3.2 LTL Pseudocode 

Each rule of  the security policy that satisfies the above shape becomes an LTL rule of  the shape: 

G!({any module from   FPGAMODULE_SET_A} 
& { any module from   FPGAMODULE_SET_B}) 

For all valid states:  modules with attribute A and modules with attribute B must never be present at the 

same time. 

F.3.3 Scenario 

An FPGA design includes modules performing operations of  high sensitivity (Modules A, D, and E) and 

modules with only medium trustworthiness (Modules B, C). The design must prevent modules with low 

trustworthiness from endangering sensitive operations. It is further assumed that the mere presence of  these 

modules endangers the security of  the system. Therefore, modules of  the groups {A, D, E}, and {B, C} 

must never share the FPGA at the same time. Module F is regarded as highly trustworthy and poses neither 

a threat to the high sensitivity objects nor is its operation critical enough to cause serious harm if  attacked. 

F.3.4 FPGASECML-Model 

FPGAArchitecture concurrentModel 
  
FPGAModules:          
 Processing Block: sl1_A                               
   utilizes slot: Slot1;    
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none } ;    
   bitstream storage:    bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rHighSensitivityOp };    
   ;                
     
 Processing Block: sl2_B                                
   utilizes slot: Slot2;    
   provides sensitive services:    { none }; 
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none };  
   bitstream storage:     bstore1;  
   trustworthiness:     { medium }; 
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   assigned security roles:   { none }; 
   ;              
             
 Processing Block: sl1_C    
   utilizes slot: Slot1;  
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { resource_sanitization }; 
   bitstream storage:   bstore1; 
   trustworthiness:    { medium }; 
   assigned security roles:  { none }; 
   ;  
  
  
  Processing Block: sl2_D                                 
   utilizes slot: Slot2;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none };  
   bitstream storage:   bstore1;  
   trustworthiness:    { high }; 
   assigned security roles:  { rHighSensitivityOp }; 
   ;   
   
    Processing Block: sl2_E                                  
   utilizes slot: Slot2;   
   provides sensitive services:   { none };            
    contains sensitive data:   { none };                
   bitstream is protected by:   { none }; 
   implements security mechanism: { none };  
   bitstream storage:   bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rHighSensitivityOp }; 
   ;   
        
     
    Processing Block: sl1_F                                 
   utilizes slot: Slot1;   
   provides sensitive services:   { none };  
    contains sensitive data:   { none }; 
   bitstream is protected by:   { bitstream_encryption }; 
   implements security mechanism: { none } ;  
   bitstream storage:   bstore1 ;  
   trustworthiness:    { high }; 
   assigned security roles:  { rLowSensitivityOp  }; 
   ;   
     
      
FPGAResources:            
 Slot Slot1 { };   
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 Slot Slot2 { };      
               
Communication:       
  Bus b1 {Slot1,Slot2};           
 
Reconfiguration:  
 Events:     
   Event evInit    loads: { sl1_A, sl2_D }; 
   Event ev_B   loads: { sl2_B }; 
    Event ev_C   loads: { sl1_C }; 
    Event ev_D  loads: { sl2_D };  
    Event ev_E  loads: { sl2_E }; 
    Event ev_F  loads: { sl1_F }; 
  Sequence valid_seq   { ev_E,ev_F,ev_B,ev_C}   
  Sequence invalid_seq  { ev_C,ev_C } 
          
Security Policy:      
        
 Rule util_1 :     
 prohibits presence of 
 {     
  has security roles: { rHighSensitivityOp };    
 }      
 and 
 {     
  has trustworthiness: { medium,low }; 
 } 
 ;  

F.3.5 NuSMV Model to determine a valid schedule 

This NuSMV model returns, if  possible, a valid reconfiguration sequence that uses each module at least 

once. 

MODULE main 
VAR  
 reEvent : {evInit,ev_B,ev_C,ev_D,ev_E,ev_F}; 
 mySlot1 : Slot1(reEvent); 
 mySlot2 : Slot2(reEvent); 
 
LTLSPEC ! ( 
--util_1 
G ! ((mySlot1.state = sl1_A | mySlot2.state = sl2_D  
    | mySlot2.state = sl2_E)  
& (mySlot2.state = sl2_B | mySlot1.state = sl1_C)) 
 
-- force the utilization of each module 
 & F( mySlot1.state=sl1_A ) & F( mySlot2.state=sl2_B ) 
 & F( mySlot1.state=sl1_C ) & F( mySlot2.state=sl2_D )  
 & F( mySlot2.state=sl2_E ) & F( mySlot1.state=sl1_F ) 
) 
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MODULE Slot1 (reEvent) 
VAR 
 state : {noState1,sl1_C,sl1_A,sl1_F,noState2}; 
ASSIGN 
 init(state) := sl1_A ; 
 next(state) := case 
  reEvent =            ev_C :      sl1_C; 
  reEvent =            ev_F :      sl1_F; 
  TRUE : state ; 
 esac; 
 
MODULE Slot2 (reEvent) 
VAR 
 state : {noState1,sl2_D,sl2_E,sl2_B,noState2}; 
ASSIGN 
 init(state) := sl2_D ; 
 next(state) := case 
  reEvent =            ev_E :      sl2_E; 
  reEvent =            ev_B :      sl2_B; 
  reEvent =            ev_D :      sl2_D; 
  TRUE : state ; 
 esac; 

The NuSMV run for the model returned this schedule: 

-- specification !(((((( G !(((mySlot1.state = sl1_A | mySlot2.state = 
sl2_D) | mySlot2.state = sl2_E) & (mySlot2.state = sl2_B | mySlot1.state = 
sl1_C)) &  F mySlot1.state = sl1_A) &  F mySlot2.state = sl2_B) &  F 
mySlot1.state = sl1_C) &  F mySlot2.state = sl2_D) &  F mySlot2.state = 
sl2_E) &  F mySlot1.state = sl1_F)  is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = ev_D 
    mySlot1.state = sl1_A 
    mySlot2.state = sl2_D 
  -> State: 1.2 <- 
    reEvent = ev_F 
  -> State: 1.3 <- 
    reEvent = ev_B 
    mySlot1.state = sl1_F 
  -> State: 1.4 <- 
    reEvent = ev_E 
    mySlot2.state = sl2_B 
  -> State: 1.5 <- 
    reEvent = ev_B 
    mySlot2.state = sl2_E 
  -> State: 1.6 <- 
    reEvent = ev_D 



 

144 

    mySlot2.state = sl2_B 
  -> State: 1.7 <- 
    reEvent = ev_B 
    mySlot2.state = sl2_D 
  -> State: 1.8 <- 
    reEvent = ev_C 
    mySlot2.state = sl2_B 
  -- Loop starts here 
  -> State: 1.9 <- 
    reEvent = ev_B 
    mySlot1.state = sl1_C 
  -- Loop starts here 
  -> State: 1.10 <- 
  -> State: 1.11 <- 
    reEvent = ev_F 
  -> State: 1.12 <- 
    reEvent = evInit 
    mySlot1.state = sl1_F 
  -> State: 1.13 <- 
    reEvent = ev_E 
  -> State: 1.14 <- 
    reEvent = ev_B 
    mySlot2.state = sl2_E 
  -> State: 1.15 <- 
    reEvent = ev_D 
    mySlot2.state = sl2_B 
  -> State: 1.16 <- 
    reEvent = ev_B 
    mySlot2.state = sl2_D 
  -> State: 1.17 <- 
    reEvent = ev_C 
    mySlot2.state = sl2_B 
  -- Loop starts here 
  -> State: 1.18 <- 
    reEvent = ev_B 
    mySlot1.state = sl1_C 
  -> State: 1.19 <- 

F.4 Communication exclusion  

The global concurrent exclusion rule might put unnecessary strict constraints on the schedule. It is often 

reasonable to limit the scope of  these rules to those FPGAModules who could interact with each other 

through a communication network (see D.2.3).  

 

 

 

F.4.1 Security rule 
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The term prohibits communication between FPGAModules from Set A and Set B: 

Rule name: 
  prohibits 
  communication of 
   FPGAMODULE_SET_A 
  with 
   FPGAMODULE_SET_B 
; 

F.4.2 LTL pseudocode 

For each edge e in the communication graph: 
  G!({ any module from FPGAMODULE_SET_A utilizing source_slot_of(e)}  
  & {any module from FPGAMODULE_SET_B utilizing target_slot_of(e) }) 

F.4.3 Scenario 

An FPGA design consists of  two independent sections. The first section performs operations of  lower 

security concerns and consists of  Slot 3. The two modules {G, H} that utilize this Slot are of  low and 

medium trustworthiness, respectively. In the second, the more sensitive part has modules performing 

operations of  high sensitivity with high trustworthiness (Modules A, D, and E) and modules with only 

medium trustworthiness (Modules B, C). The design must prevent modules with low trustworthiness from 

endangering sensitive operations. Mixed utilization of  the Slots is permitted as long as they cannot 

communicate with each other. Therefore, the modules of  the groups {A, D, E}, and {B, C, F, G} must 

never be able to communicate with each other. Module F is regarded as highly trustworthy and poses neither 

a threat to the high sensitivity objects nor is its operation critical enough to cause serious harm if  attacked. 

F.4.4 FPGASECML-Model 

FPGAArchitecture communicationModel 
  
FPGAModules:          
  Processing Block: sl1_A                               
   utilizes slot: Slot1;    
   provides sensitive services:    { none };  
    contains sensitive data:    { none }; 
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none } ;    
   bitstream storage:     bstore1 ;  
   trustworthiness:     { high }; 
   assigned security roles:  { rHighSensitivityOp };    
   ;                
     
 Processing Block: sl2_B                                
   utilizes slot: Slot2;    
   provides sensitive services:    { none }; 
    contains sensitive data:    { none }; 
   bitstream is protected by:    { none }; 
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   implements security mechanism:  { none };  
   bitstream storage:     bstore1;  
   trustworthiness:     { medium }; 
   assigned security roles:   { none }; 
   ;              
             
 Processing Block: sl1_C     
   utilizes slot: Slot1;  
   provides sensitive services:    { none }; 
    contains sensitive data:    { none }; 
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none } ;  
   bitstream storage:    bstore1; 
   trustworthiness:     { medium }; 
   assigned security roles:   { none }; 
   ;  
  
  
  Processing Block: sl2_D                                 
   utilizes slot: Slot2;   
   provides sensitive services:    { none };  
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none };  
   bitstream storage:    bstore1;  
   trustworthiness:     { high }; 
   assigned security roles:  { rHighSensitivityOp }; 
   ;   
   
    Processing Block: sl2_E                                  
   utilizes slot: Slot2;   
   provides sensitive services:    { none };     
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none };  
   bitstream storage:    bstore1 ;  
   trustworthiness:     { high }; 
   assigned security roles:  { rHighSensitivityOp }; 
   ;         
     
    Processing Block: sl1_F                                 
   utilizes slot: Slot1;   
   provides sensitive services:    { none };  
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:     { high }; 
   assigned security roles:  { rLowSensitivityOp }; 
   ;   
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    Processing Block: sl3_G                                 
   utilizes slot: Slot3;   
   provides sensitive services:    { none };  
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:     { low }; 
   assigned security roles:   { none }; 
   ;   
     
     Processing Block: sl3_H                                 
   utilizes slot: Slot3;   
   provides sensitive services:    { none }; 
    contains sensitive data:    { none };  
   bitstream is protected by:    { none }; 
   implements security mechanism:  { none } ;  
   bitstream storage:    bstore1 ;  
   trustworthiness:     { medium }; 
   assigned security roles:   { none }; 
   ;   
        
FPGAResources:           
 Slot Slot1 { };   
 Slot Slot2 { };      
   Slot Slot3 { };   
 
        
Communication:       
  Bus b1 {Slot1,Slot2};            
 
Reconfiguration:                                                
 Events:      
   Event evInit    loads: { sl1_A, sl2_D,sl3_G };// 
triggered by peripheral device or processing Block transition to 
configuration IDentifier 
   Event ev_A    loads: { sl1_A }; 
   Event ev_B   loads: { sl2_B }; 
   Event ev_C   loads: { sl1_C }; 
    Event ev_D  loads: { sl2_D }; 
    Event ev_E  loads: { sl2_E }; 
    Event ev_F   loads: { sl1_F }; 
    Event ev_G  loads: { sl3_G }; 
    Event ev_H  loads: { sl3_H };  
   
  Sequence valid_seq  { ev_E,ev_H,ev_F,ev_G,ev_B,ev_C}    
  Sequence invalid_seq { ev_H,ev_C } 
  Sequence valid_seq2 { ev_H,ev_G } 
      
Security Policy:    
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 Rule util_1 :     
 prohibits communication of 
 {   
  has security roles: { rHighSensitivityOp };   
 }      
 with               
 {     
  has trustworthiness: { medium,low }; 
 } 
 ;      

F.4.5 NuSMV Model to validate the sequence  { ev_E,ev_H,ev_F,ev_G,ev_B,ev_C}   

This NuSMV model validates the reconfiguration sequence { ev_E,ev_H,ev_F,ev_G,ev_B,ev_C}  The 

modules F and H are not constrained by any security rule and are therefore not incorporated inti the LTL 

rule: 

MODULE main 
VAR  
 reEvent :{evInit,ev_A,ev_B,ev_C,ev_D,ev_E,ev_F,ev_G,ev_H}; 
 state : { state_0, state_1, state_2, state_3, state_4, state_5}; 
 mySlot1 : Slot1(reEvent); 
 mySlot2 : Slot2(reEvent); 
 mySlot3 : Slot3(reEvent); 
ASSIGN 
 init(state) := state_0; 
 init(reEvent) :=ev_E; 
 next(state) := case 
  state=state_0  : state_1; 
  state=state_1  : state_2; 
  state=state_2  : state_3; 
  state=state_3  : state_4; 
   TRUE : state; 
 esac; 
 next(reEvent):= case 
  state=state_0 : ev_H; 
  state=state_1 : ev_F; 
  state=state_2 : ev_G; 
  state=state_3 : ev_B; 
  state=state_4 : ev_C; 
   TRUE : reEvent; 
 esac; 
 
--util_1 
LTLSPEC G ! (( 
(mySlot1.state = sl1_A) & (mySlot2.state = sl2_B))--b1 |  
((mySlot2.state = sl2_D | mySlot2.state = sl2_E) & (mySlot1.state =sl1_C))-
-b1 
) 
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MODULE Slot1 (reEvent) 
VAR 
 state : {noState1,sl1_F,sl1_C,sl1_A,noState2}; 
ASSIGN 
 init(state) := sl1_A ; 
 next(state) := case 
  reEvent =            ev_F :      sl1_F; 
  reEvent =            ev_C :      sl1_C; 
  reEvent =            ev_A :      sl1_A; 
  TRUE : state ; 
 esac; 
 
 
MODULE Slot2 (reEvent) 
VAR 
 state : {noState1,sl2_B,sl2_E,sl2_D,noState2}; 
ASSIGN 
 init(state) := sl2_D ; 
 next(state) := case 
  reEvent =            ev_B :      sl2_B; 
  reEvent =            ev_E :      sl2_E; 
  reEvent =            ev_D :      sl2_D; 
  TRUE : state ; 
 esac; 
 
 
MODULE Slot3 (reEvent) 
VAR 
 state : {noState1,sl3_G,sl3_H,noState2}; 
ASSIGN 
 init(state) := sl3_G ; 
 next(state) := case 
  reEvent =            ev_G :      sl3_G; 
  reEvent =            ev_H :      sl3_H; 
  TRUE : state ; 
 esac; 

Running the model through NuSMV confirms the validity of  the sequence: 

-- specification G !((mySlot1.state = sl1_A & mySlot2.state = sl2_B) | 
((mySlot2.state = sl2_D | mySlot2.state = sl2_E) & mySlot1.state = sl1_C))  
is true 
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F.5 LTL rules of the FPGASECML-example  

The example presented in 7.5 is converted into these LTL-Rules: 

--rule1_communication 
LTLSPEC G ! ( 
((mySlot1.state = ioConfigurationUnit) &  
(mySlot2.state = pbAESUnit | mySlot2.state = pbDSP  
    | mySlot2.state = pbInitS2))--nwBUS1 
 | ((mySlot1.state = ioConfigurationUnit) &  
(mySlot3.state = ioEthernet | mySlot3.state = pbFPU  
  | mySlot3.state = pbInitS3))--nwBUS1 
 | ((mySlot1.state = ioConfigurationUnit) &  
  (mySlot4.state = ioSensor | mySlot4.state = pbInitS4))--nwBUS1 
)--rule2_peprocessor_after 
LTLSPEC (TRUE) 
 
--rule2_preprocessor_before 
LTLSPEC (TRUE) 
 
--rule3_cfEncryptedcommunication_Before_cfSensor 
LTLSPEC G ((mySlot3.state = ioEthernet) ->! H (mySlot3.state = pbFPU)) 
 
--rule4_IOBLOCKafterAES 
LTLSPEC (TRUE) 

Smart scheduling can only resolve the violation of  Rule 3. Rule 1 requires, as mentioned earlier, a dedicated 

network between Slot0 and Slot1 after which this rule becomes: 

--rule1_communication 
LTLSPEC (TRUE) 

The security policy compliant schedule can be derived after the communication infrastructure is changed: 

-- specification !((((((((((((((TRUE & TRUE) & TRUE) &  G (mySlot3.state = 
pbFPU -> !( F mySlot3.state = ioEthernet))) & TRUE) &  F mySlot3.state = 
ioEthernet) &  F mySlot1.state = ioConfigurationUnit) &  F mySlot4.state = 
ioSensor) &  F mySlot0.state = pbProcessor) &  F mySlot2.state = pbAESUnit) 
&  F mySlot3.state = pbFPU) &  F mySlot2.state = pbDSP) &  F mySlot2.state 
= pbInitS2) &  F mySlot3.state = pbInitS3) &  F mySlot4.state = pbInitS4)  
is false 
-- as demonstrated by the following execution sequence 
Trace Description: LTL Counterexample  
Trace Type: Counterexample  
  -> State: 1.1 <- 
    reEvent = evInit 
    mySlot0.state = pbProcessor 
    mySlot1.state = ioConfigurationUnit 
    mySlot2.state = pbInitS2 
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    mySlot3.state = pbInitS3 
    mySlot4.state = pbInitS4 
  -> State: 1.2 <- 
    reEvent = evDSP 
  -> State: 1.3 <- 
    mySlot2.state = pbDSP 
  -> State: 1.4 <- 
    reEvent = evCrypto 
  -> State: 1.5 <- 
    reEvent = evSensor 
    mySlot2.state = pbAESUnit 
    mySlot3.state = ioEthernet 
  -- Loop starts here 
  -> State: 1.6 <- 
    reEvent = evInit 
    mySlot3.state = pbFPU 
    mySlot4.state = ioSensor 
  -- Loop starts here 
  -> State: 1.7 <- 
  -> State: 1.8 <- 
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Appendix G FPGASECMLcode for the introductory example 

This  appendix presents the FPGASECML code for the introductory example in chapter 7  

FPGAArchitecture example1   
FPGAModules: 
Processing Block: pbProcessor  
 utilizes slot: Slot0 ;  
 provides sensitive services:  {  
  sensitive service encryptedconnection  
    of sensitivity level high ; 
  sensitive service reconfigurationcontrol  
    of sensitivity level high ; 
  } ;  
 contains sensitive data:  {  
   sensitive data sharedsecret  
    of sensitivity level high   
    access type read ;  
  sensitive data software  
   of sensitivity level high  
   access type read ;  
 } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit ; 
 ; 
 
IO Block:  ioConfigurationUnit  
 utilizes slot: Slot1;  
 connected to: (to be determined) ;  
 connects to threatlayer:  PCB;   
 availability: permanent ; 
 provides sensitive services:    
 {  
  sensitive service loadbitstream  
   of sensitivity level high; 
 } ;  
 contains sensitive data:   
 {  
  sensitive data ConfigurationData  
   of sensitivity level high  
   access type read;  
 } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements peripheral security mechanism: { none } ;   
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit; 
 ; 
  
Processing Block: pbAESUnit  
 utilizes slot: Slot2  ;  
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 provides sensitive services:  {  
  sensitive service encryption  
    of sensitivity level high  ; 
  sensitive service decryption of sensitivity level high ; 
 } ;  
 contains sensitive data:  {  
  sensitive data aeskey of  
    sensitivity level high  
    access type write; 
  sensitive data aesplaintext of 
    sensitivity level high  
    access type rw  
    stored in memory Slot2.bram1;  
  sensitive data aesciphertext  
    of sensitivity level medium  
   access type rw ; 
 } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit ; 
 ;  
 
Processing Block: pbDSP  
 utilizes slot: Slot2  ;  
 provides sensitive services:  { none } ;  
 contains sensitive data:  {  
   sensitive data sensordata  
    of sensitivity level high  
   access type rw  
   stored in memory Slot2.bram1;  
   };  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit; 
 ; 
 
Processing Block: pbFPU  
 utilizes slot: Slot3  ;  
 provides sensitive services:  { none } ;  
 contains sensitive data:  { none } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit; 
 ; 
 
IO Block: ioEthernet         
 utilizes slot: Slot3; 
 connected to: (to be determined) ;    
 connects to threatlayer:  WORLD;   
 availability: permanent ; 
 provides sensitive services:  { none } ;  
 contains sensitive data:  { none } ;  
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 bitstream is protected by:   
   {tamper_resistant_storage } ; 
 implements peripheral security mechanism:  
   { data_sanitization , data_authentication } ;   

implements security mechanism: { none } ;  
  bitstream storage: ioConfigurationUnit; 
 ; 
IO Block:  ioSensor 
 utilizes slot: Slot4;  
 connected to: (to be determined) ;  
 connects to threatlayer:  PCB ;    
 availability: permanent ;  
 provides sensitive services:  { none } ;  
 contains sensitive data:   
 {  
  sensitive data sensordata  
   of sensitivity level low  
   access type read;  
  } ;  
 bitstream is protected by:   
   { tamper_resistant_storage } ; 
 implements peripheral security mechanism: { none } ;   
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit;   
 ;  
 
Processing Block: pbInitS2  
 utilizes slot: Slot2  ;  
 provides sensitive services:  { none } ;  
 contains sensitive data:  { none } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit; 
 ;  
 
Processing Block: pbInitS3  
 utilizes slot: Slot3  ;  
 provides sensitive services:  { none } ;  
 contains sensitive data:  { none } ;  
 bitstream is protected by:  { tamper_resistant_storage } ;  
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit ; 
 ;  
  
Processing Block: pbInitS4  
 utilizes slot: Slot4  ;  
 provides sensitive services:  { none } ;   
 contains sensitive data:  { none } ;  
 bitstream is protected by:  { tamper_resistant_storage } ; 
 implements security mechanism: { none } ;  
 bitstream storage: ioConfigurationUnit; 
 ;  
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FPGAResources:    
 Slot Slot0 { };                
 Slot Slot1 { };      
 Slot Slot2 { Memory bram1; };      
 Slot Slot3 { };     
Slot Slot4 { };               
  
Communication:         
 Bus nwBUS1 {  Slot0, Slot1, Slot2 , Slot3 , Slot4  } ;     
   
Reconfiguration:                                                
 Events:       
   Event evInit loads:  
    {ioConfigurationUnit,pbProcessor,pbInitS2, 
    pbInitS3,pbInitS4}; 
  Event evCrypto triggered by { pbProcessor }  
    loads: { ioEthernet,pbAESUnit }; 
  Event evSensor triggered by  { pbProcessor }  
    loads: { ioSensor,pbFPU } ;  
  Event evDSP triggered by  { pbProcessor }  
    loads: {pbDSP}; 
Security Policy:   
 //1. No element but pbProcessor shall communicate  

// with the ioConfigurationUnit 
 Rule rule1_communication :     
 prohibits communication of{   
  FPGAModule: { ioConfigurationUnit }; 
 } 
 with 
 {       
  NOT FPGAModule: { pbProcessor}; 
 }   
 ;     
 
     // 2. No element shall utilize Slot 0 except pbProcessor 
 Rule rule2_peprocessor_after :     
 prohibits utilization of 
 {   
  NOT FPGAModule: { pbProcessor};  
 } 
 after                  
 {       
  FPGAModule: { pbProcessor}; 
 }   
 ;      
 
 Rule rule2_preprocessor_before :    
 prohibits utilization of 
 {    
  NOT FPGAModule: { pbProcessor }; 
 } 
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 before               
 {       
  FPGAModule:  { pbProcessor };    
 }  
 ;     
  
 //3. Encrypted communication must take place before sensor operation 
 Rule rule3_cfEncryptedcommunication_Before_cfSensor   :    
 prohibits utilization of{    
   reconfiguration event: {  evSensor }; 
 }  
 before                    
 {  
  reconfiguration event: {  evCrypto };  
 }  
 ;    
  
 //4. To prevent the leakage of sensitive data the FPGA primitives  
  // utilized by the encryption unit shall not be reutilized by  
  // any IO Block     
 Rule rule4_IOBLOCKafterAES:     
 prohibits utilization of{    
  connects to threatlayer: { ANY };  
 } 
 after                   
 {  
  FPGAModule: { pbAESUnit };  
 }; 
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Appendix H Reinforcement Learning Example 

This section introduces a small example to illustrate how reinforcement learning can be used to identify 

weaknesses in the design. 

H.1 Reinforcement Learning Scenarios 

An FPGA design (Figure 42) consists of  three Slots with two FPGAModules each:   

• Slot1: A, C   

• Slot2: B, D  

• Slot3: E, F 

FPGAModule A is the only IO Block. The run ends when the agent has exfiltrated the sensitive data of  all 6 

FPGAModules into the outside world. An agent gets a reward of  10.000 for reaching a terminal state and -

1.000 for every other action. 

 

Figure 42 Schematic of the FPGASECML to burlap example 

H.2 Reinforcement Learning Scenarios 

Meaningful analysis requires multiple experiments with different parameters. Each scenario is a combination 

of  MDP parameters like the reward, the success likelihood, and the costs of  an action. They also include 

hyperparameters, like the learning rate. FPGASECML allows the definition of  scenarios that allow the 

independent definition and evaluation of  these parameters. All scenarios share a set of  parameters like γ and 

the exploration-exploitation trade-off  ε. The example in the next section illustrates the application of  

scenarios.  

H.2.1 Scenario 1:  Baseline 
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Scenario 1 establishes a baseline of  the model through a deterministic MDP (the success rate of  every 

action is 1) and a fixed reward/punishment assignment. The agent gets a reward of  200.000 for reaching a 

terminal state and a punishment of  -1.000 for every other action. All three runs return a minimal solution 

with 24 actions, the histogram (Figure 44) of  all three actions shows that the epsilon of  0.1 has the most 

episodes with the minimal steps followed by 0.05 (low exploration rate requires more steps to find a 

solution) and 0.25 (too much exploration hinders efficient exploitation of  the available data.) The learning 

process starts with episodes well over 2.000 steps (Figure 43) and provides better results as the Qtable gets 

filled. For an & of  0.1 the first minimal solution is found after just 303.323 Episodes - indicating that the 

agent has either found the best possible solution or is stuck in a local minimum with little chances to break 

out. 

It is also notable that all three solutions make extensive use of  the tamper_bitstream-action, but what if  this 

action is unlikely to succeed or prohibitively expensive? 

 

Figure 43 Learning progress for the first run of the baseline scenario with an H of 0.1 , each dot represents one episode 

H.2.2 Scenario 2: Tamper resistance storage prevents most attacks}  

The second scenario assumes that only one in a thousand attacks against tamper-resistant bitstream storage 

is successful (relative to all other attacks as success factors are normalized.)  The three runs return a minimal 

sequence of  25 actions each, and all three of  them avoid the tamper_bitsteam actions altogether. The 

histogram (Figure 45) shows a smaller spread than in the first scenario. The median of  the episodes for each 

run shrunk from (29,39,44) to (28,26,35).  
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Figure 44 Histogram for the baseline scenario with an H of 0.1. 0.05 and 0.25  

 

Figure 45 Histogram for all three runs of the second scenario (truncated on the right) 

H.2.3 Scenario 3: Faulty Encryption 

It is assumed that weaker tamper protection of  the bitstream storage and weakness in the bitstream 

encryption mechanism increases the success rate of  tamper_bitstream actions. The minimal sequences 
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returned require 27 steps for epsilon of  0.1, 26 for 0.05, and 30 for 0.25 - a significantly worse performance 

than in the previous scenarios.  The histogram of  all three runs also skews much more to the right than 

those of  the above scenarios. Worse, the three attack sequences bitstreams tampered with 4 of  the 6. The 

success rate of  one in a thousand was, apparently, low enough to discourage the agent from using these 

actions while the "one in five" -chance is too weak to achieve a similar effect. The low success rate is, 

however, strong enough to prolong the learning process as the median number of  steps per episode rises 

from previously (28, 26, 35) to (154, 155, 152). The learning progress (Figure 46) is much noisier than it was 

in the baseline scenario (Figure 43.) 

 

Figure 46 Histogram for all three runs of the third scenario (truncated on the right) 

 

Figure 47 Learning progress for the first run of the fourth scenario, each dot represents one episode 
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H.2.4 Scenario 4: Physical attacks against storage devices are expensive 

 

Figure 48 Histogram for all three runs of the fourth scenario (truncated on the right) 

Not all attacks require the same amount of  resources - some take longer than others; a few require 

costly equipment and highly specialized threat agents. Reducing the success rate of  an attack makes 

it implicitly more expensive (as, on average, more attacks are necessary before succeeding), but with 

several million trials per run, there is a good chance that at least one sequence of  highly improbable 

actions will succeed at least once. A real attacker might not want to take this risk. The MDP is 

converted back into a DMDP, and the tamper_bitstream action gets an additional cost weight of  

100.000 (additional to  the default negative reward of  -1.000.) The minimal sequence for the 

epsilons 0.1 and 0.25 is 24. The low exploration rate of  0.05 has led to a global minimum of  23. It 

is also notable that this global minimum required  2.543.660th episode and that the agent tampers 

with two bitstream storages while the other two use this expensive operation only once. Imposing 

even higher costs (bitstream_tampering_extremely_expensive) on the tamper_bitstream operation 

had no positive effect, with all three runs returning a sequence of  the length 24.   

H.2.5 Results  

The approach presented here found a reasonable solution to this problem within a feasible amount 

of  computations. The noisy progress of  the RL algorithm makes it impossible to determine 

whether this minimum is local or global. Scenarios can help to assess the impact of  high costs and 

low success rates and to find better solutions by constraining the size of  the search space. A 

plausibility check of  the results (here performed on the generated sequence) is mandatory, as for all 

machine learning methods. The number of  training episodes required for this small example 

indicates challenges for intricate designs and models with a richer state, action representation. The 

memory consumption of  the program, presumably driven by the expanding Qtable, supports this 
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assumption. Finding the appropriate cost/reward structure remains a challenge, and any analysis 

should include multiple scenarios with different cost and success rate values. 
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