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1 Introduction and state of the art

Radial journal bearings are widely used in rotating machinery to support high-speed rotating
parts with high radial loads and can be found in many applications, from large rotating sys-
tems such as turbomachinery [1] to small turbochargers in combustion engines [1, 2]. Fluid
film bearings are generally characterised by low friction behaviour, low wear and mainly effi-
cient vibration-damping capabilities. However, the fluid film journal bearings are also known
for fluid-induced instability, which causes undamped self-excited vibrations of a supported
rotating machine. For this reason, the process of journal bearings design is essential for ade-
quately operating machines in the considered speed range to guarantee a long lifetime. Poorly
designed journal bearing in the rotating system is a source of additional financial costs dur-
ing the operation and in an extreme case could cause fatal damage of machine. Moreover,
in many applications, the rotating system behaviour could be significantly changed only
with improved bearing construction. The radial journal bearings are generally distinguished
[1, 3, 4, 5] to fixed-profile journal bearings (cylindrical, elliptical, offset halves bearings etc.),
bearings with pressure dam, tilting pad journal bearings and floating-ring journal bearings.

In the last decades, with the evolution of computational mechanics and modern com-
puters able to perform large numerical operations, the increasing emphasis is focused on
computational modelling of rotating systems supported on the journal bearings. In history,
the problems were simplified and investigated by reasonable analytical methods based on
linear analysis, but comprehensive nonlinear computational models are now being developed
to describe the rotor behaviour more realistic.

1.1 State of the art

Computational modelling of rotating systems supported on journal bearings can be generally
distinguished into two aims: modelling the rotor and analysing the journal bearing. Both
subsystems mutually interact and the coupling is then described by angular speed-dependent
visco-elastic dynamic coefficients [1, 4, 6] or nonlinear hydrodynamic force [3, 7].

1.1.1 Rotordynamics

In history, many research and publications such as [3, 4, 5, 6, 8] were dedicated to investi-
gating rotordynamics problems and derivation of mathematical models with various scales
of complexity. For comprehensive rotor modelling, the finite element method [3, 4, 6] is used
to describe rotationally symmetric and transversally incompressible one-dimensional conti-
nuum that satisfies the Bernoulli-Navier hypothesis. On the other hand, discrete models
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1. Introduction and state of the art

[3, 6], e.g. Jeffcott rotor, are analysed due to the model simplicity, low computational time
costs, and currently eliminating undesirable properties of comprehensive models. In some
cases, the simplified discrete model can provide a sufficient approximation of a real system.

1.1.2 Hydrodynamic lubrication

Fundamentals of hydrodynamic lubrication were formulated by Reynolds, who derived a par-
tial differential equation governing the pressure field in thin viscous fluid films in 1886 [9].
Due to the comparatively small bearing clearance to the bearing diameter, the Reynolds
equation (the second-order differential equation) was derived under the assumption of con-
stant hydrodynamic pressure across bearing gap height. Thus, the oil film circulation in the
bearing gap is simplified to the planar problem. Alternatively, approximate analytical solu-
tions can be used for exceptional cases of bearing aspect ratios (length-to-diameter ratios).
For long bearings with aspect ratio λ > 2, the infinitely long journal bearing (ILJB) approxi-
mation [10] can be employed, and for short bearings with λ < 0.5, the infinitely short journal
bearing (ISJB) approximation can be employed [11]. Nevertheless, these approximative so-
lutions do not hold for finite length journal bearings (FLJB) with length-to-diameter ratios
in range 0.5 ≤ λ ≤ 2. An analytical closed-form solution of the entire Reynolds equation has
been found lately [12]. However, the most used approach for solving the Reynolds equation
is the usage of numerical methods: most notably the finite difference method [13], the finite
element method [14, 15] and the finite volumes method [16, 17]. Using numerical methods
allows considering various boundary conditions, oil supply through bearing shell [13, 18, 19],
temperature-dependent lubrication parameters [13, 14, 19, 20], changes in the bearing shell
profiles [14, 18], and many others.

Integrating the hydrodynamic pressure over the bearing surface yields to the hydrody-
namic force. The hydrodynamic pressure is generally a function of time, journal position,
and speed. Therefore, the hydrodynamic force is nonlinear. This force can be adopted in
equations of motion of the rotor [4, 8], but it is far more common, especially in the case of
stationary rotating machinery, to replace (approximate) the nonlinear hydrodynamic force
by so-called dynamic coefficients. Linearised analytical model of the hydrodynamic force
consisted of four elastic and four linear damping coefficients defined in radial and tangential
directions was introduced in [21]. The dynamic coefficients can be evaluated numerically as
the derivative of the hydrodynamic force concerning the displacement and the velocity of the
journal [22]. Furthermore, a cross-coupling term was also defined. The cross-coupling occurs
in many types of bearings and can be observed if the bearing is loaded vertically. Then, the
journal moves not only vertically but also horizontally.

The journal bearing’s dynamic coefficients and other parameters may be estimated em-
ploying the ISJB and the ILJB approximations [4]. However, above mentioned approxi-
mations may overpredict or underpredict the hydrodynamic force magnitude or linearised
dynamic coefficients of the FLJBs. The ISJB and ILJB approximations are more suited for
the evaluation of upper or lower limits or determination of trends [23]. Some authors utilised
the ISJB and the ILJB approximations as essential closed-form solutions, which were later
corrected with corrective factors to apply for the FLJBs. One of the first attempts to cor-
rect approximations of journal bearings were proposed in 60s and 70s by authors [24, 25].
A method that allows correction of the ISJB approximation was introduced in [26]. This
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1. Introduction and state of the art

method showed good accuracy of the estimated hydrodynamic forces for λ ≤ 1.25. A har-
monic combination of both ISJB and ILJB approximations for the calculation of the pressure
distribution was proposed in [27]. Later, two analytical models of the hydrodynamic forces
were derived [28] based on the ISJB and the ILJB approximations. The approximations were
corrected by factors derived based on a numerical solution of the Reynolds equation.

1.1.3 Stability analysis

Knowledge of dynamic coefficients is essential for the stability assessment of journal bear-
ings. Although the occurrence of fluid-film instability has been known since the 20s, it took
almost 30 years to develop its proper analytical description. Employing the Routh-Hourwitz
criterion, mathematically described conditions that cause the instability were presented in
[21]. This concept was later reviewed in [29]. The instability causes self-excited vibrations
of the rotor at roughly 0.42X–0.49X of the rotor speed and is known as the oil whirl [8].
Moreover, if the flexibility of a shaft is significant, another phenomenon called oil whip [8]
can occur during the operation of the rotor. Hence, the design parameters of fluid film bear-
ings are of crucial importance. Generally, three regimes can be observed during the rotor
operation: stable vibrations, fully developed instability and a transient state between the
both regimes. A speed at which the rotor becomes unstable will be hereinafter in this thesis
called the threshold speed and the corresponding curve depending on the rotor speed, and
another parameters will be called the threshold curve.

Muszynska [8] studied the instability of her nonlinear model in detail and proved that
the self-excited vibrations can be stable under some circumstances and may even vanish
completely if a threshold speed is surpassed. However, if the speed is further increased, the
second mode whirl occurs. This phenomenon was also observed experimentally [8]. Finally,
methods for the stability assessment of more general nonlinear models are introduced e.g. in
[30, 31, 32, 33, 34, 35, 36]. Interestingly, the threshold speeds detected during the run-
up and the coast-down operations can be different [20, 37]. This hysteresis behaviour is
experimentally repeatable [8] and it is closely related to a subcritical bifurcation profile
which can be derived employing the Hopf bifurcation theory [19, 37].

1.1.4 Hydrodynamic lubrication in applications

Journal bearing types

Hydrodynamic lubrication theory introduced for cylindrical radial journal bearings is also
extendable on other fixed-profile journal bearings and the tilting pad journal bearings. The
various bearing types with corresponding equilibrium loci, linearised dynamic coeeficients
are summarised and compared in [38].

Tilting pad journal bearings (TPJB) are widely used to support large rotors such as
turbines or generators. Their main advantage is better resistance to oil whirl and whip at high
speeds than classical journal bearings. Stability is ensured by pad’s tilting, see Fig. 1.1, which
keeps the radial component of a hydrodynamic force dominant to the tangential component.
In the standard linear rotordynamic formulation, the stability is provided by zero cross-
coupling stiffness coefficients. As shown by multiple researchers [39, 40, 41], the actual cross-
coupling stiffness is noticeably lower than the direct stiffness rather than zero. Therefore
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1. Introduction and state of the art

some instability issues can still occur during the TPJB operation. The effect of non-zero
cross-couplings was investigated in [42]. The stability of a nonlinear TPJB model was later
examined in [43]. The instability could also occur because of some operational conditions
[44] such as a low pad preload, low static load or external excitation.

idealisedconcentric fluttering/spragging

Fig. 1.1: Possible scenarios of TPJB behaviour, adopted from [45]. Last subfigure depicts
both fluttering (left-upper pad) and spragging (right-upper pad)

The self-aligning nature of the TPJB also imposes some undesirable phenomena. Under
such conditions, the pad may assume a position in which a gap is diverging rather than con-
verging, see Fig. 1.1. The pressure generated close to the pad’s leading edge then forces the
journal out of its current position, leading to a realignment of the TPJB. This phenomenon is
called spragging [46]. Continuous, often unstable vibration of the pad is termed pad fluttering
[47]. Pad fluttering affects the level of machine vibrations and shortens the pad’s life because
the fluttering pad repeatedly hits the journal [46, 48]. A proper design of the TPJB can sup-
press pad fluttering effectively. The most common practices are pad preloading, shortening
pad arcs, or the introduction of pockets or reliefs at pad’s edges [45, 46]. More recent works
also stress the importance of sufficient supply flow [49].

Historically, the first models of the TPJBs were composed using dynamic coefficients
that describe the coupling between shaft and pad by stiffness and damping matrices. This
approach is described in [50, 51] for the TPJB with rigid pads, in [52] for the TPJB with
flexible pads, and in [53] for the TPJB with the flexible pads and thermo-elastohydrodynamic
effects. Nonlinear models have been developed with respect to the class of a particular
phenomenon that influences TPJB behaviour. An important field of interest is the influence
of pad support or a pivot. The pivot is lined up in a series with the oil film and the flexibilities
of both components contribute to the stiffness matrix. In [54], the influence of the pivot
stiffness was analysed both analytically and experimentally. The behaviour of various TPJBs
under the same operating conditions considering the pad flexibility was compared in [55].
A flexible pivot was introduced in [56] and an adjustable flexible pivot that allows tuning the
bearing properties was proposed in [57]. The stiffness and damping coefficients of standard
pivot designs employing the Hertzian contact theory were evaluated in [58] and this work
was later extended in [59].
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1. Introduction and state of the art

Bearing shell texturing

Since the 60s and 70s, researchers started to be interested in bearing shell texturing and
micro-texturing. Intensive development in this field of study was initiated by [60] and other
authors followed this research direction. Based on numerical simulations performed in the fol-
lowing years to present, it has been concluded that an appropriate arrangement and geometry
of textures on the bearing surface can improve tribological performance [61, 62, 63, 64, 65, 66].
Laser surface texturing significantly influences the bearing attitude angle, and the stability
of the bearing may be improved [64]. The influence of spherical texture dimensions on the
threshold speed was examined for the Jeffcott rotor-bearing system in [67]. It was shown
that convex texturing influences rotor dynamic performance dramatically. The stability is
also enhanced with increased texture depth [68], whereas there is an optimum texture den-
sity corresponding to the maximum threshold speed. The circular and square textures were
compared and found out in [69] that the effects of surface texturing on dynamic character-
istics depend mainly on the location of texture and not on its geometry. Other studies were
focused on analysing the dynamic and stability performance of the hydrodynamic bearing
with triangular-shaped textures [70] and herringbone grooves [71, 72, 73].

Experimental studies also revealed that surface texturing could result in lower friction in
mixed lubrication [74] and hydrodynamic [75] regimes. Based on measured rotor vibrations
in textured bearing in [76], it was demonstrated that lightly- to medium-textured surfaces
result in better bearing stability. Fluid film stiffness and damping coefficients were measured
in [77] and appropriate texture distribution can have a better vibration-damping effect and
provide better stability. A detailed study on the lubrication mechanism and fluid charac-
teristics in typical microcavities was provided in [78]. The computational fluid dynamics
(CFD) methods were employed in this theoretical and experimental work. Numerical and
experimental results of the effect of spherical textures on dynamic coefficients and threshold
speed were compared in [79]. It was proved that surface texturing is an effective method for
suppressing the self-excited vibrations of the rotor. In [80], using an experiment in a flexible
rotor-bearing system was found that an appropriate depth of micro-texture positively affects
bearing dynamic characteristics. Tribological film-asperity interaction and its effect on ran-
dom excitation during vibrations of rotors supported by journal bearings was investigated
in [81]. Large spherical textures and their effect under dynamic operating conditions was
studied in [82, 83]. It was shown that the textures allow the reduction in shear viscous force,
but on the other hand, increase orbit’s amplitude of the shaft under dynamic operation [82].
A parametric study showed that full texturing provides better stability when compared with
partial texturing [83].
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1. Introduction and state of the art

1.2 Thesis aims and structure

The presented state of the art review in the field of rotating systems with journal bearings
reveals and yields several points at which this thesis aims. The main aims of this thesis can
be summarised as follows:

• Derivation of a unified and comprehensive model for various bearing types interacting
with a rotor through thin fluid film or by solid contacts if the viscous film is interrupted
or missing.

• Development of a complex in-house software which can perform static and stability
analyses and time domain simulations of the rotors supported on various journal bear-
ing types with emphasis on nonlinear rotor dynamics.

• Determination of threshold speed and investigation of various journal bearing types
behaviour in unstable regimes employing different modelling approaches and study-
ing their influence on the system behaviour, including phenomena such as oil whirl,
threshold speed hysteresis, pad fluttering etc.

• Implementation of the computational model of textured journal bearing and analysis
of texturing impact on the system stability.

• Experimental validation of computationally examined stability of cylindrical and tex-
tured journal bearings.

This work is structured into ten chapters. The second and the third chapters are de-
dicated to the step-by-step derivation of complex journal bearing models and methods for
stability examination. The fourth chapter is focused on computational methods, including
an analytical approach and mainly numerical method – the finite difference method. De-
veloped in-house software is further used to analyse cylindrical journal bearings in the fifth
chapter, fixed-profile journal bearings in the sixth chapter and tilting pad journal bearings
in the seventh chapter. All chapters include parameters of the investigated rotor-bearing sys-
tem, model validation and results of static and dynamic simulations. The first experimental
validation is presented in the eighth chapter. The Bently Nevada RK 4 Rotor Kit and corre-
sponding computational model are examined to study the development of unstable behaviour
during the run-up and coast-down operations. Textured journal bearings are analysed in the
ninth chapter. This chapter also includes the results from experimental measurement and
a comparison of the results is provided. Finally, the tenth chapter summarises the conclu-
sions obtained from each part of the proposed thesis. This work also contains several parallel
appendices listed at the end of the thesis for better chapters clarity.
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2 Hydrodynamic lubrication theory

Hydrodynamic lubrication [13, 14, 20] is fundamental for properly operating journal bear-
ings. Load-carrying oil film supporting a journal arises due to the presence of this phe-
nomenon. The essential condition for inducing hydrodynamic lubrication is the sufficient
speed of non-parallel surfaces in wedge form. Other conditions and simplifying assumptions
for the derivation of equations describing journal bearing behaviour are presented in this
chapter.

Following Sec. 2.1 includes the Reynolds equation, its dimensionless transformation and
assumed boundary conditions. Approaches for modelling of cavitation phenomenon are intro-
duced in Sec. 2.2. The linearisation process of nonlinear force coupling calculated in Sec. 2.3 is
explained in Sec. 2.4. Finally, stability assessment based on linearised stiffness and damping
coefficients is presented in Sec. 2.5.

2.1 Pressure field in bearing gap

The Reynolds equation governs the pressure field. This equation was derived under the
following assumptions, well-known as Reynold’s theory of hydrodynamic lubrication [13, 14]:

• Surfaces of journal and shell are perfectly smooth and rigid.

• Journal is cylindrical with radius RR.

• Film thickness is constant in the axial direction.

• Radial clearance c is small compared to nominal shell radius R (c� R and R ≈ RR).

• Laminar flow of Newtonian fluid is assumed.

• Fluid pressure is constant across the film thickness.

• Gravity and inertia forces acting on the fluid are negligible.

• Oil film curvature is neglected.

The geometric scheme of a radial journal bearing is depicted in Fig. 2.1. The scheme shows
two coordinate systems XFYFZ and XPYPZ which are the most used for Reynolds equation
derivation [13, 84]. Both coordinate systems are located on the bearing shell. Coordinate
system XFYFZ is fixed and its origin lies on the horizontal axis. Origin of coordinate system
XPYPZ depends on the journal’s position, see radial axis connecting journal centre SJ and

10



2. Hydrodynamic lubrication theory

shell centre B in Fig. 2.1. Both systems have the same orientation, but they are only angularly
mutually shifted. It allows to use the same notation for spatial coordinates Xi ∈ 〈0, 2πR〉,
Yi ∈ 〈0, hi(Xi)〉 and Z ∈ 〈−L

2
, L
2
〉, where each system is distinguished by subscript i = F, P .

The advantages of the Reynolds equation formulation in various coordinate systems are
further discussed in this work.

Z
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Fig. 2.1: Transverse cross-section of a bearing and coordinate system definition

Based on Reynold’s hydrodynamic lubrication theory, the pressure field analysis in the
bearing gap is reduced to a planar problem. The Reynolds equation could be derived from
force equilibrium in an extracted element of fluid and continuity equation [13, 14, 20, A1] or
simplification of Navier-Stokes equations [18, 84]. After derivation, the Reynolds equation
has the following general form [13, A1]

∂

∂Xi

(
%h3i
µ

∂pi
∂Xi

)
+

∂

∂Z

(
%h3i
µ

∂pi
∂Z

)
= 6

∂

∂Xi

[%hi (u1 + u2)] + 12
∂

∂t
(hi%) , (2.1)

where pi = pi(Xi, Z, t) is unknown pressure field, hi = hi(Xi, t) is the oil film thickness, Xi, Z
are the circumferential and axial coordinates, subscript i = F, P denotes fixed or floating
coordinate system, t is time, % = % (X,Z, t) is the fluid density, µ = µ (X,Z, t) is the oil
dynamic viscosity and u1 = −RωR and u2 = −RωB are circumferential speeds of journal
surface and bearing shell by the assumption R ≈ RR.

Assumptions of isoviscous and incompressible fluid make it possible to transform the
Reynolds equation into this final form [4, 13, A1]

∂

∂Xi

(
h3i
∂pi
∂Xi

)
+

∂

∂Z

(
h3i
∂pi
∂Z

)
= 6µ (u1 + u2)

∂hi
∂Xi

+ 12µ
∂hi
∂t
. (2.2)

Reynolds equation is simplified [2, 13, 20] for limit cases when the mass flow rate in one
direction significantly exceeds the flow in another one. The mass flow rate in circumferential
and axial direction depends on the bearing geometry, mainly on aspect ratio λ = L/(2R).
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2. Hydrodynamic lubrication theory

Reference [11] mentions the bearing with aspect ratio λ ≤ 0.5 as infinitely short. Infinitely
long bearing [2, 10] is distinguished by aspect ratio λ > 1. Modified Reynolds equations for
the infinitely short and infinitely long journal bearings are shown line by line below

∂

∂Z

(
h3i
∂pi
∂Z

)
= 6µ (u1 + u2)

∂hi
∂Xi

+ 12µ
∂hi
∂t
, (2.3)

∂

∂Xi

(
h3i
∂pi
∂Xi

)
= 6µ (u1 + u2)

∂hi
∂Xi

+ 12µ
∂hi
∂t
. (2.4)

Journal centre position SJ is determined by eccentricity e(t), or relative eccentricity
ε(t) = e(t)/c, and attitude angle γ(t)

e(t) =
√
y2J(t) + z2J(t), (2.5)

γ(t) =

{
arccos zJ (t)

e(t)
, yJ(t) > 0,

2π − arccos zJ (t)
e(t)

, yJ(t) < 0,
(2.6)

where yJ(t), zJ(t) are the journal vertical and horizontal displacements in fixed Cartesian
coordinate system xyz. Approximated film thickness for cylindrical bearings is calculated in
fixed coordinate system XFYFZ as follows [13, A1]

hF (XF , t) = c− e(t) cos

(
XF

R
− γ(t)

)
= c− e(t) cos (φ− γ(t)) . (2.7)

Angular substitution ϕ = π + φ − γ between considered coordinate systems is applied
and film thickness in floating coordinate system XPYPZ yields to

hP (XP , t) = c+ e(t) cos
XP

R
= c+ e(t) cosϕ. (2.8)

2.1.1 Reynolds equation in dimensionless form

The Reynolds equation (2.2) is often transformed into dimensionless form [20, 13] applied
in computational modelling, especially for numerical solutions. Following dimensionless vari-
ables are established

hi = c hi, Z = LZ, Xi = Rψi, for ψi = φ, ϕ. (2.9)

After substituting (2.9) into the general form of the Reynolds equation (2.2) and necessary
algebraic manipulation, it is finally obtained

∂

∂ψi

(
h
3

i

∂pi
∂ψi

)
+

(
R

L

)2
∂

∂Z

(
h
3

i

∂pi
∂Z

)
= −sign (ωR + ωB)

∂hi
∂ψi

+
2

|ωR + ωB|
∂hi
∂t
, (2.10)

where dimensionless pressure pi occurs

pi = pi
(
ψi, Z, t

)
=

c2

6µR2|ωR + ωB|
pi(Xi, Z, t). (2.11)

12



2. Hydrodynamic lubrication theory

2.1.2 Boundary conditions

Unknown pressure field pi(X,Z, t) governed by the Reynolds equation needs to satisfy pre-
scribed boundary conditions for an explicit definition of a boundary value problem. Given
boundary conditions are presented in their nominal values for better clarity. Their dimen-
sionless transformation is possible to perform based on (2.9) and (2.11).

For case of cylindrical bearings, the pressure field pi(X,Z, t) needs to satisfy circumfer-
ential continuity condition field

pi(0, Z, t) = pi(2πR,Z, t). (2.12)

Ambient pressure pamb is then supposed at the edges as Dirichlet boundary condition

pi(Xi,−
L

2
, t) = pi(Xi,

L

2
, t) = pamb. (2.13)

If there is any area Ωi = 〈X̃i × Z̃i〉 ⊂ 〈Xi × Zi〉 where the oil is supplied with con-
stant pressure psup through the supply bore or groove, previous boundary conditions are
extended by

pi

(
X̃i, Z̃i, t

)
= psup. (2.14)

2.2 Cavitation

Cavitation occurs when the hydrodynamic pressure in a certain area of the bearing gap
drops below the boundary value corresponding to saturated vapour pressure. As a result,
a mixture of oil in the fluid phase and gas bubbles of evaporating oil fills the gap in the
cavitated region. Cavitation phenomenon and process of its formation is described in detail
in [13, 18]. The effect of this phenomenon has to be considered in computational analysis.

The most straightforward computational approach for cavitation modelling is the Gümbel
condition or also called the half-Sommerfeld condition [13, 18, 20]. In this case, the pressure
field in the bearing gap’s divergent part is approximated by ambient pressure pamb

pi(Xi, Z, t) =

{
pi(Xi, Z, t), pi(Xi, Z, t) ≥ pamb,

pamb, pi(Xi, Z, t) < pamb.
(2.15)

The Gümbel condition described by (2.15) may be further modified with the substituting
the ambient pressure by a constant, which fulfils inequality psat < pamb. This saturation
pressure is the approximate pressure of the oil and gas mixture in the bearing gap. The
piecewise function has a similar formulation to (2.15)

pi(Xi, Z, t) =

{
pi(Xi, Z, t), pi(Xi, Z, t) ≥ psat,

psat, pi(Xi, Z, t) < psat.
(2.16)
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2. Hydrodynamic lubrication theory

2.3 Hydrodynamic force

Load-carrying oil film generates corresponding hydrodynamic force to radial pressure acting
on the journal. Particular components of hydrodynamic force acting on the journal are then
calculated [1, 4, 20, 84] in radial F hd

rad and tangential F hd
tan directions from both considered

coordinate systems according to Fig. 2.2 as follows

F hd
rad = F hd

rad (ε, ε̇, γ, γ̇, ωR, ωB) = −

L
2∫

−L
2

2πR∫
0

pF (XF , Z, t) cos

(
XF

R
− γ(t)

)
dXF dZ =

=

L
2∫

−L
2

2πR∫
0

pP (XP , Z, t) cos
XP

R
dXP dZ,

(2.17)

F hd
tan = F hd

tan (ε, ε̇, γ, γ̇, ωR, ωB) = −

L
2∫

−L
2

2πR∫
0

pF (XF , Z, t) sin

(
XF

R
− γ(t)

)
dXF dZ =

=

L
2∫

−L
2

2πR∫
0

pP (XP , Z, t) sin
XP

R
dXP dZ,

(2.18)

where the hydrodynamic pressure fulfils the boundary conditions in Sec. 2.1.2 and chosen
cavitation modelling approach in Sec. 2.2.

Following transformation is applied to determine the components of the hydrodynamic
force in fixed Cartesian coordinate system xyz[

F hd
y

F hd
z

]
=

[
sin γ cos γ

cos γ − sin γ

][
F hd
rad

F hd
tan

]
. (2.19)

Z

XF=Rϕ

c

YF

γ

h(X)

ωR

or
ot

zx

y

e

φ

ωB

B

YP

XP=Rφ

Z

ϕ

Frad
hd

Ftan
hd

Fy
hd

Fz
hd

Fy

Fz
SJ

Fig. 2.2: Components of the hydrodynamic force and journal loading forces Fy and Fz
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2. Hydrodynamic lubrication theory

2.4 Hydrodynamic force linearisation

Mutual interaction between the journal and the bearing shell (resp. the bearing pedestal)
transmitted through the oil film can be represented by nonlinear force coupling [3, 7], see
Sec. 2.3, or described by linearised visco-elastic support [1, 4, 6]. Small journal velocities and
displacements from static equilibrium point S of coordinate system yrzr, see Fig. 2.1, are
supposed for sufficient accuracy of established stiffness and damping coefficients of the oil
film. Force equilibrium of static loading and hydrodynamic forces determines the equilibrium
point where linearisation of force coupling is further performed. The hydrodynamic force
components in Cartesian coordinate system xyz are approximated by Taylor series [1, 4]
close to the equilibrium point

F hd
y = −Fy +

∂F hd
y

∂yr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−kyy

yr +
∂F hd

y

∂zr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−kyz

zr +
∂F hd

y

∂ẏr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−byy

ẏr +
∂F hd

y

∂żr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−byz

żr, (2.20)

F hd
z = −Fz +

∂F hd
z

∂yr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−kzy

yr +
∂F hd

z

∂zr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−kzz

zr +
∂F hd

z

∂ẏr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−bzy

ẏr +
∂F hd

z

∂żr

∣∣∣
ε̇=0
γ̇=0︸ ︷︷ ︸

−bzz

żr, (2.21)

where Fy, Fz are the acting forces on the journal in vertical and horizontal direction from
Fig. 2.2 and yr, zr, ẏr, żr are displacements and velocities of the journal from the equilibrium
point. Partial derivatives in (2.20) and (2.21) are expressed [4] as

∂F hd
d

∂yr
=
∂F hd

d

∂ε

∂ε

∂yr
+
∂F hd

d

∂γ

∂γ

∂yr
,

∂F hd
d

∂zr
=
∂F hd

d

∂ε

∂ε

∂zr
+
∂F hd

d

∂γ

∂γ

∂zr
, (2.22a)

∂F hd
d

∂ẏr
=
∂F hd

d

∂ε̇

∂ε̇

∂ẏr
+
∂F hd

d

∂γ̇

∂γ̇

∂ẏr
,

∂F hd
d

∂żr
=
∂F hd

d

∂ε̇

∂ε̇

∂żr
+
∂F hd

d

∂γ̇

∂γ̇

∂żr
, (2.22b)

where subscript d = y, z and following substitution [4] is used

∂ε

∂yr
=

∂ε̇

∂ẏr
=

sin γ

c
,

∂ε

∂zr
=

∂ε̇

∂żr
=

cos γ

c
, (2.23a)

∂γ

∂yr
=

∂γ̇

∂ẏr
=

cos γ

εc
,

∂γ

∂zr
=

∂γ̇

∂żr
= −sin γ

εc
. (2.23b)

Finally, components of hydrodynamic force can be written in matrix form [1, 4, 6][
F hd
y

F hd
z

]
= −

[
Fy
Fz

]
−

[
byy byz
bzy bzz

][
ẏr
żr

]
−

[
kyy kyz
kzy kzz

][
yr
zr

]
. (2.24)

15



2. Hydrodynamic lubrication theory

2.5 Stability analysis

Journal bearings are a potential source of self-excited vibrations of rotating systems due to
inappropriate design of rotating system’s operating conditions, bearing geometry or phys-
ical properties of a lubricant. Based on unstable behaviour nature, two different unstable
phenomena, oil whirl and oil whip, are distinguished and discussed in detail in [1, 2, 8].
Presented stability analysis aims to establish the threshold speed after whose surpassing
unstable behaviour develops.

Routh-Hourwitz criterion [1, 29, 85] is employed to determine the threshold speed. Sta-
bility analysis is investigated on the perfectly balanced and symmetrical rigid rotor with
mass 2m, supported on two identical journal bearings. Journal bearings are located at the
rotor ends symmetrically to the centre of gravity. The rotor rotates with constant angular
velocity ω and is loaded by a radial force acting in the centre of gravity.

Rotor performs only planar motion in the middle plane with supposed small journal
velocities and displacements from the static equilibrium point. This assumption allows ap-
proximating the hydrodynamic force by linearised stiffness and damping coefficients (2.24).
Motion equations of the proposed rotor-bearing system are then derived in matrix form[

m 0

0 m

][
ÿr
z̈r

]
+

[
byy byz
bzy bzz

][
ẏr
żr

]
+

[
kyy kyz
kzy kzz

][
yr
zr

]
=

[
0

0

]
. (2.25)

Using of dimensionless parameters

yr = c yr, zr = c zr, t = ω t, (2.26)

where c is the radial clearance, the equations of motion are transformed into dimensionless
form [

m 0

0 m

][
y∗∗r
z∗∗r

]
+

[
byy byz
bzy bzz

][
y∗r
z∗r

]
+

[
kyy kyz
kzy kzz

][
yr
zr

]
=

[
0

0

]
, (2.27)

where following substitutions are employed

Q∗∗ =
d2Q

dt
2 , Q∗ =

dQ

dt
, Q = yr, zr, (2.28a)

m = m
cω2

mg
, bij = bij

c ω

mg
, kij = kij

c

mg
, i, j = y, z. (2.28b)

Symbol g denotes gravitational acceleration. After surpassing threshold speed ωt, rotor
undamped orbital motion with angular velocity ωw starts to develop [29, 85]. Variable ωw
characterises their mutual ratio

ωw =
ωw
ω
. (2.29)

Journal centre trajectory of orbital motion is described by [1, 29, 85]

yr = A eiωw t = A eiωw t, zr = B eiωw t = B eiωw t, (2.30)
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2. Hydrodynamic lubrication theory

where A,B are the dimensionless amplitudes in corresponding directions and i is the imagi-
nary unit. Substituting (2.30) into (2.27) leads to system of equations[

−mω2
w + kyy + iωw byy kyz + iωw byz
kzy + iωw bzy −mω2

w + kzz + iωw bzz

][
A

B

]
=

[
0

0

]
, (2.31)

where non-trivial solution is found [1, 29, 85]. After algebraic manipulation of imaginary and
real part of the determinant in (2.31), final formulae are obtained

keq =
kyybzz + kzzbyy − kyzbzy − kzybyz

byy + bzz
= mω2

w, (2.32)

ω2
w =

(
keq − kyy

) (
keq − kzz

)
− kyzkzy

byybzz − byzbzy
, (2.33)

where keq is the dimensionless equivalent stiffness of the corresponding auxiliary system with
one degree of freedom. Using backward substitution (2.29) into (2.32) and identifying ω = ωt
results to

ωt =

√
g keq
c ω2

w

=

√
keq
mω2

w

. (2.34)

The threshold speed depends on rotor speed ω, stiffness kij and damping bij coefficients.
However, an implicit form of threshold speed calculation (2.34) makes it impossible to per-
form a direct solution and the threshold speed evaluation as the intersection of ωt = ωt (ω)
with the synchronous line ω is required.
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3 Complex bearing systems

Hydrodynamic lubrication theory presented in the previous chapter can be generalised for
complex bearing systems such as tilting pad journal bearings (TPJBs) and other types of
bearings with fixed geometry. The particular types of bearings are depicted in Fig. 3.1. The
small white circles denote pivot positions for individual pads of tilting pad journal bearings
and the shell curvature centre for other bearings. A mathematical model describing the
tilting pad journal bearing can also be employed to model the bearings with fixed-profile
geometry assuming several simplifications.

multi-lobeelliptical offset halvestilting pad

Fig. 3.1: Various bearing types

Governing equations of bearing with fluid-structure interaction in simplistic formulation
of the mathematical model without compromising its nonlinear properties are described in
detail in Sec. 3.1. Analytical formulation of hydrodynamic forces with assumed boundary
conditions are further presented in Sec. 3.2.

3.1 Governing equations

A symmetric flexible rotor supported on the TPJBs can be decomposed into mutually in-
teracting subsystems – a rotor and movable pads. Equations of motion of such a system can
be expressed in the block matrix form as follows (arguments are omitted for simplicity)[

Mr 0

0 Mp

][
q̈r
q̈p

]
+

[
Br + ωGr 0

0 0

][
q̇r
q̇p

]
+

+

[
Kr + ωCr 0

0 0

][
qr
qp

]
=

[
fg,r
fg,p

]
+

[
fun
0

]
+

[
fc,r
fc,p

]
, (3.1)
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3. Complex bearing systems

where subscripts i = r, p correspond to rotor and pads subsystems, respectively. Vector
qi = qi(t) ∈ RNi,1 is a vector of generalised coordinates with Ni being the total number
of degrees of freedom (DoF) of the i-th subsystem. Matrices Mr, Br, Gr, Kr, Cr ∈ RNr,Nr

are constant matrices of mass, damping, gyroscopic effects, stiffness and circulation of the
rotor. Matrix Mp ∈ RNp,Np incorporates the mass properties of the pads. Each subsystem is
subjected to a gravitational load which is included in vector fg,i ∈ RNi,1. The rotor can be
excited by out-of-balance forces introduced in vector fun = fun(t) ∈ RNr,1. Mutual interaction
of the subsystems is described by coupling forces fc,i (qr,qp, q̇r, q̇p) ∈ RNi,1 which involves
hydrodynamic forces generated in oil films, coupling forces between the pads and the ground
and elastic forces due to contacts between subsystems.

Here, an angular misalignment of a journal to the pads is neglected, i.e. the journal
is assumed parallel to the pad in the axial direction. Hence the TPJBs can be considered
planar, and the total number of DoF of the pad system is Np = 3N where N is the number
of the pads. Nr depends on a used rotor model – it can be relatively high, e.g. for the rotor
subsystem modelled by a finite element method (FEM), or relatively low for the rigid rotor.

Pi

κi

SJ

z

y

RJ υi

Ci(Cξ,i,Cη,i)

e
γ

zJ

yJ

R
σi

SS

ηi

Yi

Xi
Zi

zi'

O

yi'

ω

δi

θ1,i

θ2,i

ξi

R

Fig. 3.2: Scheme of the used coordinate systems and general TPJB geometry parameters.
The initial (untilted) position of the pad is depicted (uncolored) and the preloaded position
is highlighted in blue

For simplicity, a simple 2 DoF model of the rotor supported on the TPJB with N rigid
pads is further supposed. This model can be also used to describe the TPJB in the sys-
tem with a flexible rotor. A scheme of the considered system with essential dimensions
and coordinate systems is depicted in Fig. 3.2. The journal rotates with angular speed ω
and its centre position SJ is defined in fixed Cartesian coordinate system yz by vector
qr(t) = [yJ(t), zJ(t)]T . Each pad has 3 DoF: rotational δi(t), radial ηi(t) and tangential ξi(t)
defined with respect to pivot position Pi in fixed auxiliary coordinate system ξiηi. Vector of
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3. Complex bearing systems

generalised coordinates of all pads is qp(t) = [δ1, η1, ξ1, . . . , δN , ηN , ξN ]T . The pivot position
in the fixed Cartesian system is defined by attitude angle υi and radial distance κi between
the inner surface of the pad and the pivot. Centre of gravity Ci in coordinate system ξiηi
has the following coordinates: Ci = [Cξ,i, Cη,i]

T . The pad can be preloaded, i.e. the radial
clearance between the pad and the journal can be adjusted. The radial preload is described
by distance σi.

Each pad has its local coordinate system y′iz
′
i which is fixed to the pad and whose orienta-

tion is obvious from Fig. 3.2. These pad coordinate systems are used to formulate equations
that describe hydrodynamic lubrication in the oil film [20]. Angles θ1,i and θ2,i denote leading
and trailing edges of the pad with respect to the origin of the pad coordinate system y′iz

′
i.

The usage of the coordinate system fixed to the pad allows describing bearing gap hi =
hi (Xi, t) at the i-th pad as a gap of the cylindrical bearing, see Sec. 2.1

hi(Xi, Zi, t) = c− e′i(t) cos

(
Xi

R
− γ′i(t)

)
, (3.2)

where c = R−RJ is the nominal (machined) radial clearance, e′i(t) and γ′i(t) are the journal
eccentricity and attitude angle in the pad coordinate system y′iz

′
i which are given as

e′i(t) =
√
y′J,i

2(t) + z′J,i
2(t), γ′i(t) =

 arccos
z′J,i(t)

e′i(t)
, y′J,i(t) > 0,

2π − arccos
z′J,i(t)

e′i(t)
, y′J,i(t) < 0,

(3.3)

where journal position y′J,i, z
′
J,i is expressed in the pad coordinate system y′iz

′
i. These lo-

cal coordinates can be transformed from the global coordinate system using the following
transformation[

y′J,i(t)

z′J,i(t)

]
=

[
− (R + κi − σi + ηi(t)) sin δi(t)− ξi(t)

(σi − ηi(t))− (R + κi − σi + ηi(t)) (1− cos δi(t))

]

+

[
cos (υi − δi(t)) − sin (υi − δi(t))
sin (υi − δi(t)) cos (υi − δi(t))

][
yJ(t)

zJ(t)

]
. (3.4)

System of motion equations of the considered system with N pads has a formal structure
proposed in (3.1). The acting forces are depicted in Fig. 3.3. The inertia terms of the second
and higher orders are neglected due to their supposed small values, and the final equations
of motion can be written in the form

mJ ÿJ = −mJg + ∆mE ω2 cos (ω t) +
N∑
i=1

F y
hd,i, (3.5)

mJ z̈J = ∆mE ω2 sin (ω t) +
N∑
i=1

F z
hd,i, (3.6)

IP,i δ̈i +ms,iCξ,i η̈i −ms,iCη,i ξ̈i + bt,i δ̇i + kt,i δi =

= −ms,i g [Cξ,i sin (υi − δi)− Cη,i cos (υi − δi)]− F y′

hd,i (R + κi) , (3.7)
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3. Complex bearing systems

ms,i η̈i +ms,iCξ,i δ̈i + brad,i η̇i + krad,i ηi = −ms,i g sin (υi − δi)− F z′

hd,i, (3.8)

ms,i ξ̈i −ms,iCη,i δ̈i + btan,i ξ̇i + ktan,i ξi = −ms,i g cos (υi − δi)− F y′

hd,i, (3.9)

where i = 1, . . . , N is the index of the pad, mJ is the journal mass, g is the gravitational
constant, ∆mE is the static unbalance, F y

hd,i, F
z
hd,i are the components of the hydrodynamic

force generated in the oil film between the journal and the i-th pad. These components
acting on the journal can be transformed from the auxiliary coordinate system to the global
coordinate system as follows[

F y
hd,i

F z
hd,i

]
=

[
cos (υi − δi) sin (υi − δi)
− sin (υi − δi) cos (υi − δi)

][
F y′

hd,i

F z′

hd,i

]
, (3.10)

where the components of hydrodynamic force F y′

hd,i, F
z′

hd,i are calculated in the pad coordinate
system y′iz

′
i and act on the journal. It is assumed that the hydrodynamic force acting on the

journal exerts equal and opposite force also on the pad, i.e. there is no transport moment
due to the oil film. This assumption is satisfied well for systems with small clearances.
The components of the hydrodynamic force acting on the pad are schematically depicted in
Fig. 3.3 by dashed lines based on the application of Newton’s third law.

ηi
ξi

z

y

Pi kt,iδi
ktan,iξi

krad,iηi
ms,iξi

..

ms,iηi
..

IP,iδi

..

ms,i g

υi-δi

Fhd,i

Fhd,i

mJ g

ΔmEω2ωt

..
mJ yJ

..
mJ zJ

z

y

y'

z'

..
ms,iliδi

.
ms,iliδi

2

Ci

Fig. 3.3: Scheme of force balance contains gravitational forces mJg,ms,ig, out-of-
balance force ∆mEω2, inertial forces (mJ ÿJ ,mJ z̈J are acting on the journal and
IP,iδ̈i,ms,iη̈i,ms,iξ̈i,ms,iliδ̇

2
i ,ms,iliδ̈i are acting on the i-th pad) and elastic forces due to the

pivot deformation kt,iδi, krad,iηi, ktan,iξi. Damping forces bt,iδ̇i, brad,iη̇i, btan,iξ̇i are not depicted
here for clarity but they are supposed in the same directions as the elastic force due to the
pivot deformation. The components of the hydrodynamic force F y′

hdi
, F z′

hdi
acting on the jour-

nal are depicted by solid lines. The dashed lines depict the components of the hydrodynamic
force acting on the pad
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3. Complex bearing systems

Each pad is characterised by mass ms,i and moment of inertia IP,i relative to the pivot.
The flexibility of the pivot is described by stiffness and damping in the directions of the
corresponding generalised coordinates. The equations of motion (3.8) and (3.9) can be omit-
ted if the radial and tangential motions of the pad are negligible. Visco-elastic properties
of the pivot have an essential role in the TPJB dynamics, particularly at relatively high
rotor speeds and under high loads [54]. The dynamic pivot stiffness is in the series with the
dynamic stiffness of the oil film. Hence it strongly influences the total dynamic stiffness of
the journal-housing coupling.

There are several types of pivot designs that differ according to the connection between
pad and housing: rocker-backed pivots and spherical pivots, including a sphere in a sphere,
a sphere in a cylinder, and a sphere on a flat plate [58]. Other constructions such as flexure
pivots [86] use pads and housing made of one piece where the flexibility of relatively thin
pivot allows the pad tilting. The corresponding stiffness and damping coefficients can be
estimated based on detailed FEM models or simplified contact models such as the Hertzian
contact [56].

The contact can also occur between the journal and the i-th pad. In a case of missing
load-carrying oil film between the journal and the i-th pad, the fluid-structure interaction is
substituted by an elastic force which is transmitted if

∃!Xi ∈ 〈−Rθ2,i, R θ1,i〉 : hi (Xi, t) = 0, (3.11)

where hi (Xi, t) is the bearing gap between the journal and i-th pad. Coupling forces acting
on the journal are then given by the following relations

F y′

cf,i = −kc |∆pen,i|nc sinϕi, (3.12)

F z′

cf,i = −kc |∆pen,i|nc cosϕi, (3.13)

which are formulated in the pad coordinate system and where kc is the contact stiffness and
nc is the force exponent. It is assumed that the contact occurs close to the pad edges [87].
Penetration depth ∆pen,i and attitude angle ϕi are then calculated as follows

∆pen,i =

{
hi (Rθ1,i, t) , Xi ∈ 〈0, R θ1,i〉,
hi (−Rθ2,i, t) , Xi ∈ 〈−Rθ2,i, 0〉,

(3.14)

ϕi =

{
θ1,i, Xi ∈ 〈0, R θ1,i〉,
−θ2,i, Xi ∈ 〈−Rθ2,i, 0〉.

(3.15)

The mathematical model for the bearing with fixed geometry is obtained by omitting
(3.7)–(3.9), i.e. reducing the degrees of freedom. However, the coordinate and force transfor-
mations are still valid.
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3. Complex bearing systems

3.2 Analytical formulation of hydrodynamic forces

Lateral forces acting on the journal due to hydrodynamic pressure pi = pi (Xi, Zi, t) generated
between the journal and the i-th pad are evaluated using following integrals

F y′

hd,i = −

L
2∫

−L
2

Rθ1,i∫
−Rθ2,i

pi(Xi, Zi, t) sin
Xi

R
dXi dZi, (3.16)

F z′

hd,i = −

L
2∫

−L
2

Rθ1,i∫
−Rθ2,i

pi(Xi, Zi, t) cos
Xi

R
dXi dZi, (3.17)

where Xi, Zi are the circumferential and axial coordinates, respectively, which are defined
in a coordinate system fixed to the inner surface of the i-th pad, see Fig. 3.2. Constant L is
the axial length of the bearing and angles θ1,i and θ2,i are defined in Fig. 3.2.

Pressure pi (Xi, Zi, t) is governed by the Reynolds equation, whose exact form depends on
simplifying assumptions, see Sec. 2.1. The hydrodynamic pressure also depends on working
conditions of the TPJB. Some of these conditions can be expressed in the form of boundary
conditions. Pressures at pad edges are usually prescribed as constants using the Dirichlet
boundary conditions

pi (Rθ1,i, Zi, t) = psup, (3.18)

pi (−Rθ2,i, Zi, t) = pamb, (3.19)

pi

(
Xi,−

L

2
, t

)
= pamb, (3.20)

pi

(
Xi,

L

2
, t

)
= pamb, (3.21)

where psup and pamb are supply and ambient pressures, respectively. Condition (3.18) is usu-
ally used if the oil is supplied employing pressurised supply or leading edge groove methods.

Cavitation phenomenon occurs when hydrodynamic pressure drops rapidly in a certain
area of the oil film. The corresponding Gümbel condition can be written in the form

∀pi(Xi, Zi, t) < psat ⇒ pi(Xi, Zi, t) = psat, (3.22)

where psat is the saturation pressure in the cavitated area. The saturation pressure can be
approximated with the ambient pressure if the fluid inertia is neglected [20].

TPJBs are often used to support large machinery where the laminar flow assumption
might be inappropriate. The transition from laminar to turbulent flow occurs if [20]

Re =
Rω c ρ

µ
≥ 1000, (3.23)

where Re is the bearing Reynolds number and ρ is the lubricant density. If condition (3.23)
is fulfilled, the Reynolds equation should be modified with turbulent coefficients which char-
acterise flow in the Xi and Zi directions and are functions of the local Reynolds number [20].
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4 Computational methods

Previously derived mathematical models and formulae in chapters 2 and 3 can be solved
employing various computational methods.

Analytical solution of the limit cases of the Reynolds equation, hydrodynamic force calcu-
lation and determination of stiffness and damping oil film coefficients are written in Sec. 4.1.
In addition, this section contains so-called corrected models of hydrodynamic forces and
dynamic coefficients for finite length journal bearings.

Despite the derived analytical solution of the Reynolds equation and formulation of pres-
sure field in the closed-form [12], numerical methods are widely used in journal bearing anal-
yses. The finite difference method is introduced in Sec. 4.2. Modelling methodology, which
incorporates oil supply bores and grooves to the computational model, is also summarised
in Sec. 4.2.

4.1 Analytical method

4.1.1 Pressure field calculation

The Reynolds equation is simplified to final forms (1) and (2) for the limit cases of the
infinitely short (IS) and the infinitely long (IL) bearings. The Reynolds equation derived
in the floating coordinate system comes with the benefits of applying Booker’s integrals
[88] during the integration, which yields to pressure field solution. After several algebraic
manipulations, pressure fields are finally derived into closed-form [2, 84, A1]

pISP (ϕ,Z) = pamb +
3 η c

h3P

(
Z2 − L2

4

)
[Kε sinϕ+ 2 ε̇ cosϕ] , (4.1)

pILP (ϕ) = p0 + 6ηR2

[
ε̇

ε

h2P + c2 (1 + ε)2

h2P c
2 (1 + ε)2

−Kε (2 + ε cosϕ) sinϕ

h2P (2 + ε2)

]
, (4.2)

where K = (2γ̇ − ω), ω = ωR + ωB and p0 is the assumed pressure in the largest bearing
gap.

4.1.2 Hydrodynamic force calculation

Calculated pressure fields are further integrated based on (1) and (2) to obtain the hydrody-
namic force components. Employing Booker’s integrals allows calculating the hydrodynamic
force in the closed-form [28, 84] with assumed Gümbel condition (2.15). Following formulae
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4. Computational methods

of the hydrodynamic force components in radial (rad) and tangential (tan) direction are
adopted from [28] where reverse journal rotation direction is supposed concerning Fig. 2.1,
i.e. u = Rω = u1 + u2 = R (ωR + ωB). Hydrodynamic force components for the limit cases
of journal bearings adopted from [28] are written as follows

F hd,IS
rad = −µRL

(
L

c

)2
[
|ω − 2γ̇| ε2

(1− ε2)2
+
π (1 + 2ε2) ε̇

2 (1− ε2)5/2

]
, (4.3)

F hd,IS
tan = µRL

(
L

c

)2
[

(ω − 2γ̇)
πε

4 (1− ε2)3/2
+

2εε̇

(1− ε2)2

]
, (4.4)

F hd,IL
rad = −6µRL

(
R

c

)2
[
|ω − 2γ̇| 2ε2

(2 + ε2) (1− ε2)
+

πε̇

(1− ε2)3/2

]
, (4.5)

F hd,IL
tan = 6µRL

(
R

c

)2
[

(ω − 2γ̇)
πε

(2 + ε2) (1− ε2)1/2
+

4ε̇

(1 + ε) (1− ε2)

]
, (4.6)

where ω = ωR+ωB. Derived formulae of hydrodynamic force can be applied for the infinitely
short bearings with aspect ratio λ ≤ 0.5 [11] and theinfinitely long bearings with aspect ratio
λ > 1 [2]. However, these formulae (4.3)–(4.6) are not suitable for application out of supposed
aspect ratio and evaluation of hydrodynamic force could cause some inaccuracies.

Hydrodynamic forces for the case of the finite length bearings are calculated by mul-
tiplication of formulae (4.3)–(4.6) by correction polynomial functions [28]. Coefficients of
presented functions were obtained by linear regression method [28] of the results from the
numerical solution of the general Reynolds equation. Corrected components of the hydrody-
namic force are considered in the following forms [28]

F hd,IScor
rad = CIS

rad F
hd,IS
rad =

(
f IS1 ε

3 + f IS2 ε
2 + f IS3 ε+ f IS4

)
F hd,IS
rad , (4.7)

F hd,IScor
tan = CIS

tan F
hd,IS
tan =

(
gIS1 ε

2 + gIS2 ε+ gIS3
)
F hd,IS
tan , (4.8)

F hd,ILcor
rad = CIL

rad F
hd,IL
rad =

(
f IL1 ε

3 + f IL2 ε
2 + f IL3 ε+ f IL4

)
F hd,IL
rad , (4.9)

F hd,ILcor
tan = CIL

tan F
hd,IL
tan =

(
gIL1 ε

2 + gIL2 ε+ gIL3
)
F hd,IL
tan , (4.10)

where ε is the relative eccentricity and particular polynomial functions f ISi = f ISi (λ), f ILi =
f ILi (λ) for i = 1, 2, 3, 4 and gISi = gISi (λ), gILi = gILi (λ) for i = 1, 2, 3 are listed in Appendix A.

Coefficients of polynomial functions were established by linear regression method for the
same journal rotation direction as components of hydrodynamic force (4.3)–(4.6). For this
reason, the hydrodynamic force for the finite length bearings will be further supposed in
this form and necessary transformation for the reverse rotation direction, see Fig. 2.1, is
discussed in Sec. 4.1.4.

4.1.3 Determination of stiffness and damping oil film coefficients

Particular stiffness and damping oil film coefficients are calculated from partial derivatives
(2.22) of the hydrodynamic force. Dynamic coefficients for the infinitely short and long bear-
ings are primarily introduced in dimensionless forms [4, 20] or depending on Sommerfeld
number [1, 38]. Sommerfeld number is a characteristic variable summarising all design pa-
rameters into one number. Appendix A includes dynamic coefficients for the infinitely short
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4. Computational methods

and long bearing in dimensional form as the author’s research output. A similar procedure
is then applied for corrected components of hydrodynamic force (4.7)–(4.10). Approximate
dynamic coefficients in the closed-form for the finite length bearings were not previously
investigated and this work was published in [A2] as original research in this field of study.
MATLAB symbolic solver was mainly used for derivation of dynamic coefficients. Final for-
mulae consider only the reverse rotation direction with respect to Fig. 2.1.

Fy,an

Fz,an

ω

hd

hd

zan

yan

xan

(a) Coordinate system
orientation

Fy,an

Fz,an

ω

hd

hd

zan

yan

xan

(b) Coordinate system
orientation after unifica-
tion of journal rotation
direction with Fig. 2.1

Fig. 4.1: Hydrodynamic force transformation

4.1.4 Hydrodynamic force transformation

Coordinate system xanyanzan with corresponding rotation direction was used for analytical
derivation of the hydrodynamic force and linearised stiffness and damping coefficients. This
coordinate system is depicted in Fig. 4.1a. A scheme depicted in Fig. 4.1b results from
matching the rotation direction with Fig. 2.1. Comparing both figures gives the following
relations

x ≡ −xan, y ≡ yan, z ≡ −zan (4.11)

and in plane yz and yanzan yields

F hd
y = F hd

y,an, F hd
z = −F hd

z,an, resp. F hd
rad = F hd,i

rad,an, F hd
tan = −F hd,i

tan,an, (4.12)

where i = IS, IL, IScor, ILcor and index an denotes the variables expressed in coordinate
system xanyanzan with journal rotation based on Fig. 4.1a. Linearised dynamic coefficients
are estimated in the static equilibrium point where loading and hydrodynamic forces are
equal. With respect to (2.24) and (2.25), the hydrodynamic force components calculated
based on linearised dynamic coefficients are written below in matrix forms for both rotation
directions [1][

F hd
y

F hd
z

]
= −

[
byy byz
bzy bzz

][
ẏ

ż

]
−

[
kyy kyz
kzy kzz

][
y

z

]
, (4.13)[

F hd
y,an

−F hd
z,an

]
= −

[
banyy banyz
−banzy −banzz

][
ẏan
żan

]
−

[
kanyy kanyz
−kanzy −kanzz

][
yan
zan

]
. (4.14)
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4. Computational methods

Comparing both equations (4.13) and (4.14) and substituting (4.11), mutual transforma-
tions of dynamic coefficients between both supposed rotation directions [1] yields

byy = banyy , byz = −banyz , bzy = −banzy , bzz = banzz , (4.15a)

kyy = kanyy , kyz = −kanyz , kzy = −kanzy , kzz = kanzz . (4.15b)

4.2 Numerical method – finite difference method

4.2.1 Pressure field calculation

The numerical solution of the Reynolds equation can be performed by employing the finite
difference method [13, 14, 20, 84]. Method implementation is the same for both coordinate
systems XFYFZ a XPYPZ and both forms of Reynolds equations (2.2) and (2.10). Here,
the dimensional form of the Reynolds equation is further assumed and unique notation
X = XF , XP is used.

A uniform mesh of nodes (i, j) ∈ 〈1,M+1〉×〈1, N〉, where M,N ∈ N, covers the bearing
shell with steps ∆X,∆Z between the nodes, see Fig. 4.2. Partial derivatives are approximated
by central finite differences [89]

∂p

∂X
=
pi+1,j − pi−1,j

2∆X
,

∂2p

∂X2
=
pi+1,j − 2pi,j + pi−1,j

∆X2
, (4.16a)

∂p

∂Z
=
pi,j+1 − pi,j−1

2∆Z
,

∂2p

∂Z2
=
pi,j+1 − 2pi,j + pi,j−1

∆Z2
, (4.16b)

where pi,j is unknown nodal pressure. The Reynolds equation is approximated in each node
of inner mesh (i, j) ∈ 〈2,M〉 × 〈2, N − 1〉 by linear combination based on the five-point
computational stencil [13, 14, 20, 84] depicted in Fig. 4.2

ai,j pi+1,j + bi,j pi−1,j + ci,j pi,j + di,j pi,j+1 + ei,j pi,j−1 = fi,j, (4.17)

where ai,j, . . . , fi,j are the coefficients of linear combination. Each coefficient is described
in detail in [A1]. System of algebraic equations (4.17) for inner nodes can be written into
compact matrix form

A(FDM)p(FDM) = f (FDM), (4.18)

where A(FDM) ∈ RM(N−2),M(N−2) is the sparse, diagonal, positive definite coefficient matrix,
p(FDM) ∈ RM(N−2) is the vector of unknown nodal pressures and f (FDM) ∈ RM(N−2) is the
vector of values which are determined on the right-hand side of Reynolds equation (2.2) and
by boundary conditions (2.12) and (2.13).

System of the algebraic equations can be solved directly (Gauss elimination method) or
iteratively (Gauss-Seidel iterative method [90]). Successive OverRelaxation method (SOR)
is often employed for better convergence of iteration procedure [18, 90] where the solution
in the iteration step (k+1) is known as

p
(FDM)
k+1 = (D + wL)−1 [(1− w) D− wU] p

(FDM)
k + w

[
(D + wL)−1 f (FDM)

]
, (4.19)
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4. Computational methods

where D,L,U are the diagonal, lower and upper triangular matrix below and above main
diagonal of matrix A(FDM), p

(FDM)
k is the solution from previous iteration and w is the

relaxation parameter which takes place in the range w ∈ 〈1, 2) [18]. SOR method comes
into the Gauss-Seidel method for parameter value w = 1. Stopping criteria of iteration
procedure are defined by the maximum number of iterations nmax and accepted tolerance
εSOR of solution difference between individual iterations calculated based on the Euclidian
vector norm

k ≤ nmax, ‖p(FDM)
k+1 − p

(FDM)
k ‖ < εSOR. (4.20)
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Fig. 4.2: Computational mesh and five-point stencil applied in the finite difference method

4.2.2 Bearing oil supply bores and grooves

Bearing shells contain various oil supply bores and grooves [13, 19, 38]. In the case of the
finite difference method, the computational model of the journal bearing can be extended by
supply boundary conditions. Constant supply pressure is supposed in the whole area of the
bore or groove with prescribed geometry. The borders then define the inner nodes and the
indices of the bore/groove in the computational mesh can be easily distinguished [A3]. The
transformation between default vector of nodal pressure p(FDM) = [p1,2, . . . , pM,N−1]

T and
new sorted vector p̃(FDM) is performed using orthonormal permutation matrix T as follows

p(FDM) = T p̃(FDM), (4.21)

where p̃(FDM) =
[
pTZ ,p

T
N

]T
contains two subvectors pZ of prescribed nodal pressures and

unknown nodal pressures pN .

28
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Substituting (4.21) into (4.18) and multiplication by TT yields to[
Ã11 Ã12

Ã21 Ã22

]
︸ ︷︷ ︸
Ã=TTA(FDM)T

[
pZ
pN

]
︸ ︷︷ ︸
p̃(FDM)

= f̃ = TT f (FDM). (4.22)

The Reynolds equation has to be solved only for nodes with unknown pressure and
the final system of equations is described by the following equation with prescribed supply
pressure on the right-hand side

Ã22pN = f̃ − Ã21pZ . (4.23)

A direct or iterative solver can be applied to solve this final system of equations. The
developed methodology for computational modelling of the supply bores and grooves is more
suitable for fixed coordinate system XFYFZ because the permutation matrix T of nodes
indices is constant and independent of journal position. On the other hand, for the floating
coordinate system XPYPZ using, the permutation matrix needs to be rearranged based on
new detected supply nodes for each change of journal position.

4.2.3 Hydrodynamic force calculation

After employing the finite difference method for the Reynolds equation solution, a disconti-
nuous pressure field is obtained and a numerical solution of integrals (2.17) and (2.18) has to
be applied for hydrodynamic force calculation. Calculated nodal pressures fulfil cavitation
boundary condition (2.15) or (2.16).

Approximate calculation of definite integral is based on the trapezoidal rule [89] written
in the summary form

F hd
rad ≈

N∑
j=1

M∑
i=1

q(i, j) pP |i,j ∆XP∆Z cos

(
XP |i
R

)
=

= −
N∑
j=1

M∑
i=1

q(i, j) pF |i,j ∆XF∆Z cos

(
XF |i
R
− γ
)
,

(4.24)

F hd
tan ≈

N∑
j=1

M∑
i=1

q(i, j) pP |i,j ∆XP∆Z sin

(
XP |i
R

)
=

= −
N∑
j=1

M∑
i=1

q(i, j) pF |i,j ∆XF∆Z sin

(
XF |i
R
− γ
)
,

(4.25)

where q(i, j) is the size parameter of area with constant nodal pressure pi,j. The size param-
eter is a piecewise function

q(i, j) =

{
0.5 for i = 1, . . . ,M and j = 1, N,

1 else.
(4.26)
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4.2.4 Determination of stiffness and damping oil film coefficients

Hydrodynamic force is linearised in a static equilibrium position defined by relative eccen-
tricity εr(yr, zr) and attitude angle γr(yr, zr). The perturbation method [13, A3] is used to
provide partial derivatives (2.22) of hydrodynamic force and determine linearised stiffness
and damping coefficients.

Δy

γr

εy

rε

γy

z

y

x

rS

yS

(a) Vertical displacement y

Δz

γr
ε z

rε

rS zS

γz

z

y

x

(b) Horizontal displacement z

Fig. 4.3: Journal displacement from static equilibrium position Sr

In the first step, journal is moved by small distance ∆y, and ∆z, from static equilibrium
point Sr and the hydrodynamic force is calculated in new positions, see Fig. 4.3. The stiffness
coefficients are expressed as [A3]

kyy = −
F hd
y (εy, 0, γy, 0, ωR, ωB)− F hd

y (εr, 0, γr, 0, ωR, ωB)

∆y
, (4.27)

kyz = −
F hd
y (εz, 0, γz, 0, ωR, ωB)− F hd

y (εr, 0, γr, 0, ωR, ωB)

∆z
, (4.28)

kzy = −F
hd
z (εy, 0, γy, 0, ωR, ωB)− F hd

z (εr, 0, γr, 0, ωR, ωB)

∆y
, (4.29)

kzz = −F
hd
z (εz, 0, γz, 0, ωR, ωB)− F hd

z (εr, 0, γr, 0, ωR, ωB)

∆z
. (4.30)

Oil film damping coefficients are determined similarly by giving small velocity ẏ and
ż to the journal which remains in static equilibrium point Sr. Transversal velocities are
transformed into cylindrical velocities ε̇y(ẏ, 0), ε̇z(0, ż) a γ̇y(ẏ, 0), γ̇z(0, ż). Change of hydro-
dynamic force components yields to

byy = −
F hd
y (εr, ε̇y, γr, γ̇y, ωR, ωB)− F hd

y (εr, 0, γr, 0, ωR, ωB)

ẏ
, (4.31)

byz = −
F hd
y (εr, ε̇z, γr, γ̇z, ωR, ωB)− F hd

y (εr, 0, γr, 0, ωR, ωB)

ż
, (4.32)

bzy = −F
hd
z (εr, ε̇y, γr, γ̇y, ωR, ωB)− F hd

z (εr, 0, γr, 0, ωR, ωB)

ẏ
, (4.33)

bzz = −F
hd
z (εr, ε̇z, γr, γ̇z, ωR, ωB)− F hd

z (εr, 0, γr, 0, ωR, ωB)

ż
. (4.34)
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For the application of the perturbation method on various bearings with different geo-
metry and nominal dimensions, given journal displacements ∆y, ∆z and velocities ẏ, ż are
calculated from dimensionless variables

∆y = c∆y, ∆z = c∆z, ẏ = c ẏ, ż = c ż, (4.35)

where c is the radial clearance.
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5 Cylindrical bearing

Mathematical models and considered computational methods introduced in chapters 2 and 4
were implemented into in-house software written in MATLAB. This software was developed
to investigate the rotor-bearing system with parameters defined in Sec. 5.1 and all presented
results shown in the following sections were calculated using this software. First, properties
of the finite difference method (FDM) are analysed in Sec. 5.2 and computational costs of
various computational approaches are discussed in Sec. 5.3. Analytically examined thresh-
old speeds together with stiffness and damping coefficients are shown in Sec. 5.4. Sec. 5.5
contains results of numerical integration of motion equations and threshold speed detection
from obtained time series. The influence of static unbalance on the nonlinear steady-state
responses is investigated in Sec. 5.6.

5.1 Test bearing

A simple 2 DoF symmetrical rigid rotor supported on two identical plain journal bearings is
considered and bearings with various aspect ratios λ = L/(2R) are studied. The bearing gap
is filled up by lubricant ISO VG 46 and the Gümbel condition is used for cavitation modelling.
The rotating system is loaded in the vertical direction −y (Fz = 0) by the gravitational load.
Nominal parameters of the analysed system are listed in Tab. 5.1. All numerical analyses
were performed on the standard workstation1.

Parameter Symbol Nominal value Unit

Bearing shell radius R 50 mm

Aspect ratio λ 0.5, 1, 1.5 -

Radial clearance c 0.8 mm

Rotor speed n 100 – 15000 rpm

Lubricant dynamic viscosity (≈ 40 ◦C) µ 0.04 Pa·s
Rotor mass 2m 30 kg

Gravitational acceleration g 9.81 m·s−2

Ambient pressure pamb 0 Pa

Tab. 5.1: Parameters of investigated bearings

1Intel Core i7-7700 CPU 3.6 GHz, 64 GB RAM
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5. Cylindrical bearing

5.2 Properties of the finite difference method

Employing of the finite difference method for solution of the Reynolds equation and hy-
drodynamic force calculation in two different coordinate systems is presented in Sec. 4.2.
Mutual comparison of obtained results is shown for static equilibrium points of the bearing
with aspect ratio λ = 0.5 (Tab. 5.1).

Static equilibrium points defined by relative eccentricity ε and attitude angle γ result
from the force balance described by following nonlinear system of equations

−mg + F hd
y (ε, γ, ni) = 0, F hd

z (ε, γ, ni) = 0, (5.1)

where ni is the rotor speed from range in Tab. 5.1 with the speed-step 25 rpm.
Calculated static equilibrium points are depicted in Fig. 5.1. The simulations were per-

formed on the computational mesh of 91×21 nodes and discretised Reynolds equation (4.18)
was solved directly with coefficient matrix A(FDM) inversion. MATLAB function fsolve was
employed for solution of the system of nonlinear equations (5.1).
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Fig. 5.1: Comparison of static equilibrium points

For better results interpretation, the static equilibrium points are depicted in detail in
Fig. 5.2. Fig. 5.2a shows increments of attitude angle as a function of rotor speed. There
are significant jumps in the increments of attitude angle for the case of the fixed coordinate
system. Investigated speed range on the X-axis is replaced by the corresponding calculated
attitude angle for rotor speed ni, see Fig. 5.2b. Fig. 5.2b also contains highlighted black
vertical lines which represent circumferential angles of the computational mesh. It is apparent
from the attached figures that the jumps occur at the moment when static equilibrium points
circumferentially cross each angular level of the computational mesh. Calculated results
in the floating coordinate system stay smooth. Observed jumps in the static equilibrium
points also occur in estimated oil film stiffness and damping coefficients [A4]. An increasing
number of nodes in circumferential direction [A4] decrease the absolute difference of jumps in
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attitude angle but increase the occurrence of this phenomenon. However, finer mesh extends
the computational time. It can be concluded that the derived mathematical model in the
floating coordinate system XPYPZ is more suitable for numerical analyses rather than in
the fixed coordinate system XFYFZ if supply bores in the bearing shell are not supposed.
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Fig. 5.2: Analysis of static equilibrium points – attitude angle
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5.3 Comparison of calculation time

The critical side of numerical simulations is CPU time demands and calculation accuracy.
Therefore, the test bearing with aspect ratio λ = 1 was herein analysed and an inverse
approach of static equilibrium points determination was used, i.e. unknown rotor speed n
and attitude angle γ was found based on prescribed relative eccentricity εi ∈ 〈0.5, 0.95〉. Hy-
drodynamic pressure and force evaluation were performed in the floating coordinate system
XPYPZ using the finite difference method. Results of the system of nonlinear equations are
depicted in Fig. 5.3.

For objective comparison of computational time costs of various calculation approaches,
hydrodynamic pressure and hydrodynamic force were evaluated in previously determined
static equilibrium points. All presented simulations were repeated five times and the final
median value of computational time was established to eliminate inaccuracy in time mea-
surement.
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Fig. 5.4: Comparison of computational time – hydrodynamic pressure

Hydrodynamic pressure was calculated using the finite difference method by both direct
and iterative solutions of the Reynolds equation in the dimensional and dimensionless forms.
In the case of the SOR method, the influence of the relaxation parameter w on the compu-
tational time was studied. The simulations were performed on the computational mesh with
91×21 nodes. Fig. 5.4a depicts a colourmap of the computational time for the SOR method
and the dimensional form of the Reynolds equation. The results for the SOR method and
dimensionless form of the Reynolds equation are shown in Fig. 5.4b. Black contour lines
in both subfigures represent the number of iterations until the stopping criteria were met.
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The stopping criteria were defined as follows: nmax = 1 · 105 iterations for both models and
various tolerances εSOR = 1 ·10−2 for dimensional and εSOR = 1 ·10−5 for dimensionless case.
The best time was achieved for the relaxation parameter w ≈ 1.825 for both cases (black
dashed lines). The reference [18] mentions that the optimal value of the relaxation parameter
concerning the computational time is close to wopt ≈ 1.7. A mutual comparison of elapsed
times is depicted in Fig. 5.4c, where the results of the SOR method with the best achieved
time are used (black dashed lines in Fig. 5.4a,b). Obviously, the fastest method is the direct
solution, although the pressure peak accuracy is comparable for all methods, see Fig. 5.4d.
Pressure peaks are transformed and depicted relatively to the pressure peak results of direct
solution.

Fig. 5.5 shows a comparison of computational time for evaluation of the hydrodynamic
force which consists of two steps of pressure calculation p and its numerical integration F .
First, the hydrodynamic pressure is calculated with the most effective method, i.e. direct
solution of the discretised Reynolds equation. Particular parts of the bar charts then show the
time of each solution step. Particular numerical integration is several orders times faster than
hydrodynamic pressure calculation. For speeding up numerical simulations in developed in-
house software, the source codes were compiled to the mex format [91]. Using this procedure
saved 13 % in total of elapsed time and the best simulation time is 4.6 · 10−3 s.
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Fig. 5.5: Comparison of computational time – hydrodynamic force

5.4 Stability analysis

Stability and modal analyses are fundamental analyses for the design of the rotor system
supported on journal bearings. Journal bearings are characterised by rotor speed-dependent
linearised stiffness and damping coefficients [1, 4, 6, 38]. Linearised coefficients can be de-
termined by analytical models (Sec. 4.1) for plain journal bearings or by numerical methods
(Sec. 4.2) for complex bearings geometry. Derived models and developed methods are applied
and analysed on the bearings with various aspect ratios λ.

Static equilibrium points in the bearing gap for all investigated cases λ = 0.5, 1, 1.5
(Tab. 5.1) are depicted in sequence in Fig. 5.6. The finite difference method and corrected
analytical models of the infinitely short and long bearing provide similar static loci for all

36



5. Cylindrical bearing

analysed bearings. However, significant differences are apparent after using the infinitely long
bearing model for limit case λ = 0.5 and vice versa, the infinitely short bearing model for
λ = 1.5, because of their inappropriate application in this aspect ratio range. Nevertheless,
obtained results for the infinitely short or long bearing models will correspond nicely with
the finite difference method after moving towards the suggested aspect ratio.
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Fig. 5.6: Comparison of static equilibrium points for aspect ratio λ = 0.5, 1, 1.5

Evaluated linearised dynamic coefficients in static equilibrium points are shown in Fig. 5.7
– Fig. 5.9 as a function of relative eccentricity. Coefficients kij and bij are transformed into
dimensionless quantities (2.28) and vertical axes are restricted for better results interpreta-
tion.
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Stiffness coefficients kij for ij = yy, yz, zy qualitatively and quantitatively correspond
well for all aspect ratios λ and computational models except for IS model for λ = 1.5 and
IL model for λ = 0.5. In the case of λ = 1, the IS and IL models are still comparable
with the finite difference method. Differences in the dynamic coefficients between the models
are mainly caused by different static equilibrium points (Fig. 5.6). Significant qualitative
discrepancies in coefficient kzz are still reasonable because this coefficient does not affect the
main load in the vertical direction.

Similar conclusions as for stiffness coefficients kij can be also stated for damping coeffi-
cients bij evaluated by all proposed methods. However, cross-coupling damping coefficients
byz and bzy determined from the IL and ILcor models significantly differ from the other
models for ε < 0.5.

It can be concluded, computational model IScor provides comparable results as finite
difference method in the whole investigated range of rotor speed and aspect ratio λ. There-
fore, applying the other models for journal bearing analyses out of the supposed aspect ratio
should be employed only in substantiated cases.
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Fig. 5.10: Comparison of threshold speed curves for aspect ratio λ = 0.5, 1, 1.5

After surpassing threshold speed, the rotor becomes unstable and starts to perform the
undamped orbital motion. Threshold speed can be easily determined (2.34) using linearised
dynamic coefficients. Fig. 5.10 shows the comparison of calculated threshold speed for all in-
vestigated bearing aspect ratios λ. Each subfigure consists of a solid line, which distinguishes
area to stable (left) and unstable (right) parts, and a dashed line of the relative eccentricity of
static equilibrium points obtained from static analysis (Fig. 5.6). Both curves are a function
of rotor speed. The mutual intersection of stability borderline and relative eccentricity curve
represents threshold speed ωt. Presented results confirm the previous statement that IS and
IScor models are suitable to apply for a relatively wide range of aspect ratios. Model IScor
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predicts unstable behaviour development at lower rotor speed for a higher aspect ratio than
other models. Threshold speed curves (stability borderline) obtained by computational mod-
els IL and ILcor differ from others solutions if relative eccentricity ε ≤ 0.5, see cross-coupling
damping coefficients byz and bzy.

Fig. 5.11 depicts computational time necessary for the determination of linearised dy-
namic coefficients. Each case of aspect ratio is distinguished by a different colour. The vertical
axis is transformed into a logarithmic scale for better results interpretation. The finite differ-
ence method is much higher time demanding than analytical methods because the pressure
field and the hydrodynamic force are calculated three times in the determination of the
coefficients by a perturbation method, see Sec. 4.2.
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Fig. 5.11: Comparison of calculation time for linearised dynamic coefficients determination

5.5 Stability analysis in the time domain

Another way of rotor system stability analysis is the investigation of its behaviour in the
time domain. Equations of motion of analysed system are written with respect to Fig. 2.1
and Fig. 2.2 in this form[

m 0

0 m

][
ÿS
z̈S

]
=

[
−mg

0

]
+

[
F hd
y

F hd
z

]
, Mq̈(t) = fg + fhd (q, q̇, t) , (5.2)

where M is the mass matrix, q̈(t), q̇(t),q(t) are the vectors of generalised acceleration,
velocity and displacement and fg, fhd are the vectors of gravitational load and hydrodynamic
force. The system of the second-order ordinary differential equations (5.2) is for the reason of

numerical integration transformed into the state-space u(t) =
[
q̇(t)T ,q(t)T

]T ∈ R4,1 [6, A3]
with using of identity Mq̇(t)−Mq̇(t) = 0 and its association to (5.2). After mathematical
manipulation, this yields to

u̇(t) = Au(t) + b(t), (5.3)
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where A ∈ R4,4 is the system matrix and b ∈ R4,1 is the vector of the right-hand side with
following components

A =

[
0 0

E 0

]
, b(t) =

[
M−1 (fg + fhd (q, q̇, t))

0

]
. (5.4)

E is the identity matrix. The system of the first-order ordinary differential equations (5.3)

is extended by initial conditions u(0) =
[
0T ,q(0)T

]T
.

Two different run-up times t1 = 5 s and t2 = 10 s were assumed for rotor stability anal-
yses. Run-up simulations with prescribed constant angular acceleration were performed for
various nominal values of journal bearing design parameters, i.e. lubricant dynamic viscos-
ity, rotor mass, radial clearance and bearing width. Bearing default parameters were set up
according to Tab. 5.1 with aspect ratio λ = 1 except chosen varying-parameter. Investigated
range of varying-parameters is summarised in Tab. 5.2. Intervals are divided into 30 discrete
steps. Minimum and maximum rotor speed was chosen concerning the results from Fig. 5.10
where the threshold speed was found close to 3000 rpm.

Parameter Symbol Min. value Max. value Units

Radial clearance c 0.4 1 mm

Lubricant dynamic viscosity µ 0.01 0.065 Pa·s
Jounal mass m 3 25 kg

Aspect ratio λ 0.5 1.5 -

Rotor speed n 2000 4000 rpm

Tab. 5.2: Various design parameters of investigated bearings

Threshold speed detection from the time series is performed using developed in-house
software. Fig. 5.12 shows chosen time series of journal centre trajectory of balanced rotor
for run-up time t1 = 5 s. The finite difference method was used for the hydrodynamic force
calculation. The journal centre follows equilibrium locus (series of static equilibrium points
from static analysis in Fig. 5.6) until the first threshold speed ωt is not reached during the
run-up. After surpassing this speed ωt, the rotor losses stability and starts to oscillate with
increasing lateral displacements around its static equilibrium point. The hydrodynamic force
stabilises this phenomenon until the second threshold speed ωg, when the stabilising effect
is lost and lateral displacements significantly increase, and the instability is fully developed.
The described behaviour during oil whirl instability development is depicted in detailed
subfigures in Fig. 5.12 with both detected threshold speeds ωt and ωg by in-house software.

Threshold speed ωt is automatically found by in-house software when following imple-
mented condition for consecutive local extrema of relative eccentricity time series is met

ωt = ωi ⇔ |εi+1 − εi| ≥ ∆ε, (5.5)

where εi is the local extreme value of relative eccentricity ε(t) in the i-th time step of the
simulation, ωi is the journal angular velocity at this time step and ∆ε is chosen tolerance
of relative eccentricity increment. Threshold speed ωg reflects the point, when maximum
gradient of relative eccentricity time series is determined ωg = max{(dε/dt) |i}.
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Fig. 5.12: Journal centre trajectory during run-up
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Fig. 5.13: Instability development and detected threshold speeds

Sensitivity analysis of lubricant dynamic viscosity on the detected threshold speeds for
run-up time t1 = 5 s are depicted in the colourmap of relative eccentricity in Fig. 5.13. Each
horizontal section corresponds to time series for nominal value from the parametric study.
The section highlighted by the dotted line is analysed in detail in Fig. 5.12. All detected
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threshold speeds are denoted by markers and interpolated by the fifth-degree polynomial
function to eliminate numerical inaccuracies and estimate threshold speed between discrete
points. Threshold speeds calculated based on stability criterion (2.34) (Sec. 2.5 and Sec. 5.4)
employing linearised dynamic coefficients are interpolated by the same polynomial function
and depicted by dash-dotted line.

Numerical simulations with various design parameters from Tab. 5.2 were performed
with MATLAB solver ode15s, which is based on the Runge-Kutta algorithm suitable for
stiff problems. The initial condition for numerical integration of the equation of motion was
set to static equilibrium point for the first rotor speed from investigated range and zero
initial velocity. Hydrodynamic forces were calculated in each time step of integration with
IS, IScor, ILcor models and by finite difference method.

Fig. 5.14 – Fig. 5.17 show detected threshold speeds as a function of various design
parameters, rotor speed and the results are distinguished by the employed computational
method. Detection of the thresholds speeds ωt was performed for all sensitivity analyses
and computational methods consistently with stopping criterion ∆ε = 1 · 10−9 and the
same degree of approximation polynomial function (the 5th degree). For better clarity, each
subfigure consists of interpolated detected threshold speeds and the analytically estimated
threshold speed curve based on stiffness and damping coefficients. The presented figures
show that instability arises at higher rotor speed ωt in case of faster run-up (lower run-up
time), and all depicted curves detected from the time series do not qualitatively differ from
the analytical calculation. Interestingly, numerical and analytical results should be identical
for an infinitely long run-up time. Region width between initial ωt and fully developed
ωg instability continually decreases with increasing run-up time. Fig. 5.17 depicts detected
thresholds speeds for various aspect ratios λ. The results are comparable to Fig. 5.10. In
all presented figures, discrepancies at the ends of the design parameter range are caused by
approximation procedure. Obtained results for the ILcor computational models significantly
differ from other presented models and fluid-induced instability was not even developed in
many investigated cases.

Particular sensitivity analyses of the bearing with the same aspect ratio λ are mutually
equivalent with respect to the Sommerfeld number calculated based on [3, 4] as follows

S =
1

µω

mg

2LR

( c
R

)2
. (5.6)

Dependence of the Sommerfeld number on the dimensionless detected threshold speeds
ω
√
c/g and different computational methods is depicted in Fig. 5.18. Fore better diagram

clarity, only the analytically established threshold speeds ωt and detected threshold speeds ωg
are shown for particular computational methods and sensitivity analyses. Different lengths of
depicted curves are caused by various nominal values of parameter from investigated range.
Obviously from Fig. 5.18, the IScor computational model predicts the losses of stability ear-
lier than other methods, see also the previous results in Fig. 5.14 – Fig. 5.16. Otherwise, the
ILcor bearing model estimates instability threshold for higher Sommerfeld numbers similarly
to the IS model and the finite difference method. The results also confirm the statement [3]
that the journal bearings with the same Sommerfeld number and aspect ratio have simi-
lar behaviour. Minor results discrepancies between the sensitivity analyses are affected by
detection accuracy and postprocessing approximation (Fig. 5.13).

43



5. Cylindrical bearing

IS

2000 2500 3000 3500 4000
Rotor speed n (rpm)

0.4

0.6

0.8

1

R
ad

. c
le

ar
an

ce
 c

(m
m

)

IScor

2000 2500 3000 3500 4000
Rotor speed n (rpm)

0.4

0.6

0.8

1

R
ad

. c
le

ar
an

ce
 c

(m
m

)

ILcor

2000 2500 3000 3500 4000
Rotor speed n (rpm)

0.4

0.6

0.8

1

R
ad

. c
le

ar
an

ce
 c

(m
m

)

FDM

2000 2500 3000 3500 4000
Rotor speed n (rpm)

0.4

0.6

0.8

1

R
ad

. c
le

ar
an

ce
 c

(m
m

)

t anal t run-up (t1) g run-up (t1) t run-up (t2) g run-up (t2)

Fig. 5.14: Detected threshold speed for various radial clearances
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Fig. 5.15: Detected threshold speed for various dynamic viscosities
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Fig. 5.16: Detected threshold speed for various rotor masses
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Fig. 5.17: Detected threshold speed for various aspect ratios
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Fig. 5.18: Detected threshold speeds for various Sommerfeld numbers

5.6 Influence of unbalance

The hydrodynamic forces in journal bearings were evaluated using IS and IScor models and
the finite difference method. Parameters of the considered 2 DoF rotor-bearing system with
various static bearing loads (corresponding rotor mass) and static unbalances are listed in
Tab. 5.3.

The system’s response was simulated 10 s long for each speed from the investigated speed
range with speed-step 50 rpm. The transient response to the initial conditions in time interval
t ∈ 〈0, 5〉 s was omitted. The initial conditions were set to the estimated static equilibrium
point resulting from the static analyses and zero initial velocity. The obtained results are
depicted in Fig. 5.19 – Fig. 5.24. Results of each investigated case consist of a bifurcation
diagram to depict the local extremes of the response and corresponding spectrogram resulting
from fast Fourier transform using tool autofft [92]. The bifurcation diagrams show local
maxima (red), local minima (black) and static equilibrium points (yellow). The spectrograms
are depicted in the logarithmic scale for better diagram clarity. Only the horizontal rotor
response is depicted due to similar behaviour in both directions.

In the case of heavily loaded bearing in Fig. 5.19 – Fig. 5.21, there is an apparent
region between approx. 6000 and 7000 rpm with 0.5X subharmonic component. The width of
this region and oscillations increase with the increasing magnitude of static unbalance. The
IS model predicts this behaviour for all considered static unbalances. The period-doubling
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5. Cylindrical bearing

bifurcation does not appear for static unbalance U1 and the IScor model, and for both
static unbalances U1, U2 and the finite difference method. Here, the subharmonic periodic
motion excited due to applied out-of-balance force is suppressed by the damping effect of the
hydrodynamic force. Employed hydrodynamic force models mainly differ in cross-coupling
damping coefficients in Fig. 5.8. The hydrodynamic force calculated using the finite difference
method has the most significant damping impact and invoked oscillations are apparent only
for static unbalance U3.

The oil whirl starts to develop after surpassing the threshold speed, see the results for zero
static unbalance U0. The self-excited transient response (limit cycles) has a subsynchronous
component ca. 0.4X until fully developed instability is reached. Then, the journal performs
the orbital motion over the full bearing clearance circle. Contrary to the IS and IScor models,
using the finite difference method causes this transient region with the quasiperiodic motion
to begin at lower rotor speed with increasing static unbalance than for a perfectly balanced
system. Interestingly for the employed IScor model, the synchronous 1X component disap-
peared when the fluid-induced instability developed for all static unbalances. In all diagrams,
increased oscillations at ca. 3000 rpm are caused by the resonance of excitation frequency
and natural frequency of the rotor-bearing system.

Parameter Symbol Nominal value Unit

Bearing shell radius R 50 mm

Bearing length L 50 mm

Radial clearance c 0.125 mm

Rotor speed n 1000 – 11000 rpm

Lubricant dynamic viscosity µ 0.02 Pa·s
Ambient pressure pamb 0 Pa

Journal static load Wi 2.24, 11.2 kN

Journal static unbalance Ui 0, 3435, 6870, 8588 g·mm

Tab. 5.3: Parameters of investigated rotor-bearing system

The results for lightly loaded journal bearings are depicted in Fig. 5.22 – Fig. 5.24. The
threshold speed is ca. 1000 rpm lower for a perfectly balanced lightly loaded journal than in
the previous study. In all considered cases, there is no transient region with dominant sub-
harmonic component 0.4X resulting from the force balance of the static load, hydrodynamic
force, and inertia forces. The self-excited vibrations typically developed after surpassing the
threshold speed are apparent only in the case of static unbalance U1 and all considered hy-
drodynamic force models. For the static unbalances U2, U3 and analytical force models, the
unstable behaviour occurs at a higher rotor speed than expected.

The response in the instability region is quasiperiodic rather than a limit cycle. The
instability is not developed in the case of static unbalance U3 and calculated force based on
the IS model. The journal oscillates only with synchronous component 1X corresponding to
the excitation frequency. Period-doubling bifurcation before reaching the threshold speed is
more significant for a lightly loaded system because the magnitude of the out-of-balance force
is considerably higher than the static load. The responses obtained using the finite difference
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5. Cylindrical bearing

method are qualitatively different for static unbalances U2 and U3 compared to analytical
hydrodynamic force models. Despite the spectrograms showing dominant subsynchronous
harmonic component 0.5X starting at 6000 rpm, which could be initially classified as oil
whirl motion, the corresponding bifurcation diagrams exhibit period-doubling behaviour due
to the out-of-balance force presence.
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5. Cylindrical bearing

Fig. 5.19: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 11.2 kN. The
hydrodynamic forces are evaluated using the IS model
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Fig. 5.20: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 11.2 kN. The
hydrodynamic forces are evaluated using the IScor model
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Fig. 5.21: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 11.2 kN. The
hydrodynamic forces are evaluated using the finite difference method
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Fig. 5.22: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 2.24 kN. The
hydrodynamic forces are evaluated using the IS model
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Fig. 5.23: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 2.24 kN. The
hydrodynamic forces are evaluated using the IScor model
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Fig. 5.24: Bifurcation diagrams and spectrograms of the nonlinear steady-state horizontal
response to harmonic excitation by various static unbalances and static load 2.24 kN. The
hydrodynamic forces are evaluated using the finite difference method
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6 Fixed-profile journal bearings

The fixed-profile journal bearings with properly designed bearing shell preload or/and offset
can reduce the destabilising effect introduced by the tangential hydrodynamic forces (or
cross-coupling stiffness). This chapter is focused on the modelling of elliptical (lemon) and
offset halves bearings based on the generalised mathematical model described in detail in
Chap. 3. First, the parameters of the considered 2 DoF rotor-bearing system are introduced
in Sec. 6.1. Then, validation of computational model implementation is provided in Sec. 6.2.
Next, the influence of bearing preloads and offsets on the journal behaviour is examined
using the static analysis and the dynamic response on the out-of-balance force in Sec. 6.3,
respectively in Sec. 6.4. Finally, the conclusions are summarised in Sec. 6.5.

6.1 Test bearings

A simple 2 DoF rigid rotor-bearing system with various static unbalances is assumed. The
parameters of considered elliptical (cases 1–2) and offset halves (cases 3–4) journal bearings
with two axial grooves in the horizontal dividing plane are written in Tab. 6.1 and Tab. 6.2.
Assumed static bearing loads refer to the different mass of supported rotor on the fixed-
profile journal bearings. The investigated system is described by equations of motion in
forms (3.5)–(3.6).

Developed software in MATLAB presented for cylindrical bearings was generalised for
fixed-profile journal bearings applications. The in-house software is based on the finite differ-
ence method used for hydrodynamic pressure calculation and hydrodynamic force evaluation
with assumed Gümbel cavitation condition. MATLAB fsolve function with the Levenberg-
Marquardt algorithm was employed for static analysis. The solution of ordinary differential
equations was performed using ode15s solver for stiff problems with relative error tolerance
10−6 and absolute error tolerance 10−8. The tolerances were set based on the convergence
tests.

55



6. Fixed-profile journal bearings

Parameter Symbol Value Unit

Journal radius RJ 49.875 mm

Bearing shell radius R 50 mm

Bearing length L 50 mm

Rotor speed n 1000 – 14000 rpm

Lubricant dynamic viscosity µ 0.02 Pa·s
Ambient and supply pressure pamb 0 Pa

Journal static load Wi 2.24, 11.2 kN

Journal static unbalance Ui 0, 3435, 6870 g·mm

Tab. 6.1: Parameters of the studied fixed-profile bearings, adopted from [38]

Parameter Case 1 Case 2 Case 3 Case 4

Assembled radial clearance (µm) 62.5 93.75 62.5 93.75

Bearing shell angle (deg) 170 170 170 170

Bearing shell preload (µm) 62.5 31.25 0 0

Bearing shell offset (µm) 0 0 62.5 31.25

Tab. 6.2: Parameters considered during case studies, adopted from [38]

6.2 Model validation

Results of static analysis obtained for case 1 (Tab. 6.2) using developed in-house software
were validated by reference data [38]. The reference data include static equilibrium points
(relative eccentricity and attitude angle) and stiffness and damping coefficients.

The results of static equilibrium points for various static bearing loads are depicted in
Fig. 6.1. Journal relative eccentricity and attitude angle are transformed to the Cartesian
coordinates and shown versus the dimensionless Sommerfeld number calculated based on
(5.6). The static equilibrium points are particularly overcovered because some of the ope-
rating condition parameters yield to the same Sommerfeld number. The solid yellow line
represents the results for lightly loaded bearing (W1) and the blue dashed line shows the
results for the higher bearing load (W2). The absolute errors between calculated and adopted
reference data from [38] are significant but still reasonable up to ca. 6 µm in the horizontal
direction mainly for a lower Sommerfeld number, i.e. lightly loaded bearing or heavy rotor
operating at higher rotor speeds. However, the differences in the vertical journal positions
are almost negligible, with the maximum error lower than ca. 0.75 µm. The journal is pushed
away from the bearing vertical axis of symmetry and the static equilibrium locus is more
elliptical than the reference locus.

Linearised stiffness kij and damping bij coefficients determined in the static equilibrium
points are depicted in Fig. 6.2 for the reference data and case 1 with both static loads W1 and
W2. The coefficients were transformed into dimensionless quantities based on (2.28) and the
vertical axes were restricted for better results interpretation. The nominal differences between
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6. Fixed-profile journal bearings

the results are minor. The occurred jumps in the calculated data obtained by the finite
difference method are analysed and discussed in Sec. 5.2. The most significant differences are
apparent for diagonal coefficient kzz. These quantitative discrepancies are caused by different
horizontal journal positions in the corresponding static locus compared to the reference locus,
see Fig. 6.1.
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Fig. 6.1: Journal relative eccentricity and attitude angle for case 1 with various static loads
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6.3 Static analysis

The static analysis results for all considered cases 1–4 and both static journal loads are
depicted in Fig. 6.3. The force balance solved during the analysis consists only of static
journal loads and the hydrodynamic force with omitted all the time-dependent terms. Each
subfigure depicts by black line the assembled clearance of elliptical and offset bearing with
various preloads and offsets.

Different journal static loads are distinguished by the solid yellow line for lightly loaded
bearing and the blue dashed line for higher static journal load. The black crosses depict the
start and the end of each equilibrium locus. The equilibrium loci are particularly overcovered
due to similar Sommerfeld numbers.
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Case 4 - offset bearing
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Fig. 6.3: Static equilibrium points for cases 1–4 and various static journal loads
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In the case of elliptical bearing with smaller preload (case 2), the lightly loaded journal
crosses the horizontal dividing axis compared to case 1 and cylindrical plain journal bearings
investigated in Chap. 5.

The excessive offset (horizontal preload) in the offset bearing (cases 3–4) causes the jour-
nal trajectory to be more vertically straight with increasing rotor speed. There is a significant
contribution of the horizontal hydrodynamic force from the pressure field covering the upper
shell for the lightly loaded journal operating at higher rotor speed. If the journal is close to
the bearing centre, the horizontal hydrodynamic force generated from the pressure field at
the upper and bottom shells are almost equal and the resulting trajectory is close to vertical.

6.4 Dynamic analysis

The nonlinear steady-state responses of the system (cases 1–4) to harmonic excitation due
to applied static unbalances from Tab. 6.1 were simulated for 10 s. Parameters of the inves-
tigated systems are written in Tab. 6.1 and Tab. 6.2. Particular simulations were performed
in the listed range of rotor speed with speed-step 50 rpm, and the transient response to
the initial conditions (estimated equilibrium points and zero initial velocity) in time interval
t ∈ 〈0, 5〉 s was omitted. The presented results are depicted for each case study in Fig. 6.4 –
Fig. 6.9 in the form of bifurcation diagrams – local maxima (red), local minima (black) and
static equilibrium points (yellow) – and spectrograms in the logarithmic scale in the range
2.5 decades. The spectrograms were created using tool autofft [92]. Each figure contains
the results for both static journal loads and all considered static unbalances.

6.4.1 Case 1

The results for the elliptical bearing with characteristic dimensionless preload 0.5 are sum-
marised in Fig. 6.4. For applied zero static unbalance U0, the self-excited (fluid-induced)
instability appears for the heavily loaded bearing at a higher rotor speed 12400 rpm com-
pared to 11000 rpm for the lightly loaded bearing. Interestingly, the invoked oscillations have
different subsynchronous components: ca. 0.51X for the lightly loaded bearing and ca. 0.36X
for the heavily loaded one. Applied out-of-balance force corresponding to static unbalances
U1 and U2 on the lightly loaded journal have significant impact on the response with apparent
period-doubling bifurcation occurring at 9550 rpm respectively 10900 rpm.

For the heavily loaded unbalanced journal, the response is quasiperiodic after surpassing
the threshold speed. The quasiperiodic motion disappears and changes to 11-periodic motion
when rotor speed 13400 rpm is reached for the static unbalance U2. The journal trajectories
(orbits) with corresponding Poincaré maps are shown for chosen rotor speeds in Fig. 6.5. The
simulation time was extended up to 40 s for chosen rotor speeds to visualise the Poincaré
maps of obtained orbits. Above mentioned 11-periodic motion is depicted for 13700 rpm.

Although the maximum vertical assembled clearance is 62.5 µm, journal oscillations mag-
nitude apparent from the bifurcation diagrams remain under 30 µm in the whole investigated
speed range for all considered journal static loads and static unbalances.
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6. Fixed-profile journal bearings

Fig. 6.4: Case 1 – Bifurcation diagrams and spectrograms of the vertical response to harmonic
excitation by various static unbalances and both static loads
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6. Fixed-profile journal bearings

Fig. 6.5: Case 1 – Journal orbits and Poincaré maps (black points) for static load 11.2 kN
and static unbalance U2

6.4.2 Case 2

The elliptical bearing with dimensionless preload 0.25 has a lower stabilising effect than
bearing with excessive preload (case 1), see Fig. 6.6. The fluid-induced instability of a per-
fectly balanced rotor occurs at 8400 rpm for the lightly loaded bearing and 6950 rpm for
the heavily loaded bearing. Contrary to the constant subsynchronous component 0.5X for
the lightly loaded bearing, the subsynchronous component for the heavily loaded bearing is
variable in the range ca. 0.42X–0.47X with increasing rotor speed. Period-doubling bifurca-
tion appears for lightly loaded bearings due to applied out-of-balance force. The multiple
period-doubling is visible at 12650 rpm for static unbalance U2.

Similar to case 1, the heavily loaded journal response to harmonic excitation is quasipe-
riodic after surpassing the threshold speed. The quasiperiodic motion has a dominant sub-
synchronous variable component in the range ca. 0.42X–0.47X corresponding to unstable
orbital motion. However, there are apparent (mainly for unbalance U2) irregular changes
from the quasiperiodic motion to N -periodic motion and vice versa. The quasiperiodic mo-
tion disappears at 12500 rpm and the new branch of the 2-periodic limit cycle is found for
static unbalance U2. Qualitative changes of the response distinguishable from the bifurca-
tion diagram are emphasised by Poincaré maps for chosen rotor speeds shown in Fig. 6.7.
There is a short period-doubling bifurcation around 6000 rpm for unbalanced rotor U2. This
phenomenon was also observed in the cylindrical bearings with a highly unbalanced journal
in Sec. 5.6.

The journal vertically oscillates almost over the entire assembled bearing gap compared
to the bearing with an excessive preload.
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Fig. 6.6: Case 2 – Bifurcation diagrams and spectrograms of the vertical response to harmonic
excitation by various static unbalances and both static loads
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Fig. 6.7: Case 2 – Journal orbits and Poincaré maps (black points) for static load 11.2 kN
and static unbalance U2

6.4.3 Case 3

The lightly loaded rotor supported on the offset halves bearing with excessive horizontal offset
is stable in the whole considered speed range, see Fig. 6.8. Thus, fluid-induced instability is
not developed either if out-of-balance excitation is applied. As a result, visible oscillations
have only harmonic 1X component corresponding to the excitation frequency.

In the case of heavily loaded bearing, the self-excited vibrations start to develop at
9150 rpm. The motion is characterised by a subsynchronous component that changes lin-
early with increasing rotor speed from ca. 0.34X to 0.4X of rotor speed. Subsynchrounous
component in this range was also studied in [93]. Response of the unbalanced rotor is quasipe-
riodic after surpassing the threshold speed. Then, the quasiperiodic motion changes to the
3-periodic motion at 13450 rpm for static unbalance U2. The period-doubling bifurcation
due to out-of-balance force present is developed around 7000 rpm.

Excessive horizontal offset causes the same way as in case 1 that the journal horizontally
oscillates only up to ca. 60 % of the maximum assembled clearance.
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Fig. 6.8: Case 3 – Bifurcation diagrams and spectrograms of the horizontal response to
harmonic excitation by various static unbalances and both static loads
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6.4.4 Case 4

The results of the steady-state dynamic response of the rotor supported on the offset bearing
with dimensionless offset 0.25 are depicted in Fig. 6.9. Contrary to case 3, the perfectly
balanced lightly loaded rotor-bearing system with offset bearing loses stability at 7900 rpm.
In addition, applying out-of-balance force causes period-doubling bifurcation at a higher
rotor speed than the established threshold speed.

Interestingly, the self-excited vibrations of a perfectly balanced heavy rotor start to de-
velop at a similar rotor speed (7850 rpm) as in the case of the lightly loaded offset bearing.
Similarly to previous cases, the journal response to the harmonic excitation is quasiperiodic
after surpassing the threshold speed. For applied static unbalance U2, there is an apparent
period-doubling bifurcation between 6000–6500 rpm.

6.5 Results summary

The general approach for modelling complex bearing systems introduced in Chap. 3 was
simplified to analyse the fixed-profile journal bearings, specifically elliptical and offset halves
journal bearings.

The in-house software created by the author in MATLAB was validated with reference
data of elliptical journal bearings with parameters adopted from [38]. The validation yields
similar journal vertical equilibrium points results and linearised stiffness and damping coeffi-
cients as reference data. Differences in the horizontal equilibrium points were more significant
but still reasonable.

Next, validated software was further used to perform the static and dynamic analyses of
considered cases with various preloads and offsets. In addition, two different static bearing
loads with corresponding rotor mass were assumed. Finally, the steady-state journal response
was simulated for a perfectly balanced rotor and chosen static unbalances. The results are
shown in the form of bifurcation diagrams, spectrograms and Poincaré maps visualising
particular results. Based on the performed analyses, the results can be summarised as follows:

• The lightly loaded journal crosses the horizontal dividing plane of the elliptical journal
bearing with a smaller preload for higher rotor speed.

• The journal trajectory in the offset bearing with excessive offset is rather vertical than
elliptical. In addition, this bearing has the most stabilising effect because the fluid-
induced instability was observed only for the heavily loaded bearing.

• Excessive preload and offset cause the journal to not perform the orbital motion over
the entire bearing assembled clearance when the fluid-induced instability is developed,
neither if out-of-balance is applied.

• The response of the heavy rotor to harmonic excitation is quasiperiodic after surpassing
the established threshold speed. Therefore for cases 1–3, there are apparent changes
between a quasiperiodic motion to N -periodic motion and vice versa.
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Fig. 6.9: Case 4 – Bifurcation diagrams and spectrograms of the horizontal response to
harmonic excitation by various static unbalances and both static loads
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7 Tilting pad journal bearing

This chapter is focused on the detailed investigation of the nonlinear dynamics of four seg-
ment tilting pad journal bearing (TPJB) employing mathematical model derived in Chap. 3.
First, chosen tilting pad journal bearing is introduced in Sec. 7.1. Then, validation of model
implementation is provided in Sec. 7.2. Results of static analysis are shown in Sec. 7.3. Next,
demonstration and analysis of the bearing behaviour under out-of-balance excitation are
performed in Sec. 7.4. Finally, conclusions are summarised in the last Sec. 7.5.

7.1 Test bearing

Four-segment TPJBs in a load-between pads (LBP) configuration have two upper pads which
are almost unloaded during operation, and thus they might be susceptible to pad fluttering.
Here, the TPJB adopted from [44] presented in Fig. 7.1 and Tab. 7.1 is studied. This TPJB
has low Reynolds and reduced Reynolds numbers which render turbulence and fluid inertia
effects negligible [20, 94]. Further, it is assumed that the supported rotor is rigid to avoid
phenomena resulting from rotor elasticity. In such a case, the rotor has only 2 DoF (horizontal
and vertical displacements), and equations of motion can be formally written in the form
(3.5)–(3.9).

The computational model was implemented in MATLAB in developed in-house software.
For the solution of nonlinear algebraic equations during the process of static equilibrium
points determination, lsqnonlin function with the Levenberg-Marquardt algorithm was
employed. The solution of a set of ordinary differential equations was performed using ode15s

solver for stiff problems with relative error tolerance 10−6 and absolute error tolerance 10−8

based on the convergence tests. The solution strategy and the order of calculation steps inside
of the used solver are described in detail in Appendix B. Hydrodynamic pressure calculation
and hydrodynamic force evaluation is performed using the finite difference method.
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Pad 1Pad 2

Pad 3 Pad 4

ω circumferential 

angle

Fig. 7.1: A scheme of the TPJB studied in cases 1–4 [44]. Pivots are situated at 45, 135,
225 and 315 deg (measured from the horizontal axis). Pads centres of mass are denoted by
crosses (x) and pivots by circles (o)

Parameter Value Unit

Journal radius 49.9 mm

Journal weight (static load) 19.6 kN

Journal static unbalance 5 · 10−3 kg ·m
Maximum speed 13000 rpm

Pad inner radius 50 mm

Pad axial length 100 mm

Pad thickness 14 mm

Pad material density 8400 kg ·m−3

Pivot radius 64 mm

Pivot ratio 0.5

Lubricant dynamic viscosity 19 · 10−3 Pa · s
Lubricant density 860 kg ·m−3

Ambient and supply pressure 0 Pa

Reynolds number [20] 307.3

Reduced Reynolds number [94] 0.62

Tab. 7.1: Parameters of the studied TPJB, adopted from [44]. The pivot ratio is the fraction
of the distance between the leading edge and the pad pivot point to the complete pad arc
length
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Parameter Val. 1 Val. 2 Case 1 Case 2 Case 3 Case 4

Assembled radial clearance (µm) 100 50 100 100 80 100

Pad angle (deg) 80 80 69.3 69.3 69.3 69.3

Pad inner radius (mm) 50 50 50 50.025 50 50

Pad preload (µm) 0 50 0 25 20 0

Pivot radial stiffness (N·m−1) rigid rigid rigid rigid rigid 1·109

Tab. 7.2: Parameters considered during case studies, adopted from [38, 44]

7.2 Model validation

The proposed model was validated by comparing the computed journal static equilibrium
points with reference data adopted from [38].

Fig. 7.2a and Fig. 7.2b compare the computed results with the reference data transformed
into dimensional quantities. The absolute errors are almost negligible in both validation cases.
The maximum error 0.44 µm was found at 3940 rpm for validation case 1.

Corresponding pad tilting angles are shown in Fig. 7.2c and Fig. 7.2d. Reference data
[38] do not include pad tilting angles for direct comparison. However, the tilting angles of the
preloaded pads from Fig. 7.2d correspond well with the results presented in [95]. A notable
difference in the tilting angle of pad 1 is due to no preload in validation case 1. If pad
1 is unpreloaded, it assumes the position depicted in Fig. 1.1, in which the gap between
the journal and the pad is diverging. The hydrodynamic pressure is then predominantly
determined by the boundary conditions. Here, the pressure is zero due to the zero boundary
conditions and the tilting angle of the pad is restricted only by contact forces.

Typical pressure distributions at the individual pads are depicted in Fig. 7.3. The pressure
distributions in validation case 1 (Fig. 7.3a) are described more in detail:

• Pad 1 is unloaded, and the pressure distribution is determined predominantly by the
boundary conditions. The tilting angle of the pad is restricted by the elastic forces
described by (3.12) and (3.13).

• Two peaks are formed close to the trailing edge of pad 2. The pressure distribution on
this is symmetric with respect to Zi = 0.

• The pressure distribution on bottom pads 3 and 4 are similar. The pressure peaks lie
approximately in the centre of the pad surface. The maximum pressure is considerably
higher than on pad 2 because the bottom pads support most of the applied static load.
The load capacity of the bottom pads is almost equal.

Naturally, the maximum pressure at individual pads differs with the rotor speed and
the pad preload. When the pad preload is increased, the pressure distribution on pads 1
and 2 further develops as shown in Fig. 7.3b, where new pressure fields form on upper pads.
Pressure on the upper pads is distributed similarly to the bottom pads, but its maximum is an
order of magnitude lower than on the bottom pads. These pressure distributions correspond
well with the results presented in [95].
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Fig. 7.2: Journal eccentricity and tilting angles of the pads for validation cases 1 and 2
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5000 rpm

70



7. Tilting pad journal bearing

7.3 Static analysis

The analysis of the journal and pad equilibrium points provides essential information about
the bearing operating eccentricity, and it is a reasonable estimation of static gaps during
run-ups and coast-downs. In the static analysis, all the time-dependent terms in the hydro-
dynamic forces are neglected as well as inertial, out-of-balance and damping forces. For cases
1–3, a system of equations (3.5)–(3.7) with a total 6 DoF (2+4 ·1) was solved. In case 4, the
system of equations was extended by (3.8) and the number of DoF raised to 10 (2 + 4 · 2).
The results of the analysis are depicted in Fig. 7.4.

The left part of this figure depicts the bearing equilibrium locus for cases 1–4. The static
equilibrium points are shown for each 500 rpm from the investigated speed range. Tilting
angles of the individual pads depending on the rotor speed are shown in the figure’s right
part. In all cases, the tilting of the pads allows for the journal eccentricity to exceed the
assembled bearing clearance at low rotor speeds. This phenomenon is the most significant in
case 4 where the radial flexibility of pivot mounting is assumed, see Fig. 7.4. In the TPJBs
with the flexible pivots in the LBP configuration, the bottom pads are radially compressed
out of the bearing centre and then tilted according to the load direction.

Furthermore, the bearing equilibrium loci are almost vertical in all cases which corre-
sponds well with [38]. It suggests that the direct stiffness is dominant over the cross-coupling
stiffness at most rotor speeds. The only deviation was observed in case 3 (preloaded pads
with the reduced assembled clearance), where the bearing equilibrium locus starts to follow
the elliptic trajectory after reaching approximately 11000 rpm, see detail in Fig. 7.4c. This
change is caused due to a significant change in the pressure field distribution on pad 2, which
starts pushing the journal horizontally away from the bearing’s centerline.
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Fig. 7.4: Results of static analysis of load cases 1–4 defined in Tab. 7.2. Pads on the left
side of this figure are in untilted configuration and are depicted only for illustration of the
assembled radial clearances and pad preloads
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7.4 Analysis of the TPJB dynamics

The response of the system to the out-of-balance force is analysed in the range of rotor
speeds n ∈ 〈1500, 13000〉 rpm with the speed-step 100 rpm. The results of the static analysis
are used as initial conditions for simulations, and the equations of motion are solved at each
speed for t ∈ 〈0, 10〉 s. The interval t ∈ 〈0, 5〉 s is omitted because some simulations contain
the transient response to the initial conditions up to 4 s long. The rest of the results is then
analysed as follows:

• The motions of the journal and all four pads are analysed using the fast Fourier trans-
form in tool autofft [92] and the results are depicted as spectrograms. This diagram
allows identifying qualitative changes in the response with changing rotor speed. The
spectrograms are depicted in Figs. 7.5, 7.9, 7.11, 7.13 and 7.14.

• For more precise insight into the dynamic behaviour of the system, bifurcation diagrams
are constructed in Figs. 7.6, 7.10, 7.12, 7.15 and 7.16. These diagrams depict local
extremes at the particular rotor speed employing different colours for local maxima
(red) and minima (black). The figures also include static equilibrium points (yellow).
The bifurcation diagrams help to analyse the steady-state response and distinguish
between regions with periodic, quasiperiodic and chaotic motions.

• Fig. 7.7a shows the evolution of phase portraits of the pad tilting motion with the
increasing rotor speed. The phase portraits use the results calculated with extended
time interval t ∈ 〈0, 20〉 s.

• For a better interpretation of the phase portraits, the largest Lyapunov exponents λmax

of the corresponding motions are estimated using the procedure proposed in [96]. This
analysis was performed in cooperation with Ing. Luboš Smoĺık, Ph.D. The magnitude of
λmax quantifies the mean exponential rate of divergence or convergence of neighbouring
orbits in phase space [96]. In terms of information theory, λmax defines a rate at which
the future behaviour of the time series cannot be predicted based on the initial state
[96]. Hence, λmax is expressed in bits/s.

– λmax < 0 suggests that the time series corresponds with a fixed point trajectory.

– λmax = 0 marks the marginally stable time series, which suggest the existence of
a limit cycle, a limit torus or a similar trajectory.

– λmax > 0 indicates the nontrivial and potentially chaotic time series. Although
high magnitudes of λmax suggest chaotic nature of the attractor, its exact form
depends on other Lyapunov exponents. It was demonstrated in [96] that λmax > 0
can correspond with either the strange attractor, chaos or hyperchaos.

• Furthermore, the snapshots visualised in Fig. 7.8 contain pad tilting angles and acting
moments developed due to impacts or the hydrodynamic forces. A sign convention of
the acting moments corresponds to the pad angle orientation depicted in Fig. 3.2.
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7.4.1 Case 1

The dominant response of the journal and bottom pads 3 and 4 is synchronous (1X), see
Fig. 7.5. The 1X component is caused due to the out-of-balance force. The second harmonic
(2X) is also present, but approximately two orders of magnitude smaller than 1X. The 2X
component stems from the nonlinearity of the system, and it is also caused due to the
out-of-balance force.

(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.5: Case 1 – Spectrograms of the nonlinear steady-state response to harmonic excitation
of TPJB without preload

The response of upper pads 1 and 2 differs significantly from the response of the bottom
pads.

The motion of pad 1 can be classified as chaotic almost in the whole investigated speed
range. The chaotic nature of this motion arises from repeated single-sided impacts of the
pad’s edge to the journal. At lower speeds (4000 rpm), a single-sided contact occurs, while
for increasing rotor speed, the pad hits the journal in two sections of its phase trajectory in
Fig. 7.7a. This observation is confirmed by depicted time series in the left column of Fig. 7.8.
Increasing rotor vibrations at 4000 rpm induce distinguishable motion of pad 1 due to solid
structure impact at the leading edge, see positive moment impulse values. This moment
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impulse invokes the pad’s tilting motion and causes formation of the hydrodynamic pressure
in the convergent bearing gap close to the trailing edge for higher rotor speed. In the case
of existing hydrodynamic pressure pressure at the trailing pad half, the moment induced
by the hydrodynamic force is applied. A broadband response with maximum magnitudes
around 15–20 Hz is dominating in the spectrogram, see Fig. 7.5c. These magnitudes are
likely present due to the natural frequency of the system. The 1:4 resonance occurs in the
interval 4500–6000 rpm, which is also reflected in estimated Lyapunov exponents in Fig. 7.7c.
The estimated Lyapunov exponent at 6000 rpm is considerably higher (1.7±2.01 bit/s) than
at 5000 rpm (0.5± 0.07 bit/s), suggesting a transient zone (TR) between periodic (PM) and
chaotic (CH) motion. This zone is indistinct in the bifurcation diagram in Fig. 7.6c but is
noticeable in the spectrogram in Fig. 7.5c.

PD

CH
CH

PM
TR

PM

λ ≈ 0.5λ ≈ 0 λ ≈ 79λ ≈ 1.7λ ≈ 34 λ ≈ 0.5 λ ≈ 75

(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.6: Case 1 – Bifurcation diagrams and static equilibrium points of TPJB without
preload

The response of pad 2 can be divided into three main regions with qualitatively different
behaviour. At the low rotor speeds, the response is synchronous with negligible harmonics
and subharmonics due to the nonlinearity. The period-doubling occurs after approximately
5500 rpm and 6400 rpm. The period-doubling events are apparent from the formation of
subsynchronous components 0.5X and 0.25X in spectrogram, see Fig. 7.5d, as well as from
the bifurcation diagram depicted in Fig. 7.6d. Period-doubling event is evident from the
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phase portrait in Fig. 7.7b at 6500 rpm but corresponding Lyapunov exponent indicate
possible quasiperiodic motion rather than a limit cycle. After surpassing 6700 rpm, the pad
motion becomes chaotic, see Lyapunov exponents in Fig. 7.7d, with cascading increments
in oscillations minima in Fig. 7.6d which depend on the journal position. The synchronous
periodic response of lightly loaded pad 2 at lower rotor speed is induced by fluctuating
hydrodynamic pressure developed in the trailing pad half due to rotor vibrations. Larger
rotor vibrations at higher rotor speeds cause scenarios when the hydrodynamic pressure
disappears and the resultant moment equal zero, see Fig. 7.8. Interestingly, small moment
fluctuation due to the pressure field change, e.g. in case of 6000 rpm, does not influence pad
inclination angle. Contrary to pad 1, the coupling between the journal and pad 2 is still
ensured by the hydrodynamic force only and solid structure impact does not occur.

(a)

(c)

(b)

(d)

Fig. 7.7: Case 1 – Evolution of phase portraits of pads 1 (a) and 2 (b) with the increasing
rotor speed and estimated Lyapunov exponents based on [96]

Based on the performed numerical analyses and presented results, the upper pad’s mo-
tion can be classified as pad fluttering discussed in [46]–[48]. Classification of the observed
subsynchronous self-excited vibration as pad fluttering is motivated by the in-depth time
series insight of pad motion.
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Fig. 7.8: Case 1 – Tilting angles of pads 1 and 2 and nominal moments of elastic and
hydrodynamic forces

7.4.2 Case 2

The preloaded set-up in case 2 strengthens the interaction between the subsystems. Although
the dominant response of the journal and the bottom pads (3 and 4) is synchronous (1X),
Fig. 7.9 shows that asynchronous components appear in all spectrograms. Interestingly, these
asynchronous components are a combination of the upper pad responses. The asynchronous
components significantly affect the circularity of the journal trajectory in the horizontal
direction at higher rotor speed. This phenomenon is further transferred through the oil-films
to the oscillations of bottom pads, see Fig. 7.10.

The response of the upper pads can be divided into many different regions which exhibit
the period-doubling or chaotic behaviour. The motion of pad 1 irregularly changes from
chaotic motion to periodic motion region and vice versa, see Fig. 7.10. These changes occur
when the conditions for 1:5 and 1:6 resonances are met.

Analogically to case 1, the motion of pad 2 can be classified as a periodic motion with the
distinguishable period-doubling at 5200 rpm and with the additional short period-doubling
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at 6100 rpm and 6400 rpm. After surpassing 6600 rpm, the chaotic motion develops. At even
higher speeds, the motion is very similar to that of pad 1 and exhibits irregular changes
between chaotic behaviour and limit cycles due to internal resonances.

(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.9: Case 2 – Spectrograms of the nonlinear steady-state response to harmonic excitation
of TPJB with preload
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.10: Case 2 – Bifurcation diagrams and static equilibrium points of TPJB with preload

7.4.3 Case 3

Mutual subsystems interaction is more significant due to the decreased assembled clearance
than it was observed in case 2, see visible asynchronous components in all spectrograms in
Fig. 7.11. Similarly to case 2, upper pad 1 response irregularly changes from chaotic motion
to periodic motion region and vice versa after surpassing 4000 rpm. Shaft orbit circularity
is also affected at higher rotor speed.

There is a dominant periodic motion of the second pad with period-doubling at 6100 rpm.
This observation confirms the statement from [44], where TPJB system with this preload is
stable at 6000 rpm compared to case 1 without preload. Another period-doublings exhibit in
two regions 6600–7100 rpm and 8000–8400 rpm. Chaotic motion develops after surpassing
8400 rpm and changes between chaotic behaviour and internal resonances 1:5, 1:6 and 1:7
are apparent as well as in the response of the first pad.

The chaotic motion of the upper pads completely disappears at approx. 12000 rpm, see
Fig. 7.11. The disappearance of the chaotic behaviour at high speeds can be attributed to
the changes in the trajectory of the static equilibrium points, which is described in detail in
Sec. 7.3. The bifurcation diagram in Fig. 7.12d shows that the envelopes of the local extremes
reflect changes of the static equilibrium points from approx. 11000 rpm. Interestingly, the first
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pad’s dynamic response differs from the observation based on the static equilibrium analyses.
Regarding rotor speeds below 12000 rpm, the limit cycles are formed around the theoretical
static equilibrium, since after crossing 12000 rpm, the limit cycle is formed probably around
different equilibrium branch, see Fig. 7.12c. This branch was not revealed during the static
equilibria analysis.

(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.11: Case 3 – Spectrograms of the nonlinear steady-state response to harmonic excita-
tion of TPJB with preload
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.12: Case 3 – Bifurcation diagrams and static equilibrium points of TPJB with preload

7.4.4 Case 4

Here, the results are supplemented with spectrograms and bifurcation diagrams for the
additional radial motion of the pads due to radial flexibility of pivot mounting, see Fig. 7.14
and Fig. 7.16. The journal displacements and the tilting angles shown in Figs. 7.13 and 7.15
do not significantly qualitatively differ from the results presented in case 1. Therefore, the
discussion regarding case 1 more or less applies also to this case: the dominant response of
the journal and the bottom pads (3 and 4) is synchronous (1X); the upper pads exhibit the
chaotic behaviour with clearly-separated intervals of period-doubling motion. The bifurcation
diagrams in Figs. 7.15 and 7.16 reveal that there is a resonance peak close to rotor speed
5000 rpm. This resonance is due to the pivot radial stiffness.
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.13: Case 4 – Spectrograms of the nonlinear steady-state response to harmonic excita-
tion of TPJB with flexible radial pivot mounting – journal displacement and tilting angles

(a)

(c)

(b)

(d)

Fig. 7.14: Case 4 – Spectrograms of the nonlinear steady-state response to harmonic excita-
tion of TPJB with flexible radial pivot mounting – radial compression of pads
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(a)

(c)

(b)

(d)

(e) (f)

Fig. 7.15: Case 4 – Bifurcation diagrams and static equilibrium points of TPJB with flexible
radial pivot mounting – journal displacement and tilting angles

(a)

(c)

(b)

(d)

Fig. 7.16: Case 4 – Bifurcation diagrams and static equilibrium points of TPJB with flexible
radial pivot mounting – radial compression of pads
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7.5 Results summary

The proposed approach for modelling of tilting pad journal bearings presented in Chap. 3
was validated by comparison with the data published in [38] with virtually the same results
as those published.

Furthermore, the dynamics of a four-segment TPJB in load-between pads (LBP) config-
uration was analysed using the proposed concept of the TPJB model. It was demonstrated
that the proposed concept is capable of predicting nonlinear behaviour, including period-
doubling and chaotic motions. A broad spectrum of tools was used to analyse a complex
pad’s motion: spectrograms, bifurcation diagrams, Lyapunov exponents, phase trajectories
and waveforms of the interaction forces. The results can be summarised as follows:

• The motion of the journal and bottom pads is synchronous with the rotor speed. How-
ever, excessive pad preload can also induce asynchronous motions to these subsystems.

• The excessive pad preload strengthen interactions between individual subsystems. If
preloaded upper pads exhibit the period-doubling or chaotic motion, these motions are
also visible in the journal and bottom pad’s response. Interestingly, if each upper pad
oscillates differently, both these oscillations are superimposed to the motions of the
remaining subsystems.

• The motion of the upper pads depends on the position of pivots. Here, single-sided im-
pacts of the pad’s edge to the journal developed, which led to the interesting nonlinear
behaviour. In addition to the chaotic broadband motion, many internal resonances,
including 1:4, 1:5, 1:6 and 1:7 were examined.

• Decreased assembled clearance has a stabilising effect on lightly loaded pad 2. Subsyn-
chronous vibrations occur at a higher rotor speed compared to other case studies.

• The upper pad’s motion was classified as pad fluttering based on in-depth time se-
ries insight of pad motion and acting hydrodynamic and elastic forces. Pad fluttering
disappears at relative eccentricities lower than 0.34. This behaviour is enabled due to
a new equilibrium branch of pad 1 that was not found during the static analysis. Such
behaviour is essential for high-speed applications because it suggests that the TPJBs
may be operated above pad fluttering regimes. However, the threshold value 0.34 can
vary with particular system parameters.
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8 Application – Rotor Kit

The threshold speed for the fluid-induced rotor instability (oil whirl) can be identified as the
speed at which the rotor vibrations significantly increase during a run-up or the speed at
which the rotor vibrations significantly decrease during a coast-down. However, the threshold
speeds detected during the run-up and the coast-down are not the same.

Therefore, this hysteresis phenomenon is investigated in this chapter both experimentally
and computationally. The Bently Nevada RK 4 Rotor Kit was used to study the hysteresis
phenomenon experimentally and computationally using an in-house software with a solver
based on the finite element method for rotor dynamics and a solver based on the finite
difference method for hydrodynamic lubrication in the journal bearing.

8.1 Rotor Kit description

The Rotor Kit was assembled in the configuration shown in Fig. 8.1. The shaft with the
attached disc is supported on a journal bearing located at the non-drive end and on a sliding
bearing at the drive end of the rotor. The shaft is also supported on preload frame with
four radial springs, and a bellows coupling links the shaft and the motor. The investigated
journal bearing has four inlet bores located at 45, 135, 225 and 315 deg with respect to the
horizontal divided plane. The bearing is supplied by constant pressure. Detailed parameters
of subsystems and dimensions are described in the following section.

8.2 Mathematical model and Rotor Kit parameters

The mechanically isolated rotating system consisted of a flexible shaft and a rigid disc was as-
sumed. The finite element method [6] was employed for the derivation of equations of motion
of this system with the following assumptions: the flexible shaft is rotationally symmetric
and transversally incompressible one-dimensional continua that satisfies the Bernoulli-Navier
hypothesis. The motions of the shaft and the disc are described by lateral vibrations v, w
and two Euler angles θ, ψ. The global system of equations of motion defined in the fixed
Cartesian system xyz is written in the matrix form

M(FEM)q̈(t) +
(
B(FEM) + ωG(FEM)

)
q̇(t) + K(FEM)q(t) = f (FEM)

g , (8.1)

where ω is the angular speed of the shaft, q(t) = [. . . , vk, wk, θk, ψk, . . .]
T is the vector of

generalized coordinates, q̇(t), q̈(t) are time vectors of velocity and acceleration. Symmetric
matrices M(FEM),B(FEM),K(FEM) are the mass, damping and stiffness matrices of the rotor,
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Fig. 8.1: The Bently Nevada RK 4 Rotor Kit

respectively. Antisymmetric matrix G(FEM) is the matrix of gyroscopic effects and f
(FEM)
g is

the vector of gravitational load. Damping matrix B(FEM) can be expressed as

B(FEM) = αM(FEM) + βK(FEM), (8.2)

where α and β are the Rayleigh’s damping coefficients.
Derived equations of motion in (8.1) represent the motion of isolated rotating system

without coupling with the ground. The coupling with the ground can be described by a visco-
elastic joint or by nonlinear hydrodynamic forces acting in journal bearings. In the case of the
visco-elastic joint, its inertia, damping and stiffness can be considered. These parameters are
expressed in the form of coupling matrices Mc, Bc, Kc which can be assembled into global
matrices as

M = M(FEM) + Mc, B = B(FEM) + Bc, K = K(FEM) + Kc. (8.3)

Finally, equations of motion of the rotating system supported on the journal bearings
and/or the visco-elastic couplings are written in general matrix form

Mq̈(t) + (B + ωG) q̇(t) + Kq(t) = fg + fhd(q, q̇, t). (8.4)

A detailed scheme of the Rotor Kit with dimensions and used finite element discretisation
is depicted in Fig. 8.2. The bellows coupling is modelled as a subsystem with lumped mass and
isotropic bending stiffness. The preload frame and the rigid disc are attached in nodes 6 and 7,
respectively. The shaft made of regular steel is supported on the investigated journal bearing
in node 9. Temperature influence on dynamic lubricant viscosity was neglected and isoviscous
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Fig. 8.2: A computational scheme Rotor Kit and nodes for a finite element discretisation

distribution in the whole bearing was used in computational analyses. Characteristic journal
bearing static load was calculated from the force balance on the rigid shaft with the disc
supported only on the rigid supports at the isotropic sliding bearing and journal bearing
positions. Gravitational load acted at the centre of gravity of the system and the bellows
coupling was replaced by external force. All of the presented parameters are summarised in
Tab. 8.1.

For numerical simulations, the system of equations (8.4) is transformed to the set of the

first-order differential equations with state-space vector u(t) =
[
q̇(t)T ,q(t)T

]T ∈ R80,1 as
follows

u̇(t) = A(t)u(t) + b(t), (8.5)

where system matrix A(t) and right-hand side vector b(t) have following form

A(t) =

[
−M−1 (B + ωG) −M−1K

E 0

]
, b(t) =

[
M−1 (fg + fhd (q, q̇, t))

0

]
. (8.6)

Extensive rotating systems with many degrees of freedom and nonlinearities are sub-
jected to the modal reduction method to reduce computational demands during numerical
integration.

Stability analysis classified based on complex eigenvalues and eigenvectors which come
from solving a modal analysis problem allows considering detailed modelling of the investi-
gated comprehensive rotating systems. Contrary, the stability analysis performed based on
previously presented Routh-Hourwitz criterion in Sec. 2.5 is more suitable for a simplified
rigid rotor-bearing model. Eigenvalue problem is generally described by

[λν(ω)E−A(ω)] vν(ω) = 0, (8.7)

where matrix A includes linearised stiffness and damping coefficient at the established static
equilibrium points of the investigated journal bearing in global submatrices K,B, respec-
tively. Eigenvalues are given as a complex number dependent on the shaft angular speed

λν(ω) = αν(ω)± iβν(ω), (8.8)

where imaginary part βν(ω) represents the ν-th eigenfrequency, αν(ω)is the real part of each
eigenvalue, which classifies the stability, and damping and i is the imaginary unit.
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Parameter Symbol Value Unit

Steel density % 7800 kg·m−3

Young modulus E 210 GPa

Poisson’s ratio ν 0.3 -

Rayleigh’s coefficient α 2.618 s−1

Rayleigh’s coefficient β 2.122 · 10−5 s

Rigid disc mass md 800 g

Rigid disc axial moment of inertia I0 5.525 · 10−4 kg·m2

Rigid disc lateral moment of inertia I 3.1792 · 10−4 kg·m2

Bellows coupling mass mbc 65 g

Bellows coupling bending stiffness kbc 1 · 104 N·m−1

Sliding bearing stiffness kb 1 · 105 N·m−1

Sliding bearing damping bb 1 · 102 N·s·m−1

Radial preload frame stiffness k 4 · 103 N·m−1

Equivalent stiffness ks 5 · 103 N·m−1

Bearing length L 25.4 mm

Bearing shell radius R 12.7 mm

Radial clearance c 0.2 mm

Lubricant dynamic viscosity µ 27.5 mPa·s
Ambient pressure pa 1.0 bar

Saturation pressure pcav 0.98 bar

Supply pressure psup 1.225 bar

Bore diameter db 3.0 mm

Bearing static load W -9.1223 N

Tab. 8.1: Parameters of the Rotor Kit

Modal damping factor Dν(ω) is used for the stability identification and for a comparison
of the magnitude of growth/decay at the same time. The modal damping factor results from
this fraction

Dν(ω) = − αν(ω)

|λν(ω)|
. (8.9)

The stability is then evaluated using following rules

• ∀ν: Dν(ω) ≥ 0, then the system is stable, and

• ∃ν: Dν(ω) < 0, then the system is unstable.

The precession direction in each node is determined from corresponding eigenvectors and
the determination procedure is described in detail in [6, A5].
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8.3 Experimental measurement

The system described in the previous sections was tested first and then its response was sim-
ulated. The test was performed as follows. The Rotor Kit was operated at slow speed 300 rpm
at the beginning, then its speed was gradually increased, and after reaching 5000 rpm, its
speed was gradually decreased. This process was executed with various acceleration and de-
celeration ramps ranging from 25 rpm·s−1 to 250 rpm·s−1. Each operation case was repeated
three times. The speed at which the rotor loses the stability, i.e. the threshold speed for
the instability, was detected in all operation cases. The experimental measurements were
performed in cooperation with Ing. Luboš Smoĺık, Ph.D.

The threshold speed can be computed analytically or numerically using various criteria,
including the Routh-Hourwitz criterion or stability analysis based on eigenvalues. However,
identifying the exact threshold speed experimentally may be difficult. Even a stable rotor
performs some motions due to a residual unbalance and external forces [4, 8]. Because of
this, a procedure of subsynchronous order tracking given below was used in order to estimate
threshold speed.

First, the short-time Fourier transform (STFT) with parameters specified in Tab. 8.2
was performed using tool autofft [92]. A flat-top window function with significant spectral
leakage was employed, which decreases the uncertainty of the instantaneous magnitude of
the subsynchronous response at the cost of a reduced frequency resolution. A maximum
magnitude in the frequency range 0.35X–0.55X of the rotor speed was then tracked together
with the rotor speed and the threshold speed was estimated at a point where the magnitude
changes most significantly. Extremes of measured relative journal vertical displacement and
a typical resulting track with a magnitude profile are depicted in Fig. 8.3.

Parameter Value Unit

Sampling frequency 6.4 kHz

Segment length 0.2 s

Segment overlapping 80 %

Time-weighting function flat-top

Averaging none

Tab. 8.2: Parameters of the short-time Fourier transform
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Fig. 8.3: Extremes of relative journal vertical displacement and threshold speed detection in
experimental measurement

8.4 Results

In order to perform simulations, in-house software based on proposed computational methods
was created in MATLAB. Except for the complex model depicted in Fig. 8.2, a simplified
2 DoF model of a rigid journal supported on the journal bearing was also implemented
and the bearing was loaded by nominal value from Tab. 8.1. The journal was additionally
attached to the ground by isotropic spring support with stiffness ks. This coupling represents
the flexibility of the reduced system and its nominal value is close to the preload frame
stiffness.

First, stability analysis of the complex model was performed. Corresponding Campbell
diagram is depicted in Fig. 8.4. The frequency range is limited to 350 Hz. For better di-
agram clarity, the damping factor Dν is restricted to 0.99 to avoid depicting overdamped
eigenmodes. Each branch consists of different markers for precession distinguishing, and all
branches are labelled by corresponding shaft mode. There is an apparent unstable conical
mode which begins at ca. 3650 rpm. For the simplified 2 DoF model, the Routh-Hourwitz
criterion is sufficient to estimate threshold speed, but stability analysis based on calculated
eigenvalues can also be performed.

Equations of motion for both computational models were integrated numerically employ-
ing MATLAB solver ode15s and simulated responses were processed the same way as ex-
perimental data. All experimental data and results of numerical simulations are summarised
in Fig. 8.5. The comprehensive model was modally reduced to the lowest 10 eigenmodes for
numerical integration.
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Fig. 8.4: Campbell diagram for complex model of Rotor Kit resulting from computational
analysis

The subfigure in Fig. 8.5 for numerical results contains analytically estimated threshold
speeds (dash-dot line). The subfigures demonstrate that the instability occurs at a lower rotor
speed during the coast-down operation and at a higher speed during the run-up. The width of
the hysteresis loop is comparable between experimental and simulated results. Interestingly,
the relationship between the width and the angular acceleration is close to linear and the
width is almost symmetrically distributed around analytically estimated threshold speeds.
However, the computationally examined nominal threshold speeds significantly differ from
the experimental measurement.

This discrepancy might be caused by fluctuating oil supply pressure, temperature-depen-
dent lubricant parameters, neglecting the journal bearing misalignment and insufficiently
accurate identifying of Rotor Kit parameters, e.g. the parameters of sliding bearing and
bellows coupling. In addition, the preload frame and its preload control might significantly
affect the journal bearing loading. The preload magnitude is manually controlled by tigh-
tening the lock nut. It was an effort to set the preload to zero in both directions by minimal
tension of the radial springs.
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9 Application – textured bearings

The stability of a rotating system supported on journal bearings can be improved by suitable
texturing of the bearing shell. However, the texturing can also impact bearing temperature,
formation of cavitation in the bearing gap and tribological characteristics such as friction
losses, wear etc.

This chapter is divided into two main parts. The first part in Sec. 9.1 is focused on mathe-
matical modelling of a textured bearing and the study of the influence of employed numerical
methods on computational analysis results. Then in Sec. 9.2, established theoretical conclu-
sions and developed computational models are validated by experimental measurements of
the textured bearing of the created test rig. Concluding remarks from numerical simulations
and experimental measurements are summarised in Sec. 9.3.

9.1 Computational analysis

This section introduces a computational model for a simulation of dynamics of a rotor
supported on the textured journal bearing shown in Fig. 9.1. Considered 2 DoF model
is supposed to emphasise the influence of textures on the system stability and currently
eliminate the following undesirable effects of comprehensive models, e.g. rotor flexibility,
gyroscopic effects, etc.
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Fig. 9.1: Geometry of a generic journal bearing with a textured shell
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9.1.1 Mathematical modelling

A simple rotor of effective mass m depicted in Fig. 9.1 is supported on a textured journal
bearing which rotates at prescribed angular speed ω. The rotor is subjected to hydrody-
namic forces, out-of-balance forces and gravity load. If angular misalignment of the rotor is
negligible, its motion can be described by the following equations

[
m 0

0 m

][
ÿ(t)

z̈(t)

]
+

[
ks 0

0 ks

][
y(t)

z(t)

]
=

[
−mg

0

]
+

[
∆mEω2 cos (ω t)

∆mEω2 sin (ω t)

]
+

[
Fhd,y
Fhd,z

]
, (9.1)

where ks is the equivalent stiffness of the system, which includes the stiffness of auxiliary
bearings, shaft and coupling of the shaft to a drive, parameter ∆mE is the static unbalance
of the rotor, g is the gravitational acceleration and Fhd,y, Fhd,z are components of the hydro-
dynamic force. In reality, the auxiliary bearings also induce some damping. This damping is
neglected in this work because it is challenging to evaluate it accurately, unlike the equivalent
stiffness.

A laminar flow of isoviscous incompressible Newtonian fluid and texturing only on the
bearing shell is supposed for pressure field calculation and hydrodynamic force evaluation.
Contrary to a plain journal bearing, the film height presence in the Reynolds equation gov-
erning the pressure field in the textured bearing is a sum of nominal gap hnom = hnom(X, t)
for cylindrical bearing (2.7) and local deviation ∆h = ∆h(X,Z) due to texture. It is assumed
that local deviation ∆h is at least C1 continuous. This condition means that all dimples are
reasonably smooth, i.e. there are no step changes in the bearing gap. If such changes are
present, pressure terms in the Reynolds equation have to be modified, see [79].

For providing stability assessment by Routh-Hourwitz criterion, the investigated system’s
static analysis is first performed to determine equilibrium points and estimate linearised
dynamic coefficients in these positions. Following system of nonlinear equations is obtained
by omitting all time-dependent terms from (9.1)[

ks 0

0 ks

][
yS
zS

]
=

[
−mg

0

]
+

[
Fhd,y
Fhd,z

]
, (9.2)

where yS, zS are the static equilibrium points. Assuming that the journal is in the equilibrium
point (yr, zr), its motion close to the equilibrium point can be approximated with[

m 0

0 m

][
ÿr
z̈r

]
+

[
byy byz
bzy bzz

][
ẏr
żr

]
+

[
kyy + ks kyz
kzy kzz + ks

][
yr
zr

]
=

[
0

0

]
, (9.3)

where yr, zr are small displacements from the equilibrium point, and kij, bij are linear coef-
ficients that approximate oil film stiffness and damping, respectively.
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9.1.2 Bearing parameters

Theoretical results are provided for a journal bearing whose parameters are summarised in
Tab. 9.1. Four examined different bearing layouts, including a plain shell and three textured
shells, are introduced in Tab. 9.1 and Fig. 9.2a–d. In all three cases, textures are located in
the lower half of the bearing and are denoted as follows:

• Layout Q2: the texture covers the convergent area of the bearing gap in the second
quadrant,

• Layout Q3: the texture is located in the third quadrant where the maximum hydrody-
namic pressure is expected,

• Layout Q23: the texture covers the lower half of the bearing.
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(e)

Fig. 9.2: Considered bearing layouts: a) plain bearing, b) layout Q2, c) layout Q3, d) layout
Q23, e) composite and approximated dimple profiles

The textures consist of axisymmetric dimples produced by mechanical indentation with a
steel ball. This procedure results in dimples with a profile shown in Fig. 9.2e. The composite
profile is the average from measured profiles which is than converted to a symmetric curve.
The profile can be further approximated by a Fourier series

∆h ≈− 13.66− 22.7 cos

(
20

3
∆r

)
− 6.385 cos

(
40

3
∆r

)
+ 3.533 cos

(
60

3
∆r

)
+ 0.02469 cos

(
80

3
∆r

)
− 1.298 cos

(
100

3
∆r

)
,

(9.4)

where ∆h [µm] is a local deviation of the bearing gap and ∆r [mm] is a distance from the
dimple centre.
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Parameter Value Unit

Bearing inner diameter 37.933 mm

Bearing length 20 mm

Radial clearance 55 µm

Nominal load 11.87 N

Maximum speed 20000 rpm

Viscosity model (temperature-dependent) 0.1414 · e
640.23

t+89.074 mPa·s
Nominal oil temperature (t) 60 ◦C

Oil inlet pressure (relative) 1, 1.5 bar

Equivalent stiffness of the system 4.2 · 105 N·m−1

Dimple distribution regular grid

Centre-to-centre distance 1 mm

Number of dimples circ. × ax.

– plain bearing 0× 0

– layout Q2 26× 19

– layout Q3 26× 19

– layout Q23 53× 19

Tab. 9.1: Parameters of the considered journal bearing and bearing layouts

9.1.3 Numerical simulations results

The numerical solution of hydrodynamic lubrication between textured surfaces is affected
[97] by several key aspects, including the treatment of cavitation, spatial discretisation and
utilised numerical methods. In addition, the importance of mesh generation concerning the
position of individual dimples are highlighted in paper [97]. There is also concluded that
a mass-conserving treatment is crucial for some theoretical results. However, the influence of
the aspects mentioned above on the calculation of the hydrodynamic forces is not addressed,
which is closely related to the journal equilibrium points and threshold speed.

The finite difference method with direct solver for hydrodynamic pressure was employed
in an in-house software developed to investigate texture effects on system stability. MATLAB
function fsolve was used for determination of equilibrium points. This work is not concerned
with the tribological parameters for which the mass-conserving treatment of flow is essential,
such as friction coefficient, frictional losses or side leakage. Thus, on the one hand, employing
the Gümbel cavitation condition, which violates mass conservation, is beneficial for CPU
time reduction. However, on the other hand, the influence of this condition on the computed
lateral hydrodynamic forces has to be sufficiently small.

A mass-conserving problem [16, 17, 98, 99] describes two quantities: the hydrodynamic
pressure and fill ratio, which must be complementary. The complementarity problem can also
be solved directly or iteratively. A pivoting algorithm [99] for linear complementarity prob-
lems available from MathWorks FileExchange was employed. Unfortunately, this algorithm
cannot be directly applied to meshes with a high number of nodes because of memory restric-
tions in modern workstation PCs. Therefore, commercial software AVL Excite was used to
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validate developed in-house software and prove properties of mass- and non-mass-conserving
problems. AVL Excite is based on the finite element method (FEM) and has a native multi-
grid solver (MG) for hydrodynamic pressure solution and optional both Gümbel and Elrod
cavitation models. The software is still limited by memory access and allows a maximum of
relatively dense mesh of 13×13 nodes per mm2. The texture layout Q2 was chosen for study.
Simulations in AVL Excite were performed in cooperation with Ing. Luboš Smoĺık, Ph.D.

Fig. 9.3 shows that the cavitated regions depicted for the same prescribed equilibrium
point (relative eccentricity ε = 0.0111 and attitude angle θ = 277.73 deg) are sensitive to the
employed numerical algorithm. Furthermore, the regions are not consistent with the used
cavitation model. The Gümbel condition can yield smaller or more extensive areas than
the Elrod equation. However, the Gümbel condition tends to underpredict the formation of
cavitation in the dimples regardless of the employed numerical algorithm.

Fig. 9.3: Comparison of cavitated regions (blue) predicted by various cavitation models for
layout Q2 (in-house software – upper row, AVL – bottom row)

The cavitated regions also affect the journal equilibrium points, see Fig. 9.4a. Calcu-
lated equilibrium points are depicted with a step of 1 krpm for better diagram clarity. At
higher eccentricities, the differences due to the numerical methods (direct and multigrid) are
more significant than the differences due to the cavitation model (Gümbel and Elrod). At
eccentricities close to zero, where the cavitation is more prominent, the equilibrium points
form clusters related to the employed cavitation model. However, using very fine meshes, the
Gümbel condition predicts equilibrium points close to those predicted by the Elrod model.
The importance of the mesh density is highlighted in Fig. 9.4b and c. Coarse meshes can
predict considerably different stability thresholds. The threshold speeds are denoted by cir-
cles. The results obtained at meshes with at least 23×23 nodes per mm2 converge to limit
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values in terms of both equilibrium points and threshold speeds. However, this observation
is limited to the studied texture and should not be generalised to textures with dimples of
different shapes.
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Fig. 9.4: Loci of equilibrium points of layout Q2: a) various numerical algorithms, b) various
mesh densities per per mm2, c) stability thresholds and threshold speeds for various mesh
densities

Based on performed sensitivity analyses, the results presented hereafter are obtained only
using developed in-house software employing FDM with the Gümbel condition on a fine
computational mesh with 25×25 nodes per mm2, i.e. 2861×481 nodes in total. Determined
equilibrium points for the investigated journal bearing with various texture layouts, static
bearing loads and relative supply pressures are shown in Fig. 9.5. The texture located in the
third quadrant (layouts Q3 and Q23) has a moderate influence on the loci, corresponding to
the change of load capacity. This influence is particularly noticeable at higher eccentricities
and higher bearing load. However, the texture layout Q2 affects the equilibrium locus almost
negligibly compared to the plain bearing. This phenomenon is likely caused by the location
of the hydrodynamic pressure gradient (active pressure region) in the third quadrant, where
the bearing gap is minimum.
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Fig. 9.5: Equilibrium points of the investigated journal bearing with various texture layouts,
static bearing loads and relative supply pressures

The texture layouts influence similarly also the threshold speeds. Fig. 9.6 shows that the
texture in the second bearing quadrant (layout Q2) has almost negligible effect on the stabil-
ity of lightly loaded bearing. However, the texture in the third bearing quadrant (layout Q3)
shifts the threshold speed from 17 krpm (plain bearing) to 19.7 krpm, and the texture lay-
out Q23 shifts the threshold speed even more. Nevertheless, the effects of the textures are
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negligible in the case of higher static loads. The vertical axes are depicted in the logarithmic
scale for better loci distinguishing.
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Fig. 9.6: Stability analysis of the investigated journal bearing with various texture layouts
and bearing loads at relative supply pressure 1 bar

Corresponding linearised stiffness and damping coefficients calculated in determined equi-
librium points are shown in Fig. 9.7 and Fig. 9.8, respectively, for nominal static bearing
loads 11.87 N (solid lines) and 118.7 N (dashed lines) at relative supply pressure 1 bar.

For all examined layouts, cross-coupling stiffness coefficients kyz, kzy dominate over the
direct stiffness coefficients. Similarly to the static analysis results, the influence of the texture
located in the third quadrant (layouts Q3 and Q23) and lower static load is more signifi-
cant than in the second quadrant (layout Q2). However, the stiffness coefficients are not
affected identically, and cross-coupling stiffness kyz remains almost unaffected in all cases.
Interestingly, the texture located in the third quadrant behaves similarly to a pressure dam
at really low eccentricities (low loads and high speeds), where the bearing can potentially
have negative vertical stiffness kyy.

The damping coefficients significantly differ at lower rotor speeds due to increased ap-
plied load, but their nominal differences are negligible for different texture layouts. However,
damping coefficients are comparable at higher rotor speeds regardless of the applied load
or texture layout. The only noticeable difference is in the case of coefficient bzz (horizontal
direction), which is increased at the nominal load by application of a texture close to the
maximum hydrodynamic pressure (layouts Q3 and Q23).
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Fig. 9.7: Linearised stiffness coefficients computed for nominal load 11.87 N (solid lines) and
increased load 118.7 N (dashed lines) at relative supply pressure 1 bar
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Fig. 9.8: Linearised damping coefficients computed for nominal load 11.87 N (solid lines) and
increased load 118.7 N (dashed lines) at relative supply pressure 1 bar
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9.2 Experimental validation

The theoretical results of this research were validated using a test rig built during the project
of the Czech Science Foundation No. 17-15915S entitled Nonlinear dynamics of rotating
systems considering fluid film instabilities with the emphasis on local effects. The test rig
was built and experimental measurements were performed by cooperating colleagues at Brno
University of Technology. The recorded data were postprocessed and analysed by author and
colleagues from University of West Bohemia.

9.2.1 Experimental apparatus and materials

The test rig depicted in Fig. 9.9 consists of a rigid steel shaft supported on two journal
bearings composed of horizontally divided shells. The shells can be replaced, which allows
for testing with various texture configurations. A flexible coupling connects the shaft to an
electric motor controlled by a frequency inverter which enables operation up to 20 krpm.
Hydraulic oil (ISO VG 22) is pumped from a lubrication unit to each bearing through a bore
in the lower shell. This unusual bearing layout, also employed by another authors [79, 100],
enables external loading and easy accommodation of a unit for optical measurements. The
drained oil flows back into the reservoir of the lubrication unit, which provides a continuous
oil supply with adjustable oil inlet temperature and pressure.
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Fig. 9.9: Schematic draw of the test rig and photo of the experimental setup

The test rig is equipped with several sensors. A pair of eddy-current displacement trans-
ducers PR 6422 positioned 90◦ apart are situated close to the non-drive end bearing and
connected to 20 kHz eddy current signal converters for measuring the rotor displacement in
the horizontal and vertical directions. Bearing temperatures are measured at the outer side
of the upper shells employing type K thermocouples. The oil pressure and oil temperature
are measured at the inlet to the bearings with a relative pressure transmitter and thermo-
couple, respectively. Finally, the test rig angular speed and angular position are measured
with a built-in rotary encoder in the motor. All signals are acquired by an analogue input
multifunction DAQ and processed in the Labview platform.
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9. Application – textured bearings

9.2.2 Test bearings

Presented experiments are conducted using A22E bimetal bearing shells, which are usually
used in main bearings of internal combustion engines and whose dimensions are shown above
in Tab. 9.1. The shell of 2 mm thickness consists of back steel and Al-12Sn-3Si-1Cu alloy
lining. The inner shell surface contains third-order irregularities due to the machining process,
as shown in Fig. 9.10a. These irregularities are circumferential grooves of depth ca. 3.5 µm,
which are ca. 150 µm apart in the axial direction.
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Fig. 9.10: a) Scan of the plain shell with irregularities due to machining process, b) Scan of
the textured area of the shell, c) Bearing shell after mechanical indentation, d), e) Typical
circumferential and axial profiles of one dimple

Mechanical indentation with a steel ball of 1.2 mm diameter is employed to produce
surface texture. This procedure results in dimples shown in Fig. 9.10b and c. Each dimple
has roughly 555 µm in diameter and is 45–50 µm deep. The indentation procedure leaves
some excessive material at the edge of each dimple, as can be seen in Fig. 9.10d–e. This
excessive material was not removed before experiments.

Tested bearing layouts are shown in Fig. 9.11. In all presented cases, the lower shell is
plain and accommodates a bore for oil supply. The dimples in textured areas are arranged
regularly, with centres 1 mm apart both axially and circumferentially. Such a pattern results
in the approximate coverage area rate of 27 %. Fig. 9.10c indicates that the area up to 12◦

from the shell edge is not textured because of shell mounting in an indentation machine.
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Fig. 9.11: Experimental bearing layouts: a) plain bearing, b) layout Q1, c) layout Q4, d)
layout Q14.

9.2.3 Experimental procedure

The main experiment objective was to determine the threshold speed of the tested bearing
layouts in a controlled and reproducible manner. Moreover, the threshold speed is influenced
[101] by the oil inlet temperature. Therefore, the following steps were proposed to ensure
that the test rig is warmed up thoroughly and the temperatures are stabilised:

1. Determine the bearing centre; set offsets (zero positions) of the proximity transducers.

2. Start the oil circulation system and run up the motor to a moderate speed (1 krpm).
Operation at this speed ensures that the bearing gap is fully flooded, and the influence
of mixed lubrication is negligible.

3. Adjust the oil inlet pressure and temperature, wait until the desired temperature is
reached and the bearing shell temperature stabilises.

4. Start data recording.

5. Increase the rotor speed up to 20 krpm with angular acceleration 20 krpm·min−1.

6. Decrease the rotor speed to 1 krpm and wait until the temperatures are stabilised.

7. Stop data recording and save the data.

8. Repeat or stop the experiment.

9.2.4 Experimental results

Experimental results are depicted in Fig. 9.12 – Fig. 9.16. Each figure consists of records from
both run-up and coast-down, including spectrograms and peak-to-peak envelopes of relative
rotor displacement and time series of bearing and oil temperatures and spectrograms. Similar
procedure of subsynchronous order tracking for threshold speed detection as presented in
Sec. 8.3 was employed.

The journal oscillates synchronously with relatively small and almost constant magni-
tudes caused due to out-of-balance force until it reaches the threshold speed. After surpassing
the threshold speed, oscillations increase, and a subsynchronous component close to 0.5 of
the rotor speed appears. The subsynchronous component can be interpreted as self-excited
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vibration due to the oil whirl. Upon slowly reducing the rotor speed from 20 krpm to 1 krpm,
the oil whirl disappears at a lower threshold speed than developed during the run-up. This
difference indicates possible hysteresis behaviour of the system which has been studied in
[19, 37] and it was proposed an analytical approach for predicting the hysteresis using the
Hopf bifurcation theory. The hysteresis behaviour was previously numerically simulated and
experimentally validated on the laboratory Rotor Kit RK4 in this work in Chap. 8.

It was proved that the hysteresis occurs only in some journal bearings. Here, it is not en-
tirely possible to conclude whether hysteresis occurs or not because the bearing temperatures
differ significantly between the run-up and cost-down. Although the oil inlet temperature
remains practically constant during the experiment, the bearing shell temperature evolves
rapidly due to viscous friction which grows with increasing speed.

In the case of the bearing with layout Q1, there is an apparent subsynchronous resonance
between 3000 and 4000 rpm, see Fig. 9.13 and Fig. 9.15. The resonance is accompanied by
the forward rotor motion. The exact nature of this resonance is not entirely clear and may
be caused due to fluctuations in the oil inlet pressure [A6] or due to transition from mixed
to fully hydrodynamic lubrication [100]. Incidentally, the subsynchronous resonance was
suppressed at higher oil supply pressures, see Fig. 9.16.

Fig. 9.12: Spectrograms of journal vertical displacement and time series of peak-to-peak
envelope and shell temperature for plain bearing and nominal inlet pressure 1 bar
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Fig. 9.13: Spectrograms of journal vertical displacement and time series of peak-to-peak
envelope and shell temperature for bearing with layout Q1 and nominal inlet pressure 1 bar

Fig. 9.14: Spectrograms of journal vertical displacement and time series of peak-to-peak
envelope and shell temperature for bearing with layout Q4 and nominal inlet pressure 1 bar
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Fig. 9.15: Spectrograms of journal vertical displacement and time series of peak-to-peak
envelope and shell temperature for bearing with layout Q14 and nominal inlet pressure
1 bar

Fig. 9.16: Spectrograms of journal vertical displacement and time series of peak-peak enve-
lope and shell temperature for bearing with layout Q14 and nominal inlet pressure 1.5 bar
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Maximum bearing temperatures are summarised in Fig. 9.17 in dependence on the ave-
rage oil inlet temperature. The oil in the circulation system was heating up during the
experiment because the maximum bearing temperature is notably higher than the oil inlet
temperature. The difference is ca. 25 ◦C during run-ups and ca. 30 ◦C during coast-downs.
In theory, these diagrams can reveal the influence of the texture on the total friction in
the system. Here, the results are difficult to interpret, although it appears that layout Q1
(i.e. the texture in the loaded area of the bearing) might reduce the friction losses. On the
contrary, the bearings with the texture in the unloaded area (layouts Q14, Q4) performed
similarly to the plain bearing.
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Fig. 9.17: Comparison of maximum measured bearing temperature in dependence on oil inlet
temperature for different nominal inlet pressure and distinguished for run-up and coast-down
operation. Increasing size of markers denotes the index of repeated measurement

The textures positively influence the peak-to-peak displacement when the fluid-induced
instability is developed. Maximum peak-to-peak displacements are depicted in Fig. 9.18. As
in the previous case, the results are strongly dependent on the bearing temperatures. The
texture in the loaded area (layouts Q1, Q14) of the bearing can reduce vibration by more than
10 % at the given bearing temperature. The texture in the unloaded area (layout Q4) has
certain effect only at the higher oil inlet pressure. Moreover, the fluid-induced instability was
not fully developed in the bearing with layout Q1 supplied at 1.5 bar. In this configuration,
the depicted peak-to-peak displacement corresponds with the synchronous response due to
out-of-balance forces. This behaviour was also observed during several initial measurements
with layouts Q4 and Q14, see Fig. 9.18b.
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Fig. 9.18: Diagram of maximum peak-peak envelope and maximum bearing temperature
for different nominal inlet pressure and distinguished for run-up and coast-down operation.
Increasing size of markers denotes the index of repeated measurement

9.2.5 Comparison of numerical and experimental results

Direct comparison of the threshold speeds obtained computationally and experimentally
is shown in Fig. 9.19. Here, the results are depicted in dependence on both the bearing
shell temperature and the oil inlet pressure. Since both these parameters evolve during the
experiment, the displayed data represent current values when the threshold speed is detected.

Constant journal speed is assumed for the numerical assessment of the stability to reduce
computational costs. Since the experimental results are obtained with the changing journal
speed, the experimental results differ from the numerical results. Influence of the journal
angular acceleration on the threshold speed is studied in previous Sec. 5.5 and it is concluded
that the threshold speed under unsteady conditions is higher than under the steady-state
conditions. This conclusion is in line with the presented comparison in Fig. 9.19.

Threshold speed shift during experimental run-up relatively to computational results is
apparent in the case of the plain bearing and layouts Q1 and Q4. Moreover, the experimental
data show the same relationships between the temperatures and threshold speeds as the
theoretical prediction. The system also exhibits the hysteresis behaviour mentioned above
and discussed in [37]. The hysteresis phenomenon is likely present also in the case of the Q14
layout. In this case, however, some experimentally determined threshold speeds are lower
than expected. The oil inlet pressures partially caused this discrepancy because they were
measured lower than nominal values 1.0 and 1.5 bar used in simulations. Other inaccuracies
are probably present due to the isoviscous approximation. The isoviscous approximation
returns a reasonable estimate of rotor dynamics if the converging part of the bearing gap
is smooth and the oil inlet flow is higher than the bearing leakage. Here, thermodynamic
effects due to the texture are apparently not negligible.
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Fig. 9.19: Comparison of calculated threshold speeds with detected rotor speed at the begin-
ning of fluid-induced instability during experiments for various bearing geometries. Run-up
and coast-down operations are distinguished by different marker. Colour order depicts the
value of inlet pressure at the moment of threshold speed detection

9.3 Results summary

Although the use of the Gümbel condition for cavitation modelling might appear inappropri-
ate, it is demonstrated that errors due to non-conservation of mass are of the same magnitude
as uncertainties due to employed numerical methods. Furthermore, the results converge to
their limit values at very fine meshes at which the solution of the Elrod equation is very
time-consuming. Therefore, the Gümbel condition can be used only for dynamics simulation
and not for mass-related tribological parameters such as bearing leakage or power losses.

Based on the theoretical results, the textures produced by the indentation method can
be used to improve the stability of lightly loaded journal bearings. The most effective tested
layouts are textured close to the minimum oil film thickness. This observation qualitatively
corresponds with works [63, 64, 102]. The theoretical threshold speed depends strongly on
the density of the computational mesh. The presented simulations employ the mesh with
1.38 · 106 nodes, which is ten to a hundred times more than in other contemporary works
employing the finite difference method [64, 103, 67].

Theoretical results have been successfully validated experimentally. The experimental
results suggest that some textured bearings cannot be considered isoviscous even if they are
well lubricated and only lightly loaded. In summary, the experiments show that texturing
in the loaded area (tested layouts Q1, Q14) noticeably improves the stability of the lightly
loaded journal bearings. Effects of textures in the unloaded area (tested layout Q4) are
minor, although they also improve stability.
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10 Conclusions

Several key points of this dissertation were stated in the introduction. This final chapter
summarises each research topic and concludes obtained results.

10.1 A unified and comprehensive model for various

bearing types

The basis of the hydrodynamic lubrication theory is introduced and briefly described in
Chap. 2. It includes various Reynolds equation forms, boundary and cavitation conditions,
integration of the pressure field to evaluate the hydrodynamic force and, finally, the process
of hydrodynamic force linearisation to estimate dynamic coefficients. The stability analysis
of the 2 DoF rotor-bearing model is performed based on the Routh-Hourwitz criterion.

The theoretical background for cylindrical bearings is extended and applied for various
journal bearing types, including fixed-bearing geometry and tilting pad journal bearings.
This unified and comprehensive modelling of various journal bearing types is presented in
Chap. 3. This thesis proposed a general planar model of the bearings with rigid bearing shells
(pads) carried by flexible pivots or fixedly oriented concerning the bearing centre. The model
is developed using two key features which allow a simplistic formulation of the mathematical
model without compromising its nonlinear properties:

• Equations of motion for each pad are formulated in an auxiliary coordinate system
with the origin in a pivot point. The usage of the auxiliary coordinate system enables
direct modelling of elastic contact between the journal and the pad, which simplifies
the formulation of equations of motion.

• The Reynolds equation describing the pressure field on the particular pad is defined
in a local coordinate system that moves together with the pad. The system origin is
positioned so that simple formula for the gap in the cylindrical journal bearing can
describe the gap between the journal and the pad. This simple formula can also be
employed if the pad is preloaded and supported on the flexible pivot.

A detailed step-by-step discussion regarding the model formulation is provided. However,
this work does not discuss other possible topics, including hydrodynamic lubrication in the
turbulent regime, thermodynamics, influence of elastic deformations and kinematics of some
advanced pivot designs such as ball-in-socket. Nevertheless, the proposed approach can be
easily reproduced and further extended because the role of these phenomena in the cylindrical
journal bearings have been extensively discussed.
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10.2 Development of the complex in-house software

The presented generalised computational model for various bearing types is implemented
into an in-house software written in MATLAB. The software is based on the finite difference
method to solve the hydrodynamic pressure, evaluate the hydrodynamic force and estimate
the linearised dynamic coefficients. In addition, it also contains several alternative modules
resulting from the analytical solution of the hydrodynamic force and stiffness and damping
coefficients. The software can perform static and stability analysis, time domain simulations,
including steady-state simulations or run-up and coast-down operations simulations.

Chap. 4 is focused on the analytical closed-form solutions and numerical implementation
of hydrodynamic lubrication problems employing the finite difference method.

The analytical software module consists of adopted closed-forms of the hydrodynamic
force of limit bearing cases and finite length bearings, corresponding linearised dynamic co-
efficients and linearised stiffness and damping coefficients for finite length bearings originally
derived by author (Appendix A).

The numerical procedure implementation is introduced very instructively and quickly
reproducible. Despite analytical approach modelling, the numerical approach allows various
boundary conditions, e.g. oil supply represented by supplied pressure. The properties of the
finite difference method are investigated in Chap. 5. In the case of the fixed coordinate system
used for the Reynolds equation formulation, the jumps related to the mesh density in the
circumferential direction occur in equilibrium points and linearised dynamic coefficients. The
computational time costs were improved with the compiling into the mex format.

All numerical simulations presented in this thesis were performed in the developed in-
house software.

10.3 Numerical simulations for various bearing types

The linearised dynamic coefficients of the cylindrical journal bearing calculated by the ana-
lytical and numerical approach and the threshold speed resulting from the stability analysis
are compared in Chap. 5. The results show that the infinitely short journal bearing model
and its correction for the finite length bearings satisfy the solution by the finite difference
method across a wide range of length-to-diameter ratios and rotor speed. The analytical
models based on the infinitely long journal bearing differ from other solutions for relative
eccentricity lower than 0.5. In addition, analytical models have significantly reduced compu-
tational demands compared to the finite difference method.

Next, a simple 2 DoF rotor-bearing system with cylindrical journal bearing is investi-
gated in transient simulations with various design parameters, angular accelerations, and
static unbalances, see Chap. 5. The threshold speeds are distinguished into two boundaries:
first, the speed when the instability starts to develop, and second, the speed when the insta-
bility is fully developed. The threshold speed detection is provided automatically from the
time series. The fluid-induced instability is developed at higher rotor speed with increasing
angular acceleration. The area width between both threshold speeds continually decreases
with decreasing angular acceleration. Theoretically, for infinitely long run-up, the threshold
speed identifies with the analytically established borderline. In the case of applied static
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unbalance, a period-doubling region occurs before reaching threshold speed. The bifurcation
then disappears with increased rotor speed. The width of this region and oscillations increase
with the increasing magnitude of static unbalance. In addition, the static unbalance in the
system also influences the threshold speed of the fluid-induced instability.

The fixed-profile journal bearing, such as elliptical and offset halves bearings, are analysed
in Chap. 6. Firstly, the computational model of elliptical journal bearings based on the
generalised planar model is successfully validated with reference data [38]. Then, the steady-
state simulations is performed to analyse the stability. Interestingly, the system response
to the harmonic excitation due to applied static unbalance significantly differ for various
static loads. The unstable regime’s response irregularly changes from quasiperiodic motion
to N -periodic motion, and occasionally multiple period-doubling occurs after surpassing the
threshold speed. Presented bifurcation diagrams, spectrograms, phase portraits and Poincaré
maps describe this behaviour. For several static loads and unbalances cases, the quasiperiodic
motion has a dominant subsynchronous variable component in the range ca. 0.42X–0.51X
with increasing rotor speed. Examined period-doubling bifurcation in cylindrical journal
bearings also exists in elliptical and offset halves journal bearing before reaching the threshold
speed.

The proposed comprehensive approach in journal bearing modelling is used to investigate
the behaviour of tilting pad journal bearings in Chap. 7 where the four-segment tilting pad
journal bearing in load-between pad configuration with flexible pivots is analysed. First, sim-
ilar to the fixed-profile journal bearings, the model is successfully validated with reference
data [38] and other research journal articles. Next, the steady-state response to harmonic
excitation is shown. An obtained complex pad’s motion is analysed with spectrograms, bifur-
cation diagrams, Lyapunov exponents, phase trajectories and waveforms of the interaction
forces. It is observed that the excessive pad preload strengthen interactions between individ-
ual subsystems. Interestingly, the preloaded upper pads exhibit period-doubling or chaotic
motion. The motion of the upper pads depends on the position of pivots and undesirable
single-sided impacts of the pad’s edge to the journal occur. Decreased assembled clearance
has a stabilising effect on lightly loaded pad 2 and pad fluttering disappears.

10.4 Textured journal bearing and stability analysis

The previously developed models and methods are extended for the modelling of textured
journal bearings. Cylindrical textured journal bearings with dimples produced by ball in-
dentation are investigated in Chap. 9. Several texture layouts are analysed for the texture
influence on the stability threshold speeds. Based on the numerical simulations, it is stated
that the proposed texture positively influence the threshold speed. If the texture is located
in the convergent part of the bearing gap close to minimum film thickness, the trajectory is
significantly different and the instability develops at a higher rotor speed. Another observa-
tion is stated for computational demands in textured bearing modelling. It is necessary to
use a very dense mesh for hydrodynamic pressure calculation compared to plain cylindrical
bearings. For this reason, the transient simulations are ineffective in computational time
costs as well as employing of time-consuming mass-conserving cavitation conditions.
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10.5 Experimental validation

The first experimental validation is performed on the Bently Nevada RK 4 Rotor Kit in
Chap. 8. This experimental measurement is focused on the influence of angular acceler-
ation and deceleration on unstable behaviour development and threshold speed hysteresis
behaviour. For direct comparison with numerical simulations, two models, a simplified 2 DoF
rotor-bearing model and a comprehensive model with a flexible shaft and other couplings, are
implemented in the in-house software. The hysteresis loop widths obtained from both exper-
imental and computational approaches are comparable. The nominal experimental threshold
speeds are lower than examined from numerical simulations. However, the difference is still
reasonable due to the problematic test-rig parameter identification, test-rig assembling mis-
alignment, the supply pressure fluctuation, temperature-dependent lubricant parameters.

The second experimental validation of the proposed computational model is provided
for textured journal bearing stability investigation. The results of the analyses with de-
tailed test-rig descriptions are written in Chap. 9. The experimental measurements and the
numerical results qualitatively show that the texturing close to minimum film thickness no-
ticeably improves the fluid-induced instability but the angular acceleration effect should be
considered. Furthermore, the texture present in the loaded area reduces the vibrations when
the fluid-induced instability is developed. The textures located in the unloaded area still
but minorly positively affect the stability. Finally, the experimental results reveal that the
isoviscous lubricant approximation in texturing applications is not negligible.

10.6 Original contributions of this thesis

The presented thesis focuses on developing and implementing the comprehensive model of
various journal bearing types and investigating their behaviour in terms of mutual interaction
with the rotor and system stability assessment. The original contributions in the research of
the rotating systems supported on the various journal bearing are summarised as follows:

• The unified and comprehensive modelling approach of various journal bearing types
with possible elastic contact between the journal and the bearing parts was devel-
oped and described in detail. This modelling approach was successfully validated with
reference data [38], and also peer-reviewed in the author’s journal article [A7].

• Based on the presented theory in the thesis, the complex in-house software was im-
plemented to determine the equilibrium points, assess the system stability based on
various criteria (tools) and perform the transient simulations.

• Original contribution in the field of analytical approach is the derivation of the closed-
form linearised stiffness and damping coefficients for plain cylindrical finite length
bearings. These formulae were also published by the author in [A2] and then used to
assess the stability of turbochargers supported on the floating-ring bearings [A5].

• The analytical and numerical (finite difference method) methods were compared and
studied their properties and suitability for chosen applications. The influence of angular
acceleration on the fluid-induced instability was published in journal article [A8].
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• The influence of the angular acceleration/deceleration and hysteresis behaviour was
experimentally validated using the Bently Nevada RK 4 Rotor Kit.

• The period-doubling bifurcation in the fixed profile journal bearing before reaching
the threshold speed was investigated. In addition, the irregular changes between the
N -periodic motion and quasiperiodic journal response were documented.

• The pad fluttering phenomenon with single-sided impacts and its origin and char-
acteristic was analysed and described in the thesis. The simulations reveal that the
tilting pad journal bearings can be operated above pad fluttering, and new equilib-
rium branches of the system can be found during the operations. This topic was also
investigated and published in author’s publications [A7, A9].

• Contrary to research articles related to the journal bearing texturing, the numerical
simulations performed in the dissertation show that using a significantly denser compu-
tational mesh in evaluating the hydrodynamic force and threshold speeds is necessary
to converge to their limit values.

• It was computationally and experimentally validated that the proposed texture pro-
duced by ball indentation and located close to the minimum film thickness positively
influenced the system stability and shifted the thresholds speed upwards. The texture
present also reduced the rotor vibrations when fluid-induced instability was developed.

The author published particular research topics at the conferences, in the proceedings
and their list is attached in the dedicated part of the bibliography.

10.7 Future research

Based on the presented topics and actual research, this work can be further enhanced and
specified by the following research tasks:

• Implementation of mass-conserving algorithm and enhanced cavitation modelling

• Temperature-dependent lubricant parameters and heat exchange with solid parts

• Calculation of tribological parameters, e.g. friction losses, bearing leakage, oil film
starvation etc.

• Suppression of undesirable phenomena in tilting pad journal bearings that cause fatal
damage to their parts

• Improvement of numerical methods to reduce computational costs, e.g. using artificial
neural networks [B16]

• Application of developed computational tools in thrust bearings and combined bearings
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[A5] Š. Dyk, L. Smoĺık, J. Rendl, Predictive capability of various linearization approaches for
floating-ring bearings in nonlinear dynamics of turbochargers, Mechanism and Machine
Theory 149 (2020) 103843.
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Ústav fyziky materiál̊u AV ČR, v.v.i., 2017, pp. 109–112.
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A Appendix – analytical methods

Polynomial functions in (4.7) – (4.10) were derived [28] for both limited cases of journal
bearings as follows

f IS1 (λ) = 0.5298λ3 − 2.983λ2 + 6.084λ− 5.046, (A.1a)

f IS2 (λ) = 0.2610λ4 − 2.122λ3 + 6.673λ2 − 10.13λ+ 7.252, (A.1b)

f IS3 (λ) = 0.1934λ3 − 1.135λ2 + 2.633λ− 2.933, (A.1c)

f IS4 (λ) = −0.0261λ3 + 0.2953λ2 − 1.070λ+ 1.517, (A.1d)

gIS1 (λ) = 0.3479λ4 − 1.983λ3 + 3.913λ2 − 2.595λ− 0.5057, (A.1e)

gIS2 (λ) = −0.1890λ4 + 0.9467λ3 − 1.417λ2 + 0.2101λ+ 0.6514, (A.1f)

gIS3 (λ) = 0.0592λ3 − 0, 2005λ2 − 0.1118λ+ 0.9485, (A.1g)

f IL1 (λ) = 0.4818λ5 − 3.361λ4 + 9.014λ3 − 11.07λ2 + 4.365λ+ 0.8131, (A.2a)

f IL2 (λ) = −0.512λ5 + 3.501λ4 − 9.102λ3 + 10.48λ2 − 2.509λ− 1.38, (A.2b)

f IL3 (λ) = 0.0518λ3 − 0.0079λ2 − 1.3λ+ 0.8953, (A.2c)

f IL4 (λ) = −0.1161λ2 + 0.7893λ− 0.2410, (A.2d)

gIL1 (λ) = −0.2022λ4 + 1.241λ3 − 2.757λ2 + 2.38λ− 0.0929, (A.2e)

gIL2 (λ) = 0.1420λ4 − 0.8147λ3 + 1.622λ2 − 1.141λ− 0.0513, (A.2f)

gIL3 (λ) = −0.0336λ3 + 0.0855λ2 + 0.2418λ− 0.0267, (A.2g)

where λ = L/(2R). Stiffness and damping coefficients determined by linearisation process
are written in the closed form for all analytical computational models, i.e. infinitely short
(IS – formulae (A.3)), infinitely long (IL – formulae (A.4)) and their corrected models (IScor
– formulae (A.5), ILcor – formulae (A.6)).
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B Appendix – solution strategy

A flowchart describing the solution strategy and the order of calculation steps inside the
used solver is depicted in Fig. B.1. The depicted flowchart shows only the inner part of the
loop in the k-th iteration step. An output function is different for each type of each analysis
and has the following form with respect to the notation used in (3.1):

1. Static analysis – Static equilibrium points q = [qr,qp]
T are determined if f(q) = 0.

The residuum function is defined as follows

f(q) =

[
fg,r + fc,r
fg,r + fc,p

]
. (B.1)

2. Analysis of dynamics – The system of the second order differential equations (3.1)
is transformed to the system of the first order differential equations using the mass
identity[
Mr 0

0 Mp

][
q̇r
q̇p

]
−

[
Mr 0

0 Mp

][
q̇r
q̇p

]
=

[
0

0

]
. (B.2)

The resulting system is solved for state-space vector x(t) = [q̇r(t), q̇p(t),qr(t),qp(t)]
T .

The derivative of the state-space vector, which is evaluated in each iteration step of
solver ode15s, can be written in the matrix form

ẋ(t) =


[
Mr 0

0 Mp

]−1([
fg,r
fg,p

]
+

[
fun
0

]
+

[
fc,r
fc,p

])
q̇r
q̇p

 . (B.3)
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Appendix

Pads i = 1 : N

Contact detection (3.11)

Position ei , γi calc. (3.3) → oil film height hi calc. (3.2)

Pressure pi calc. and cavitation BC (3.22) → hd force Fhd,i calc. (3.16),(3.17)

Update of forces in RHS (3.5)-(3.9)

Evaluation of output function in the k-th iteration step of used solver

-
+

Contact force Fcf,i calc. (3.12),(3.13)

ωk, decomposition qk-1, qk-1→ qr
k-1, qr

k-1, qp
k-1, qp

k-1

+

Fig. B.1: Flowchart of solution strategy inside of used numerical solver

131



Shrnut́ı

Disertačńı práce je zaměřena na matematické modelováńı rotorových systému s kluznými
ložisky a detailńı vyšetřováńı vlivu jednotlivých typ̊u ložisek a jejich vlastnost́ı na výsledné
chováńı rotorového systému. V práci je představen komplexńı model radiálńıho kluzného
ložiska, jehož vhodnou modifikaćı lze modelovat všechny běžně použ́ıvané typy ložisek. Sou-
časně je formulována metodika modelováńı interakce mezi rotorem a částmi ložiska a meto-
dika vyšetřováńı stability systému.

V úvodńı části práce je postupně odvozen komplexńı model radiálńıho kluzného ložiska.
V př́ıpadě ložiska s naklápěćımi segmenty je pohyb dokonale tuhých segment̊u uložených
viskoelastickou vazbou k rámu předpokládán jako rovinný. Prouděńı maziva v ložiskové
mezeře je popsáno Reynoldsovou rovnićı, jej́ımž řešeńım je neznámé tlakové pole. Tlakové
pole je pro každý segment nebo d́ılč́ı pánev pevného ložiska řešeno zvlášť. Dı́ky vhodně
zavedeným souřadnicovým systémům pevně spojených se segmenty a transformaćı polohy
rotoru je ložisková mezera aproximována předpisem pro mezeru válcového ložiska. Pokud
neńı mezi rotorem a segmentem vytvořen nosný olejový film, tak jsou hydrodynamické śıly od
tlakového pole nahrazeny elastickými silami, které vzniknou v d̊usledku vzájemného kontaktu
pevných část́ı systému. Posuzováńı stability systému je realizováno s využit́ım koeficient̊u
tuhosti a tlumeńı plynoućıch z linearizace hydrodynamické śıly.

Hlavńı metodou pro řešeńı Reynoldsovy rovnice v této práci je metoda konečných dife-
renćı, kterou je možné aplikovat na všechny typy ložisek, tj. válcová, eliptická, přesazená
a ložiska s naklápěćımi segmenty. Vlastnosti této metody jsou vyšetřovány pro válcové
ložisko. Metoda konečných diferenćı umožňuje zahrnout do výpočtového modelu př́ıvodńı
drážky a otvory včetně změny profilu pánve źıskané např́ıklad texturováńım. Pro limitńı
př́ıpady Reynoldsovy rovnice, tj. aproximace nekonečně krátkým a dlouhým válcovým ložis-
kem, existuje řešeńı v uzavřeném tvaru. K výpočtu hydrodynamických sil pro ložisko konečné
délky jsou využity korekčńı polynomy. Z korigovaných hydrodynamických sil jsou pak nově
odvozeny koeficienty tuhosti a tlumeńı pro ložisko konečné délky.

Modely válcového ložiska, texturovaného válcového ložiska, ložiska s pevným profilem
i naklápěćımi segmenty byly implementovány do vlastńıho programového vybaveńı vytvoře-
ného v systému MATLAB. Pomoćı softwaru jsou prováděny statické analýzy, posuzovańı sta-
bility a simulace odezvy systému v časové oblasti na harmonické buzeńı od rotuj́ıćı nevývahy
ale i přechodové simulace pro rozběh a doběh systému. Simulované odezvy jsou analy-
zovány pomoćı nástroj̊u: detekce prahových rychlost́ı, bifurkačńı diagramy, rychlá Fourierova
transformace, fázové portréty a Poincarého zobrazeńı. Výsledky z vlastńıho programu jsou
pro ložiska s pevným profilem a naklápěćımi segmenty validovány pomoćı referenčńıch dat
z odborné literatury. Model válcového ložiska a texturovaného ložiska je porovnán s ex-
perimentálńım měřeńım na Bently Nevada RK 4 Rotor Kit, resp. na zkušebńım zař́ızeńı
vyrobeném v rámci projektu GA ČR.

Vytvořený model a metodika modelováńı r̊uzných typ̊u ložisek je snadno rozšǐritelná
a může být zpřesněna o daľśı jevy vyskytuj́ıćı se při hydrodynamickém mazáńı.
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Résumé

This thesis is focused on the mathematical modelling of rotating systems with journal bear-
ings and detailed investigation of particular journal bearing types and their effects on rotating
system’s behaviour. First, a complex model of a radial journal bearing is introduced for mod-
elling of typically used journal bearing types. Concurrently, the modelling methodology of
mutual interaction between the rotor and bearing parts and methodology of system stability
assessment are formulated.

The complex model of a radial journal bearing is derived step-by-step in the first part
of the thesis. For the case of tilting pad journal bearings, the motion of the rigid pad sup-
ported on the visco-elastic support is supposed to be planar. The Reynolds equation governs
unknown pressure field in the lubricant circulating in the bearing gap. The pressure field is
calculated for each pad or particular bearing shell separately. Defined coordinate systems
fixedly attached to the pads allow the description of the bearing gap by formulae for cylin-
drical journal bearings. If the load-carrying oil film between the rotor and the pad is missing,
the hydrodynamic forces are substituted by elastic forces, which are developed due to solid
contact of rigid parts of the system. System stability assessment is realised using stiffness
and damping coefficients resulting from the linearisation of the hydrodynamic force.

The primary method for solving the Reynolds equation in the thesis is the finite difference
method applicable for all bearing types, i.e. cylindrical, elliptical, offset halves and tilting pad
journal bearings. Properties of this method are investigated for the cylindrical journal bear-
ing. In addition, the finite difference method is suitable for computationally implementing
supply bores and grooves and bearing profile changes produced by bearing shell texturing.
For limit cases of the Reynolds equation, i.e. approximation by the infinitely short and long
bearing, the solution in the closed-form exists. Evaluating the hydrodynamic force for the
finite-length bearing is performed using the correction polynomial functions. The stiffness
and damping coefficients for the finite-length bearings are derived based on the corrected
hydrodynamic forces.

Computational models of cylindrical bearing, textured cylindrical bearing, bearings with
fixed-profile and tilting pads were implemented into an in-house software written in MATLAB.
The software can perform the static analysis, system stability assessment and simulations
in the time domain of the rotor response to the harmonic excitation due to out-of-balance
force and transient simulations for run-up and coast-down operations. Simulated responses
are analysed using the following tools: threshold speed detection, bifurcation diagrams, fast
Fourier transform, phase portraits and Poincaré maps. Results obtained from the in-house
software are validated for fixed-profile journal bearings and tilting pad journal bearings with
reference data in research publications. The cylindrical bearing and textured bearing models
are validated with experimental measurement of the Bently Nevada RK 4 Rotor Kit and
test rig built during the Czech Science Foundation project, respectively.

The presented model and modelling methodology of various bearing types is extendable
and can be specified by other phenomena related to hydrodynamic lubrication.
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