
Západočeská Univerzita v Plzni
Fakulta Aplikovaných Věd

Katedra Kybernetiky

Př́ıstup ke sńıžeńı výpočetńı náročnosti
systémů rozpoznávaj́ıćıch prostřed́ı

mobilńıho robota

DISERTAČNÍ PRÁCE

k źıskáńı akademického titulu doktor
v oboru Kybernetika

Ing. Petr Neduchal

Školitel: Doc. Ing. Miloš Železný, Ph.D.

Plzeň, 2021

University of West Bohemia
Faculty of Applied Sciences

Department of Cybernetics

Approach for reducing the computational
cost of environment classification systems

for mobile robots

DOCTORAL THESIS

submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy in the field of
Cybernetics

Ing. Petr Neduchal

Advisor: Doc. Ing. Miloš Železný, Ph.D.

Plzeň, 2021

Acknowledgments

I would like to thank to all people who supported me in my studies. First of all, I want to
thank my adviso Doc. Ing. Miloš Železný Ph.D. Second special thanks go to my colleague
Miroslav Fĺıdr Ph.D. for his valuable advice on my study topic. The third thank goes to all
the colleagues in our department for the support and encouragement they provided.

Finally, I would thank my wife, my daughter, my family, and my friends for their psychological
support and for all that moments when I could forget about the worries associated with
studying. These moments helped me relax and increased my morale.

Abstrakt

Disertačńı práce se věnuje problému změny prostřed́ı v úlohách mobilńı robotiky. Zaměřuje se
na využit́ı jednodimenzionálńıch nevizuálńıch senzor̊u za účelem redukce výpočetńıch nárok̊u.
V práci je představen nový systém pro detekci a klasifikaci prostřed́ı robota založený na
datech z kamery a z nevizuálńıch senzor̊u. Nevizuálńı senzory zde slouž́ı jako prostředek
detekce prob́ıhaj́ıćı změny, která iniciuje klasifikaci prostřed́ı pomoćı kamerových dat. To
může významně sńıžit výpočetńı nároky v porovnáńı se situaćı, kdy je zpracováván každý
a nebo každý n-tý sńımek obrazu. Systém je otestován na př́ıpadu změny prostřed́ı mezi
vnitřńım a venkovńım prostřed́ım.

Př́ınosy této práce jsou následuj́ıćı: (1) Představeńı systému pro detekci a klasifikaci prostřed́ı
mobilńıho robota; (2) Analýzu state-of-the-art v oblasti Simultánńı Lokalizace a Mapováńı
za účelem zjǐstěńı otevřených problémů, které je potřeba řešit; (3) Analýza nevizuálńıch sen-
zor̊u vzhledem k jejich vhodnosti pro danou úlohu. (4) Analýza existuj́ıćıch metod pro de-
tekci změny ve 2D signálu a představeńı dvou jednoduchých př́ıstup̊u k tomuto problému; (5)
Analýza state-of-the art v oblasti klasifikace prostřed́ı se zaměřeńım na klasifikaci vnitřńıho
a venkovńıho prostřed́ı; (6) Experiment porovnávaj́ıćı metody studované v předchoźım bodu.
Jedná se dle mých znalost́ı o nejrozsáhleǰśı porovnáńı těchto metod na jednom jediném
datasetu. Nav́ıc jsou do experimentu zahrnuty také klasifikátory založené na neuronových
śıt́ıch, které dosahuj́ı lepš́ıch výsledk̊u než klasické př́ıstupy; (7) Vytvořeńı datasetu pro
testováńı navrženého systému na sestaveném 6-ti kolovém mobilńım robotu. Podle mých
znalost́ı do této doby neexistoval dataset, který by kromě dat potřebných k řešeńı úlohy
SLAM, náıc přidával data umožňuj́ıćı detekci a klasifikaci prostřed́ı i pomoćı nevizuálńıch
dat; (8) Implementace představného systému jako open-source baĺık pro Robot Operating
System na platformě GitHub; (9) Implementace knihovny pro výpočet globálńıho popisovače
Centrist v C++, taktéž dostupná jako open-source na platformě GitHub.

Kĺıčová slova

Detekce prostřed́ı klasifikace prostřed́ı, mobilńı robotika, simultánńı lokalizace a mapováńı,
senzory, strojové učeńı

Abstract

This dissertation thesis deals with the problem of environment changes in the tasks of mobile
robotics. In particular, it focuses on using of one-dimensional non-visual sensors in order to
reduce computation cost. The work presents a new system for detection and classification of
the robot environment based on data from the camera and non-visual sensors. Non-visual
sensors serve as detectors of ongoing change of the environment that initiates the classification
of the environment using camera data. This can significantly reduce computational demands
compared to a situation where every or every n-th frame of an image is processed. The system
is evaluated on the case of a change of environment between indoor and outdoor environment.

The contributions of this work are the following: (1) Proposed system for detection and
classification of the environment of mobile robot; (2) State-of-the-art analysis in the field of
Simultaneous Localization and Mapping in order to identify existing open issues that need to
be addressed; (3) Analysis of non-visual sensors with respect to their suitability for solving
change detection problem. (4) Analysis of existing methods for detecting changes in 2D signal
and introduction of two simple approaches to this problem; (5) State-of-the-art analysis in
the field of environment classification with a focus on the classification of indoor vs. outdoor
environments; (6) Experiment comparing the methods studied in the previous point. To my
best knowledge, this is the most extensive comparison of these methods on a single dataset.
In addition, classifiers based on neural networks, which achieve better results than classical
approaches, are also included in the experiment. (7) Creation of a dataset for testing the
designed system on an assembled 6-wheel mobile robot. To the best of my knowledge, there
has been no dataset that, in addition to the data needed to solve the SLAM task, adds
data that allows the environment to be detected and classified using non-visual data. (8)
Implementation of the proposed system as an open-source package for the Robot Operating
System on the GitHub platform. (9) Implementation of a library for calculating the Centrist
global descriptor in C++ and Python. Library is also available as open-source on the GitHub
platform.

Keywords

Environment detection, Environment Classification, Mobile robotics, Simultaneous Localiza-
tion and Mapping Sensors, Machine learning

Declaration

Hereby I declare that I compiled this Ph.D. thesis independently, using only the listed liter-
ature and resources.

In Pilsen,

Contents

1 Introduction 1

1.1 Simultaneous Localization and mapping . 2

1.2 Robot Perception . 3

1.3 Environment Detection And Classification . 4

1.4 Thesis Outline . 5

2 Simultaneous Localization And Mapping 6

2.1 Introduction to SLAM . 6

2.1.1 Information Extraction . 7

2.1.2 Data Association . 8

2.1.3 Loop Closure . 8

2.1.4 Motion Model of the Vehicle . 9

2.1.5 Map generation . 9

2.2 The classic definition of SLAM . 10

2.2.1 Two-step recursive algorithm . 10

2.3 Approaches based on the classic definition . 12

2.3.1 EKF-SLAM . 12

2.3.2 UKF-SLAM . 14

2.3.3 SEIF-SLAM . 16

2.3.4 Particle Filter SLAM . 18

2.4 Optimization based SLAM . 22

2.4.1 Nonlinear Least Squares . 22

2.4.2 Graph SLAM . 23

2.5 Robot platform . 26

2.5.1 Ground vehicle . 26

2.5.2 Aerial vehicles . 27

2.5.3 Underwater vehicles . 27

2.5.4 Handheld devices . 27

2.6 Sensors . 28

2.6.1 Non-vision . 28

2.6.2 Vision sensors . 29

2.6.3 Support sensors . 32

I

CONTENTS CONTENTS

2.7 Available open source tools, implementations and datasets 33

2.7.1 Tools . 33

2.7.2 SLAM Implementations . 35

2.7.3 Using of SLAM solving systems . 36

2.7.4 Datasets . 37

2.8 State of the Art . 41

2.8.1 Non-vision . 41

2.8.2 Vision based approaches . 44

2.9 Open Problems . 51

2.9.1 Open Problems of the SLAM . 52

2.9.2 Practical applications . 55

3 Disseration goals 58

3.1 Motivation . 58

3.2 Formulation of tasks behind defined goals . 59

4 Environment Change Detection and Classification 61

4.1 Environment Change Detection . 61

4.1.1 Supervised methods . 63

4.1.2 Unsupervised methods . 64

4.2 Image-Based Environment Classification . 66

4.2.1 Classification . 66

4.2.2 Classic classification approaches . 74

4.2.3 Neural nets based approaches . 79

4.2.4 Datasets . 80

4.3 Environment classification system – related work 81

5 Environment classification system 82

5.1 Problem statement . 82

5.2 Proposed system concept . 82

5.2.1 Environment Change Detection Module 83

5.2.2 Image Based Environment Classification 86

5.2.3 Robot Behaviour Adaptation Module 87

5.3 Hardware . 87

5.3.1 Robot Chassis . 87

5.3.2 T-rex controller board . 88

5.3.3 On-board computer and software . 89

5.3.4 Equipped sensors . 89

5.3.5 Software equipment of the robot . 92

5.4 Dataset . 92

5.4.1 Recording . 92

II

CONTENTS CONTENTS

5.4.2 Description of recorded data . 92

5.5 Implementation notes . 93

6 Experiments 95

6.1 Environment change detection . 95

6.1.1 Description of used sensors . 95

6.1.2 Trigger generation . 99

6.1.3 Experiment discussion . 100

6.1.4 Computational cost . 103

6.2 Multilayered map generation . 104

6.3 Environment Classification . 106

6.3.1 Dataset . 106

6.3.2 Classic approaches . 107

6.3.3 Neural nets . 110

6.3.4 Edge detection experiment . 113

6.4 Proposed system design test . 114

6.4.1 Qualitative evaluation . 114

6.4.2 Quantitative evaluation . 124

7 Conclusion 129

7.1 Thesis summary . 129

7.2 Discussion on defined goals and experiment results 130

7.3 Future work . 132

III

List of Tables

2.1 Available SLAM implementations. 36

2.2 Available SLAM datasets . 40

4.1 Available Scene classification datasets . 81

6.1 Edge Detection Speed Comparison . 104

6.2 Basic scheme results comparison . 108

6.3 Multi-scale scheme results comparison . 109

6.4 Two-stage scheme results comparison . 110

6.5 Neural networks results comparison . 112

6.6 Classic approach speed comparison . 112

6.7 Neural Networks Speed comparison . 113

6.8 Edge Detection Results Comparison . 113

6.9 Average accuracy on recorded dataset . 125

6.10 Average runs per second on recorded dataset 126

IV

List of Figures

2.1 SLAM principle . 7

2.2 Maps generated by SLAM solving algorithms. 10

2.3 Spring network analogy . 11

2.4 Convergence of estimated poses of landmarks in EKF-SLAM. Taken from [1] 13

2.5 The effect of the sparsification step in SEIF-SLAM. Taken from [2] 18

2.6 An example of balanced binary tree with 8 landmarks. Taken from [3] 21

2.7 Graph slam . 24

2.8 Ground vehicles . 26

2.9 AscTec Pelican . 27

2.10 Hokuyo LiDAR . 28

2.11 LiDAR data visualization . 29

2.12 Camera sensor . 30

2.13 RGBD camera . 31

2.14 Event camera . 32

2.15 Principle of a communication inside ROS environmet. 34

2.16 Map of MIT Stata Center created by three SLAM solving systems. 38

2.17 Trajectories of robot in the map estimated by three SLAM solving systems. . 39

2.18 Hector SLAM overview.Taken from [4] . 42

2.19 Google Cartographer overview. 43

2.20 PTAM system overview. Taken from [5] . 47

2.21 ORB-SLAM system overview. 48

2.22 LSD-SLAM system overview. 49

4.1 An example of ceiling height values during robots mission captured by ultra-
sonic distance sensor. 62

4.2 An example of temperature sensor signal during robots mission. 62

4.3 Supervised machine learning (classification). 67

4.4 SVM hyperplane example for 2 classes . 70

4.5 ANN scheme with two hidden layers . 72

4.6 ANN neuron scheme . 72

4.7 An example of Basic classification scheme used for indoor vs. outdoor classi-
fication. 75

V

LIST OF FIGURES LIST OF FIGURES

4.8 An example of Multiscale classification scheme used for indoor vs. outdoor
classification. 75

4.9 An example of Two-Stage classification scheme used for indoor vs. outdoor
classification. 75

4.10 Two-stage classification combining color and texture. Taken from [6] 76

4.11 An example of constricting a three-level pyramid with tree feature types.
Taken from [7] . 77

4.12 Design of multi environment robot system based on related papers 81

5.1 The concept of the environment classification system. 83

5.2 The structure of the Data Acquisition sub-module 84

5.3 The structure of the Data Storage sub-module 84

5.4 the structure of the Data Processing module 85

5.5 Scheme of IBEC module. 86

5.6 Example short run visualization . 87

5.7 A photo of the Wild Thumper robot platform. 88

5.8 T-Rex controller board . 88

5.9 Onboard computer Nvidia Jetson Xavier . 89

5.10 Intel Realsense D435 . 90

5.11 LiDAR Hokuyo URG-04LX-UG01 . 90

5.12 Arduino based sensor set . 91

5.13 IMU Lord 3DM-CV5 . 91

5.14 Examples of an environments in dataset. 92

6.1 Example of temperature sensor data with non-significant change. 96

6.2 Example of temperature sensor data with significant change. 96

6.3 Example of humidity sensor data with non-significant change. 97

6.4 Example of humidity sensor data with significant change. 97

6.5 Example of air pressure sensor data with non-significant change. 98

6.6 Example of air pressure sensor data with significant change. 98

6.7 Example of distance sensor data with non-significant change. 99

6.8 Example of distance sensor data with non-significant change. 99

6.9 Temperature signal with labeled time steps of minor (grey) and major (red)
changes. 101

6.10 Response of DifRatio function on temperature signal 101

6.11 Generated triggers based on DifRatio response. 102

6.12 VarRatio method response on temperature signal. 102

6.13 Generated triggers based on VarRatio response. 103

6.14 Response of CuSum method on temperature signal. 103

6.15 Generated triggers based on CUSUM function response. 104

6.16 Examples of multi-layered maps composed of basic map and ceiling height data.105

6.17 Examples of multi-layered maps composed of basic map and temperature data. 106

VI

LIST OF FIGURES LIST OF FIGURES

6.18 Examples of Miniplaces database. 107

6.19 Simple Neural Network Architecture . 113

6.20 Examples frames from record 1 . 115

6.21 Groundtruth labels for Record 1 . 115

6.22 Distance data for Record 1 . 116

6.23 Baseline system results for Record 1 . 116

6.24 Generated triggers from distance data for Record 1 117

6.25 The proposed system result for Record 1 . 117

6.26 Example frames from Record 2 . 117

6.27 Groundtruth labels for Record 2 . 118

6.28 Distance data for Record 2 . 118

6.29 The baseline system result for Record 2 . 119

6.30 Generated triggers for Record 2 . 119

6.31 The proposed system result for Record 2 . 120

6.32 Examples frames from record 3 . 120

6.33 Groundtruth labels for Record 3 . 121

6.34 Distance data for Record 3 . 121

6.35 The baseline system result for Record 3 . 122

6.36 Generated triggers for Record 3 . 122

6.37 The proposed system result for Record 3 . 123

6.38 Temperature data for Record 3 . 123

6.39 Generated triggers from temperature data for Record 3 124

6.40 The proposed system result for Record 3 – temperature data. 124

6.41 Example of time requirements results of baseline and proposed system using
Centrist method. 126

6.42 Example of time requirements results of baseline and proposed system using
NN approach on GPU. 127

VII

List of Abbreviations

ANN Artifitial Neural Networks

AR Augmented reality

BCPD Bayesian Changepoint Detection

CNN Convolutional Neural Networks

CPD Changepoint Detection

CUSUM Cumulative Sum

DNN Deep Neural Networks

DOF Degrees of Freedom

ECD Environment Change Detection (module)

ECS Environment Classification System

EDS Environment Detection System

EKF Extended Kalman Filter

GBP Global Binary Patterns

GMM Gaussian Mixture Model

GNSS Global Navigation Satelite System

GPS Global Positioning System

HMI Human-machine interface

HSV Hue Saturation Value

IBEC Image Based Classification (module)

ICP Iterative Closest Point

JCBB Joint Compatibility Branch and Bound

LBP Local Binary Patterns

LiDAR Light Detection And Ranging

LSM Least Square Method

VIII

LIST OF FIGURES

MAP Maximal a Posteriori

MRPT Mobile Robot Programming Toolkit

MSAR Multi-resolution, Simultaneous Autoregressive Model

NN Neural Networks

PF Particle Filter

RANSAC Random Sample Consensus

RBA Robot Behaviour Adaptation (module)

RBPF Rao-Blackwellized Particle Filter

RGB Red Green Blue Color Model

RGB Red Green Blue

RGBD Red Green Blue Depth

ROS Robot Operating System

SAR Search and Rescue

SEIF Sparse Extended Information Filter

SLAM Simultaneous Localization And Mapping

SVM Support Vector Machine

UKF Unscented Kalman Filter

USB Universal Serial Bus

IX

Chapter 1

Introduction

We are living in the computer age. Charles Babbage (1791 – 1871) dreamed of this age
when he and Countess Ada Lovelace discussed the possibility of creating the first computing
machine. He took the first step towards it by inventing what he called a Difference Engine [8]
in 1822. Since then, computers have evolved and become computationally capable of solving
many problems of the modern world.

Moreover, robotics applications play an essential role in our society’s life, from robotics
manipulators in the industry up to autonomous robotic vacuum cleaners, vehicles, or drones.
The part of robotics and especially mobile robotics become significant nowadays.

Mobile robotics applications often depend on the ability of the autonomous movement of
the robot in its environment. This ability is enabled by navigation in the map built by
Simultaneous Localization And Mapping (SLAM) algorithms. These algorithms are actively
addressed by scientists in the field for the last two decades. Consequently, many approaches
based on various sensors attached to a mobile robot were proposed [9], [10].

As will be noted in Chapters 2.9 and 3, many published papers and implementations assume
that the environment is static [5], [11] [12]. They are somehow robust against the occurrence
of dynamic objects, but they not handle them on purpose. It is an appropriate restriction of
the problem for single environment applications that – almost – does not contain dynamic
objects. Unfortunately, it is also usually a too restrictive assumption. Our world is not
static, and it includes various environment types. Indoor and Outdoor environments can be
mentioned as significantly different ones.

Basic problem deals with the static environment. It is usually solved by semantic segmen-
tation with deep neural networks[13], i.e., processing an image to compute its segmentation
into clusters representing image objects. Objects are then tracked in a sequence of frames.
Moving objects are finally ignored by the SLAM algorithm. Another problem is dealing with
the transition between environments to adapt the robot behavior to the most suitable for the
current environment. The analysis and a proposed solution to this particular problem is the
main topic of this thesis.

The robot behaviour can be defined similarly to behaviour of the person. German-American
psychologist Kurt Levin proposed [14] that behavior B is the function of the person P in its

1

CHAPTER 1. INTRODUCTION

environment E
B = f(P,E). (1.1)

Similarly, the behavior B of the robot can be defined as a function of robot R on a specific
mission M in its environment E

B = f(R,M,E). (1.2)

In other words, the robot should adapt its behavior based on its properties (shape, sensors,
actuators), its mission (can be understood as a robot task) and its environment. The prop-
erties of the robot are usually unchanging during a mission. Similarly, the mission is defined.
Thus, both variables, R, and M are known in advance and can be assumed as static. They
do not have to be static in practice, but their configuration, at least for particular states,
should be known in advance.

The last variable – the environment – is more complicated than the previous ones. It is
not possible to know all information about the robot environment in advance. Thus, it is
appropriate to analyze the environment – by detection and classification – in order to adapt
robot behavior. The choice of the right robot behavior can improve the robustness and other
properties of the algorithms used in mobile robotics. The rest of this chapter is devoted to a
description of the cornerstones of this thesis. The first one is localization and mapping, the
second one is robot perception, and the third one is environment detection and classification.
Finally, the last section of this chapter describes the outline of this thesis.

1.1 Simultaneous Localization and mapping

SLAM [2] is a fundamental problem of current robotics. In SLAM, a mobile robot equipped
with one or multiple sensors is used to observe its environment. The robot’s goal is to create
a map of the environment and localize itself in the created map simultaneously. Both actions
are performed in real-time, which means that the estimate is recalculated when the new
observation is made. The perfect solution to the SLAM problem would be a holy grail of
the field of robotics [15]. Unfortunately, there are still many crucial issues to solve [9] as
discussed in Chapter 2.9.

A localization task can be performed using the Global Navigation Satelite System (GNSS)
such as Global Positioning System (GPS)1, GLONASS2, or Galileo3. But it can be used only
in outdoor environments with a good signal from GNSS satellites. Moreover, there are many
GNSS-denied environments. It is impossible to use GNSS indoor, in mines [16], underwater
[17], or on Mars. It is possible to create a positioning system for a particular environment
based on Wi-Fi hotspots [18] or beacons placed in known locations. A disadvantage of this
solution is usually a lack of accuracy, which can be crucial for mobile robotics applications.

There are many scenarios where the SLAM is the best or the only suitable solution. Ex-
ploration of a tunnel [19] or mine is one of them. In the mine, a mobile robot can map an
environment based on the data from Light Detection And Ranging (LiDAR) sensor. How-
ever, it is usually impossible to establish a connection with the GNSS satellites. The solution

1GNSS operated by USA
2GNSS operated by Roscosmos (Russian Federation)
3GNSS operated by the European GNSS Agency

2

CHAPTER 1. INTRODUCTION

of SLAM can be also used as a part of the augmented reality (AR) [20] task. The AR system
[5] [21] has to know the robot’s position and heading within the environment. The best way
here is to combine visual information with sensors like a compass, accelerometers, or gyro-
scopes. In these scenarios, GNSS can register the map created using the SLAM system with
the global map – e.g., robot heading on a bookstore in a particular part of the city. The
place’s observation showing the bookstore logo can be used as a modern type of QR code.
Other examples of scenarios for SLAM algorithms are autonomous agriculture operations
[22], warehouse management systems [23] Search and Rescue (SAR) operations [24] in hardly
accessible environments, people monitoring systems during festivals or demonstrations. The
last example of SLAM suitable task is mapping a human body in medicine [25]. It can be
used for visualization, which should help the surgeon during an operation.

The base of all mentioned applications is robot perception or perception of the environment
in general. It is easy for the human brain to perceive the environment and localize itself
within it. Unfortunately, it is more tricky to obtain similar results in the case of a mobile
robot.

1.2 Robot Perception

The process of sensing the environment by a mobile robot is called robot perception [2].
Information about the environment is obtained by different kinds of sensors attached to
the robot. Human senses can be understood as a group of sensors too. But, there are
significant differences between the human and the robot. The robot makes a measurement
and processes it as the batch of local points with a defined neighborhood instead of all data’s
global processing. The second difference is a knowledge base about the environment. The
brain of an adult human is full of knowledge based on his experiences. He can recognize the
state of his environment. For example, deciding whether a door is open or closed is a simple
task for the human. The robot can be successful, too, but there will always be some amount
of uncertainty [26]. Therefore, it is necessary to define the problem in a probabilistic way.
The model should take into account all types of uncertainty.

Uncertainty in robotics arises from multiple sources:

• Sensors: The accuracy of sensors is limited by their resolution, range, and noise in the
data. The second limitation is based on physical laws. For example, a thermal imaging
camera can’t see through walls as presented in Hollywood movies.

• Environment: The stochastic character of the world makes perception unpredictable.
Moreover, the uncertainty in structure, size, and dynamic of the environment are the
main issues of mobile robotics. For example, the task of moving a robot among empty
rooms in the building is much easier than moving among the streets of a big city full
of people..

• Actuators: Actuators of the mobile robots aren’t deterministic too. Every actuator
has slightly different characteristics, and the same input can or does not have to create
the same output. It is related to the price of the actuators. Usually, a cheaper actuator
is more inaccurate than the expensive one. The combination with the environment can
cause even more uncertainty. For example, the robot wheel can slip on the terrain,

3

CHAPTER 1. INTRODUCTION

and the resulting motion is different from the one computed by a robot’s mathematical
model.

• Models: Mathematical models of the robot, its sensors, or the environment are always
an abstraction of the real world. As the abstraction, the model will never be accu-
rate. Higher-orders models are not usually used in real-time applications, which causes
inaccuracy and increases uncertainty.

• Real-time computation: All mobile robots have to work with real-time data. It
means that the computation has to be done in the short time between two consecutive
measurements. It is impossible to handle the data the same way as in off-line computing.
Only one or a few last measurements are used instead of a big batch of data. Often,
there has to be some sort of approximation to speed up the whole computation process.

• Size of the data and refresh rate: Real-time computation capabilities are depended
on the size of the data and the refresh rate of sensors. It is relatively easy to do real-time
processing of a variable from some sensor that measures one value and has a refresh
rate of 10 Hz. The opposite extreme is data from a high definition camera. Processing
data from a full HD or 4K camera can be tricky even for a high-performance computer.

As mentioned at the beginning of this section, measurements from sensors contain data
from certain places of the environment. The consequence is that the robot has only local
information instead of a global view of its environment. The robot has a batch of the data,
and it can decide whether it sees is a wall or free space. On the other hand, it is tough to
make robots recognize objects in the data and connections between them. Nowadays, the
research in deep neural networks [27] made progress in understanding the observed scene.

On the other hand, the SLAM problem’s solution is still an essential step to understanding the
global scene. Besides scene understanding, it is crucial to detect and classify the environment
of the robot. The next section is focused on describing the basic information about this
particular problem.

1.3 Environment Detection And Classification

The environment is a complex system containing much information that can be perceived
by the robot. This information can be used to change robots’ behavior or even increase
the robustness of robots’ algorithm. The solution to the problem consists of two parts.
The first part is obtaining information from the environment and detect changes in (of) the
environment. The second part is the classification of the environment into defined classes.

Information about the state of the environment can be obtained using an arbitrary suitable
sensor. Usually, the sensor with the most considerable information value for the change to
be detected should be used. For example, a light intensity sensor can be used to detect light
changes in the environment. Another example can be the temperature and humidity sensor
to detect transitions between indoor and outdoor environments. These examples are based
on the physical properties of the environment.

Another possibility of choosing a sensor is to use some knowledge about the environment. For
example, the ultrasonic distance sensor pointing to the room ceiling can be used to measure its

4

CHAPTER 1. INTRODUCTION

ceiling height. Thus, it can detect the transition between indoor and outdoor environments,
the transition between room and hallway, or even the transition between two rooms.

Another difference between the mentioned sensors is that some sensors – e.g., temperature
sensors – have a delay of their measured value concerning the real value of this particular
variable in the environment.

There is also a third possibility. A camera or a depth camera can be used to detect some
properties of the environment. As shown in Chapter 4, the use of the camera as the only
sensor for environment detection and classification can be computationally expensive for the
systems that should run real-time.

In this thesis, I focus on the detection of changes from sensors with 1D signal output. The
detection is based on searching for abruptions in a 1D signal using suitable methods. These
methods are described in Chapter 4.1. Moreover, results from the experiments are discussed
in Chapter 6.1. Unfortunately, these kinds of sensors are usually not sufficient to decide on
the real change of the environment. In other words, it can detect that there is a change,
but it can not determine whether this change is significant for the robot – i.e., whether the
transition happened or not. Fortunately, there is a possibility of finding out how significant
the change is by classifying the environment using camera information.

It can be a little confusing now because a few paragraphs above, I said that camera data
for detecting changes in the environment is computationally expensive. The use of a camera
for the classification of the environment can also be computationally expensive. On the
other hand, as will be discussed in Chapters 4.2, 6.3, and 6.4, it is unnecessary to perform
classification at each step. Thus, it is suitable to use it in the mobile robot system in real-time.

1.4 Thesis Outline

The goal of this thesis is to analyze the problem of transition between different environ-
ments during robot missions. The main contribution is the design and implementation of the
Environment Classification System based on visual and non-visual sensors.

The thesis is structured as follows. In Chapter 2, the SLAM is analyzed to discover open
problems that should be addressed. One of the issues is the transition between environments
during robot missions. Based on this finding, the dissertation problem definition and goals
are described in Chapter 3. In Chapter 4, the theory necessary for solving a defined problem
is summarized. The main contribution of this thesis is contained in Chapters 5 and 6. The
first one is focused on the design and description of the proposed Multi-Environment Robot
System (MERoS). The second one is focused on performed experiments. In the last chapter,
thesis contributions are discussed, and where the future work is defined.

5

Chapter 2

Simultaneous Localization And

Mapping

The history of the SLAM problem started in 1986 at IEEE Robotics And Automation confer-
ence in San Francisco. Scientists such as Peter Cheeseman [26] or Hugh Durrant-Whyte [15]
[28] wanted to apply probabilistic methods and estimation theory to localization and map-
ping tasks. Many discussions were made about the possibilities of consistent mapping and
accurate localization of robot pose. They found out that SLAM is a fundamental problem
in mobile robotics. As a completely new research area, SLAM had many open issues. Some
of them are solved, but as described in Chapter 2.9, there are still many topics to address in
modern SLAM solutions. Before defining the SLAM problem, let’s look closer at its principle
and particular algorithmic tasks that must be considered during localization and mapping.

2.1 Introduction to SLAM

The diagram in Figure 2.1 shows the three time-steps of the SLAM algorithm. The mobile
robot observes landmarks in the environment and estimates their positions and the position
of itself. There is shown a difference between dark grey and light grey positions. It is called
drift, and its minimization is the goal of the SLAM problem. Without SLAM algorithm, the
drift accumulates, and the resulting map becomes inconsistent with error diverging to infin-
ity. Drift minimization by SLAM solving algorithm reduces mapping error and guarantees
consistency of the map.

Every SLAM problem solution comprises a core algorithm and a set of essential tasks such
as information extraction [29][30], data association, or loop closing. These are tasks that are
necessary for obtaining an accurate and consistent result.

The core algorithm is a crucial part of the SLAM solving system. There are two possible
groups of core algorithms. The first one is a group of filter-based solutions – e.g., based
on Extended Kalman Filter [31][2]. The second group is based on a non-linear least-square
optimization algorithm, a core of the graph-based SLAM [32] approach.

6

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.1: SLAM principle

2.1.1 Information Extraction

The world is full of objects with different shapes, colors, and textures [33]. These properties
are useful for information extraction algorithms that detect a specific property type – such
as shape – and measure it. The result is a piece of information that describes the object. In
the ideal world, every object is unique and distinguishable. It is not true in the real world
because:

• There exist different objects that looks similar.

• Particular object can look different from various angles.

Thus the SLAM solving system has to deal with the problem of extracting information about
objects. It can be different for various types of sensors. There exist two approaches based
on the type of sensors. The first one is a raw data approach [11], which uses all data from
the measurement. The second one is a feature-based approach [34]. Features are assumed
as unique or sufficiently distinguishable parts of the data. This approach is based on feature
extraction algorithms [35][36]. These algorithms extract information about the feature from
raw data and then computes the so-called feature vector. The vector describes the feature,
and it is supposed to be as stable as possible. It means that the description of a particular
feature should be similar regardless of observation conditions. These vectors can be compared
to each other by some comparing technique. One of the well-known basic ways for comparing
two feature vectors is the Euclidean distance.

d(x,y) =

√√√√ N∑
i=1

(xi − yi)2, (2.1)

7

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

where x and y are vectors of the length N . The distance between two equal feature vectors
is 0. It is critical to decide whether detected features in two consecutive measurements
represent one feature or two different features.

A feature successfully observed in the consecutive measurements is added to the map as a
unique landmark. The algorithm searches for these landmarks when the particular place is
revisited.

2.1.2 Data Association

A system for solving the SLAM problem has information about all landmarks discovered in
the environment. A data association task aims to determine whether a landmark observed
in current data is a new one or if it is already known.

A new landmark is saved in the first case, and spatial constraints – to the robot and other
landmarks – are computed. In revisiting known locations with known landmarks, the data
association algorithm has to pick the right landmark to pair with the observed one. Obser-
vation is then used to refine information about landmarks, which leads to a more accurate
map of the environment.

There are two types of revisiting the place with known landmarks. In the first case, the
robot observes the same landmarks in two consecutive time steps. It is a more manageable
situation because the whole scene is almost the same. The Nearest neighbor algorithm can
be used in the case of slow movement w.r.t the sensor measurement rate. Unfortunately, it
is a too strict condition. The Joint Compatibility Branch and Bound (JCBB) [37] or some
algorithm from the Random Sample Consensus (RANSAC) family [38], [39] can obtain a
better solution. The same method can be used in a more complicated case of revisiting called
loop closing.

A slightly different approach is performed in the least-squares based SLAM, where the scan-
matching is used. The scan-matching algorithm tries to align two scans or a scan to the
map. Mathematically, it maximizes the likelihood of the robot’s current state and the map
relative to the previous state. There are more approaches to scan matching. For example, the
Iterative Closest Point [40] or the RANSAC algorithm can be mentioned. The scan-matching
algorithm is not sufficient to obtain a correct map in the least-squares based SLAM, and the
optimization has to be performed.

2.1.3 Loop Closure

Loop closing is a situation when the robot revisits a particular location of the environment.
For example, a robot in a large building goes one direction from the main hall, and several
minutes later, it comes to the same hall from the other side. Data association algorithm
should recognize this situation and compare new landmarks with all other saved landmarks.
The general algorithm for loop closing is still an open problem of SLAM[9].

8

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.1.4 Motion Model of the Vehicle

The world is non-linear. The consequence is that the system for solving the SLAM problem
has to handle the real world using probabilistic models [2]. The mobile robot is defined by its
motion model F. The model is an approximation of the robot’s motion. It is used to predict
the robot’s location to the next time step k + 1 before the measurement and map update is
computed. The model usually describes the linear and angular motion of the robot. Motion
models are based on the type of mobile robot – i.e., One motion model is used for a ground
vehicle and another for aerial vehicles.

2.1.5 Map generation

All tasks mentioned in previous paragraphs lead to the map generation. Different core algo-
rithms and used sensors are suitable for different types of maps. In Figure 2.2, three types
of maps are shown. The first type, (Figure 2.2 a)) is an occupancy grid map typically used
in LiDAR-based 2D systems for solving the SLAM problem. It is a map composed of cells
containing real numbers between 0 (free space) and 1 (obstacle). The value represents the
probability of the obstacle in the cell. In the example, white color represents free space, and
black represents obstacles. The grey color is used for unknown cell values. The blue curve is
the trajectory of the robot.

The second type of map is shown in Figure 2.2 b). It is a sparse map based on individual
landmarks. It is usually a result of visual SLAM systems based on the visual feature extraction
methods [35][36][30]. Last type Figure (2.2 c)) is a graph-like map composed of robot path
with nodes and edges. Nodes represent robot poses, and edges represent non-linear spatial
constraints between two poses.

Every type of map is suitable for combining the core algorithm, used sensors, and degrees
of freedom. Sometimes the combination of mentioned maps is created. The most used type
of map in state-of-the-art 2D SLAM systems is the grid map – e.g., Hector SLAM [41]. For
3D sparse visual SLAM, it is usually a combination of the graph and landmark-based map
– e.g., ORB-SLAM 1 [12] and ORB-SLAM 2 [34]. Finally, the point cloud can be used for
dense visual SLAM such as RTAB-Map[42].

In the following sections, two definitions of the SLAM problem will be described. The first
one is a feature-based definition of the SLAM problem based on the papers of Hugh Durrant-
Whyte and Tim Bailey [28], [15]. Nowadays, it is usually called the classic definition. The
second definition of the SLAM problem based on the book of Sebastian Thrun et al. [2] and
the paper of Cadena et al. [9] is called graph-based SLAM or optimization-based SLAM. The
solution of optimization-based SLAM leads to solving the non-linear least-squares problem.

9

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.2: Maps generated by SLAM solving algorithms.

2.2 The classic definition of SLAM

The SLAM problem at discrete time step k is defined as searching for the probability density
function

p (xk,m | Z0:k,U0:k,x0) . (2.2)

It is the joint posterior density function of a robot location xk and the map m. The initial
pose of the robot x0, a set of all observation Z0:k, and all control inputs U0:k – from time
step 0 to time step k – are given at the calculation time. Let’s assume that the density
function p (xk−1,m | Z0:k−1,U0:k−1,x0) at a time k− 1 is known. The density function (2.2)
is computed using a two-step recursive algorithm based on Bayes Theorem.

2.2.1 Two-step recursive algorithm

The solution for SLAM is implemented in two steps. The first step is called a time-update
or a prediction step

p (xk,m | Z0:k−1,U0:k,x0) =

∫
p (xk, | xk−1,uk)

× p (xk−1,m | Z0:k−1,U0:k−1,x0) dxk−1

. (2.3)

The second step is a measurement update or a correction step (2.4).

p (xk,m | Z0:k,U0:k,x0) =
p (zk, | xk,m) p (xk,m | Z0:k−1,U0:k,x0)

p (zk | Z0:k−1,U0:k)
. (2.4)

A model of the robot motion
p (xk, | xk−1,uk) (2.5)

10

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

is a part of the equation (2.3). It models properties and the uncertainty in the robot’s
movement. Another name for the motion model is the state transition model because it
models the transition of robot state between time step k − 1 and k based on a control input
uk. State xk depends only on the previous state and the control input.

Similarly, an observation model
p (zk, | xk,m) (2.6)

is a part of the measurement update equation (2.4). The model describes observation zk in
time step k based on the robot’s state and the map of the environment.

Dependence of the observation model on the robot pose and location of all landmarks is the
reason why the joint posterior (2.2) can’t be partitioned in Equation (2.7). An inconsistent
estimation would be the result of such a partitioning step.

p (xk,m | Z0:k,U0:k,x0) 6= p (xk | Z0:k,U0:k,x0) p (m | Z0:k,U0:k,x0) (2.7)

Observations are the source of the error between estimated and true landmark locations.
Fortunately, the relative location between two landmarks, i and j, may be estimated with
high accuracy. It is possible because the relative position of the landmarks is changing slowly
due to the robot movement. The error between the landmarks is correlated. Even the robot
pose itself is correlated to the map.

The correlation is increased with every observation made. In practice, this implies that error
in relative location decreases every time a new observation is made. As an example of the
correlations between landmarks, the visualization is presented in Figure 2.3. It is an analogy
to a network of connected springs. All landmarks are connected, and the strength of the
connection is determined by its width – spring of specific stiffness. Consequently, an update
of the landmark j observed at time step k + 1 is propagated back to update non-observed
landmark i.

Estimated Robot

Estimated Landmark

Correlations

Figure 2.3: Spring analogy of SLAM problem. Taken from [1]

11

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.3 Approaches based on the classic definition

Solution based on the classic definition of the SLAM problem is usually based on an estimation
filter. The first popular solution was the Extended Kalman Filter SLAM (EKF-SLAM)[2].
It is a solution that is easy to implement but with several disadvantages. Newer solutions are
Unscented Kalman filter SLAM (UKF-SLAM), Sparse Extended Information Filter SLAM
(SEIF-SLAM), and Particle filter based SLAM[3]. All the mentioned approaches are described
in the next sections.

2.3.1 EKF-SLAM

EKF-SLAM is the basic filter-based approach to solve the SLAM problem. The core is the
Extended Kalman Filter (EKF) algorithm [2]. There is an assumption that all probability
density functions have Gaussian distributions. The consequence is that instead of estimating
the whole distribution, it is possible to estimate the mean and covariance of that distribution
only. The motion model (2.5) and the observation model (2.6) can be rewritten in a non-
linear function with additive Gaussian noise. The robot motion model is described by the
equation

xk = f (xk−1,uk) + wk, (2.8)

where f () represents the robot kinematics model, and wk is the additive, zero mean, and
uncorrelated Gaussian noise with the covariance matrix Qk. The observation model has the
form of the equation

zk = h (xk,m) + vk, (2.9)

where h() represents the robot observation model, and vk is the additive, zero mean, and
uncorrelated Gaussian noise with covariance matrix Rk. Non-linear functions f and h are lin-
earized using Taylor expansion [2]. The mean and the covariance of joint posterior probability
density (2.2) can be computed using the two-step EKF algorithm.

I) Time-update step

Calculation of the mean vector

x̂k|k−1 = f
(
x̂k−1|k−1,uk

)
, (2.10)

and the covariance matrix

Pk|k−1 =

[
Prr,k|k−1 Prm,k|k−1

Prm,k|k−1 Pm,k|k−1

]
=

[
∇f Prr,k−1|k−1∇f > + Qk Prm,k−1|k−1

Prm,k−1|k−1 Pm,k−1|k−1

]
(2.11)

where subscript rr denotes a covariance of robot state, subscript mm is a covariance of map
landmarks, and subscript rm denotes a mixed covariance between robot and landmarks. Only
the Prr changes in the time update step. The term ∇f () is the Jacobian of the nonlinear
function f calculated at the estimated state x̂k−1|k−1.

12

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

II) Observation-update step

Computation of the mean[
x̂k|k
m̂k

]
=
[
x̂k|k−1 m̂k−1

]
+ Kk

[
zk − h

(
x̂k|k−1, m̂k−1

)]
, (2.12)

and the covariance

Pk|k = Pk|k−1 −Kk

[
∇hPk|k−1∇hT + Rk

]
KT
k (2.13)

where Kk is the Kalman gain, ∇h is a Jacobian of a non-linear function h() calculated at the
robot state x̂k|k−1, and the map state m̂k−1.

Pros and cons

⊕ Basic approach: EKF is a well-known estimation algorithm that is easy to understand.
EKF-SLAM is easy to understand too.

⊕ Implementation: EKF-SLAM is easy to implement, and it is suitable for a wide range
of SLAM applications.

	 Convergence: The covariance matrix converges in limit monotonically to the value
of the initial covariance of the robot location estimate [1]. In Figure 2.4, an example
of landmark estimation convergence is shown. Every landmark has a high value of
uncertainty when it is observed for the first time. Values converge monotonically in
time, but they cannot be uncertainty free, which is also visible in Figure 2.4 as a positive
non-zero lower bound of all values. The initial uncertainty of the sensor determines the
lower bound.

40 50 60 70 80 90 100 110

0

0.5

1

1.5

2

2.5

Time (s)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 i
n
 X

(m
)

Figure 2.4: Convergence of estimated poses of landmarks in EKF-SLAM. Taken from [1]

13

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

	 Computational complexity: EKF has quadratic computational complexity (O(n2))
for updating the covariance matrix P at every observation-update step. The covariance
matrix size for a 2D SLAM problem is 3 + 2n × 3 + 2n, where n is the number of
observed landmarks. It limits real-time calculation only on several dozen or hundreds
of landmarks. There exist solutions that can update certain parts of the covariance
matrix P individually and thus increase the algorithm’s efficiency.

	 Data Association: It is one of the most fragile parts of SLAM and especially the EKF-
SLAM solution. One incorrect association of observed features with map landmarks can
cause a fatal error, which leads to failure of the algorithm and unrepairable degeneration
of the map. The association during loop-closure can be much more challenging because
the algorithm tries to associate new observations with older landmarks and figure out
if there are any correspondences.

	 Linearization: Both the motion model and the observation model are linearized in
EKF-SLAM. However, the real behavior of motion and geometry is non-linear. The
consequence is that the algorithm may diverge because there is a significant difference
between the model and the real world.

2.3.2 UKF-SLAM

The second filter based algorithm is called UKF-SLAM [2], and it is based on the Unscented
Kalman filter (UKF). The principle is similar to the EKF-SLAM except for the way how the
linearization of f () is calculated. Instead of Taylor expansion, the unscented transform is
used.

Unscented transform

Unscented transform linearizes function f () using so-called sigma-points. Sigma-points are
points that are deterministically chosen from the non-linear probability distribution using
equations (2.14)-(2.18). Unscented transform avoids linearization around the mean of the
distribution as Taylor expansion does. The computation of integrals is replaced with the
calculation of a weighted sum of the sigma-points. The result of linearization is usually more
accurate than in the case of EKF-SLAM. An algorithm of the unscented transform is written
in the three steps as follows.

1. The computing of a set of sigma-points χ[i] and weights ω[i] are constrained as follows∑
i

ω[i] = 1,

x̄ =
∑
i

ω[i]χ[i],

P =
∑
i

ω[i](χ[i] − x̄)(χ[i] − x̄)T ,

(2.14)

where x̄ and P are the mean vector and the covariance matrix of the probability density
function reconstructed from sigma-points. The equations (2.14) are constraints ensuring

14

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

that the mean vector x̄ and the covariance matrix P can be reconstructed from the
sigma-points χ[i] and the weights ω[i]. There is no unique solution for ω[i] and χ[i].
Following equations are used to calculate sigma-points χ[i]

χ[0] = x̄,

χ[i] = x̄ +
(√

(n+ λ)P
)
i
, for i = 1, . . . , n,

χ[i] = x̄−
(√

(n+ λ)P
)
i−n

, for i = n+ 1, . . . , 2n,

(2.15)

where n is a dimensionality of the distribution, λ is a scaling parameter. I.e., greater
lambda increases the distance between computed sigma-points and the mean of the
distribution. Subscripts i or i − n are indexes of the particular column used after the
matrix in brackets is calculated.

Calculation of weights ω[i] are described by equations (2.16), (2.17) and (2.18)

ω
[0]
m =

λ

n+ λ
(2.16)

where subscript m is an index of weights which are used to compute the mean of the
distribution.

ω
[0]
c = ω

[0]
m +

(
1 + α2 + β

)
(2.17)

where subscript c is an index of weights used to compute the covariance of the distribu-
tion and α, β are parameters of the unscented transformation. The value of parameter α
is usually in the interval (0, 1〉. The optimal value of parameter β is usually 2 for Gaus-
sian systems. A superscript [0] is an index of the sigma-point matched to the weight
– in this case, equations (2.16) and (2.17) compute the weight for zero sigma-point.
Weights for other sigma-points are calculated by equation (2.18).

ω
[i]
m = ω

[i]
c =

1

2 (n+ λ)
for i = 1, . . . , 2n (2.18)

2. Process each sigma-point through nonlinear function g(χ[i]) to obtain a new set of
transformed sigma-points. Considering SLAM, the sigma-points are transformed by
the functions of the robot motion and observation model.

3. The last step is to recover Gaussian from the transformed weighted sigma-points using
equations (2.19), (2.20).

x̄′ =
2n∑
i=0

ω
[i]
mg(χ[i]) (2.19)

P′ =
2n∑
i=0

ω
[i]
c

(
g(χ[i])− x̄′

)(
g(χ[i])− x̄′

)T
(2.20)

Moreover, there are two constraints for the selection of the λ parameter. It is defined by
formulas

κ ≥ 0,

λ = α2(n+ κ)/n.

The selection of κ and α influences the distance of sigma-points from the mean of the prob-
ability distribution.

15

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Pros and cons

⊕ Better approximation: A better approximation of non-linear models than EKF-
SLAM.

⊕ Jacobians: No Jacobians are needed during the calculation.

	 Complexity: UKF-SLAM belongs to the same complexity class as the EKF-SLAM.
Also, it is usually slower than the EKF-SLAM. Moreover, the model has to be Gaussian
as well.

2.3.3 SEIF-SLAM

The SEIF-SLAM [43] approach is based on the Sparse Extended Information Filter (SEIF).
It is an extension of the information filter, which is a dual filter to the Kalman Filter. The
representation of the information filter is usually called the canonical representation. In the
paragraphs below, the information filter is introduced, and its extended version (EIF), and
then the sparsification step providing better performance with a large number of landmarks
are described.

Information Filter

Similar to previous approaches, the information filter represents belief by a Gaussian An
information vector ξ and an information matrix Ω are used instead of the first two moments
x̄ and P of the probability distribution. Information form – canonical representation – can
be obtained from the moments using equations (2.21) and (2.22).

Ω = P−1, (2.21)

ξ = P−1x̄. (2.22)

Let’s assume a linear motion

xk = Akxk−1 + Bkuk + wk, (2.23)

and observation model
zk = Ckxk + vk, (2.24)

where Ak is the matrix that describes the robot’s motion, Bk is the matrix that describes
the influence of the control uk. The mathematical relationship between the state xk and
the observation zk is described by the matrix Ck. Finally, wk and vk are random variables
representing the additive zero-mean process and measurement noise with covariance Rk and
Qk.

The complexity of particular steps in the algorithm is dual to the Kalman filter. For example,
the time-update step is trivial in the moment representation, but it is expensive in the
canonical representation. It is visible in equations (2.25) and (2.26) where the inverse of
the matrix has to be computed. Similarly, the observation update step is expensive in the
moment representation, but it is trivial in the canonical representation – see Equations (2.27)
and (2.28).

Ωk|k−1 = (AkΩ
−1
k−1|k−1A

>
k + Rk)

−1, (2.25)

16

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

ξk|k−1 = Ωk|k−1(AkΩ
−1
k−1|k−1ξk−1 + Bkuk)

−1, (2.26)

Ωk|k = C>k Q−1
k Ck + Ωk|k−1, (2.27)

ξk|k = C>k Q−1
k zk + ξk|k−1, (2.28)

The information filter described above is suitable only for linear systems. The solution to
non-linear systems is EIF. It is an analogy to the EKF.

Extended Information Filter

In this algorithm, the same principle as in the case of the EKF is used. The non-linear
system is linearized using Taylor expansion. Equations (2.29) - (2.34) are the equations of
EIF. They are similar to Equations (2.25) - (2.28), but non-linear functions f () and h() and
their Jacobians are used instead of system matrices Ak,Ck, and Bk. Moreover, the prediction
and correction state vectors x has to be calculated to compute ξ.

xk−1|k−1 = Ω−1
k−1|k−1ξk−1|k−1 (2.29)

Ωk|k−1 = (∇fkΩ
−1
k−1|k−1∇f>k + Rk)

−1 (2.30)

xk|k−1 = f (uk,xk−1|k−1) (2.31)

ξk|k−1 = Ωk|k−1xk|k−1 (2.32)

Ωk|k = ∇h>k Q−1
k ∇hk + Ω′k|k−1 (2.33)

ξk|k = ∇h>k Q−1
k (zk − h(x̄k|k−1) +∇hx̄k|k−1) + ξk|k−1 (2.34)

The performance of the extended information filter is not suitable for a dense information
matrix. Significantly better performance can be obtained by sparsification of the normalized
information matrix.

Sparsification

The normalized information matrix can be interpreted as a graph of links between landmarks.
Most of the landmarks have only a small number of links to other landmarks. Larger values
of O are usually between nearby landmarks. Again, it is an analogy with the net of springs
– It is shown in Figure 2.3. Most of the off-diagonal elements are close to 0. The solution to
the sparsification step is to set that element’s values to 0. Figure 2.5 is shown a comparison
of SEIF-SLAM without and with sparsification. It is an example of SEIF-SLAM with 50
landmarks in the environment taken from the publication of Thrun et al. [2]. The effect of
sparsification is seen on the graph on the left. The version b) contains significantly fewer links
between landmarks. The information matrices on the right look almost the same because
high values are the dark ones. Thus, the white cells are close to zero – case a – and zero case
b.

In the SEIF-SLAM algorithm, only a subset of all landmarks is used for computation of the
next step. They are referred to as active landmarks. The active landmark is a landmark
observed by the robot in the current time step. The robot is connected only to the active
landmarks. All landmarks are connected only to nearby landmarks – landmarks that are
active at the same time. Other connections are weak, and they are set to 0.

17

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

a)

b)

Figure 2.5: The effect of the sparsification step in SEIF-SLAM. Taken from [2]

Pros and cons

⊕ Memory and CPU: Significantly better performance than EKF-SLAM. SEIF-SLAM
needs much less memory, thanks to the sparsification of the information matrix. The
average CPU time for one iteration increases slowly with increasing the number of
landmarks compared to EKF – according to [44]. The SEIF-SLAM requires constant
time in the map size. Therefore the SEIF-SLAM is more efficient in large scale scenarios.

	 Accuracy: The SEIF-SLAM is less accurate than EKF because of sparsification, which
causes the loss of information about the correlation between farther landmarks. Thus,
the EKF-SLAM is more suitable for small-scale scenarios.

2.3.4 Particle Filter SLAM

The approaches described above have a significant disadvantage. They assume that the
distribution is Gaussian. Better results could be achieved when the arbitrary distribution
can be assumed. This goal can be met using a particle filter algorithm.

Particle filter

A particle filter is a recursive Bayes filter [2]. It is representative of a non-parametric filter.
The particle filter’s key idea is to use so-called samples to represent an arbitrary probability
distribution. The sample is a state hypothesis drawn from a probability distribution of the
system state. It is the first part of the particle. The second part is the weight of a sample.
More than one particle is used in the particle filter algorithm. A group of particles is called
a particle set.

18

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

The particle set χ is a set of pairs composed of sample x[i] and its weight ω[i]

χ =
{〈
x[i], ω[i]

〉
i=1...n

}
, (2.35)

where [i] denotes i-th particle in the particle set. The posterior distribution can be obtained
using equation

p(x) =

N∑
i=1

ω[i]δx[i](x), (2.36)

where δx[i](x) is the Dirac delta function in the location of the state hypothesis x[i].

The particle filter algorithm has three steps. The first step is a sampling. The second one is
computing the importance of weight, and the third is the resampling step. The particle set
is created by sampling from the proposal distribution π.

The importance sampling principle says that it is possible to use probability distribution
π to generate samples from an arbitrary distribution of f . Distribution π is called the
proposal distribution, and the distribution f is the target distribution. It is a fundamental
idea because the sampled values from the proposal distribution can be transformed into the
target distribution. In the first step, samples are drawn from the proposal distribution, and
then all samples are weighted in the correction step by the equation (2.37) to obtain samples
of f .

ω =
f(x[i])

π(x[i])
. (2.37)

The accuracy of the target distribution approximation increases with the number of samples.
In the case of an infinite number of samples, the target distribution can be reconstructed
exactly

In the resampling step, the most unlikely particles are drawn from the particle set, and they
are replaced with the more likely ones. It is a trick to avoid samples that cover unlikely states.
It is necessary because the number of samples is always finite. There are many resampling
approaches like the roulette wheel approach, stochastic universal sampling [45], residual or
systematic resampling [46]. However, the solution to the resampling that could be denoted
as the best step doesn’t exist.

FastSLAM

The SLAM problem defined by Equation (2.2) can not be efficiently solved by the particle
filter. The reason is that the distribution’s state space is high-dimensional, but the particle
filter is effective only for low dimensional spaces. The idea of FastSLAM [3], [47] is to exploit
dependencies between the different dimensions of state space by using the particle filter to
represent only the robot’s state. Each particle is assumed to be a hypothesis of a robot
path and an individual map of landmarks. Landmarks are computed for each sample. These
properties are obtained using the Rao-Blackwellization (R-B) process based on the chain rule
described by the equation

p(a, b) = p(b | a)p(a). (2.38)

It is using conditional probabilities to calculate any member of the joint probability distri-
bution. The application of R-B on the probability density function (2.2) is shown in the

19

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

equation

p (x0:k,m1:M | Z0:k,U0:k) = p (m1:M | x0:k,U0:k)(1) p (x0:k | Z0:k,U0:k)(2) . (2.39)

In term denoted by subscript (1), the path of the robot is known. The particle filter can effec-
tively solve the second term denoted by subscript (2). The consequence is that all landmarks
are independent, and the second term can be rewritten as follows

p (m1:M | x0:k,U0:k) ≈
M∏
i=1

p (mi | x0:k,U0:k) . (2.40)

In the case of 2D SLAM, landmarks in the equation (2.40) can be processed independently
by the update step of the EKF algorithm.

One cycle of FastSLAM algorithm

1. Compute new pose from the proposal distribution.

x
[i]
k ∼ π

(
xk | x

[i]
k−1, uk

)
The control vector uk, and a pose of i-th particle x

[i]
k−1 is given.

2. Compute of particle weight

ω[i] =| 2πQ |−
1
2 exp−1

2

(
zk − z̄[i]

)T
Q−1

(
zk − z̄[i]

)
,

where z̄[i] is expected observation and Q is a measured covariance.

3. Update belief of observer state. Each particle contains the sampled value of the robot
pose, its weight, and map landmarks. Landmarks are represented by pairs of a mean
vector µ and a covariance matrix Σ. Updating of belief of observed landmarks is the
third step of the algorithm. There is only a single landmark observed during one cycle
of the algorithm. There are two possible cases.

• If the particular landmark is not observed, its values are only copied to the current
time step 〈

µ
[m]
k ,Σ

[m]
k

〉
[i]

=
〈
µ

[m]
k−1,Σ

[m]
k−1

〉
[i]

where superscript m denotes the m-th landmark in the map, and subscript [i]
denotes i-th particle from the particle set.

• When the landmark is observed, it may be a landmark already on the map or a new
previously unobserved landmark. The EKF is initialized for the new landmark.
In the case of existed landmark, the EKF update step is performed.

4. Resample. The resampling step draws a subset of particles with replacement.

The FastSLAM algorithm described above has linear computational complexity in the num-
ber of landmarks N – O(MN), where M is the number of particles and N is the number of
landmarks. The authors of the algorithm came with an efficient implementation using bal-
anced binary trees to represent a particle. The computational complexity can be improved

20

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

using binary trees to logarithmic in the number of landmarks – O(MlogN). In the bottom
part of Figure 2.6, an example of the binary tree for one particle is shown. The landmarks
mean vectors and covariance matrices are saved in the leaves of the tree. Therefore, the pick-
ing of the particular leaf has O(1). When the new particle is obtained during the updating
step, only one path from the root to the leaf is created. The other values are only referenced
from the old particle. The situation is also shown in Figure 2.6.

µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k] µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k]

µ3,Σ3

j ≤ 3?

FT

j ≤ 2?
F

T

j ≤ 4?

F
T

[k][k]

µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k] µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k] µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k] µ8,Σ8µ7,Σ7

j ≤ 3?

FT

µ6,Σ6µ5,Σ5

j ≤ 1?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k] µ8,Σ8µ7,Σ7

j ≤ 7?

FT

µ6,Σ6µ5,Σ5

j ≤ 5?

FT

µ4,Σ4µ3,Σ3

j ≤ 3?

FT

µ2,Σ2µ1,Σ1

j ≤ 1?

FT

j ≤ 6?

FT

j ≤ 2?

FT

j ≤ 4?
FT

[k][k] [k][k] [k][k] [k][k] [k][k] [k][k] [k][k][k][k]

µ3,Σ3

j ≤ 3?

FT

j ≤ 2?
F

T

j ≤ 4?

F
T

[k][k] New particle

Old particle

Figure 2.6: An example of balanced binary tree with 8 landmarks. Taken from [3]

FastSLAM 2.0

Improved version of this algorithm called FastSLAM 2.0 was proposed in paper [48]. Different
version of the proposal distribution is used by this algorithm. In particular, samples are
obtained from the distribution in Equation 2.41. Current measurement is considered during
the sampling step.

x
[i]
k ∼

(
xk | x

[i]
k−1, uk, zk

)
. (2.41)

FastSLAM 2.0 algorithm can process 106 and more landmarks, and it is robust in the data
association.

Similar to FastSLAM 2.0, the papers of Grisetti et al. [49], [50] proposed a suitable solution
for grid maps. It is achieved similarly to the FastSLAM 2.0. – current measurement is
considered in the proposal distribution.

21

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.4 Optimization based SLAM

The second group of approaches is based on optimization instead of filters. The goal is to
minimize the error between a real and an expected measurement. The approach is based on
the graph-based structure, which represents the map. The graph contains nodes and edges.
The minimization process is supposed to find the correct spatial configuration of the graph
nodes. It leads to using the Nonlinear Least Squares (NLS) algorithm.

2.4.1 Nonlinear Least Squares

The NLS is a well-known algorithm which is a standard approach for computing a wide range
of problems. For example, the first problem solving by NLS was the computing of the future
position of the asteroid Ceres in 1801.

The difference between the real and an expected measurement is called the error function ei,
and it is defined as follows

ei(x) = zi − fi(x), (2.42)

where zi is the real measurement and fi(x) is the expected measurement based on the state
of the system x. In the SLAM problem, x is a position of the robot. The error is usually
assumed to be normally distributed with a zero mean and the information matrix Ωi . The
squared error ei is computed from Equation (2.42) as follows

ei(x) = eTi Ωiei. (2.43)

The result value of the squared error is a scalar. Two assumptions have to be fulfilled

1. All error functions of measurements are smooth in the neighborhood of a global mini-
mum.

2. The initial guess of x is available.

The goal is to find state x, which minimizes the error function of all measurements – i.e., the
global error.

x∗ = arg min
x

F (x) = arg min
x

∑
i

ei = arg min
x

∑
i

eTi Ωiei, (2.44)

The error function is non-linear in general. It has to be linearized around initial guess of x.
The Taylor expansion is used for linearization

ei(x + ∆x) ' ei + Ji(x)∆x (2.45)

where Ji(x) is a Jacobian of the error function concerning x. The next step is to replace the
terms in the squared error equation

ei(x) = eTi (x + ∆x)Ωiei(x + ∆x)

' (ei + Ji(x)∆x)TΩi(ei + Ji(x)∆x)

= eTi Ωiei + eiΩiJi∆x + ∆xTJTi Ωiei + ∆xTJTi ΩJi∆x

= eTi Ωiei + 2eiΩiJi∆x + ∆xTJTi ΩJi∆x

= ci + 2bTi ∆x + ∆xTHi∆x

(2.46)

22

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

where ci = eTi Ωiei, bTi = eiΩiJi and Hi = JTi ΩJi. The result above is a linearized error
function of a single measurement. The next step is to calculate a linearized version of the
global error

F (x + ∆x) =
∑
i

ei =
∑
i

(ci + 2bTi ∆x + ∆xTHi∆x)

=
∑
i

ci + 2(
∑
i

bTi)∆x + ∆xT (
∑
i

Hi)∆x

= c + 2bT∆x + ∆xTH∆x.

(2.47)

The global error F is derived as a quadratic form concerning ∆x

∂F

∂∆x
' 2b + 2H∆x. (2.48)

The derivative is set to zero
0 = 2b + 2H∆x, (2.49)

and the resulting linear system

H∆x∗ = −b→ ∆x∗ = −H−1b (2.50)

can be solved using Cholesky decomposition, QR factorization, or some iterative methods.

The process described above is the principle of the Gauss-Newton algorithm, which can be
summarized as follows

1. Linearize the global error function around the initial guess of the state x.

2. Compute bT and H.

3. Solve the linear system ∆x∗ = −H−1b.

4. Update the state x := x + ∆x∗.

5. Iterate until convergence.

2.4.2 Graph SLAM

The NLS based SLAM approach is usually called the graph SLAM [32] [2] [51]. It is usually
decomposed into two components called the frontend and the backend. The frontend is
supposed to create a graph that represents the map of the environment. The goal of the
backend is to optimize the graph.

The graph is an abstraction of the environment. It is composed of nodes and edges. There are
two types of nodes. The first one is the poses of the robot. The second type is the landmark
locations. When is the right time to add a new node that represents the pose of the robot?
The answer is not simple. Usually, it is solved by some heuristically determined threshold.
The nodes are connected by edges, which represent spatial constraints. Therefore there are
three types of edges. The edges between two consecutive robot pose, the edges between robot
and landmarks, and the edges created during loop closing. An example of the graph is shown
in Figure 2.7

23

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.7: Graph slam

The graph is created by the frontend component, which usually uses some matching algorithm.
The goal of the matching algorithm is to estimate the transformation between two nodes.
The popular approaches are feature-based matching, descriptor-based matching, and dense
scan-matching. The first one is based on the positions of the features in the data. The second
one usually compares the feature vectors calculated by some feature descriptor method. The
third type uses all data during matching.

The graph made by the frontend isn’t usually correct. It is because the frontend is only adding
nodes to the graph without resolving this information. The edge between two consecutive
nodes is an analogy to an odometry measurement. The robot observes the same part of the
environment. Therefore it is possible to calculate the virtual measurement - using rigid body
transformations - of current data seen from the previous robot pose.

This process is called lazy data association. It is the opposite of the active data association in
filter-based approaches where added data are resolved immediately. The graph is corrected
by the backend. It is achieved by applying the NLS error minimization defined in Equation
(2.44).

The optimization process is based on the error function ei,j of the edge between two poses xi
and xj . The Jacobian of the error will be non-zero only in the rows corresponding to these
poses

∂eij(x)

∂x
=

(
0 · · · ∂eij(xi)

∂xi
· · · ∂eij(xj)

∂xj
· · · 0

)
(2.51)

and the Jacobian can be written as follows

Jij = (0 · · ·Aij · · ·Bij · · · 0) (2.52)

Moreover, the sparse structure of Jij results in the sparse structure of matrix H. An adjacency
of the nodes in the graph is reflected in that structure. The coefficient vector bTij is computed
as follows

bTij = e>ijΩijJij

= e>ijΩij (0 · · ·Aij · · ·Bij · · · 0)

=
(

0 · · · e>ijΩijAij · · · eTijΩijBij · · · 0
)
.

(2.53)

24

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Similarly, the calculation of the coefficient matrix Hij

Hij = J>ijΩijJij

=

0
...

A>ij
...

B>ij
...
0

Ωij (0 · · ·Aij · · ·Bij · · · 0) .

=

...
...

· · · A>ijΩijAij · · · A>ijΩijBij · · ·
...

...
· · · B>ijΩijAij · · · B>ijΩijBij · · ·

...
...

.

(2.54)

The sparseness allows us to calculate the vector b> and matrix H> individually as a sum of
all edges connected to the particular node. Every edge contributes into two values in vector
b> and into four values in matrix H. Let’s assume that there is an edge between the node
xi and xj . The contribution of this edge can be calculated as follows

b>i = b>i + e>ijΩijAij

b>j = b>j + e>ijΩijBij

Hii = Hii + A>ijΩijAij

Hij = Hij + A>ijΩijBij

Hji = Hji + B>ijΩijAij

Hjj = Hjj + B>ijΩijBij

(2.55)

After summing up all contributions, the vector b> and matrix H of the linear system are
calculated, and finally, the system can be solved. Some sparse versions of the decomposition
algorithm can be used. As an example, sparse Cholesky decomposition or conjugate gradients
method.

The optimization task can be computationally expensive to perform frequently. Therefore,
the hierarchical pose graph is used. It groups topologically nearby nodes at the bottom level
of the graph. Every group represents one node in the higher level of the graph. This process
is repeated until a particular number of levels is created. The key idea is to correct only the
structure of the graph instead of every single node. The optimization process is started on
the highest level, and it is propagated using rigid body transformation to lower levels only in
the local neighborhood of the current position. Therefore, only the upper level is completely
optimized. It improves the efficiency of the graph SLAM algorithm.

An essential part of the theory necessary to understand the SLAM problem was introduced in
preceding sections. Common approaches were described as a core for state-of-the-art SLAM
systems described in Chapter 2.8.

25

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.5 Robot platform

This section aims to describe the standard types of robot platforms. As mentioned in Chap-
ter 1, the SLAM problem is usually solved by a mobile robot equipped with several sensors
[41] [52]. The selection of a type of mobile robot depends on the environment and applica-
tion performed. Concerning the environment, ground, aerial and underwater robots can be
considered. The more general camera handheld device can be used in all environments, but
it has to deal with the missing of other sensors.

2.5.1 Ground vehicle

The first type of robot platform is a ground vehicle. The ground vehicle is a platform with a
differential or the Ackerman driving geometry. It operates on the surface. Therefore only 2D
SLAM is usually performed. It is capable of operating in both indoor and outdoor scenarios.
Ground vehicles are useful for inspecting old abandoned mines, search and rescue missions
in a forest or other poorly accessible places. Two examples of the ground vehicles are shown
in Figure 2.8 – both are developed and assembled in the robotic laboratory at NTIS research
centre. The left one is a smaller platform based on the Wild Thumper chassis with differential
driving geometry. The one on the right is a larger platform based on racing RC chassis with
Ackerman driving geometry. The chassis with Ackerman is usually not suitable for indoor
scenarios. In this work, I used a robot based on the Wild Thumper chassis with differential
driving geometry.

Figure 2.8: Ground vehicles

Another application of the SLAM problem suitable for using ground vehicles is self-driving
cars. Several car companies around the world invest a lot of money in the research of au-
tonomous vehicles. The self-driving car in the traffic has to process a big amount of data and
reacts in milliseconds. Unfortunately, this technology isn’t perfect, and the driver has to be
ready to take over the control to avoid dangerous situations.

26

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.5.2 Aerial vehicles

The second type is aerial vehicles. A quadrotor drone usually represents this category. The
advantage is that aerial vehicles can operate in three-dimensional space instead of 2 dimen-
sions, as in ground vehicles. On the other side, the motion of the aerial vehicle is more
complex. Therefore, it is more expensive in the sense of memory and computational require-
ments. Another problem arises when the robot loses a signal or the battery goes low. In
the case of a ground vehicle, it only stops. The aerial vehicle has to land safely because,
in the opposite case, it can fall and shatter itself on the ground – or worse, hurt someone.
The example of an aerial vehicle is shown in Figure 2.9. It is Asctec Pelican from Ascending
technologies.

Figure 2.9: AscTec Pelican

2.5.3 Underwater vehicles

Many scenarios can be performed underwater – e.g., the condition monitoring of corals in the
oceans. This kind of application can be solved using underwater vehicles – i.e., submarine
robots. Standard sensors for ground and aerial vehicles can be useless in underwater scenarios.
It is the reason why the underwater scenarios are often more complicated than previous types.

2.5.4 Handheld devices

Another type of platform is a handheld device – usually some smartphone device. It isn’t
the mobile robot platform, but many scenarios can be performed on handheld devices. The
smartphone device usually has a camera sensor, an accelerometer, and a gyroscope. It is a
sufficient combination to provide a map using visual SLAM algorithms. On the other hand,
there is a problem with the performance of device hardware. The solution to this problem
can be found in a cloud technology that can compute SLAM on a high-performance server.
The crucial question is how to minimize data transfer between device and server without loss
in the map’s accuracy.

27

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.6 Sensors

In the following paragraphs, sensors suitable to obtain data for the SLAM task will be de-
scribed. There are three types of sensors called non-vision sensors, vision sensors, and support
information sensors. Based on this classification, existing SLAM algorithms can be divided
into non-vision, vision, and combined – the combined category of SLAM algorithms using
data from both types of sensors. Similarly, the non-vision or the vision category are based
on one or more sensors from the same category. Support sensors are supposed to provide
support information like the direction of movement or speed of robot wheels.

The selection of suitable sensors for a particular application is crucial for obtaining good and
accurate results. For example, the camera is the right choice for environments with good light
conditions and distinguishable objects, but it is useless in dark or low texture environments.
Another example of the problematic object for the camera-based SLAM can be a mirror
because the movement of the object in the mirror is different, and it can cause the failure of
the algorithm.

2.6.1 Non-vision

The category of non-vision sensors is represented by distance sensors based on different tech-
nologies. Nowadays, the most common distance sensor is LiDAR. An example of a LiDAR
sensor is shown in Figure 2.10.

Figure 2.10: Hokuyo LiDAR

The LiDAR provides 2D or 3D scans of the environment. The data is composed of distances
and relative angles to points around the sensor. Because of that, LiDAR can be classified as
a range-bearing sensor. Measuring is based on a laser beam, which is used to illuminate a
target object. The receiver then detects the reflected light. The distance is calculated from
the time of the flight of the laser beam. In Figure 2.11, LiDAR data visualization is shown.

28

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Endpoints of the laser beam are visualized as cubes. The red line is the trajectory of the
robot.

Another types distance sensors can be based on infrared technology represented by infrared
distance sensors, a sound-based sensor such as sonar, RADAR sensor, or sensors based on
magnetism, inductance, or capacity.

Figure 2.11: LiDAR data visualization

2.6.2 Vision sensors

A wide range of cameras represents the second category. In this section, basic types of vision
sensors will be described. Only bearing information is provided by most of the vision sensors.
Fortunately, missing information about the distance can be obtained from the motion in the
sequence of images. The advantage of the vision sensor is the information contained in the
image data. A lot of information – more than LiDAR – about the environment is included
in the camera image.

Consequently, it is possible to use image data to solve the SLAM problem and the number of
detection or tracking tasks. A large amount of data in the image causes the computational
complexity to rise with its resolution. The most common vision sensor is a monochrome or an
RGB camera sensor. This type of sensor will be denoted as the camera in the next sections.

Camera

The main argument for using the camera is its price. A USB webcam is easy to use a low price
solution. A better way can be using an industrial camera sensor that is more expensive but
has better performance. The theoretical frame rate of the cheap webcam is 30Hz, but the real
number can be only 10Hz. On the other hand, the frame rate written in the documentation
of an industrial camera is guaranteed.

29

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Data obtained from the camera is a matrix of pixels. The size of the matrix is called the
resolution of an image. Every pixel has a defined number of bits. In the case of an RGB
camera, it is 8 bits per color – 24 bits in total. The monochrome pixels have only one channel,
but it can have more bits – e.g., 12 bits. The final amount of data in bits can be computed
as follows

d = w × h× d, (2.56)

where w is the width of the image, h is the height of the image, and d is data type of the
image. The data type is usually 32 bits integer for RGB or 8 bits integer for monochrome.
An example of the camera sensor is shown in Figure 2.12.

Figure 2.12: Camera sensor

The system can be based on data from one camera – monocular system – or from more
cameras. The most common multicamera system is two cameras system – i.e., a stereovision.
The stereovision is accomplished by a pair of cameras which are set in parallel in the known
distance. The information about the distance between cameras is used to compute the object’s
distance in the image. The object has to be observed in the images from both cameras. Of
course, a higher number of cameras can be used.

A computing of the third coordinate is possible only if the camera or the stereovision is
calibrated. Calibration is a process by which the parameters of a camera are estimated. The
information about image calibration can be found in a wide range of image processing books
– e.g., chapter 11 in [33]. It is also briefly described in Appendix A.2 of this thesis.

Similar to the classic camera sensor is a thermal imaging camera. Instead of the visible part
of a light spectrum, the thermal imaging camera is sensitive to infrared part of the spectrum.
The disadvantage of a thermal imaging camera is its price. It is expensive, but in some
environments, it can be more useful than the classic camera. Especially environments with
several warm or heating objects will be suitable for using thermal imaging cameras.

30

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

RGBD camera

Another vision sensor is the RGBD camera, where D is the first letter from the word depth.
This kind of camera provides distance data together with the RGB image. Depth data is
similar to the matrix in the case of the monochrome camera. The depth and RGB matrices
are registered with each other. The consequence is that it is possible to find the RGB and D
values of particular points of the scene in the same coordinates in both matrices.

The RGBD camera is widely used in the last years because there is no need to calculate the
distance from the RGB image data. The best-known RGBD sensor is Microsoft Kinect, but
a lot of companies came with their solution. In Figure 2.13, an example of the RGBD camera
is shown.

Figure 2.13: RGBD camera

Event camera

Event camera is a relatively new sensor for SLAM – since 2008. Other names for this type
of sensor are Dynamic Vision Sensor (DVS)1 or Asynchronous Timebased Image Sensor
(ATIS)[53]. Instead of the acquisition of whole frames in a fixed frame rate, local changes
at the pixel level are obtained. Reaction to the change in a particular pixel is quick and
independent of the other pixels. Moreover, there are two types of changes based on the
positive or negative change of brightness value. The result is a continuous stream of events.

The event camera’s average latency is 1 microsecond, and the measurement rate goes up to
1 Mhz. It is much faster than the high-speed monochrome or RGB camera, with a frame
rate of up to thousands of frames per second. The advantage of the event camera is the
capability to provide data without blur, even in high-speed movement. The Requirements
for computation performance and data storage is reduced. An example of DVS is shown in
Figure 2.14. On the other hand, there is a need to create a new version of standard image
processing and computer vision algorithms like feature detection or tracking algorithms.

1https://inilabs.com/

31

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.14: Event camera

2.6.3 Support sensors

The third category is represented mainly by inertial sensors. It is not sensors that can be used
standalone while solving the SLAM problem. Instead, they are the source of some support
information about the environment or the vehicle’s ego-motion. The typical example is an
incremental rotary encoder. This type of sensor is attached to the motor shaft of the vehicle.
The data about the angular position of the wheel is then provided. The information about
speed and acceleration can be calculated from it.

Another example is an accelerometer, which measures proper acceleration. Linear velocities
in all three dimensions could be computed. A gyro sensor measures angular velocity instead of
the linear one. Both sensors are usually attached in the sensor called an Inertial Measurement
Unit (IMU). The IMU is a useful sensor for obtaining vehicle odometry.

There are plenty of other useful sensors that can be used in algorithms solving the SLAM
problem. – i.e., Magnetometers, bumpers, light detectors, acoustic sensors, etc. Using these
sensors depends on the conditions in a particular application.

32

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.7 Available open source tools, implementations and datasets

There are plenty of implementations, tools, and datasets, which can be use within mobile
robotics research instead of starting from scratch. This chapter is structured as follows. The
first section contains useful tools for robotics. In the second section, the list of the state of
the art implementations will be presented. The last part of this chapter presents the list of
datasets that are available online.

2.7.1 Tools

In this section, several tools and frameworks will be described. An essential tool for experi-
ments is the ROS framework [54],[55] because it supports a wide range of hardware – robots
and sensors – and several systems for solving the SLAM problem.

ROS

ROS is a software framework composed of various ready to use tools and a robust mechanism
for the communication between applications – and even between computers – and many
drivers for communication with connected hardware. The mechanism is based on so-called
ROS messages: data structures defined by a simple text file and then built by a building
system. Built messages are then used as data types for real messages, used for communication
between ROS applications, usually called ROS Nodes. The amazing part is that messages
don’t go directly from one application to another. They are published by application to the
space called ROS topic. ROS topic has its unique name. For example, image data from RGB
camera is usually in the topic with the name composed of camera serial number and the text
image or image raw – e.g., /realsenseimage raw. Slashes are used for namespace creation
so that more topics can be created in namespace /realsense/. Every other application that
needs information from the topic subscribe to a particular topic and gets the data right after
publishing the message by another application. The principle of ROS message system with
one publisher and one subscriber is shown in Figure 2.15.

The only important rule is that the ROS message type has to be the same for the publisher
and the subscriber. ROS is robust against mistakes in the name of the topic. The Subscriber
application doesn’t crash. It just doesn’t subscribe to a message.

ROS message mechanism runs in the ROS environment called the ROScore. It can run on
one computer or on a couple of computers where one computer is ROS Master, and the
others are slaves. ROS Master is the only computer where ROS core is running. The other
computers have set their ROS variables ROS MASTER URI to the ROS Master computer,
and it is then automatically connected after an arbitrary ROS node has started on the slave
computer. The messages are automatically sent between computers based on publishers
and subscribers attached to particular topics. It is a benefit for the developer to use more
computers without creating the network layer for communication between them.

Another useful concept contained in ROS is a data file called ROS bag. It works as a record
of the ROS environment. The file includes all topics and messages which were published
at the time of recording of the file. It is a powerful mechanism to rerun applications with

33

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.15: Principle of a communication inside ROS environmet.

different parameters on the same data multiple times.

Mobile Robot Programming Toolkit

Mobile Robot Programming Toolkit (MRPT) is a set of open-source C++ libraries and
applications covering a wide range of algorithms and data structures in mobile robotics. The
advantage is the existence of ROS packages that allow running MRPT applications inside the
ROS environment. MRPT also contains libraries designed to create GUI of an application,
OpenGL module for graphics creation, or vision module, which extends the functionality of
OpenCV [56].

NVIDIA Isaac

Isaac is a relatively new platform determined for the development and deployment of AI-
powered robots. It provides a collection of algorithms. Many of them are GPU-accelerated.
It can be developed directly using C or Python API. Moreover, there exists a ROS-bridge to
provide a connection with a ROS framework. Isaac is supposed to run on NVIDIA hardware
– such as the NVIDIA Jetson computers family. Thus it can utilize hardware potential to
the maximum.

34

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Simulation

During the research in robotics, there are three possible ways to test an arbitrary algorithm.
The first option is to run an algorithm on a real device or record data from an actual device.
A better idea is to use an online dataset. Another option is to use a simulation environment.
There are two well-known solutions with the active community.

The first solution is called the Gazebo [57][58]. It is a simulation platform that was a part
of the ROS. The current version is the standalone application with libraries allowing use in
the ROS. In older versions, the crucial disadvantage was the absence of visual-based model
creation. The model was created only by the XML-based file called URDF. The current
version has a GUI model editor and a lot of new features.

he second option is the Virtual robot experimentation platform (V-REP) [59]. It is a mul-
tiplatform simulation environment. The advantage is that V-REP supports a wide range of
programming languages and control approaches. By control approaches, the following op-
tions are meant: the embedded script, plugin, ROS node, remote API client, or completely
custom solution. The environment supports four physics engines. The whole list of features
can be found on the project webpage2 Nowadays, both solutions are an excellent choice to
work in a simulated environment.

Visualization

In most applications, it is necessary to visualize the map and data from sensors. There are
several options. The first one is to write a visualization application from scratch. The second
option is to use tools for built-in ROS. It is a particularly rviz application that can visualize
the map and a wide range of sensors. Extensions with new functionality can be used in this
application. The third option is to use Robot Web Tools3 [60]. It is a web-based framework
capable of communication between ROS and web applications. The third option has several
advantages. It is multiplatform, it is easy to learn, and it can be used as a web-based control
panel for the robot.

2.7.2 SLAM Implementations

In Table 2.1, the list of available open-source implementations is shown. Implementations
are sorted by used sensors. The second criterion is whether the particular implementation
uses ROS or not. The implementation using ROS is often easy to use on arbitrary hardware.

An interesting question may be which SLAM solution from the particular group is the best
one. There are few papers comparing implementations [69] or SLAM algorithms [31] directly.
For example, a series of SLAMBench ([70], [71] and [72]) papers were published. Another
example is paper [19] in which authors compare gMapping and Hector SLAM in the tunnel
scenario. The gMapping is an older solution, but thanks to integrating information about
the movement by particle filter, it creates a more accurate map of the long, almost straight

2http://www.coppeliarobotics.com/
3http://robotwebtools.org/

35

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Sensors

Approach Reference
LiDAR Camera

RGB-

D
IMU

ROS

tinySLAM [61] 3 7 7 7 3

GMapping [50] 3 7 7 3 3

Hector SLAM [41] 3 7 7 3 3

MonoSLam [62] 7 3 7 7 7

OrbSLAM 1, 2 [12], [34] 7 3 7 7 3

LSD-SLAM [11] 7 3 7 7 3

FAB-MAP [63] 7 3 7 7 7

PTAM [5] 7 3 7 7 7

DTAM [64] 7 3 7 7 7

DPPTAM [65] 7 3 7 7 3

KinectFusion [66] 7 7 3 7 7

ElasticFusion [67] 7 7 3 7 7

DynamicFusion [68] 7 7 3 7 7

RTABMAP [42] 3 Stereo 3 3 3

Table 2.1: Available SLAM implementations.

tunnel. As we proposed in the paper [73], the ROS is an appropriate tool for creating a
benchmark tool for the wide range of SLAM implementations.

2.7.3 Using of SLAM solving systems

Several SLAM solving systems were tested to learn how they work and how to use them to get
accurate results. Significant advantages have the systems which run in the ROS environment.
Its use is much easier because it is connected to the ROS message system. Thus, it is possible
to work uniformly with these systems.

This uniformity is evident in the parameters of the SLAM solving systems. For example, lidar-

36

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

based systems have the same parameters for configuration of transformations (tf) between
coordinate frames. The robot usually has several coordinate frames:

• base frame Coordinate frame of the robot base.

• map frame Coordinate frame of the map.

• odom frame Frame attached to the odometry system.

• laser frame Frame attached to the laser sensor.

• camera frame Frame attached to the camera.

As mentioned, transformations between coordinate frames have to be defined and published
into the ROS environment. Particularly it is necessary to define tf between laser sensor frame
and robot base. Equally important is the tf between the robot base and the map.

All mentioned parameters are usually set in the so-called launch file, the XML file capable of
running multiple ROS applications. Moreover, it is possible to create several launch files for
testing different configurations of the system.

In Figures 2.16 and 2.17, an example of maps and trajectories created by gMapping, Hector
SLAM, and Google Cartographer are shown. MIT Stata center indoor dataset [74] was used.
It contains the ground truth of the robot positions during the mapping task. Results can be
used to compare the accuracy of used SLAM systems. It is visible in Figure 2.17 that Hector
SLAM is not accurate when it is mapping long corridors4. The estimated corridor in the
center of the map (red rectangle) is shorter than the ground truth version. Other systems
are more accurate at that place. On the other hand, all systems were accurate enough in this
scenario.

2.7.4 Datasets

The list of available public datasets suitable for testing SLAM approaches is shown in Table
2.2. There is information about the type of date which is contained in the particular dataset.

4Maps and trajectories were created in cooperation with undergraduate student Petr Štrunc during work

on his bachelor thesis.

37

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.16: Map of MIT Stata Center created by three SLAM solving systems.

38

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

−40 −30 −20 −10 0 10 20 30 40 50
−5

0

5

10

15

20

25

30
Hector SLAM: trajectory

ground truth

Hector SLAM

−40 −30 −20 −10 0 10 20 30 40 50
−5

0

5

10

15

20

25

30
gMapping: trajectory

ground truth

gMapping

−40 −30 −20 −10 0 10 20 30 40 50
−5

0

5

10

15

20

25

30
Google Cartographer: trajectory

ground truth

Google Cartographer

[m]

[m]

[m]

[m
]

[m
]

[m
]

Figure 2.17: Trajectories of robot in the map estimated by three SLAM solving systems.

39

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Sensors

Dataset Reference
Lidar Camera RGB-D IMU

Navlab SLAMMOT [75] 3 3 7 7

KTH SLAM 7a 3 7 7 7

Radish [76] 3 3 7 3

TUMb [77] [78] 7 3 3 7

Cheddar Gorge [79] 3 3 7 3

MIT Stata center [74] 3 3 3 3

Kitti [80] 3 3 7 7

Velodyne SLAM [81] 3 3 7 7

MRPT repository [82] 3 3 3 3

ASL Repository 7c 3 7 7 7

NYU DEPTH 7d 7 3 3 7

Event Camera [83] 7 3e 7 7

a http://www.nada.kth.se/ johnf/kthdata/dataset.html
b Technische Universität München
c http://projects.asl.ethz.ch/datasets/doku.php
d http://cs.nyu.edu/ silberman/datasets/
e RGB + Event camera data

Table 2.2: Available SLAM datasets

40

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

In the tables in this section, a couple of the SLAM implementations and datasets is shown.
GitHub5 is the source of many implementations, but the list above contains only the well-
known SLAM approaches with research papers in their backgrounds. In the next section, the
open problems of the current research of the SLAM problem will be described.

2.8 State of the Art

In this section, the state-of-the-art research of the SLAM problem based on the core ap-
proaches described in Section and sensors mentioned in Section 2.5 will be described. The
section is divided into two parts. The first part is focused on the non-vision algorithms.
Papers focused on the vision-based SLAM solving algorithms are mentioned in the second
part of the chapter. Usually, non-vision solutions use a laser range finder and odometry. The
camera is used in the vision approaches as the primary source of the data.

2.8.1 Non-vision

Non-vision methods were the first solution because computers weren’t capable of processing
images in real-time. The SLAM package of Tim Bailey6 became a valuable material for
beginners in the field of the SLAM problem. The package contains simple 2D simulators
for the EKF-SLAM, UKF-SLAM, and both the fastSLAM algorithm versions. The code is
written in Mathworks MATLAB. In the next paragraphs, the most important algorithms will
be briefly described.

The solution which is worth to be mentioned is TinySLAM. It is the SLAM solution, which is
unique because the implementation has less than 200 lines in the C programming language. It
is composed of two operations. The first one performs the distance calculation between a laser
scan and the map. The second operation is an update of the map. The stand-alone version
of the algorithm is proposed in the mentioned paper. It uses the Monte-Carlo algorithm
[84] for matching a new scan with the map. Implementation is described in detail in [61].
Furthermore, it is possible to use TinySLAM with a particle filter algorithm to increase the
method’s accuracy.

The well-known method called gMapping was presented in [49], [50]. It is a particle filter-
based approach with an open-source implementation available. The authors came with two
improvements to the particle filter algorithm. The first improvement is using the accurate
proposal distribution, which considers both the robot’s movement and the most recent ob-
servation. The second improvement is an adaptive resampling technique. It is based on the
decision of whether or not it is necessary to apply the resampling phase. The decision value
is computed using an equation

Neff =
1∑B

i=1(ω(i))2
(2.57)

where ω is a weight of the normalized particle i and N is the number of particles. The value
is the so-called Effective Sample Size, and it estimates how well the particle set represents the
target posterior. In the proposed method, the resampling step is performed when the value of

5http://github.com
6https://openslam.org/bailey-slam.html

41

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Neff drops below the threshold defined by number N/2. An implementation of this method
is available online, and it is frequently used in current robotics applications. Moreover, in
some scenarios, it has better results than newer solutions.

A more current SLAM solution developed at the Technische Universität Darmstadt in Ger-
many is called Hector SLAM [4] [41]. This method combines a 3D attitude estimation system
based on inertial sensing like IMU or wheel odometry with a 2D SLAM based on the graph-
SLAM algorithm. The overview of Hector SLAM is shown in the Figure 2.18. The state of
a 3D position is defined as follows

x = (Ω>, p>, v>)> (2.58)

where Ω is a vector composed of Euler Angles – roll φ, pitch ×, and yaw ψ. Variables p and
v are 3× 1 vectors of a robot pose and velocity. The state is estimated using the EKF filter
algorithm. Inertial sensors contain noise, which causes an increase of the error between a
true and an estimated position. The SLAM component is then used to reduce the error.

SLAM subsystem (2D)

LIDAR

Preprocessing Scan Matching Mapping

Navigation subsystem (3D)

IMU GPS Compass

Navigation Filter

Altimeter...

Controller

2D Pose Estimate Attitude and Initial Pose

Stabilization

Joint Values

Figure 2.18: Hector SLAM overview.Taken from [4]

The second component of the approach is to create a map using the LiDAR sensor data.
Scan matching algorithm based on the Gauss-Newton method is used. The advantage of the
Gauss-Newton method is that there is no need to perform data association. The current
scan is aligned with the map by the scan-matcher. The cooperation between SLAM and
EKF is mutual. The position estimated by the EKF is the initial point of the scan-matcher
algorithm.

Another well-known LiDAR-based SLAM system Google Cartographer (GC), was proposed in
the paper of Hess et al. [52]. In Figure 2.19, the GC system overview is shown. The research’s
motivation was to create a system that makes a floor plan for a new building. GC creates
a 2D grid map with an accuracy of approximately 5 cm. The approach is composed of two
optimization components. The first one is the local component, and it performs optimization
on the submap. Submap is a small set of aligned scans that contains information about a

42

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

small portion of the environment. Every submap is finished when the robot moves a certain
distance. There is an assumption that the submap is sufficiently accurate for a short time
before it is finished. Scan matcher based on non-linear least squares is used. The optimization
problem is defined as follows

arg min
ξ

K∑
k=1

(1−Msmooth(Tξhk))
2 (2.59)

where Msmooth is the smoothed version of probability values in the local submap. The values
represent the probability of obstacles in cells of the grid map. Variable hk is a k-th point of
the scan. Each point is transformed to the submap frame using rigid body transformation
Tξ, where ξ is the pose of the scan frame. The finished submap is put to the system’s loop
closure component, and no new scans will be inserted into it.

Figure 2.19: Google Cartographer overview.

The loop closure is a global optimization component. In this case, it processes all data. The
goal is to reduce the error accumulated during movement in the environment. The local opti-
mization does not reduce the error. In the global optimization, all pairs of scans and submaps
are considered for loop closing. If the scan matcher finds a good match, the corresponding
relative pose of the scan is added to the optimization problem. The global optimization
component runs in the background. Every few seconds, it performs an optimization step –
using Ceres solver [85] – defined as follows

arg min
ΞmΞs

1

2

∑
ij

ρ(E2(ξmi , ξ
s
j ,Σij , ξij)) (2.60)

where Ξm are the submap poses ξmi , and Ξs are the scan poses ξsj . The variable ξij represents
relative poses between submaps and scans. Therefore, it is a set of constraints with the
associated covariance matrices Σij . Function ρ is a Hubber loss [86] used to reduce the
influence of outliers in the data. The term E2(ξmi , ξ

s
j ,Σij , ξij) represents the residual which

can be computed by

E2(ξmi , ξ
s
j ,Σij , ξij) =

[
ξ −

(
R−ξmi

1(tξmi − tξsj)
ξmi;Θ − ξsj;Θ

)]T
Σ−ij1

[
ξ −

(
R−ξmi

1(tξmi − tξsj)
ξmi;Θ − ξsj;Θ

)]
(2.61)

43

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

where R and t are rotation matrix and translation vector that transforms local scan or submap
frame to world frame and subscript Θ denotes the orientation of the scan or the submap.
The problem defined in Equation 2.60 is called Sparse Pose Adjustment described in [87].
The optimization’s quality is then improved using the Branch-and-bound scan matching
algorithm described in detail in the mentioned paper. The paper results show that the
method can successfully map indoor environments with high accuracy. An implementation
of this approach is open-sourced, easy to use, and it is available online7.

Sileshi et al. [88] recently present the implementation of an adaptive particle filter-based
approach implemented on the FPGA. The approach is successfully tested on the simulated
data and the dataset to speed up the particle filter approach. As mentioned above, the
gMapping can be better than a newer approach such as Hector SLAM. Speeded up gMapping
would be a good solution for a wide range of applications, even on low-performance hardware.
Flat2D [89] is another system that using 3D LiDAR over the 2D map system. It can be useful
in the scenarios of mapping of long corridors, the real-time created map is 2D, but in the
postprocessing step, the map can be recomputed in a full 3D version. There exists research
that uses an unusual type of sensors. An example of such a system is EchoSLAM, presented
in the paper of Kreković et al. [90]. It uses a microphone to create the map based on the
sound reflected from the walls.

2.8.2 Vision based approaches

Current camera-based SLAM algorithms are usually built on the top of the graph SLAM
approach. It is generally called the KeyFrame approach in the visual SLAM terminology,
and it is processed by a method called Bundle Adjustment[86]. On the other hand, the first
approaches used filters such as EKF. Therefore, it is similar to non-vision approaches. A
typical property of most of the solutions mentioned in the next paragraphs is the limitation
on the smaller static scenarios. The limitation is not strict in the most recent systems, but
there are still some problems in larger scenarios. On the other hand, it is a significantly
better situation in contrast to the first approaches.

The first vision algorithms were based on the EKF. The first system capable of performing
indoor SLAM in real-time was the MonoSLAM system developed by Davison et al. [91] [62]
in 2007. In 2008 the UKF-SLAM [92] approach was successfully used inside the MonoSLAM.
The MonoSLAM algorithm uses a constant velocity motion model to estimate the movement
of the camera

rWnew
qWR
new

vWnew
ωRnew

 =

rW + (wW + VW)∆t

qWR × q((ωR + ΩR)∆t)
vW + VW

ωR + ΩR

 , (2.62)

where r is a 3 dimensional vector of linear position of the camera, q is a quaternion –
4 dimensional vector – of the angular position, v and ω are linear and angular velocity
vectors,V and Ω are impulses of linear and angular velocities, and q is a quaternion defined
by the angle-axis rotation vector (ωR + ΩR)∆t.

The map created by the MonoSLAM was featured-based and sparse. There were many
limitations to this system. It was usable only for room size indoor scenarios with a limited

7https://github.com/googlecartographer

44

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

number of landmarks caused by the computational complexity of the EKF algorithm.

The important question is how to estimate the object’s distance in the image and whether it
is possible to estimate it during feature initialization. Usually, the object’s distance is called
the depth, and it is denoted by d. The first solutions were based on the delayed initialization
of the feature. The depth was estimated from the robot’s movement before adding a feature
vector to the covariance matrix. The undelayed solution based on adding multiple features
with different depths was proposed by Sola et al. [93]. The feature with the best estimation
of the depth is the only one that survives. The other ones diverge, and then they are deleted.
The problem is in the efficiency of this approach. With every new feature, multiple features
are added to the covariance matrix, which causes an increase of the computational complexity
– i.e., the size of the covariance matrix increase quickly. A better solution was presented in
papers [94] and [95]. Instead of depth d, an inverse depth parametrization ρ = 1

d is used in
the algorithm. The initialized feature vector

y = (xc yc zc θ φ ρ)>, (2.63)

encodes the ray from the first camera position from which the feature was observed. Variables
xc, yc, zc are components of the camera location vector, θ and Φ are azimuth and elevation
of the ray. Arbitrary feature coded in inverse depth parametrization can be transformed to
the euclidean space when it satisfies linearity index constraint. Transform from inverse depth
parametrization to 3-D point is defined as follows

x =

XY
Z

 =

xy
z

+
1

ρ
m(θ, φ), (2.64)

m = (cosφ sin θ − sinφ cosφ cos θ)>, (2.65)

where X,Y, Z are components of the 3D-point vector, x, y, z are components of the inverse
depth vector, and m is the unit vector pointing from point xc, yc, zc to point X,Y, Z. Details
of this approach can be found in [95]. More recently the inverse depth parametrization is
used in RGB-D based system in the paper of Gutierrez et al. [96].

An adapted version of MonoSLAM was used in Castle et al. [97] to the task of augmented
reality and object recognition. The Shi-Tomasi corner detector [98] was used in the original
MonoSLAM. In this version of MonoSLAM, the Scale-invariant feature transform (SIFT)[35]
detector and descriptor are used. Another adaptation was proposed in the paper [39]. The
special version of the RANSAC algorithm called 1-point RANSAC was proposed in the paper
to perform the sub-task of data association. The original MonoSLAM uses Joint Compati-
bility Branch and Bound (JCBB) instead of RANSAC. A more recent system based on the
adapted version of MonoSLAM was presented in 2014 in the paper of Atashgah et al. [99].
The authors used MonoSLAM inside a virtual environment for testing aerial SLAM applica-
tions. Another example of a modern EKF based SLAM system is proposed in paper [100].
Authors combine the EKF approach with the graph SLAM in the task of visual-inertial odom-
etry. Medical use of the MonoSLAM was presented in [25]. The algorithm of MonoSLAM
is adapted to the problem of tissue mapping in surgery. The Maximally Stable Extremal
Regions (MSER) [101] are used as features in this research.

In 2007, Parallel Tracking and Mapping (PTAM) was proposed by Klein et al. [5]. The
PTAM system is based on the KeyFrame based SLAM approach. The overview of the PTAM
approach is shown in Figure 2.20. Authors split tracking and mapping into two parallel

45

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

tasks. There are restrictions on the size of the environment or workspace. Exploration of
the environment wasn’t supported. Therefore only a static scene is assumed. The map and
the whole algorithm are initialized from a stereo pair of images using the 5-point algorithm
[102]. In practice, a user has to move in the direction of a camera plane. The algorithm
can to handle thousands of features, which is much better than dozens or hundreds in the
MonoSLAM algorithm. The pose update is based on the minimization of the objective
function of the reprojection error

µ
′

= arg min
µ

∑
j∈S

Obj

(
| ej |
σ

, σT

)
(2.66)

where Obj(, σT) is the Tuckey biweight objective function and σT a robust estimate of the
standard deviation of the distribution computed from all the residuals. The reprojection
error vector ej is defined as follows

ej =

(
ūj
v̄j

)
− CamProj(exp(µ)Ecwpj), (2.67)

where ûj , v̂j is the pixel location in the image, exp(µ)Ecw represented changes in camera
pose, and pj is the coordinates of the j − th point in the map. The CamProj is a pinhole
camera projection function with a radial distortion model. Details can be found in [103].
The adapted version of the algorithm suitable to run on mobile phones was later presented
in paper [104].

FAB-MAP [63], [105] is an appearance-based method for SLAM and loop closing. It is based
on the Bag of Visual Words (BoVW) approach when revisiting the particular place in the
map. The BoVW approach is based on the pre-trained vocabulary of visual words. The
observed scene is then defined by the combination of visual words in the vocabulary. The
vocabulary is trained from the features extracted from a set of images. The first step is to
use some feature detector and descriptor such as SIFT [35] or Speeded-up Robust Features
(SURF) [29]. The result is a big set of vectors of a particular length based on the used feature
description method. Extracted features are clustered to N classes by a clustering algorithm
such as k-means [106]. The variable N defines a number of visual words in the vocabulary.
Observation of the scene is defined as the binary vector Z of length N . The vector is defined
as follows

Zi =

{
1 if the ith word is observed in the scene

0 otherwise
. (2.68)

The authors of this particular approach study the influence of the co-occurrence of some words
in the scene. The influence proved to be a significant property of the word in the vocabulary.
They proposed an approach based on the trained tree-structured Bayesian network [107] to
capture the posterior density function of the co-occurrences of the words in the vocabulary.
Chou Liu algorithm [108] is used in the FAB-MAP approach. In paper [109], the authors
proposed an improved FAB-MAP 2, capable of working in environments with large maps.
The improvement is based on the inverted index data structure, which provides the mapping
from words to scenes in which the words were observed. The FAB-MAP 2 approach was
successfully tested on the large scale dataset contained approximately 1000 km.

A solution for monocular SLAM called ORB-SLAM was proposed in the paper of Murray
et al. [12]. The overview of ORB-SLAM is shown in Figure 2.21. It is one of the best
solutions for small and medium-sized environment. The approach is based on the Bundle
Adjustment algorithm. It is capable of recognizing loop closing and provides relocalization

46

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.20: PTAM system overview. Taken from [5]

when the algorithm started over the existed map. An interesting property is using the same
features to all important steps of the algorithm. The Oriented Fast and Rotated Brief (ORB)
[30] features are used for tracking, map, relocalize, and loop closing. The name of the ORB
features is based on the used combination of a feature detector and descriptor. The FAST
[110] method is used as a detector. The descriptor is an acronym for the Binary Robust
Independent Elementary Features [111]. For this purpose, the BoVW vocabulary based on
ORB features is used inside the algorithm. The third-party library called DBOW2 [112] is
used there.

The approach is unique in the way of initialization of the map. During the initialization
process, the right method is chose based on the planarity of the scene. If the scene is
planar, the homography between consecutive frames is computed. The fundamental matrix
is calculated in the opposite case.

The original algorithm was improved in 2016 to work with stereo vision and RGB-D cameras.
The approach is called ORB-SLAM2 [34]. The important change was the dependency on using
the Robot Operating System (ROS) – see Chapter. Using ORB-SLAM2 in ROS is optional,

47

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Figure 2.21: ORB-SLAM system overview.

but the original ORB-SLAM can run only within the ROS. The most current research in
ORB-SLAM based on the information from the project website8 and GitHub repository9 is
the application of ORB-SLAM2 in the task of augmented reality. The authors published
a simple demo in which the cube is rendered into the scene. The second innovation is the
support of current versions of computer vision (OpenCV 3.x) and linear algebra (Eigen 3.3)
libraries. The consequence is that the installation and use of the ORB-SLAM2 become much
more straightforward on current Linux systems. The method has an active community of
users and researchers that works on the improvement of the method.

Another recently presented or improved methods solving Visual SLAM or visual odometry
task are ORB-SLAM Atlas [113] with support for multi-map SLAM, ORB-SLAM 3 [114]
with support of Visual-Inertial SLAM, Semidirect Visual Odometry (SVO) [115], COP-SLAM
[116], [117], Direct visual odometry [118], image mosaicing system for UAV [119] or RatSLAM
[120], [121]. The RatSLAM is a unique solution because it is a biologically inspired solution
using a particular type of neural network called a competitive attractor network.

Another monocular SLAM system is the Large-Scale Direct SLAM (LSD-SLAM) [122], [11].
In contrast with feature-based ORB-SLAM, the LSD-SLAM represents direct methods. It
doesn’t work with features. It works with image intensities directly. The approach consists
of three main components. The first one continuously estimates the rigid body transform
between new camera images and the current keyframe concerning the last estimated pose.
The second component is the depth map estimator responsible for the refinement of depth
estimation of the subset of points in the frame. Therefore LSD-SLAM is a semi-dense ap-
proach. The last component is a map optimization subsystem. It is based on the graph

8http://webdiis.unizar.es/˜raulmur/orbslam/
9https://github.com/raulmur/ORB SLAM2

48

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

optimization framework g2o [123] which is available online on the web10

LSD-SLAM is computed only on the CPU. The approach was extended in the last years
to handle stereo-vision [124], omnidirectional cameras [125], multicamera system [126] and
smartphones [21]. The Smartphone version is only the odometry version of LSD-SLAM. The
trajectory of the system is estimated but without the semi-dense map of the environment.
Another approach for mobile devices was presented in [127]. It creates a 3D model of the
small-scale environment in real-time using both CPU and GPU performance of the device.
This approach is useful for 3D scanning rather than for the exploration of the environment.
In Figure 2.22, the overview of LSD-SLAM is shown.

Figure 2.22: LSD-SLAM system overview.

There are more interesting approaches that create semi-dense and dense maps. Dense Piece-
wise Planar Tracking and Mapping [128], [65] creates both the semi-dense and dense map.
Firstly the semi-dense map is created. Then the low-gradient regions are added to the map.
They are assumed to be planar. The final map is dense [17]. In contrast, the work of
Mur-Artal and Tardós [129] is a semi-dense approach build over the feature-based SLAM.

In the papers of Newcombe et al. [130], [64], the system named Dense Tracking and Mapping
was proposed (DTAM). It is a system for dense reconstruction of a static scene from a single
RGB camera. It is a direct method based on the graphSLAM approach. The implementa-
tion of DTAM is parallelized, and it’s running on GPU. It is necessary because the dense
representation of the scene may contain millions of vertices. The significant limitation of this
approach is the assumption of the static scene with static light conditions.

Visual-Inertial Direct SLAM [131] is a current approach using an IMU sensor to improve
the speed and accuracy of visual SLAM algorithms. Especially the scale of the environment
is corrected by the IMU data. The same type of research was proposed in the paper of
Leutenegger et al. [132]. The implementation of this research is available online11 under
the BSD license. An approach called MOARSLAM [133] is using IMU and camera too.

10https://github.com/RainerKuemmerle/g2o.
11http://ethz-asl.github.io/okvis/

49

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

MOARSLAM can handle multi-robot scenarios. This kind of problem is called multi-robot
SLAM or co-op SLAM.

Since the Microsoft Kinect has been released, there is active research in the field of RGB-D
based SLAM. The well-known solution named KinectFusion [134] [66] was proposed in 2011.
The approach is processing all data to obtain the scene model of the room-sized environment.

The pipeline of the system starts with surface measurement. It is a pre-processing of raw
depth measurements. The result of this component is a dense vertex map and normal map
pyramid. The second component is a pose estimation part. The estimation is based on
the multi-scale ICP algorithm [40]. It is an alignment between the predicted surface model
and the new sensor data. The next component is responsible for reconstruction update.
Integration of the surface measurement is integrated into the scene model using Truncated
Signed Distance Function (TSDF) [135]. The last part of the system is called a surface
prediction. The purpose of the component is to search for the loop closure.

Dense planar SLAM [136] is surfel12 based system. There are identified two types of surfels
regions. The first type is planar region surfels, which are characterized by low curvature. If
planar regions overlapping and have similar properties, they can be merged into one region.
The second type of surfels is non-planar regions. Data association management of map
entities is easier in the surfel based system in contrast to the voxel-based system used in the
KinectFusion.

The approach proposed in [67] named ElasticFusion is slightly different because it is based on
non-rigid surface deformations used to refine the map rather than pose graph optimization
method. The surfel-model is decomposed into two parts. The first one is an active part, a
segment of the model that is observed, managed, and refined. The second inactive part of the
map is the part in which the loop is searched. When the loop is closed, the particular inactive
area is reactivated, and then it is refined to obtain a more accurate result. The recent research
based on the ElasticFusion is called SemanticFusion. [27]. The authors used ElasticFusion
and extended it to create a system that can recognize an object in the scene using deep
neural networks. Another method that can handle non-rigid deformations is Dynamic Fusion
of NewCombe et al. [68]. CPA-SLAM [137] is a new method that combines direct alignment
of consecutive images with a global plane model expectation-maximization (EM) algorithm
[138]. An interesting approach is PinPoint SLAM [139]. The method extracts features from
RGB images using SURF features, and then it tries to find point correspondences of all types
– 2D-to-2D, 3D-to-2D, and 3D-to-3D – using the RANSAC algorithm. It is a reason why
the method is called a hybrid approach. Moreover, there is an off-line postprocessing phase
of the method, which refines obtained results using all data and predicted poses from the
on-line phase.

A special type of vision approach is solutions that using an object instead of low entities like
points or edges. The well-known method is called SLAM++ [140]. It takes advantage of prior
knowledge of repeated structures and objects in the scene. Objects are recognized by the
algorithm and directly tracked to build a map. The more current solution was presented in
the paper [141]. The method uses BoVW to classify objects based on a prepared dictionary
that includes 500 recognizable 3D objects. Both approaches are suitable for small scale static
scenarios. Another recent research in the object SLAM is Multi-object SLAM (MO-SLAM)
[142] or SLAM with the object using a non-parametric pose graph proposed in the paper

12Surface element

50

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

[143].

Since 2016, many researchers have started to focus on deep learning in Simultaneous Localiza-
tion and Mapping. Several recent papers describe methods addressing semantic segmentation
SLAM such as closing-loop semantic segmentation research paper [144], deep-learning-based
semantic segmentation [145] for masking out background, semantic-based motion removal for
mapping in dynamic environments [146], SceneCode approach in paper [147], SemanticFusion
approach [148], semantics and structure of the environment from single depth image in paper
[149], or paper on semantic visual slam in the populated environment [150]. Some of the
other papers are summarized in the survey paper [10].

Another direction that is built on deep learning and semantics is object level SLAM. There
were some papers on this topic without using deep learning, such as previously mentioned
SLAM++. Deep learning-based approaches, on the other side, were proposed in the last
few years. Modern techniques were proposed in papers [151] describing Fusion++ approach,
Quadric SLAM [152], where objects are represented as dual quadrics – i.e., 3D surfaces such
as ellipsoids, or in [153], where the whole representation is obtained using a deep learning
approach.

Moreover, professor Andrew Davison from Imperial College London – a recognized expert
in visual SLAM who propose the first real-time monocular SLAM in 2007 – published two
interesting papers focusing on the future of simultaneous localization and mapping. In the
first paper called Future Mapping: The Computational Structure of Spatial AI systems [154].
Prof. Davison describes the evolution of SLAM into a more generic problem called geometric
and semantic Spatial AI. He also explores the requirements and constraints of real application
and finally explores the computational structure of this future SLAM. In the second paper
[155], Prof. Davison argues for using Gaussian Belief Propagation (GBP) for probabilistic
estimation in Spatial AI.

All of the mentioned papers are promising approaches in the field, but they usually focused
on the semantics of the scene or handling with dynamic objects. On the other hand, there is
no significant research in the field of multi-environment mobile robot missions – the system
capable of recognizing transition between environments and adapting system behavior based
on this information.

In summary, there are plenty of solutions in the field of SLAM. A lot of them were mentioned
in the paragraphs of this section. Some others can be found in papers [156], [9], or [157], [10].
The mostly used non-vision solutions are gMapping, Hector SLAM, and Google Cartographer.
Similarly, the best camera-based solutions are LSD-SLAM, ORB-SLAM2, and RTAB-MAP.
In the next section, open problems of SLAM will be listed and described. Based on this list,
dissertation goals will be defined in Chapter 3.

2.9 Open Problems

The SLAM problem is a highly researched area, but it still contains many open problems
that need to be addressed. In this section, several open problems will be mentioned. The
chapter is partitioned into two parts. The first one is focused on the problems of the SLAM
itself. The second one is related to the applications of the SLAM problem.

51

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

2.9.1 Open Problems of the SLAM

Open problems mentioned in this section are problems of individual parts of algorithms for
solving SLAM. A lot of mentioned problems are highly discussed nowadays. One of the topics
that will be highly researched is semantic reasoning in the SLAM problem. It is related to
the field of neural networks that recently became popular in computer vision.

The map managment

The result of many SLAM solving systems is an occupancy grid map or a landmark-based
sparse representation of the environment. They are both well-known and suitable types of
maps for the SLAM problem. There are few open issues that can be focused on in the next
years. A high-level representation of the environments is one of them. Almost all known
SLAM solving systems can handle simple point features, point clouds, or polygonal soups –
a group of non-overlapping triangles. Only a few research papers came with the solution for
describing objects in the environment, saving them to the map, and recognize them in the
future. The system proposed in paper [153] is one of the more recent research on this topic.
The question is how to describe a solid representation of the environment. The example
of representation can be Parametrized Primitive Instancing, which decides about the shape
family of the object – i.e., cylinder, sphere, rectangle – and then defines a set of the parameters
for them.

The open problem from the same category is focused on the choosing of the optimal represen-
tation for the particular task. How to choose criteria? And even more important question:
How to select the optimal representation automatically? The SLAM solution with the adap-
tive representation of the environment can be useful during the long-term mapping scenario.
Is there any possibility to switch on-the-fly between a less or a more complex representa-
tion based on the complexity of the environment? Current systems are all dependent on the
decision of the expert.

A similar situation is in the question of automatic parameter tuning. There are a lot of thresh-
olds and other parameters that should be tuned to the particular scenario. Unfortunately,
parameters must be tuned by the expert in the recent SLAM solving systems. Further-
more, correct tuned parameters may not be sufficient in the case of hardware or software
failure. Modern systems don’t contain any fail-recovery subsystem for re-establishing proper
operation of the SLAM solving algorithm.

The static environment is often assumed in the state of the art SLAM solving systems.
Future research should be able to handle the dynamic environment, interaction with human
and deformable objects. The result of such research will be the system with the capability
of creating of non-rigid and dynamic map with all information about moving objects inside.
There is some interesting research in this area. For example, Pentland et al. [158], or
Torresani et al. [159], but both require some prior knowledge or restrictions of the geometry.

The problem of map creation also concerns the size of the map. There is a lack of innovation
in map maintenance in the meaning of memory load and performance requirements on the
hardware of the computer. This problem is more frequent in visual SLAM, where the map
grows quickly, and it becomes problematic. The goal of map management is to create an
efficient map in an arbitrary scenario.

52

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

With the memory and performance requirements arise another interesting research area of the
current SLAM problem. How to perform SLAM problem in real-time on low-performance
platforms like mobile phones? Constrains created by HW can affect the communication
between the robot and the environment or between robots in multi-robot SLAM scenarios.
Optimization of communication is one of the crucial open issues which will be important in
almost all robotics problems and not only for SLAM.

Semantic reasoning in the SLAM problem

A different group of open problems is focused on semantic reasoning. The goal is to classify
places and objects according to a set of labels. This kind of problem is usually task-driven.
The reasoning itself is task-dependent. It means that a different classification has to be used
in various applications. Similarly, a different level of detail in the knowledge is used based
on the task goal.

An interesting direction can be an organization of experience and knowledge of the robot.
The robot should recognize pieces of furniture or different rooms in the building, and the
robot should recognize the non-visible properties of objects. It is not only the decision about
these properties but also the ability to do some action with the object based on its properties.
For example, a humanoid robot should be able to sit on a recognized chair. And even more
complex knowledge of connections between objects and their properties can be very useful in
the SLAM solving system. For example, if the robot moves through a room full of people.
It should assume that the walls are behind people and other objects even when the robot
doesn’t ”see” them by its sensors.

There is some research in the domain of SLAM that uses Semantics as support information to
improve the estimation of the map. The SLAM++ system mentioned above is an example of
such a SLAM solving system. And in contrast, there exists the research of semantic reasoning,
which is supported by SLAM. The research of monocular SLAM system which improves the
performance of object recognition task of Pillai and Leonard [160] is a good example of this
research direction. Another example is Pop-up SLAM [161] or SemanticFusion [27] SLAM
system

The theory of the SLAM solving algorithm

It is necessary to mention the research focused on the SLAM problem theory. For example,
the initialization for iterative nonlinear optimization in graph-based SLAM is a crucial task
because it can improve the accuracy and efficiency of the algorithm. But even the best initial-
ization process is useless in the case of convergence failure. The research on the convergence
of optimization methods is still full of important questions. How to avoid the convergence to
the local minima? There is a possibility to use convex relaxation in the research of Liu et al.
[162] How to solve the problem globally? There is some research on this topic. For example in
the paper of Carlone and Dellaert [163] authors use convex semidefinite programming (SDP)
[164] to solve problem globally.

But there is a slightly similar problem as in the metric SLAM. The proposed approach can
be optimal for that particular case but is it still optimal in the general case? Unfortunately,

53

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

it isn’t, and the generality of the solution is still one of the open problems.

Active SLAM

The robot is usually a platform equipped with a couple of sensors. In a standard SLAM
algorithm, the robot process data but doesn’t try to help the algorithm on purpose. There
are few ways to improve the accuracy of the map by controlling the robot. One approach is to
search places where the loop can be closed because it can significantly reduce the spatial error
during mapping. This principle of minimizing the uncertainty of the map is called Active
SLAM or Simultaneous Planning Localization and Mapping (SPLAM). It was addressed for
the first time in the paper of Leung et al. [165].

In the active SLAM, the robot can improve the result by selecting suitable future action
to ensure the high accuracy result. Recently, a popular approach is based on the selection
from the finite set of alternatives. It has three steps. In the first step, the robot identifies
locations suitable for visiting. In the second step, the best action is chosen from the set. And
the last step is to take the selected action. Then the robot continues in the same action, or
the action is terminated, and the process is repeated from the first step. Used theory for
this task is Model predictive control [166] or Partially Observed Markov Decision Process
(POMDP) [167]. The question is whether it is necessary to use an active SLAM approach
in each time step or whether there is a possibility of switching between Active and standard
SLAM. The advantages of standard SLAM are lesser memory requirements, but the accuracy
will probably be lesser too. The active SLAM solution could help in the long-term operations
where the error of mapping can increase a lot with the processed time steps.

Sensors

The research of new hardware is an essential part of the SLAM problem too. Particularly, the
research of new sensors can be the source for new approaches to solving the SLAM problem.
One of the discoveries of the last decade is called an event camera, and it is described in
Chapter 2.5. This kind of sensor is probably a similar breakthrough as a 2D laser range
finder, which allowed to create of robust SLAM approaches as [41]. As it first appeared in
2008, it is still a relatively new technology. The consequence is that there is a good possibility
to improve algorithms working with such different data in contrast to the standard vision
sensor. Few event-based SLAM systems were proposed in the last years. for example, event-
based visual odometry (EVO) [168]

The goal here is to reduce the uncertainty of the sensors and to maximize the motion speed of
the robot. The speed was always a problem during the SLAM. In classic cameras, the images
start to be blurred, and then it would be impossible to detect structures in the image and
recognize known objects. As the answer, an event camera, which can handle fast-movement
without influence on the obtained data, can be mentioned.

54

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Multi-agent SLAM

All single-agent SLAM open problems mentioned above are actual for multi-agent SLAM too.
Moreover, there are a lot of problems which are related to communication and data sharing.
Based on the paper [157] two problems can arise during a scenario in the communication
between robots. The first one is called cyclic update. It is a situation in which the same
measurement is used repeatedly. The second one is called out-of-sequence measurements. A
situation in which some set of measurements from one robot is received in the wrong order
by the second robot.

Data sharing is the second important topic in multi-agent SLAM. It isn’t only about sending
and receiving data from one robot to another. It is also the problem of the amount of
data and deciding what is essential to sharing and how to minimize communication between
robots. The related problem is how to perform merging of multiple local maps into the
global map. Will the computation be done on a server or each robot individually? There are
a lot of questions and open problems in the multi-agent SLAM problem. The open problems
mentioned in the second part of this chapter are related to the practical applications of SLAM,
and all of them are extendable to the multi-agent SLAM.

2.9.2 Practical applications

In the second part of this chapter, the group of open problems that arise in particular SLAM
applications will be described. Some of them may overlap with the problems mentioned in
the first part of this chapter. All mentioned problems are focused on the scenarios based on
the UGV or UAV equipped with sensors.

Multi environment SLAM

The general solution to this problem can help in many scenarios. The problem lies in the
situation where the robot has to operate in two different environments – typically indoor and
outdoor – with a different set of suitable sensors and available technologies. Let’s assume that
the scenario contains a large outdoor environment of a parking place and a smaller indoor
part of a parking house. The robot is supposed to control cars parked in both places whether
they paid for the parking. While the GPS signal is available over the parking place, it is
denied in the parking house. Some sensors may have a similar problem during the transition
between the outdoor parking and the parking house. The crucial part is then to handle
the transition between environments and, at the right time, step switch between algorithms
designed for the outdoor and the indoor scenario.

Augmented reality for the unmanned vehicle or for a handheld device

The Augmented reality is another interesting topic that connected the SLAM problem with
computer vision and computer graphics. There is much useful application such as inspection
of utilities in the buildings to search for defects and abnormalities or indoor navigation for
handheld devices. The smartphone is capable of obtaining short videos of the environment

55

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

and a record of the data from accelerometers and gyroscope. This data can be analyzed,
compared with the map of the building. The system should then be able to navigate the user
to a particular place in the building by a visual aid on the display of the smartphone or by
a set of voice instructions.

SLAM in cloud

This idea was mentioned in Chapter 2.5. It is a useful solution for a situation when a low-
performance computer or handheld device is available. Still, we can send all data or some
subset to the cloud and obtain the map of the environment. The computer or handheld
device is only supposed to collect data and do some preprocessing to minimize data transfer
with the cloud server.

Intelligent unmanned UGV for Search And Resque operations

A wide range of robotics tasks is contained in the SAR scenarios. The operation can be
set in both indoor and outdoor environments. It can be performed by an arbitrary type of
mobile robot. Furthermore, the SAR operation isn’t only about localization and mapping in
an unknown environment. It is also about an interaction with a human operator and about
precise motion planning. Moreover, first aid and communication with the hurt person can be
performed by the robot before arriving at the paramedic.

But the SAR operation isn’t only about wounded people. The same kind of robot can be
used by the police, the fire brigade, or the army to save human lives and detect potential
danger in the environment.

UGV or UAV for an intelligent agriculture

Agriculture is an essential source of livelihood for many people around the world. Farmers
are usually operated on several hectares of fertile ground. It is the big area and tasks like
the security of filed against robbers or observing or harvesting the crop. These tasks can be
expensive and difficult to handle by employees.

Better results can be obtained using robot platforms capable of moving in the field area
and observing the crop periodically. Furthermore, sensors on the robot can provide some
useful information about the environment. The temperature of the air or the ground and
the average number of plants on the square meter can be computed by the robot and plants’
mean height in a particular field area. All these tasks are grouped in the task of intelligent
agriculture. Of course, it is possible to determine similar tasks in the industry and warehouse
management.

56

CHAPTER 2. SIMULTANEOUS LOCALIZATION AND MAPPING

Unmanned robot for transporting things and living organisms

The warehouse management mentioned in the previous paragraph is used for transporting
objects from one place to another. The more difficult task can be transporting of a living
organism or especially humans. From the SLAM view, it is the same task as the manage-
ment of the warehouse. The task is unique in the problems which have to be solved during
transport. For example, what is a good reaction of the robot – e.g., unmanned hospital bed
– when the patient wants to stand up? The robot has to recognize this behavior and then
trigger an alarm and stop. This kind of robot has to move carefully through the environment
to avoid all static and dynamic obstacles and ensure the transported object’s safety.

The problem of a closed door

There can arise many problems during transport of an object from place A to place B. For
example, the robot’s planned path in the building goes through several doors, and one door
unexpectedly closed. In the best case, the robot would be able to open the door. Nowadays,
the robot is not capable of opening the door. In that case, the robot should call for help from
the operator or find another way to the goal place of the planned path.

The sensory network as a support of the indoor SLAM

The indoor SLAM can be deployed as a solution to many tasks. But there is always a problem
of the uncertainty in sensors. The outdoor scenarios can operate with the support of GPS
localization. There is no comparable alternative in the indoor SLAM. The only possibility of
helping SLAM from the outside of the robot is creating a sensory network and then fusing
obtained data. The sensory network can be composed of Wi-Fi hotspots, cameras capable of
detecting the robot, or another sensor that can add information about the robot’s location.
As a bonus, the positions of devices of the sensory network can be estimated during the
SLAM. I.e., the complete map of the environment with the positions of all devices and the
robot can be created.

Multi agent SLAM with various agents taking different goals

Usually, the multi-agent SLAM is solved for the couple or the swarm of robots with the same
goal. On the other hand, various kinds of robots supposed to meet different goals can be
research areas filled with open problems. The utilization of this task can be found in arbitrary
agriculture operations. There can be few security drones, several unmanned harvesters, and
a couple of robots dedicated to clean leftovers. The common goal is then the flawless process
in which the drones ignore harvesters in the security task. The cleaning machines wait until
plants are harvested, and harvesters don’t ”harvest” the cleaning machine. And of-course,
all unmanned robots will do their jobs as well as a human would do it.

57

Chapter 3

Disseration goals

In this chapter, the goals of this thesis are defined. They are chosen based on research
made in previous chapters. The chapter is decomposed into two parts. In the first part, the
motivation for the research is described. Consequently, the particular goals of this thesis are
summarized. In the second part, individual tasks arising from defined goals will be described.

3.1 Motivation

As shown in Chapter 2.9, there are many open problems within the SLAM that should
be solved. Moreover, some of the mentioned open problems are rather problems of mobile
robotics instead of only SLAM. The problem I want to address in this dissertation thesis
is using one-dimensional non-visual sensors to detect and classify the robot’s environment.
In other words, the use of sensors other than a camera to detect the transition between
environments when a robot moves from one environment to another. – such as a move from
the inside of the building to a park in front of the building.

Current mobile robot systems are usually developed for use in a specific environment –
including SLAM systems that are typically tuned for robust and accurate results in a single
static or dynamic environment. When the transition occurred, it can be useful to detect
this transition to prevent system failure or adapt the robot’s behavior. The first reason
arises from the fact that some sensor or even SLAM system is accurate in the particular
environment, but it can have worse results in a different one. For example, the LiDAR sensor
can be mentioned. Two particular problems can occur when the robot moves from an indoor
environment to an outdoor one. The first one is the problem of distance to nearest objects.
Some LiDARs maximum distance can be only 4 meters. For example, it can be too short for
outdoor environments. The second problem can be based on the technology of LiDAR (or
depth sensor) because that can occur glare from the sun’s rays, which can affect data.

The later mentioned reason can be shown in the example of a medical robot that moves
between rooms in a hospital ward. Its behavior should be set differently when it is in the
hallway, where it can act as a guide for people (both patients and visitors) and another when
it is in the patient room. In this case, it can work as a nurse who reminds the patient of

58

CHAPTER 3. DISSERATION GOALS

medication or measures his body temperature by a contactless thermometer. This example
shows that the detection of the transition between environments can be helpful not only for
the SLAM system’s accuracy but also for the general mobile robot system. Naturally, it
depends on the mission or application of the mobile robot. Similarly, the term environment
should be understood in the resolution scale defined by the mobile robot’s current mission.

The original motivation for this work was the paper [23]. The authors of the paper solve
the transition between an indoor environment of a warehouse and an outdoor environment
of the space in front of the warehouse. A different set of sensors is used in each environment.
However, the solution is dependent on the tracking of the position of warehouse gate doors.
The transition could be detected based on the strength of the GNSS signal as well. The
problem is that the solution is dependent on the particular gate doors and the presence of
GNSS signal – it is not general enough. The more general solution will be able to handle the
transition between these two environments without detection of particular gate doors and
without using any external sensors that are not joined to the robot.

In literature, there exist few papers such as [169] or [170] that focus on environment classifi-
cation by camera data only. For the system that is supposed to work in real-time, it can be
computationally expensive to process every frame from the attached camera. Thus, it should
be useful to research the use of one-dimensional non-visual sensors to significantly reduce the
computational cost of the environment classification system. Based on this hypothesis, the
following goals can be defined to confirm it

• Investigation of the problem of using one-dimensional non-visual sensors for detecting
the transition between two environments to allow a mobile robot to operate within
multiple environments.

• Research one-dimensional non-visual sensors for their suitability to detect the transition
between two environments.

• An analysis of data from these sensors concerning the environment change detection.

• An analysis of the camera-based approaches for classification of the environment of the
robot.

• Design and implementation of the system for detecting and classifying the robot’s en-
vironment.

• Prepare UGV equipped with all necessary hardware to record dataset for experimental
validation of the proposed system.

3.2 Formulation of tasks behind defined goals

In this part, tasks behind defined goals will be introduced and described. Before describing
individual tasks, it should be mentioned that they will be investigated on the special case of
transition between indoor and outdoor environments.

The first task that arises from research one-dimensional non-visual sensors is an analysis of
these sensors and analysis of methods for change detection in the signal data. Thus, it is nec-
essary to search for sensors that change values when the transition between two environments

59

CHAPTER 3. DISSERATION GOALS

occurs. As an example, the temperature sensor can be mentioned. The measured temperature
value changes when the robot moves between two environments with significantly different
air temperatures. Similarly, humidity or air pressure sensors can be mentioned.

Based on the results of change detection algorithms, it is necessary to analyze whether this
information is sufficient to change the robot’s behavior. In other words, it is necessary to
investigate whether the decision based on the one-dimensional non-visual sensor has to be
validated by information from the camera. The hypothesis is that camera-based validation
(environment classification) is necessary because the change in the one-dimensional data can
be caused by other reasons than the transition between environments. Thus, it is necessary
to address the problem of environment classification from camera data.

It is a known problem called scene classification. In this thesis, the special case of indoor
vs. outdoor classification will be addressed. It worth mentioning that it is usually solved as
a problem of classification between many disjunct classes that are usually special its visual
appearance. For example, airport images usually contain airplanes, medical rooms usually
contain white beds and medical equipment. In the case of classification of the general envi-
ronment into indoor or outdoor class, it should be mentioned that it can be harder because of
visual appearance variability in both classes. To prevent misunderstood previous sentences,
it is not a simple task to do scene classification into multiple classes. It is just an example
of a situation when the classification into two classes can be more problematic than classi-
fication into more classes thanks to the overlap of a subset of indoor and outdoor scenes.
The resulting task is to compare the state of the art approaches to indoor vs. outdoor scene
classification on a sufficiently large dataset.

Previous tasks are the parts of the system that is mentioned in the next goal. The task is
composed of a proposal of system design for environment detection and classification and its
implementation. The design of the system will be inspired by systems proposed in papers
[169] or [170]. Its implementation will be written in Python programming language for the
ROS framework.

The next important step is to use the implementation of the system on real data. It should
be mentioned that there is no available mobile robot dataset that also includes data from
onedimensional non-visual sensors such as temperature sensor or humidity sensor. Thus, it
is necessary to assemble a mobile robot that will record data from multiple sensors. This
task consists of building the robot, developing its control software, and recording software.
Finally, the system must be validated on recorded data, especially concerning computational
cost, to confirm the hypothesis mentioned in the first part of this chapter.

60

Chapter 4

Environment Change Detection and

Classification

The goal of this chapter is to introduce additional background for the practical part of the
thesis. The chapter is organized as follows. In Section 4.1, Environment Change Detection
(ECD), based on analysis of time-series data from non-visual sensors, is described. Section
4.2 is focused on a description of environment classification based on image data. Finally, in
the last section, existing related research on multi-environment systems is described.

4.1 Environment Change Detection

The solution of ECD is based on the analysis of time-series data from non-visual sensors. Its
goal is to detect that some change has occurred in the environment. It is worth mentioning
that there is no active direct research of online change detection of the robot environment.
Research is usually directed to other applications such as medical condition monitoring,
speech detection, or human activity analysis. Thus, all methods mentioned in this section
represent approaches to solving the general problem of the change or abrupt detection – both
online and offline.

Approaches to ECD can be divided into two groups based on the time delaying of the sensor’s
value. In the case of non-significant time delay, the approach is straightforward because the
sensor’s value changes immediately when the change occurs. An example of this type of
sensor is an ultrasonic distance sensor pointing to the room’s ceiling. When the robot moves
outdoor, the distance value is changed to the max range (e.g., 3000 cm) of the sensor – the
sensor and a graph containing recorded data by the real robot are shown in Figure 4.1. It
shows an example of the signal of an ultrasonic distance sensor measuring the room’s ceiling
height. Measured value changes immediately from approximately 250 cm to 3000 cm when
the robot moves from the building to the outdoor environment.

Similarly, it changes back when the robot moves to the building. Moreover, the transition
between room and hallway can also be detected because the door’s height is lower than the

61

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

ceiling height. Another example of the sensor without delay can be a binary detector of a
magnetic field. Thus, the solution to ECD based on the sensors with non-significant time
delay is the step-change detection.

0 10 20 30 40 50 60 70
time [s]

0

500

1000

1500

2000

2500

3000

di
st

an
ce

 [c
m

]

Figure 4.1: An example of ceiling height values during robots mission captured by ultrasonic

distance sensor.

The more difficult case is the analysis of the time-series data with significant time delay. The
value from these sensors changes smoothly without step changes. Examples of these sensors
are temperature sensor or humidity sensor. An example of the temperature sensor data is
shown in Figure 4.2.

0 100 200 300 400 500
time [s]

17

18

19

20

21

22

23

te
m

pe
ra

tu
re

 [°
C]

Figure 4.2: An example of temperature sensor signal during robots mission.

It is an example of a temperature (time-delayed) sensor signal. The robot moves from the
building around timestep 200s. Then the temperature changes – continuously decreasing.
When the robot moves back to the building around timestep 250s, the temperature value
starts increasing. There are two things visible. The temperature value is not stabilized –
still decreasing – when the robot enters back to the building. The second notable property
is the speed of the change. The temperature outside was around zero at the time of this
record. The sensor value falls quickly from 22 degrees of Celsius to 17 degrees of Celsius. But
temperature increasing time is much longer when the temperature value increases back to 22
degrees of Celsius. There is a significantly smaller difference between the current sensor state

62

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

and actual temperature in the environment. This property makes detection more difficult
because the sensitivity of the detection algorithm can be out of the range of ongoing change.

The approach to change detection of this type of sensor is called Changepoint Detection
(CPD) [171]. Methods for CPD searches for change points – i.e., a timestep of the beginning
of the change – in a time-series data stream S = {x1, x2, . . . xi, . . .}. CPD for time series in
the time step interval 〈m,n〉 can be defined as the problem of testing hypothesis HA – change
occurs – and null hypothesis H0 – no change occurs. It can be written as follows

H0 : PXm = · · · = PXk = · · ·PXn

HA : PXm = · · · = PX∗k 6= PXk∗+1
= · · ·PXn where m < k∗ < n

, (4.1)

where Px is a probability density function of the sliding windows starting at xm, and k∗ is a
change point.

CPD is usually assumed to be applied offline on the whole stationary time-series. In the
robotic application, CPD has to be run online. Moreover, time-series is not typically station-
ary. It comes with several additional difficulties. The first one is that the online algorithm
does not see the whole time-series – it has to detect change points base on the current signal
state. The challenge is to detect it as soon as possible. Thus, in online CPD, there always
be a delay between timestep when change occurs and its detection.

A lot of approaches mentioned below are supposed to work offline on the whole time-series.
Fortunately, some of them can be used online on the most current data without future
values knowledge. The principle of finding change points is usually based on event/anomaly
detection or edge detection. In the next sections, there are described both supervised and
unsupervised methods for CPD.

4.1.1 Supervised methods

Supervised approaches for CPD are based on learning a mapping from input data using target
class information – machine learning classification approach. In other words, they are trained
to find boundaries between individual states. States are binary (0 – no change occurs and 1
– change occurs)for stable signals. Moreover, it can be divided into several non-stable signal
classes (e.g., 0 – signal is stable, 1 – signal increasing, 2 – signal decreasing).

As it was mentioned, standard supervised machine learning methods can be used in this case.
For example, they are Decision Trees, Support Vector Machines, Bayesian Nets, Hidden
Markov Models, Conditional Random Fields, or Gaussian Mixture Models. The problem
with these methods is that they need a large amount of training data. Therefore, they are
only suitable for CPD of two environments with stable properties – i.e., stable temperature,
humidity, or air pressure. Unfortunately, it is not a common situation in real-world conditions
– especially in indoor vs. outdoor classification where the outdoor environment’s properties
can change significantly during the time – e.g., hourly, daily, or seasonally. These properties
make them not suitable for CPD in mobile robotics applications. More information about
machine learning focusing on classification can be found in Chapter 4.2.

63

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

4.1.2 Unsupervised methods

In contrast to supervised methods, they do not need information from the teacher during
a training phase. The goal of unsupervised methods is to search for change point based on
the statistical analysis of the time-series data. They usually do not need a large amount
of training data, which makes them more suitable for environment change detection. It is
caused by the fact that these methods can handle different situations during robot missions
without prior training for each situation. Unsupervised methods can be divided into several
categories that are described in the following list.

Likelihood ratio methods are based on the assumption that the probability of two consec-
utive time intervals of time-series are the same when they belong to the same state. It
usually consists of two phases. In the first one, the probability density of two consec-
utive intervals is calculated. Then, a ratio of these densities is computed. The most
common method from this category is the Cumulative Sum (CUSUM)[172] approach.
It accumulates deviations relative to the specified target of incoming measurements.
Then, it controls the value against a threshold and indicates when the cumulative sum
is over that threshold.

Another method is called Change Finder [173] which is based on outlier detection using
a fitting with an autoregression model

xt = ωxt−1
t−k + ε, (4.2)

where xt−1
t−k are previous observations, ω is a vector of constants, and ε is generated noise

variable – usually white noise. At each timestep, the probability density function is cal-
culated. Then, auxiliary time-series y is generated by giving a score to each data point
from x. The new time-series represents differences in consecutive time series intervals.
Finally, the score for each interval is computed by one of the following equations

Score(y) = −log pt−1(y), (4.3)

and
Score(y) = d(pt−1, pt), (4.4)

where d(., .) is a distance function. The first equation is the average of the log-likelihood
function and the second one is the statistical deviation function. A higher score of the
interval indicates a higher probability of change point within this interval.

Previous methods are based on probability density estimation. A more straightforward
approach is to estimate probability density-ratio between two consecutive intervals.
An example of this method is the Kullback-Leibler importance estimation procedure
(KLIEP)[174]. The method is based on the computation of Kullback-Leibler (KL)
divergence:

KL
[
p(x) || p′(x)

]
= −

∫
p′(x)log

p(x)

p′(x)
dx (4.5)

The goal of KLIEP is solving importance estimation as a convex optimization prob-
lem – e.g., using the gradient projection method. Besides KLIEP, there are other
methods based on the estimation of density ratio. Semi-Parametric Log-Likelihood
(SPLL) change detector [175] is also based on KL divergence. For example, there is
a family of approaches based on the Unconstrained Least-Squares Importance Fitting

64

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

(uLSIF) method[176]. The uLSIF method is based on Pearson (PE) divergence instead
of Kullback-Leibler divergence. There also exists relative uLSIF (RuLSIF) [177] with
relative density parameter alpha used in PE divergence.

Subspace modeling methods are based on the representation of the time series using state
spaces. Change points are then detected by predicting parameters of state space.
There are two methods that worth mentioning. The first one is Subspace Identification
(SI)[178], and the second one is Singular Spectrum Transformation (SST)[179].

SI works with a linear state space model

x(t+ 1) = Ax(t) +Ke(t)

y(t) = Cx(t) + e(t)
, (4.6)

where A and C are system matrices, e(t) is a system noise, and K is a Kalman gain.
For each time interval, the SI method estimates the observability matrix. It is done by
using LQ factorization and Singular Value Decomposition of the normalized conditional
covariance. Diagonal matrixD from the decomposition is then compared to a predefined
threshold.

SST method is based on a state-space model without system noise. It is based on
singular value decomposition of trajectory – Hankel – matrix. Changepoint is searched
by a comparison of the singular spectrum of consecutive trajectory matrices. This
method is more sensitive to parameter choices than SI because of the absence of the
model’s noise.

Probabilistic methods compute the probability distribution of the new interval based on
the observed data since the previous change point candidate. There are two main
approaches that worth mentioning. The first one is Bayesian change point detection
(BCPD)[180], and the second one is Gaussian Process (GP)[181] based.

BCPD is the first online method from this family. It is based on calculating so-called
run-length distribution based on the Bayes theorem

P (rt | x1:t) =

∑
rt−1

P (rt | rt−1)P
(
xt | rt−1, x

(r)
t

)
P (rt−1, x1:t−1)∑

rt
P (rt, x1:t)

(4.7)

where rt is a run-length variable representing time length from the last change point

and x
(r)
t is a time-series which started at last change point.

GP models time-series observations xt using following equation

xt = f(t) + εt, (4.8)

in other words x(t) is a value from Gaussian distribution function f with addition noise
ε = N (0, σ2

n). Function f(t) is defined as a Gaussian Process distribution function with
zero mean and covariance function K defined as follows

K(t1, t2) = σ2 exp

(
−(t1 − t2)2

2l2

)
(4.9)

where t1, t2 are time steps and l is a scaling parameter. Given the time-series, GP
estimates prediction of the distribution in time t using previous observations. The
probability value is then computed from this distribution using current observation.
The result is compared with a threshold value. In general, GP is a more complicated
method but usually more accurate than BCPD.

65

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Kernel-based method map series observations onto a higher-dimensional feature space and
detect change points in that space. They are usually used in supervised learning, but
several papers (such as paper [182] use kernels on unsupervised audio segmentation. It
is based on testing the homogeneity of data in time-series using the past and present
sliding window. CPD is based on comparing the kernel ratio – such as Kernel Fisher
Discriminant Ratio (KFDR) – with a threshold value. This family of methods is usually
sensitive to the choice of the kernel function.

Graph-based methods represent observations as a graph. Search for a change point in the
graph using statistical tests. Graph-based methods [183] for CPD are non-parametric.
A graph is constructed for each sliding window sequence. Nodes are observations, and
edges are differences between observations computed using function ZG:

ZG(t) = −RG(t)− E[RG(t)]√
V AR[RG(t)]

, (4.10)

where E and V AR are expectation and variance of RG. Function RG(t) represents
the number of connected points between different point groups. In particular between
group from past interval τ ∈ 〈1, t− 1〉 and from the future interval τ > t. Change point
is detected when ZG value is greater than defined threshold.

Clustering methods aggregate time-series into clusters based on defined states. Search for
change point by searching for differences between clusters. There exists various ap-
proaches such as Sliding window and Bottom-up (SWAB) [184], Minimum Description
Length (MDL)[185], Shapelet Method[186] or Model fitting[187]. They are all based
on the fact that the change point is detected when the time series value in time t is
assigned to different clusters than the previous value in time t− 1.

As it was mentioned, unsupervised methods are more suitable for online CPD. In Chapter
6.1, the change detection experiment will be described and results will be discussed. The
next section is focused on the related work in image-based classification of the environment.

4.2 Image-Based Environment Classification

As mentioned in the previous section, the change detection is not usually sufficient to classify
the environment. Thus, a more sophisticated approach has to be done based on the image
data from the camera. In other words, the approach can be named as the scene classification.
In the first part of this section, supervised algorithms for classification will be summarized.
The next parts of this section are mainly focused on the problem of indoor vs. outdoor
classification. Approaches will be divided based on the classic machine learning classification
schemes on Basic, Multi-scale, and Two-stage. Then, a neural nets based approach will be
described. The end of the section will be focused on suitable existing datasets for indoor vs.
outdoor classification.

4.2.1 Classification

The goal of the classification task is to assign correct category y to an input vector x. The
input vector x is composed of l features calculated from the original object – that is supposed

66

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

to be classified – using particular feature extraction methods. It is crucial to choose a relevant
feature extraction of the input data within the solved task. In image data, vector x can be,
brightness histogram, texture description vector, or color description vector. The feature
vector x can be denoted as follows

x = [x1, x2, . . . xl]
T . (4.11)

The classification task is solved by the algorithm called classifier trained to map input x to
the output y based on training set of x and y pairs. We can define training set as a matrix
X of N rows, where each row of the matrix contains one feature vector x. The second part of
the training set is the vector Y containing correct class information – i.e., information from
classifier ”teacher” – for each feature vector on its rows.

The classification has two primary stages. In the first stage, the classifier is trained using
pairs {xi, yi} where i ∈ 〈1, N〉 denotes row in X and Y. In the second stage, the classifier is
ready to classify new – unseen – samples. Then the classification process can be visualized,
as is shown in Figure 4.3.

Labeled data Classifier
Training

labels

data

Prediction

Test data

predicted class

Figure 4.3: Supervised machine learning (classification).

Naive Bayes

The first mentioned classifier is Naive Bayes – more precisely it is a family of classifiers –
based on the Bayes theorem with an assumption on independence between features in the
feature vector. Thus, it is denoted as naive because this assumption is not usually fulfilled
in the real world. Bayes theorem is defined as follows

p(A | B) =
p(B | A)p(A)

p(B)
(4.12)

where A and B are probability events. P (A | B) and P (B | A) are conditional probabilities
– the likelihood of event A occurring given that B is true and vice versa. Probabilities P (A)
and P (B) are marginal probabilities of event A and B respectively.

Naive Bayes classifies vectors of features, x ∈ {1, . . .K}D. Variable K is the number of values
for each feature, and D is the number of features. Thus, the feature vector has a total length
K ·D.

In the context of classification, equation 4.12 will have the following form:

67

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

p(ci | x) =
p(x | ci)p(ci)

p(x)
., (4.13)

where ci is a particular class i. The denominator p(x) does not depend on c – it is constant
representing scaling factor. Thus, in practice, we can use only the numerator of Equation
4.13.

By applying the conditional independence assumption of the features and class labels on
Equation 4.13, we get the following formula

p(ci | x) =
1

S
p(ci)

n∏
k=1

p(xk | ci) (4.14)

where S is a scaling factor. Equation 4.14 represents the Naive Bayes probability model. It
is usually combined with a decision rule to get a Naive Bayes classifier. The most common
is the maximum a posteriori (MAP) decision rule. It is defined as follows

ŷ = arg max
i

p(ci)
n∏
k=1

p(xk | ci) (4.15)

Prior class probability p(ci) can be calculated by various techniques. For example, using
fraction 1

l where l is the number of classes or using a ratio of class samples in training data
concerning the total number of samples.

The second term p(xk | ci) can be usually computed in three ways. One of the common ways
is called Gaussian Naive Bayes, and it is based on the Gaussian probability density function.

p(x | ci) =
1√

2πσ2
i

e
− (v−µi)

2

2σ2
i (4.16)

Other possibilities are Bernoulli Naive Bayes, Multinomial Naive Bayes. For details see
Chapter 3 in [188].

Decision Trees

A decision tree is a method based on a tree-like graph. During the decision process, it
goes from the root of the tree through branches, which represents observation about objects.
Finally, each branch ends by leaves representing class decision value (in the case of classifi-
cation). Branches can also be understood as conjunctions of object features that lead to a
particular class label.

The decision tree is built by splitting the training set – root is an entire training set – into
subsets based on classification rules applied on features. This splitting is repeated until all
items in the same subset has the same class label.

During years many algorithms for constructing decision tree was developed. The most used
algorithms are Iterative Dichotomiser 3 (ID3), C4.5, Classification And Regression Tree

68

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

(CART), Chi-square automatic interaction detection (CHAID), and Multivariate adaptive
regression spline (MARS). These algorithms use various metrics for constructing a decision
tree. For example, ID3 and C4.5 uses Information gain, which is defined as follows

Ig(S, F) = H(S)−H(S | F) = H(S)−
∑
t∈T

p(t)H(t), (4.17)

where H(S) is an entropy of set S, H(S | F) is the entropy of all subsets created from set
S by splitting based on the feature atribute F , T denotes all subsets t created by spliting S,
H(t) is the entropy of subset t and finally p(t) is the ratio of number of elements in t with
respect to number of elements in S. The best split is the one with the most information gain.

Another example – used in CART – is GINI impurity based on the value of probability∑
k 6=i pk = 1− pi which represents a mistake in the classification of the item that belongs to

class i. The last example of measure is Variance reduction – also used in CART –, but it is
usually used in regression problems that are not in this thesis’s scope.

K-Nearest Neighbors

K-nearest neighbors (k-NN) algorithm is based on the fact that similar objects usually have
similar properties. In machine learning, it is possible to say that similar objects are close –
in terms of distance – to each other in the feature space.

Based on the previous assumption, the new object added to the feature space is assigned
to the most common class – majority voting – among k nearest neighbors of the object’s
feature vector. Constant k can be any positive integer number. In the case f k = 1 algorithm
searches for only one neighbor with the minimum distance between feature vectors.

The training phase is based on storing all pairs {x,y} in the feature space. The classification
depends on the metric used for calculating a distance between feature vectors. There are many
metrics that can be used for this purpose. The most common are, for example, Euclidean
distance, Manhattan distance, Mean-Squared Error (MSE), or Hamming distance. In general,
any suitable metric that compares feature vectors can be used.

Sometimes there is a problem with selecting class using ”majority voting” because the distri-
bution of features in feature space is not ideal. The solution is to weigh nearest neighbors by
the inverse of the computed distance. It can avoid the wrong assignment – e.g., the situation
for k = 5 when two closest objects in feature space are from class ci and the three others
from class cj are significantly far away.

Support Vector Machine

Support Vector Machine (SVM) classifier is a classification method based on hyperplane
construction in N-dimensional feature space. Hyperplanes are then used for the classification
of the new point. The good hyperplane is as far as possible from the nearest points of any
class in the feature space – there is a margin between hyperplane and points. Thus, the
objective of SVM is to find a hyperplane between classes with maximum margin to points
from classes. An example of a good hyperplane for points from two classes is shown in Figure

69

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

4.41.

Figure 4.4: SVM hyperplane example for 2 classes

The hyperplane type depends on the number of features – i.e., length of the feature vector –
in the feature space. For two features, a hyperplane is a straight line. Similarly, it becomes
a plane for three features. Generally, for n features, n− 1 dimensional hyperplane is used.

SVM constructs hyperplane using so-called support vectors, which are a subset of points –
from training set – in feature space that is hardest to classify – are nearest to the constructed
hyperplane. The position of the dividing hyperplane will change if these points are removed.
The finding of the optimal hyperplane can be solved using optimization techniques such as
Lagrange multipliers. Support vectors are shown in Figure 4.4 as the points lying on the
margin of the hyperplane.

Linear SVM

In this case, the hyperplane between two sets of points – points from two classes – is defined
by equation

w · xi + b ≥ 1 when yi = 1, (4.18)

and
w · xi + b ≤ −1 when yi = −1, (4.19)

where w is a normal vector – usually normalized – to the hyperplane, xi is a vector of i-th
point in the feature space and b is bias vector and yi is a label of class from the set {−1, 1}.
The new point that satisfies one of these equations belongs to one class. In other words, each

1Taken from https://en.wikipedia.org/wiki/Support-vector machine, the image is under the CC BY-SA 4.0

licence: https://creativecommons.org/licenses/by-sa/4.0/

70

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

point has to lie on the correct side of the margin. Equations 4.18 and 4.19 can be rewritten
in the form

yi · (w · xi + b) ≥ 1. (4.20)

The goal is to minimize norm of the w to obtain solution closest to yi ·(w ·xi+b) = 1. Finally,
the linear SVM classifier can be defined using the sign function as follows

x→ sgn(w · xi + b). (4.21)

Thus, new point x is assigned to the one class based on the sign of the formula w · xi + b.

Note that the definition above is suitable for a linearly separable set of points. In the opposite
case, the hinge loss function can be used

max(0, 1− yi · (w · xi + b)). (4.22)

The function is 0 when Equation 4.20 is satisfied. Otherwise, its output is proportional to
the distance from the margin. Finally, the goal is to minimize the following formula[

1

n

n∑
i=1

max(0, 1− yi · (w · xi + b))

]
+ λ || w ||2, (4.23)

where λ is an influence parameter of the margin size. For sufficiently small λ problem change
to the more simple solution in Equation 4.21.

Non-linear SVM
It is also possible to use SVM in the nonlinear case. An approach called the kernel trick has
to be applied. The trick is based on applying a nonlinear kernel which map points in the
training set to a higher dimension – e.g., from 2D to 3D space – in which the training set
is separable – hyperplane can be easily found. The nonlinear kernel is used instead of dot
products in Equation 4.23

A commonly used kernel is the Gaussian Radial basis function, which is defined as follows

k(xi,xj) = e−γ||xi−xj ||
2
for γ > 0, (4.24)

element γ is usually set to 1
2σ2 where σ is a free parameter.

Artificial Neural Networks

Another approach to deal with the classification problem is to use artificial neural networks
(ANNs). ANN is a system of connected components organized in layers called neurons. It is
shown in Figure 4.5.

It is inspired by biological neural networks. Thus, the neuron is composed of inputs, body,
and one output. Each part has a unique function in the neuron. Inputs supply signals and
apply weights on each input. Body sum up all inputs. Finally output part performs the
so-called activation function f . The scheme of a neuron is shown in Figure 4.6.

This scheme can be mathematically written as

f(
∑
i

wTi xi + b), (4.25)

71

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

input
layer

hidden
layer

hidden
layer

output
layer

Figure 4.5: ANN scheme with two hidden layers

x1

x2

x3

w1

w2

wn

∑ f

b

inputs weights
and bias

sum activation
function

y

output

Figure 4.6: ANN neuron scheme

where xi is i-th input of the neuron wi is weight for i-th input of the neuron and b is a
bias. Weights W defines how each input is important for the neuron – i.e., strength of the
connection with previous neuron.

The activation function defines the final signal output of the neuron. The common activation
functions are, for example, the Sigmoid function defined as

f(ξ) =
1

1 + eξ
(4.26)

where ξ is an inner part of the function in Equation 4.25. It is visible that the output of
this activation function is in the range between 0 and 1. n the other hand, the saturation
can cause problems during the network’s training phase for values of ξ that are close to limit
values because the gradient is almost zero.

72

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Another example of the activation function is Rectified Linear Unit (ReLU). It is defined as
follows:

f(ξ) = max(0, ξ) (4.27)

This activation function is probably the most popular one for its simplicity. Moreover, it has
advantages connected to the convergence of the training process – stochastic gradient descent
– which converges faster than other activation functions.

The third basic activation function that worth mentioning is Softmax. It is based on equation

f(ξ)j =
eξj∑
N e

ξ
N

, (4.28)

where j represents the fact that the equation is defined for j-th neuron in the neural network
layer. Parameter N is the number of possible outcomes – usually the number of neurons in the
layer. This activation function maps raw values from the neuron into a posterior probability
value. Usually, it is used in the final layer of the neural network. Of course, there are many
other activation functions such as Step function, Maxout, Leaky Relu, Tanh or Swish, and
many more.

As it was mentioned at the beginning of this section, neurons are organized into layers. The
first layer of the network is called the input layer. The size of this layer – the number of
neurons in the layer – is based on the input data’s size – e.g., M × N neurons for images
of size M × N pixels. Similarly, the last layer is called the output layer. The size of the
output layer is based on the number of possible classes in the classification problem. Between
these two layers, there are N hidden layers of various types. The most common types are
the Fully-Connected layer, where each neuron in the layer is connected to all neurons in the
previous layer.

Another example is the convolutional layer, which has an essential role in Convolutional
neural networks (CNNs). Each neuron in this layer is connected to a local region of neurons
in the previous layer. This region’s size is optional, and it defines a so-called receptive field
of the actual neuron. The result is that it applies convolution on this receptive field, and the
output is the response of the convolutional filter. Moreover, the depth of this layer can be
greater than one. Thus, more neurons can be connected to the same region in the previous
layer.

The next important layer is the pooling layer – usually Max pooling or average pooling –
where neurons are also connected on a small region in the previous layer. The difference is
that instead of convolution, it applies some function that performs a reduction in the size
of data – reduces the number of neurons in the input dimension. For example, max-pooling
connected to a region of 2x2 neurons choose the max value from this region and set it as the
layer’s output.

The last layer type that I mention is the loss layer. This layer is at the end of the neural
network during the training phase. It is supposed to compute loss function L. Gradient of
function L is used to optimize of network parameters during training. The most common
loss function is cross-entropy loss computed as

L = −
N∑
i

pilogp̂i (4.29)

73

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

where N is a number of classes in the classification problem, and pi, p̂i are target and predicted
probability distributions.

Another example of the common loss function hinge loss, which is defined similarly as in the
case of the SVM classifier

L =
∑
p 6=y

max(0, fp − fy + 1), (4.30)

where fp is predicted class value and fy is a target class value.

The scheme of connected layers to the neural network is called neural network architecture.
When it is constructed, the next step is to perform learning the network to become a good
classifier for a particular problem. Learning is based on adjusting weights in neurons to
reduce classification error – increase accuracy of classification. The goal is to minimize error
as much as possible.

The learning is based on the back-propagation algorithm. It consists of three phases. The
first one is the forward pass. In this phase, the sample from the training set is sent to the
network, which computes the output – class prediction – with current weights and biases.
Then the error – using selected loss function L – is calculated in the second phase. Finally,
the backward pass of the network is performed using the gradient of the loss function L for
individual neurons – its weights and bias – to optimize their values. Values are updated in
the direction of the most significant gradient descent. To perform this update, Stochastic
Gradient Descent, Momentum, Nesterov Momentum, RMSprop, or Adam are used.

The classification theory was summarized in this section. The next section addresses the
problem of indoor vs. outdoor environment classification. In the first part of the section,
classic approaches will be described. The second part is focused on a modern approach based
on neural networks. Related work is mentioned in both parts.

4.2.2 Classic classification approaches

In this section, classification using so-called classic – except neural networks – will be de-
scribed. It contains various methods for data description, various classifiers, and even various
classification schemes. Firstly, three classification schemes are used in the related work of
this particular problem will be introduced.

The basic classification scheme (Basic) is shown in Figure 4.7. IIt consists of three simple
steps. Loading of the image – example image was taken from Miniplaces dataset –, apply-
ing descriptor to calculate feature vector of length N and performing classification using
particular classifier such as SVM in the example.

This classification scheme can be modified by dividing the input image into n × n tiles and
creating a feature vector by concatenating feature vectors of individual tiles.

The second type of classification scheme is called Multiscale. It is based on creating a pyramid
by changing the resolution of the image and dividing each resolution on a defined number
of tiles. An example is shown in Figure 4.8. F Feature vectors from the whole pyramid
are concatenated into one feature vector. In the example, data are divided by changing the
resolution and tiling of the image into a feature vector of length 21×N , which is significantly
longer than in the Basic scheme.

74

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

128x128

SVM
description of length N

Figure 4.7: An example of Basic classification scheme used for indoor vs. outdoor classifica-

tion.

128x128 64x64 32x32

SVM

description of length 16xN

description of length 4xN

description of length 1xN

21xN

Figure 4.8: An example of Multiscale classification scheme used for indoor vs. outdoor

classification.

The last classification scheme is the most complex. A scheme is called Two-Stage, and it is
shown in Figure 4.9. In the first step, it creates tiles from the input image in a similar way
as in previous schemes. Then it calculates descriptions of individual tiles. The important
change is that there is also an individual classifier trained for each tile. In the example, there
are in total 32 classifiers for 16 tiles created from the input data – 16 color classifiers and 16
texture classifiers. Finally, another classifier is trained using predictions from tiles classifiers.
Thus, the size of the input vector for the last classifier is 32 bins.

Color
Descriptor

Texture
Descriptor

16x SVM

16x SVM

SVM

Figure 4.9: An example of Two-Stage classification scheme used for indoor vs. outdoor

classification.

This scheme can be modified in three ways. The first one is to sum all indoor predictions
and all outdoor predictions and use the vector of only two bins as input for the last classifier.

75

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

The second one changes the output of tiles classifiers. Instead of predictions, they took real
numbers – e.g., distance from hyperplane – which should correspond to each classifier’s level
of certainty. Again it can be sent to the last classifier as a vector or summed up into two
bins.

The last modification is based on the exchange of the last classifier for the majority voting
approach. All tiles predictions are counted, and the final decision is based on the most
occurrence value.

The next paragraphs, related work of scene classification – it includes some papers that
address the problem of indoor vs. outdoor classification – will be mentioned. The first
significant paper that addresses the problem of indoor vs. outdoor classification was the
work of Szummer and Picard [6]. All experiments they performed were achieved on the
Kodak dataset – see Section 4.2.4 They use a color and texture approach based on a Two-
Stage scheme. They use kNN as a classifier. Instead of Euclidean norm, they use histogram
intersection norm defined by the following formula:

dist(h1, h2) =

N∑
i−1

(h1
i −min(h1

i , h
2
i)). (4.31)

They tested RGB histogram and OHTA histogram as color description and a multi-resolution,
simultaneous autoregressive model (MSAR) [189] as texture description. They discovered
that OHTA color space (accuracy 73.2%), which is defined as follows

I1 = R+G+B

,
I2 = R−B, (4.32)

I3 = R− 2G+B,

where R,G and B are RGB color space channels, has better performance than RGB color
space (accuracy 69.5%). MSAR accuracy was 86% and Two-Stage combined accuracy was
90.3% using OHTA and MSAR. Their Two Stage scheme is shown in Figure 4.10. It is based
on 32 kNNs and majority voting from kNNs predictions.

Figure 4.10: Two-stage classification combining color and texture. Taken from [6]

Kodak dataset is also used in the paper [190]. The authors used SVM classifiers on LST color
space (6bins per channel) and two-level wavelet decomposition [191] as a texture descriptor.

76

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Using a Two-stage classification scheme, they achieved 90.2% on the test set. Moreover, the
same authors incorporate a semantic-based approach in their paper [192]. Their approach
is based on detecting sky and grass. By using a two-stage approach together with semantic
information, they get an overall accuracy of 92.8%.

Payne et al. use edge-based features in their papers [193], [194]. Authors discover that images
that contain organic objects – usually occurred in an outdoor environment – have a larger
number of small erratic edges than synthetic objects – usually occurred indoor – that have
straighter and less erratic edges. Thus, they measured the straightness of edges in the image
by the following equation

Si =
vi
d(ei)

, (4.33)

where ei is the current edge, vi is the Euclidean straight line distance between the start and
end points of ei , and d(ei) is defined as the pixel distance – number of pixels – of ei. They
achieved 90.71% on the database of 872 photographs.

Another approach based on using Bag of features is used in paper [7]. Lazebnik et al. use
three levels spatial pyramid with a matching technique called histogram intersection. They
used multiple features in one pyramid – in particular, SIFT and GIST[195]. The GIST is a
global feature descriptor proposed in [196]. An example of the pyramid is shown in Figure
4.11. Features are extracted from each level of the pyramid. All results are concatenated and

+

+
++

+

+

+ + +

+
+

++

+
++

+

+

+ + +

+
+

++

+
++

+

+

+ + +

+
+

+
level 2level 1level 0

� 1/4 � 1/4 � 1/2

++ +

Figure 4.11: An example of constricting a three-level pyramid with tree feature types. Taken

from [7]

weighted, as is also shown in the figure.

In 2010 Kim et al. [197] proposed an approach that combines edge and color features in
Edge and Color Orientation Histogram (ECOH). They compute edges and color orientation
histograms individually. Histograms are then concatenated. Orientations are quantized into
K angles. Moreover, the input image is unequally decomposed into subblocks. They tested
the approach on a small dataset of 626 images.

Another bag of features approach was used by Battiato et al. in their paper [198]. They
propose to use texture description called textons, calculated in a four-level image pyramid.
Calculated feature vectors are used to create a weighted Bag of Visual Words (BOVW)
dictionary. The authors used a 15 scene dataset. A similar approach was also used in paper
[199].

An interesting texture-based approach was the Centrist texture descriptor – based on census

77

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

transform – introduced in paper [200]. It is similar approach to the Local Binary Patterns
(LBP) [201] with one exception. It has different numbering of pixels in the local neighborhood
during the calculation of individual responses. Moreover, the Centrist feature descriptor is
a global descriptor. Thus, they propose the process of calculating one feature vector for
the input image. It contains 31 feature vectors computed from subblocks of the pyramid. I
implemented both LBP and Centrist libraries (for C++ and Python) during my studies. It
is available as open-source on my Github2. Implementations are based on paper [202], where
authors proposed real time implementation of LBP algorithm.

Paper [203] introduces a combined visual descriptor called GBPWHGO. It combines Gradient
Binary pattern (GBP) with Weighted Histogram of Gradient Orientation (WHGO). GBP is
inspired by LBP. The calculation is based on applying of following masks G1, . . . , G4:

G1 =
[
−1 0 1

]
, G2 =

−1
0
1

 , G3 =

 0 0 1
0 0 0
−1 0 0

 , G4 =

−1 0 0
0 0 0
0 0 1

 . (4.34)

GBP value in the pixel location i, j is then computed as:

GBP = s(
∥∥G1

∥∥−∥∥G4

∥∥)+s(
∥∥G3

∥∥−∥∥G4

∥∥) ·21 +s(
∥∥G1

∥∥−∥∥G2

∥∥) ·22 +
4∑

k=1

s((
∥∥Gk

∥∥) ·27−k.

(4.35)
where

s(x) =

{
1, x ≥ 0
0, otherwise

(4.36)

Pixel intensities in the image are normalized to the interval 〈0, 1〉 before calculation.

The second part of the GBPWHGO description – WHGO – describes the gradient’s distri-
bution within the image. It is similar to gradient information extracted by SIFT or HOG
methods. Gradient orientation is almost equal in natural scenes but not equal in man-made
scenes, usually more horizontal and vertical orientations.

WHGO is calculated as follows. Image is decomposed into 2 × 2 subblocks. WHGO is
computed for each subblock – concatenated at the end. Orientations θij ∈ 〈−π, π〉 are
discretized into B bins using following formula

Oij = ceil

(
B × π + θij

2π

)
(4.37)

where function ceil is used to round computed value to the nearest greater integer value. Ori-
entations are computed for each pixel in the input image. Then weights has to be calculated
as follows

Wδ,k =

∑
(i,j)∈δ MijQ

k
ij∑

(i,j)∈δMij

(4.38)

where δ is a subregion 1-4 and k is a k-th dimension of a histogram, Mij is the gradient
magnitude of the pixel i, j and where Qij is computed as follows:

Qk
ij =

{
1, Oij = k
0, otherwise

(4.39)

2https://gihtub.com/neduchal

78

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Finally the WHGO descriptor is computed using formula

Hδ,k = Wδ,k ·
∑

(i,j)∈δ Qk
ij

Nδ
. (4.40)

The final GBPWHGO descriptor is then created by concatenation of computed GBP and
WHGO vectors.

In their experiments, they train SVMs. Based on their conclusions, the method outperforms
SIFT, LBP, and GIST descriptors in scene classification. Unfortunately, I was not able to
confirm this in my experiments. For example, method GBP itself had poor results in my
experiments, especially for cases with fewer bins in the feature vector.

In the same year as the previous paper, the same authors published another paper where they
propose an approach based on BOVW created. The codebook for BOVW is created using
the k-means algorithm. It is computed on the image pyramid – it is similar to the approach
in paper [198].

The authors of paper [204] propose an approach based on various so-called experts. Experts
are image feature descriptors. They tried six experts based on color or texture from previous
papers and three new methods. The final decision is then made by majority voting. Moreover,
voting is performed in disjoint subspaces created by data grouping in data space. In each
subspace, a result is combined based on a trained classifier. A similar approach was introduced
in paper [205].

Raja et al. propose Normalized Bins of Hue and Saturation (NBHS) in their paper [206].
They also use Principal Component Analysis (PCA) for dimensionality reduction. Finally,
they use the BOVW approach and Sparse representation classifier (SRC).

Paper [207] proposes a texture based BOVW approach. Interesting is using of the cascade of
indoor vs. outdoor classifiers. In the first step, indoor vs. outdoor classification is performed.
Then more indoor and outdoor labels can be set to input images based on various features.

Review paper [208] on indoor vs. outdoor classification mentioned several works published in
previous years. Moreover, they mentioned several open challenges such as dynamic scenes,
high-level features, or deep learning.

Finally, the last representative of the classic classification scheme that will be mentioned is
paper [209]. The authors of this particular paper proposed a new scene descriptor called Spa-
tial Color GIST Wavelet Descriptor (SCGWD) – combining OHTA GIST wavelet descriptor
with census transform histogram (Centrist) spatial pyramid representation.

4.2.3 Neural nets based approaches

Few recent works are based on neural networks. In the past, even these approaches count on
the use of some feature descriptor. For example, paper [210] presents a neural network based
approach where description using color, entropy, discrete cosine transform (DCT) coefficients,
and edge orientations are used as an input of several disjunctive neural networks. Their
outputs are concatenated and used as the input to the second stage neural network classifier
that makes the final decision.

79

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Another example is the paper of Tahir et al. [211]. The approach is based on GIST features
– of length 512 bins – as input for feedforward neural network. Their neural networks have
three hidden layers with 13, 13, and 2 neurons. The output is a feature vector of length
2. Their experiments achieved accuracy 90,8% on their dataset containing 2420 images –
created by combining one outdoor dataset and one indoor dataset.

The more general approach can be found in papers [212] and [213], where the scene is classified
into multiple classes – they do not focus on indoor vs. outdoor classification. Moreover, it
is an example of deep learning, where the whole image is used as an input of the neural
network. Both papers use the Places [214] dataset. Its subset, called Miniplaces, is used
in my experiments too. A list of datasets suitable for this problem is presented in the next
section.

4.2.4 Datasets

During research on indoor vs. outdoor environment classification, I discover only three
datasets directly designed for this problem. And only two of them are available online.
They are named IITM-SCID in two versions. Both versions consist of the small number of
images. Version 2 has 907 images, and version 1 only 180 images.

A slightly larger dataset was Kodak Stock Image Database dataset with 1343 images. Un-
fortunately, this dataset is no longer available online.

On the other hand, several datasets exist for the general classification of the environment –
scene classification. Moreover, they usually contain both indoor and outdoor environments
classes. It is possible to use them for indoor vs. outdoor classification by creating a file to
map each class to either indoor or outdoor label.

All datasets that were explored are listed in Table 4.1. It is particularly dataset SUN397,
dataset Places in three versions – Places, Places365 and MiniPlaces. Finally, there is men-
tioned the dataset MIT Indoor 67, but it worth noting that it is the indoor-only dataset. In
my experiments, I used Miniplaces because it offered sufficient size and data diversity.

Data in Miniplaces consists of 100000 training images, 10000 validation images, and 10000
testing images. All images have a resolution of 128×128 pixels. Unfortunately, testing images
was determined for use in the online challenge. Thus, in my experiments, I used validation
data for testing, and training data was divided into 90000 training sets and 10000 validation
set.

80

CHAPTER 4. ENVIRONMENT CHANGE DETECTION AND CLASSIFICATION

Dataset Reference # of Categories # of Images

Kodak – 2 1343

MIT Indoor 67 [215] 67 15620

15-Scene Dataset [216],[217], [7] 15 4485

IITM-SCID – 2 180

IITM-SCID2 – 2 907

SUN397 [218], [219] 397 108754

Places [214] 205 2500000

Places365 [214] 365 1803460

Miniplaces [214] 100 120000

Table 4.1: Available Scene classification datasets

4.3 Environment classification system – related work

In the field of environment classification systems, several papers propose systems based on
GPS signal presence such as the paper of Urcola [23]. In my work, I focus on environments
without the presence of GPS. I discovered only three papers that addressed the design of such
a system. The first one is called SmartSLAM. [169]. The second one is based on discrete
events [170]. And the third one is the paper of Collier [220]. But they are similar. All
systems use some hierarchical system that sets up the best SLAM system for a particular
environment. The design of systems presented in the mentioned papers is shown in Figure
4.12. The disadvantage of both systems is that they are described and experimentally tested,
but there is no available implementation.

Camera Environment
Classification

Indoor setup

Outdoor setup

Figure 4.12: Design of multi environment robot system based on related papers

Unfortunately, to my best knowledge, there is no current research in the field of a multi-
environment robot system. The only exception is my papers [221] that introduce the im-
proved concept of such a system, and [222] that addresses the problem of indoor vs. outdoor
classification. The system will be described in the next chapter.

81

Chapter 5

Environment classification system

In this chapter, the solution to the environment classification system will be proposed. The
problem statement based on the previous parts of the thesis will be introduced in the first
part. Then, the proposed solution to the problem will be described. The third part of this
chapter is focused on the mobile robot that was assembled and operated to record data for
experiments. The fourth section aims to describe the recorded dataset as well as the whole
process of data recording. The end of this chapter is devoted to describing the implementation
of the proposed Environment Classification System (ECS).

5.1 Problem statement

The problem of the environment classification system system is based on the fact that most
mobile robotic applications are designed for a single environment. Thus, there is a significant
probability of system failure when it moves to another – in a particular manner – environment.
Based on this general description, it is possible to define a goal that should be achieved.

The goal of a environment classification system is to detect the change of the environment
before or during the transition stage. The transition stage is a moment in time of a certain
length when the robot moves through the border between two environments. Based on the
detected change, the system is also supposed to classify the type of the current environment
and adjust the behavior of the robot properly.

In the practical part of my thesis, I will deal mainly with change detection and classification
of the environment during the transition. In the next section, the proposed system for solving
the defined problem will be described in detail.

5.2 Proposed system concept

The aim of this section is to describe ECS for multi-environment robot system. It consists of
three parts summarized in the following list

82

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

Environment Change Detection (ECD) This module is responsible for detecting par-
ticular changes in the environment and generating a trigger when the change is large
enough.

Image Based Environment classification (IBEC) This module classifies the current robot
environment based on the image based data. The environment classification is triggered
by the ECD module.

Robot Behaviour Adaptation (RBA) This module is supposed to adjust robot behav-
ior. It can be done by changing the parameters of a particular part of the system or
switching between onboard software.

For greater clarity are the described parts shown in Figure 5.1. This picture also shows the
links between individual modules. In particular, the ECD module sends triggers to the IBEC
module. Then IBEC module sends its decision about the environment to the RBA module.
Finally, the RBA module adjusts the behavior of the robot by changing active software parts
and their parameters. Besides these links, there is also a link from non-visual sensors to the
ECD module. Moreover, data from the Camera sensor is linked to ECD and IBEC module
simultaneously. It is caused by the fact that some changes can be detected in the image data
– e.g., lightning condition of the environment – and can also be used to classify environment
type.

CAMERA

SENSORS Data
Acquisition

Data Storage Data Process

Environment Change Detection module

Preprocessing

Classification

Image Based Classification

Parameter
adaptation

Behaviour
switching

Robot Behaviour Adaptation

Active Behaviour

Figure 5.1: The concept of the environment classification system.

Modules in Figure 5.1 comprise inner rectangles that represent essential parts of each module.
In the following sections, all three modules will be described in detail. The description is
ordered by way of the data from sensors up to the RBA module.

5.2.1 Environment Change Detection Module

The first module of the multi-environment robot system is the ECD module. It collects
data from all available sensors on its input, processes them, and generates triggers when the
change of particular value in the environment is detected. When the trigger is generated, the
probability of the transition between environments increases.

83

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

Figure 5.1 shows the inner structure of the ECD module. It consists of three parts called
Data Acquisition (DA), Data Storage (DS), and Data Process (DP). The concept of this
module was introduced in my paper [221]. In the next paragraphs, each sub-module will be
described in more detail. In the first part, the inner communication between sub-modules
will be presented. Then, the trigger generation will be described independently.

Inner communication structure

The attached sensors are connected directly with the DA sub-module. It is supposed to receive
the sensor data, do necessary preprocessing, and then send them to the DS sub-module using
a defined message type suitable for a wide range of the sensor data. In particular, the message
is defined as the pair of map layer information – each sensor has its layer in the map handled
by the DS sub-module – and floating-point number for the data. The structure of the DA
sub-module is visualized in Figure 5.2.

Data Acquisition Node
sensor data sensor msg

Figure 5.2: The structure of the Data Acquisition sub-module

The essential property which is visible in Figure 5.2 is that it is possible to run more DA
sub-modules within one system. Each running DA sub-module sends preprocessed data in
the same way. Thus, all data is sent to only one DS module.

Data Storage sub-module is the most complex part of the ECD system. It is responsible for
storing all data from sensors in the form of multi-layered 2D map. Therefore, DS is build
on top of an open-source GridMap[223] library1, which allows working with a multi-layered
map. The structure of the DS sub-module is shown in Figure 5.3.

Data Storage Node
sensor msg GridMap msg

getLayers setLayergetLayer

map pose

Figure 5.3: The structure of the Data Storage sub-module

1https://github.com/ANYbotics/grid map

84

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

The sub-module has three main inputs – map, sensor msg, and pose. The first main input is
the map , which is a map from the mapping software. In the implementation of the system,
it is possible to use a 2D occupancy grid map – e.g., the map generated by gMapping or
the map transformed from the 3D map created by RTABMap. The second main input is
the sensor msg described above. The map layer information is used to store value in the
particular layer in the map.

Moreover, the third input, named pose, is supposed to add the information about the robot’s
actual pose in the environment. Thus, this information is used to save data from the sensor
message at the robot’s position. Examples of the map generated by the ECD module will be
shown in section 6.2.

The main output of the DS module is only one. It is called GridMap msg, and it allows the
DS module to publish information of the generated map or its subset – base map + particular
layers – to other parts of the robot system.

Besides main inputs and outputs, there are also optional inputs and outputs. In particular
they are called getLayers, getLayer and setLayer. They have defined communication
messages between the DS sub-module and the DP sub-module. The structure of the DP
sub-module is shown in Figure. 5.4.

Data Processing Node
getLayer setLayer

getLayers

Figure 5.4: the structure of the Data Processing module

Is it visible that it has inputs and outputs with the same name as the one mentioned above.
The input called getLayers is supposed to load a list of all layers stored in the map. Then it
is possible to load particular layer or layers by getLayer input. DP processed loaded data,
and then it can return processed data into the DS sub-module by the setLayer message.
Moreover, it is possible to run multiple DP sub-modules within one robot system.

In the previous paragraphs, the inner communication within the ECD module is described.
It worth mentioning that the ECD without trigger functionality was originally named Envi-
ronment Detection System, and it is available as an Open-source ROS package on GitHub2.

Trigger generation

The main purpose of the ECD is to generate a trigger for the IBEC module. It can be done
in either DA or DP modules. In general, it is based on approaches described in Section 4.1.
In particular cases, the trigger can be sent directly to the RBA module – e.g., in the case

2https://github.com/neduchal/env detection

85

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

of sufficiently different known temperatures in both environments. In such cases, the RBA
module can react to trigger generated by some change detection functions such as CUSUM,
DifRatio, or VarRatio.

The policy of trigger generation is fully within the competence of the particular DA or DP
sub-module implementation. The policy consists of change detection sensitivity and frequency
of trigger generation in the case of consecutive detection.

Moreover, another trigger policy can be applied. All triggers can be sent to the trigger fusion
module – which is not a native part of the proposed system, but it is identified as one of the
tasks for future work. The final trigger is sent when multiple sensors generate their trigger.
Or the number of triggers can be reduced by not sending all triggers to other modules – e.g.
when the decision function generates triggers with high frequency. By default, it is the IBEC
module, which is described in the next paragraphs.

5.2.2 Image Based Environment Classification

This module is responsible for deciding on the type of environment. The structure of the
IBEC module is shown in Figure 5.5. As input, it takes image data from the camera and
the trigger from the ECD module. The trigger can be understood as an enable signal which
activates the whole module to process a single image frame. Image data first go to the
preprocessing unit, where feature extraction and description is applied. Feature vector or
preprocessed image then go to classification unit of the module. Classification unit contains
trained classifier – e.g., one of the classic machine learning or neural nets based classifiers
described in Section 4.2 – which takes feature vector and return integer value corresponds to
the class of the environment. In our case, it can be either 0 – indoor – or 1 – outdoor.

Preprocessing Classification

Classifier

image data preprocessed image

trigger

decision
en

Figure 5.5: Scheme of IBEC module.

Moreover, the classification unit can be composed of multiple classifiers in the case of the
Two-stage scheme approach as described in Section 4.2. Of course, the preprocessing unit has
to be implemented based on the used classifier because the classifier’s input data must have a
particular size, type and has to be prepared by particular feature extraction and description
method/s.

86

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

5.2.3 Robot Behaviour Adaptation Module

The last part of the proposed system is the RBA module. Its purpose is to take information
about the classification of the environment and then to set robot behavior – parameters,
software – based on the predefined configuration for the particular type of environment. The
structure of the module is shown in Figure 5.6.

RBA module

Parameters

active behaviour

Environment Type

RBA configuration

Figure 5.6: Example short run visualization

The RBA configuration is predefined, and it is stored on the hard disk of the on-board
computer. In my implementation, the configuration file is saved in a YAML format because of
the native support of this format in ROS. In Figure 5.6 there is also block named Parameters.
It is a representation of loaded parameters in the system. For a change of the environment,
it could be necessary to get some loaded parameters first. In particular, the ROS contains a
parameter server that can be used for this purpose.

The RBA module’s output is the set of changes in the system that adapt robots’ behavior.
For example, in the ROS framework, the RBA module can be built to kill active nodes or
whole launch files and run new ones.

5.3 Hardware

For my research, I assemble and operate a ground robot platform equipped with multiple
sensors. The platform was then used to record data and test algorithms both in terms of
results and performance. In the following paragraphs, the ground robot platform is described.

5.3.1 Robot Chassis

The robot is based on the Wild Thumper 6WD chassis. The chassis base comprises metal
parts with holes for easy assembly of computers, sensors, and other equipment. In particular,
the chassis has three high levels that are intended to assembly equipment. The chassis is

87

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

equipped with six drive DC motors with 75:1 steel gearboxes. Moreover, the motors attached
to middle wheels are equipped with rotary encoders. The maximum speed of this chassis is 3
km/h. On the other hand, during recording, I realized that the motors’ performance at low
speed is poor, and robot movement is not smooth. The robot is shown in Figure 5.7. The

Figure 5.7: A photo of the Wild Thumper robot platform.

robot is equipped as follows. At the lowest level, there is a motor controller called T-Rex
Board, a battery intended to power the motors and motor, controller board. The robots’s
computer is powered from a notebook powerbank which is placed in the middle level of the
robot. The computer itself is placed on the top level together with all the sensors.

5.3.2 T-rex controller board

This controller board – shown in Figure 5.8 – is responsible for controlling the motors and
receiving information from encoders and robots’ batteries. It is equipped with microchip
ATMega328P. For programming the board, Arduino IDE can be used. It also contains a 3-
axis accelerometer. For communication, three different approaches can be used. In particular,
it is I2C, RC, and Bluetooth. In my case, I2C is used.

Figure 5.8: T-Rex controller board

88

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

5.3.3 On-board computer and software

The main computer of the created mobile robot is NVIDIA Jetson Xavier – see Figure 5.9
– which is an arm based computer with 8-core CPU, 32 GB of RAM, and 32 GB of space
in eMMC storage. Moreover, I have added a 512 GB SSD disk to be able to save big data
onboard – e.g., Rosbags of robot runs.

Figure 5.9: Onboard computer Nvidia Jetson Xavier

Previously, we used another computer from the Jetson family. In particular, it was Jetson
TX2. However, the Xavier was chosen for the final configuration due to the 20x performance
increase compared to the TX2 computer.

Ubuntu Linux 18.04. is used as the operating system of the mobile robot. It is a modified
version for the Jetson computers family. I used this operating system because of the native
support of the ROS framework. In particular, I used ROS Melodic.

5.3.4 Equipped sensors

The robot is equipped with a set of sensors. It is particularly an RGBD camera, Row LiDAR,
Thermometer, Air pressure sensor, Humidity sensor, UV light sensor, Ultrasound distance
sensor, and an inertial measurement unit. All sensors will be briefly described in the next
paragraphs.

RGBD Camera Intel Realsense D435

The main sensor for the image-based classification of the environment is the RGBD camera
Intel Realsense D435 – shown in Figure 5.10. RGBD is an abbreviation of the words Red,
Green, Blue, and Depth. Thus, it is a color camera with depth information. Depth is
obtained by the combination of stereovision and laser projection of known pattern in infrared
spectrum. RGB and depth data are represented by images. 24-bit in the case of RGB image
(8-bits for every channel) and 16-bits for depth image.

89

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

Figure 5.10: Intel Realsense D435

Row LiDAR Hokuyo

The second important sensor is the row LiDAR. The row means that the LiDAR moves in
one axis and its data represents one line in the space. It can be imagined as the floor plan of
the space in front of a robot. The data is represented as an array of float values indicating
the distance in the particular angle. The angle is computed as follows

α = α− + i · r, (5.1)

where α− is a minimum of the angle range of the LiDAR – e.g., -120◦ –, i is an index of value
in the array and r is an angular resolution of the LiDAR. In particular, I used row LiDAR
Hokuyo URG-04LX-UG01 – see Figure 5.11. It is wide-range LiDAR with field of view 240◦.
The distance range of the LiDAR is 0 - 5600 mm and its accuracy in distance is +- 30 mm
for short distances and ±3% for distance above 1000 mm.

Figure 5.11: LiDAR Hokuyo URG-04LX-UG01

Non-visual Arduino based sensor set

To record non-visual environment data such as temperature, humidity, UV light value, air
pressure, and ceiling height, I assembled an Arduino based sensor set. It is shown in Figure
5.12. It consists of Arduino UNO3 as a controller board, BME 280 sensor, Arduino UV Light
sensor, and Ultrasound distance sensor. The communication with the main computer is based
on a serial connection with the use of ROS messages. All equipped sensors are introduced in
the following list.

BME280 is a sensor composed of multiple parts measuring environment temperature, hu-
midity and air (barometric) pressure. A temperature sensor is calibrated on temper-
atures in the range from -40 to 85◦C. Its resolution is 0.01◦C and accuracy ±1◦. The

90

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

Figure 5.12: Arduino based sensor set

Humidity sensor measures relative humidity in the range from 0% to 100%. with res-
olution 0.008% and accuracy ±3%. Finally, the air pressure sensor measures in range
from 30 to 110 kPa (0.3 – 1.1 bar) with resolution 0.18 Pa and accuracy ±1 Pa. Sensor
communicate with Arduino over I2C protocol.

Arduino UV Light sensor measures UV Light in the environment. UV index can be
computed from obtained values. Unfortunately, in my case, the UV light was usually
low or zero during the data recording.

Ceiling height sensor is an ultrasonic distance sensor that measures the distance between
the robot and the room ceiling. It is an accurate sensor with accuracy ±3 mm. The
sensor’s official distance range is from 2 to 450 cm with a field of view lesser than 15◦.

Inertial Measurement unit

It is a sensor composed of an accelerometer and gyro. In the system, it can be used as
odometry information both individually or together with wheel encoders. The sensor is
shown in Figure 5.13

Figure 5.13: IMU Lord 3DM-CV5

91

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

5.3.5 Software equipment of the robot

As it was mentioned before, the operation system of the robot is Ubuntu 18.04. with installed
ROS Melodic. The robot uses software that is included in ROS and the 3rd party software.
In particular, open-source SLAM systems such as gMapping or RTAB-MAP can be used with
the system.

5.4 Dataset

The first task for the described mobile robot platform was to record the dataset for testing
the proposed multi-environment system. The dataset was planned to be divided into several
sequences. Each sequence is supposed to be unique. It was achieved by three approaches:

• Recording in the different time of the day (excluding night) / different part of the year.

• Recording each environment separately / together – i.e. records with transition.

• Recording with all sensors / with subset of sensors.

5.4.1 Recording

Data was recorded primarily at two different locations – university campus and prefabricated
housing estate. Examples of images are visible in Figure 5.14. The robot was driven manually
using a wireless joystick.

Figure 5.14: Examples of an environments in dataset.

5.4.2 Description of recorded data

The recorded dataset contains 17 sequences of various lengths in the form of Rosbags. The
longest sequences recorded on the university campus have more than 10 minutes in length.
Thus, they can be divided into several shorter sequences. As it was mentioned, the data in
Rosbags vary a little. In other words, not all Rosbags sequences contain all types of data. In
the following list, there are described data types recorded by the robot.

92

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

Image data is compressed and it uses sensor msgs/CompressedImage message. The fre-
quency of image data is 30 Hz and the resolution is 320 px × 240 px for RGB images.
Similarly 30Hz and 320 px × 240 px for depth images.

LiDAR data is based on the standard sensor msg/LaserScan ROS message with frequency
10 Hz.

Rotary Encoders data are collected on T-REX control board. It is sent to the main
computer in two messages of type Int64. Frequency is based on the moving of the
robot, but it is usually up to 100 Hz.

Non-visual sensor data is collected on connected arduino. Its frequency is 24 Hz and it is
sent in the created ROS message which contained temperature sensor data, humidity
sensor data, air pressure sensor data, UV Light sensor fata and Ceiling height sensor
data.

IMU data send number of information such as raw IMU data, pose data and magnetic field
data. The frequency is 100 Hz.

5.5 Implementation notes

In this section, an implementation of the proposed system will be briefly described. Im-
plementation is programmed in C++ and Python programming languages for ROS. It can
be found as a repository on my Github3. The package contains all parts described in this
chapter. Moreover, it is possible to use it together with GridMap Library. I plan to extend
the capabilities of the system continually. In the next paragraphs, I provide a summary of
the current state.

The whole system can be configured in two ways. The first one is to change the parameters
in provided launch files. In particular, the names of the system topics for messages between
parts of the system and other nodes can be adapted here. Moreover, there is a YAML file in
the config subfolder, which contains a detailed system configuration. Individual parts of the
system can be affected by this file.

For example, it is possible to change the behavior of the ECD module. Currently, the ECD
module implements three methods for CPD. In particular it is CUSUM method and two
proposed method called DifRatio and VarRatio (see Chapter 6.1). In the configuration file,
the method and its parameters can be set.

IBEC module is currently prepared for arbitrary trained classifier from Scikit Learn python
package. Moreover, it is possible to create a Python class that satisfies function names for
arbitrary classifiers, including neural networks. In the future, I want to provide the same
configuration as in the case of ECD. Thus, it is supposed to be able to configure the classifier
in the YAML file.

Switcher implementation is based on the roslaunch python package. It can run and kill both
individual nodes and whole launch files. It can be configured in the YAML file as well. All
states with their activation names and names of associated nodes or launch files can be set
here. Moreover, the default state after running the switcher can be defined as well.

3https://github.com/neduchal/ecs

93

CHAPTER 5. ENVIRONMENT CLASSIFICATION SYSTEM

ECS CHANGE DETECTOR PARAMETERS

ecs_change_detector:

input_topic: /ecs/sensor_values

output_topic: /ecs/trigger

sensors:

- name: sensor1

method: difratio

republish: 1

ecs_map:

input_topic: /ecs/map/value

ecs_switcher:

input_topic: /ecs/switcher/switch

processes:

- name: test1

pkg: ecs_switcher

process: node1.launch

default: yes

- name: test2

pkg: ecs_switcher

process: node2.launch

94

Chapter 6

Experiments

In this chapter, the performed experiments will be described. They cover individual parts
of the researched problem. Specifically, it is a description of an experiment for processing
data from non-visual sensors, creating a system for adding data into the created map, an
experiment to classify the environment into indoor and outdoor, and testing the proposed
system on real sequences.

6.1 Environment change detection

This experiment is based on data processing from non-visual sensors. The following de-
scription will be divided into a description of individual sensors, including the suitability for
solving the task, a demonstration of the results using several methods, and a subsequent
discussion of the obtained results.

6.1.1 Description of used sensors

Temperature sensor measures the air temperature of the environment around the robot.
Figure 6.1 shows data without changing the environment, and Figure 6.2 shows data
with changing the environment. Specifically, the robot starts in the indoor environment,
then moves to the outdoor environment, and finally returns to the indoor environment.

The first important property visible in Figures 6.1 and 6.2 is a delay of the temperature
value. Even if the difference between indoor and outdoor temperature is significant, the
change of the measured value is not immediate. Moreover, the delay is also contained
in the data without transition because it took tenths of seconds to get a stable value.
On the other hand, it is visible in Figure 6.1 that the changes in value are insignificant.

Humidity sensor measures the relative humidity of the environment. Again, Figure 6.3
shows a waveform without changing the environment, and Figure 6.4 shows a waveform
without changing the environment. They are the same records as in the temperature
sensor. The same recorded data will be used for other sensors too.

95

CHAPTER 6. EXPERIMENTS

0 20 40 60 80 100 120 140
time [s]

22.00

22.05

22.10

22.15

22.20

22.25

22.30
te

m
pe

ra
tu

re
 [°

C]

Figure 6.1: Example of temperature sensor data with non-significant change.

0 100 200 300 400 500
time [s]

17

18

19

20

21

22

23

te
m

pe
ra

tu
re

 [°
C]

Figure 6.2: Example of temperature sensor data with significant change.

Humidity sensors have similar properties to the temperature sensor. It contains a
significant delay. Moreover, it is more sensitive to minor changes in the environment.
In Figure 6.1, there is visible noise in the data. It has to be filtered to remove its
influence on the detection. Data in Figure 6.4 shows the behavior of the humidity sensor
during the transition. In this particular case, the robot moves from an air-conditioned
building to an outdoor (winter) environment. The humidity starts growing. The value
then drops after the opposite transition.

Air pressure sensor sensor measures the barometric pressure of the environment. Exam-
ples are shown in Figures 6.5 and 6.6.

In the first case, it is visible that the air pressure value does not change significantly.
On the other hand, there is a noise that can cause problems. The second case shows
that the value of the sensor changes in the order of hundreds of pascal. But the reason
for the change is not a transition between environments. It is caused by the change in
altitude. In particular, the robot is in the elevator moving down around the timestep

96

CHAPTER 6. EXPERIMENTS

0 20 40 60 80 100 120 140
time [s]

23.8

24.0

24.2

24.4

24.6

24.8
hu

m
id

ity
 [%

]

Figure 6.3: Example of humidity sensor data with non-significant change.

0 100 200 300 400 500
time [s]

24

26

28

30

32

34

hu
m

id
ity

 [%
]

Figure 6.4: Example of humidity sensor data with significant change.

100s.

Similarly, the robot is in the elevator, moving up around the timestep 400s. The
transition between environments is visible between timesteps 200s and 300s as a minor
increase in the sensor value. Unfortunately, this increase is insignificant because the
change is in order of units of pascal.

Distance sensor measures the height of the room ceiling, so it could be useful in detecting
the transition between indoor and outdoor environments. The sensor value is immediate
without any delay. Examples are shown in Figures 6.7 and 6.8.

Figure 6.7 shows the run without the transition. The robot moves from the office to a
hall. Then it moves to the lecture room with several chairs and tables. Then it returns
to the starting point. There are visible timesteps of transition between rooms (around
timesteps 15, 40, 75, and 100). Low values between timesteps 50 and 70 are caused by
chairs close to the robot, and the distance sensor registers them. Similarly, the robot
stops next to the table after timestep 100. In conclusion, a transition between rooms

97

CHAPTER 6. EXPERIMENTS

0 20 40 60 80 100 120 140
time [s]

98.520

98.525

98.530

98.535

98.540

98.545

98.550
pr

es
su

re
 [k

Pa
]

Figure 6.5: Example of air pressure sensor data with non-significant change.

0 100 200 300 400 500
time [s]

98.525

98.550

98.575

98.600

98.625

98.650

98.675

98.700

98.725

pr
es

su
re

 [k
Pa

]

Figure 6.6: Example of air pressure sensor data with significant change.

can be detected by the distance sensor because door height is usually lower than the
ceiling height.

In Figure 6.8, the robot moves outside of the building and then returns back. The value
of the sensor increases significantly in this case. It worth mentioning that there is a
canopy over the entrance of the building. Thus, the increased value is not continuous
because the robot registered the height of the canopy.

Summary: All sensors mentioned in the previous paragraphs can be used on the particular
type of transition. The temperature and the distance sensor can be used for detecting
transitions between indoor and outdoor environments. Moreover, the distance sensor
can be used to detect the transition between rooms. The humidity sensor can be used
for transition between indoor and outdoor environments but only in the case of active
air conditioning or heating systems in the building. Finally, the air pressure sensor is
not suitable for indoor vs. outdoor transition detection. On the other hand, it can be
used to detect altitude changes – e.g., ride in the elevator.

98

CHAPTER 6. EXPERIMENTS

0 20 40 60 80 100 120 140
time [s]

100

200

300

400

500

di
st

an
ce

 [c
m

]

Figure 6.7: Example of distance sensor data with non-significant change.

0 100 200 300 400 500
time [s]

0

500

1000

1500

2000

2500

3000

di
st

an
ce

 [c
m

]

Figure 6.8: Example of distance sensor data with non-significant change.

Based on the findings, the experiment on detecting indoor and outdoor transition will
be performed only on the temperature sensor and distance sensor data.

6.1.2 Trigger generation

This experiment aims to test the suitability of the above data to detect the transition between
indoor and outdoor environments. It is important to note that the main result of this exper-
iment is a reduction in the computational cost of the classification of the environment based
on image data. Thus, it is not critical to generating triggers only at transition points, but
it is important not to generate triggers when nothing happens. The experiment’s output is
the set of triggers that should correspond with timesteps of transition between environments.
The discussion will describe the advantages and disadvantages of individual sensors and the
suitability of using different processing methods.

99

CHAPTER 6. EXPERIMENTS

First, two simple methods that can be used to detect changes in the one-dimensional signal
will be proposed. The first method is based on the ratio of average short-term and average
long-term value of the signal’s first difference (DifRatio). The second method is based on the
ratio between the current signal variance and the stable signal variance (VarRatio).

DifRatio This method is defined as the ratio between two values of the average first differ-
ence of the signal. Thus, if the method result is near 1, there is no change in the signal.
On the other hand, when the value is near zero or significantly larger than 1, there is
a possibility that change has happened. It can be written by the following equation

D (∆x, nl, ns) =

 1

nl

t∑
i=t−nl

∆xi + C

 ·
 1

ns

t∑
j=t−ns

∆xj + C

−1

(6.1)

where ∆x is a first difference of an input signal, nl, ns are defined lengths of the long-
term and short-term signal windows, t is a current timestep, and C is a small constant
to avoid division by zero. Moreover, nl can be set dynamically as a number of timesteps
from the last generated trigger. Finally, a maximum of D and D−1 is taken as a result.
Comparing with a defined threshold is then used for the trigger generating.

VarRatio This method is defined as ratio of variances of current and stable signal. Thus,
the result value increases when the current variance increases considering stable signal
variance. It can be mathematically written as follows

V (x, n, v) =

{
1 if var (x (t− n : t)) > α · V
0 otherwise

, (6.2)

where n is a window length, var is a signal variance calculation – standard deviation can
be used instead of signal variance, t is a current timestep, v is a stable signal variance,
and α is a defined sensitivity constant.

Of course, many other methods are suitable for detecting changes in the signal. To solve this
thesis problem, it is necessary to choose the method that is not computationally expensive –
i.e., it can run in real-time – and with as few parameters as possible.

6.1.3 Experiment discussion

In this section, an example of three methods for change detection will be presented on the
temperature data signal. In particular, DifRatio, VarRatio, and CUSUM 1 (for details, see
Section 4.1) method responses and generated triggers will be shown in the following figures.

In Figure 6.9, there is a record of temperature sensor data during the robot run. The robot
starts inside on the fourth floor of the building. It goes to the first floor and then out of the
building. After a short time, it goes back to the building.

There is a fast decrease of the temperature around the 4th minute of the record in the figure.
The starting and ending point (red circles) are timesteps when the robot goes outside the

1All methods were implemented in Python programming language for this purpose

100

CHAPTER 6. EXPERIMENTS

Figure 6.9: Temperature signal with labeled time steps of minor (grey) and major (red)

changes.

building and returns inside. They are major changes – transition between environments.
Moreover, three timesteps (grey circles) represent minor changes – transition between room
and hallway or vice versa.

The first method that will be presented is DifRatio, which was proposed in the previous
chapter. Its response is shown in Figure 6.10. The method is defined to detect changes
in the first difference of the signal by calculating the absolute value of the long-term and
short-term average differences. Thus, the response increasing significantly around the fourth
minute, where the transition between environments occurred. A small increase is also visible
in timesteps of minor changes. On the other hand, the increase is not significant. Thus it is
hard to detect in the response.

0 2 4 6 8
time [min]

1

2

3

4

5

Di
Ra

t v
al

ue

Figure 6.10: Response of DifRatio function on temperature signal

Triggers generated from the DifRatio response is shown in Figure 6.11. It is done by thresh-
olding by a constant value. Thresholding is suitable in this case because the response for
the stable signal without significant changes is approximately 1. The DifRatio method is
simple, and it detects significant changes in the signal. In this case, it generates triggers for
all responses greater than threshold constant 1.5. There are two approaches to change the
sensitivity of the DifRatio method. The first one is to select a lower threshold constant. The
second one is to select shorter time windows for calculation short and long-term averages.

101

CHAPTER 6. EXPERIMENTS

0 2 4 6 8
time [min]

0.0

0.2

0.4

0.6

0.8

1.0

tri
gg

er
 v

al
ue

Figure 6.11: Generated triggers based on DifRatio response.

The second method is VarRatio. Its response is shown in 6.12. It is visible that the response
is slightly similar to the DiRat method, except the range in the y axis is different. Minor
changes are more significant considering the maximum response in this case. Thus it can be
detected to generate triggers.

0 2 4 6 8
time [min]

0.00

0.02

0.04

0.06

va
ria

nc
e

of
 si

gn
al

 w
ith

in
 w

in
do

w

Figure 6.12: VarRatio method response on temperature signal.

Triggers for the VarRatio method are shown in Figure 6.13. The method is more sensitive
than the DifRatio function in this case. Triggers are generated by thresholding against the
threshold constant. In this case, threshold constant Tc is computed as follows

Tc = c · avg(Ss), (6.3)

where avg(Ss) is a average value of the stable signal and c >= 1 is small constant that increase
threshold value to be grater than maximum of stable signal. In the case of presented example,
Tc was set to 1.8. Constant c is supposed to change sensitivity of the trigger generation.
Another approach is to use the maximum value of stable signal instead of average. The
method is again able to generate triggers in the timesteps where the signal change occurred.

The last method that will be presented in this example is the CUSUM method. It is shown
in Figure 6.14 to compare it with the proposed methods. As the reader can see, the response

102

CHAPTER 6. EXPERIMENTS

0 2 4 6 8
time [min]

0.0

0.2

0.4

0.6

0.8

1.0

tri
gg

er
 v

al
ue

Figure 6.13: Generated triggers based on VarRatio response.

of the CUSUM method is similar to previous methods. On the other hand, the stable signal
case response is noisier in several parts of the robot run – e.g., between the start and second
minute of the robot run.

0 2 4 6 8
time [min]

0

1

2

3

CU
SU

M
 v

al
ue

Figure 6.14: Response of CuSum method on temperature signal.

Despite the noisy response, it is still possible to generate triggers using thresholding. Gen-
erated triggers are shown in Figure 6.15. Thanks to the noise, it can be difficult to set the
CUSUM method’s sensitivity to detect minor changes. Thus, only major changes are detected
in this particular case.

6.1.4 Computational cost

The computational cost of the previously mentioned methods and two others called BOCD2

and RulSIF3 will be discussed in this part. BOCD is an acronym for Bayesian Online Change-
point Detection, which is an implementation of the BCPD method described in chapter 4.1.
RulSIF method is an implementation of the RulSIF method, which belongs to the Likelihood
ratio methods group, similarly to the CUSUM method.

2Used implementation: https://github.com/y-bar/bocd
3Used implementation: https://github.com/hoxo-m/densratio py

103

CHAPTER 6. EXPERIMENTS

0 2 4 6 8
time [min]

0.0

0.2

0.4

0.6

0.8

1.0

CU
SU

M
 tr

ig
ge

rs

Figure 6.15: Generated triggers based on CUSUM function response.

Speed results of the tested methods are listed in Table 6.1. It is visible that all methods
performance are capable of running hundreds or even thousands of iterations per second.

Method Processing time [ms]

CUSUM 0.017

BOCD 0.981

RulSIF 1.386

DifRatio 0.374

VarRatio 0.022

Table 6.1: Results of speed of tested change point detection methods.

These results support (not confirm) the hypothesis proposed in Chapter 3 that the use of
one-dimensional non-visual sensors for environment change detection and environment clas-
sification can significantly reduce the computational cost of this task.

6.2 Multilayered map generation

In this section, generated multilayered map will be shown on data from the temperature
sensor and the ceiling height sensor. A basic map was created using the gMapping SLAM
system. Layers were added in real-time by the proposed system described in the previous
chapter. Results shown in Figures 6.17 and 6.16 are rendered using Rviz software based on
the GridMap package Rviz plugin.

Data for testing described system was recorded on the described robot. In this case, it contains
indoor-only runs, and it is composed of LiDAR data, wheel odometry, and non-visual sensors
data. In the next paragraphs, temperature and ceiling height data from two particular runs
will be discussed to describe the capabilities of sensors with and without delay.

Two maps composed of basic map and ceiling height data are shown in Figure 6.16. The first
map is created during the short run when the robot went approximately 5 meters from the

104

CHAPTER 6. EXPERIMENTS

office to the hallway. The robot starts at the right part of the map. As the reader can see,
the ceiling height is stable (yellow color) up to the moment when the robot reaches the door
(purple). Then the ceiling height change again (green) in the hallway.

Figure 6.16: Examples of multi-layered maps composed of basic map and ceiling height data.

Similarly, the second map was created during the long-run of the robot. The ceiling height
value is often without change (green color), but there are purple several times (doors), and
in the office (upper part of the map), it goes to yellow color.

Based on the evidence in figure 6.16, the robot can detect changes in the ceiling height
immediately. Moreover, it can detect doors, hallways, office based on the known distances.
On the other hand, the used ultrasonic sensor has a bigger range of sense in the horizontal
axis than desired. Thus, it sometimes measures the reflection of a different object than the
ceiling of the room – blue parts of the robot trajectory in the long run map.

In Figure 6.17 there are maps created based on the temperature sensor BME280. Like ceiling
height maps, the first one is created during the short-run of the robot and the second one
during the long run of the robot. The first visible thing is a delay in the change of the
temperature value. It is not immediate, as in the case of ceiling height. Thus, it is not
possible to detect changes between rooms, hallways, etc.

Moreover, the delay can cause problems even in the environment with small changes in the
temperature. It is visible in the long run map. The temperature in the same place has
different colors when the robot comes from different parts of the building. For example, place
in the upper part of the map when the robot comes out of the office to the hallway (green
color). When the robot reaches this place again, the temperature is different (orange color).

Thus, it should be important to apply some post-processing on the temperature data in the
map to estimate the temperature – e.g., using the average value. In conclusion, the data with
delay are usually useful for big changes in the signal that took a longer period – such as the
transition between indoor and outdoor environment. On the other hand, they are usually
not suitable for quick changes that can be detected by non-delay sensors such as mentioned
ceiling height.

105

CHAPTER 6. EXPERIMENTS

Figure 6.17: Examples of multi-layered maps composed of basic map and temperature data.

6.3 Environment Classification

This experiment is focused on the classification of the environment based on the image data.
The section is composed as follows. In the first part, the dataset and the reasons for its usage
are described. In the second part, results obtained based on the classic approaches – see
Chapter 4.2.2. In the third part, results obtained based on the neural nets are described –
see Chapter 4.2.3. The theory for both cases is described in section 4.2.1. The fourth section
is focused on the speed of the best methods from both the classic and neural nets approaches.
In the last part of this section, the results are discussed

6.3.1 Dataset

In the Section 4.2.4, it was mentioned that there does not exist any large dataset that is
supposed to be used directly for indoor vs. outdoor classification. Thus, I decide to use one
of the datasets for the general scene classification problem. The advantages of this approach
are the size of these datasets and their diversity. On the other hand, its disadvantage is that
some images or even whole classes can be ambiguous. It is hard to tell whether they belong
to an indoor or outdoor environment – e.g., the image of pizza in the class pizzeria or both
indoor and outdoor images in the class airport.

For my work, I chose between Places 365 and Miniplaces dataset. I chose Miniplaces because
the size of the dataset is big enough for training neural nets, and it is not too much for classic
approach algorithms at the same time. Examples of the Miniplaces dataset are shown in
Figure 6.18.

All results mentioned in the next subsections are trained on this dataset. Dataset is divided
into 90000 images for training, 10000 for testing, and 10000 for validation. Moreover, it was
necessary to create a file containing a mapping from Miniplaces classes to either indoor or
outdoor label.

106

CHAPTER 6. EXPERIMENTS

Figure 6.18: Examples of Miniplaces database.

6.3.2 Classic approaches

To evaluate classic approaches based on Chapter 4.2.2, I implemented a pipeline for training
and testing in Python programming language using the Scipy4 package. In the pipeline, it is
possible to choose between various classifiers such as kNN, SVM, etc. Moreover, it is possible
to enable the PCA algorithm for dimension reduction

In the experiment, I tested more than 280 combinations of image descriptors, classifiers,
and its settings. Of course, combinations include classification schemes described in Chapter
4.2.2 as well. For clarification, they are the Basic scheme, Multi-Scale scheme, and Two-stage
scheme.

Image splitting into the grid is also used in the case of the Basic scheme. In particular, grids
of 2× 2, 3× 3, and 4× 4 tiles were used. Each splitting setting was tested in several variants
of description vector length – e.g., 4, 8, 16. The feature vector of the image is concatenated
from the feature vector calculated for each tile. In the case of one channel image data, the
length of the calculated feature vector is computed as follows

l(x) = M ×N ×D (6.4)

where M and N are the numbers of tiles in horizontal and vertical direction. Variable D is
the length of a single tile feature vector. For three channels, the number has to be multiplied
by three. All mentioned variations of feature vector computation are supposed to examine
their influence on classification accuracy. Multi-Scale and Two-Stage schemes are used in the
form as they were described in Chapter 4.2.2. Again, various lengths of feature vectors are
used to examine its influence.

To compute feature vectors following methods were chosen. To examine the influence of
color space on the classification, histograms of RGB, HSV, LUV, and OHTA OHTA[6] color

4https://www.scipy.org/

107

CHAPTER 6. EXPERIMENTS

spaces were used. Texture based approaches are represented by Gist[209], Census Transform
(Centrist)[200], Global Binary Patterns (GBP)[203], Weighted Histogram of Gradient Ori-
entation (WHGO) [206], Wavelets [190] and by the approach where texture descriptor was
used on the image containing edges detected in the source image.

For training, the following classifiers (that are described in Chapter 4.2.1) were used. As the
baseline, Naive Bayes was used. Other classifiers are K-Nearest Neighbors, Decision Trees,
Linear SVM, and SVM with Radial Basis Function (RBF) based kernel.

In Tables 6.2, 6.35 and 6.4, there are Top 20 results of each classification scheme. The
complete list of results is published online in repository6 on my GitHub account.

Approach Des. Length Classifier Accuracy

Gist 960 SVM 85.44%

Gist-PCA-512 512 SVM 85.43%

HSV-Centrist-256 1024 SVM 84.83%

RGB-Centrist-256 1024 SVM 84.66%

Gist-PCA-256 256 SVM 84.65%

HSV-Centrist-128 512 SVM 84.6%

RGB-Centrist-128 512 SVM 84.04%

HSV-Centrist-64 256 SVM 83.81%

RGB-Centrist-64 256 SVM 83.47%

HSV-Centrist-32 128 SVM 83.13%

RGB-Centrist-32 128 SVM 83.04%

Centrist-4x4x16 256 SVM 82.44%

Gist-PCA-128 128 SVM 82.29%

Centrist-3x3x16 144 SVM 82.06%

HSV-4x4x16 768 SVM 81.82%

Hog-32-64 32 SVM 81.70%

HSV-4x4x8 384 SVM 81.56%

RGB-4x4x16 768 SVM 81.40%

RGB-4x4x8 384 SVM 81.26%

HSV-3x3x16 432 SVM 81.08%

Table 6.2: Results of TOP 20 basic classification approaches

In the case of the Basic scheme, all the best results were achieved with the SVM classifier.
In the Top 20, there are five color based descriptors, seven texture-based descriptors, and
eight combined descriptors. Besides classification accuracy, there are values of feature vector
length.

5Note: BAG prefix means Bootstrap Aggregation Machine Learning approach
6https://github.com/neduchal/io classification experiment

108

CHAPTER 6. EXPERIMENTS

As the reader can see, the best descriptor for the Basic scheme is Gist. It achieved an accuracy
of 85.44% and has a feature vector of lengths 960 bins. By reducing dimension to 512 bins
using PCA, it was achieved the same accuracy with a shorter descriptor. They were the only
methods that reach 85% in the Basic scheme.

Other methods do not achieve the same accuracy as Gist, even with a longer feature vector.
Thus, it makes Gist the most suitable descriptor for the Basic scheme. On the other hand,
the method called GBP had very poor results in my experiments, which is in contrast to the
original paper presenting this method.

Approach Des. Length Classifier Accuracy

Centrist-64 1344 SVM 85.48%

Centrist-128P 3968 SVM 85.34%

Centrist-256P 7936 SVM 85.05%

Centrist-32 672 SVM 84.42%

Centrist-256P-pca-512 512 SVM 83.20%

Hog-32 672 SVM 82.84%

Centrist-64 1344 BAG16-SVM 82.66%

Hog-64 1344 SVM 82.61%

Centrist-64P 1984 LSVM 82.27%

Centrist-256P-pca-256 256 SVM 82.22%

Centrist-16 336 SVM 82.02%

Centrist-256P-pca-128 128 SVM 81.94%

Hog-16 336 SVM 81.57%

BAG64-Centrist-64 1344 BAG64-SVM 81.14%

Centrist-256P-pca-64 64 KNN 81.09%

Centrist-32P 992 LSVM 80.75%

Centrist-16P 496 LSVM 78.75%

Hog-8 168 LSVM 77.89%

Centrist-4 84 SVM 77.20%

Centrist-8 168 SVM 76.72%

Table 6.3: Results of TOP 20 Multi-scale classification approaches

Result for Multi-Scale scheme shows that texture-based approaches are in the lead in this
scheme. The best method, in this case, is Centrist in several variations. Particularly in
various histogram lengths of the Centrist description and even in two versions of the Multi-
Scale scheme. Approaches based directly on the Centrist paper[200] are denoted P at the
end of the approach name.

The results of the best Multi-Scale methods are similar to the best Basic scheme methods.
The disadvantage of Multi-Scale methods is the usually bigger length of feature vector – e.g.,
7936 in Centrist-256P. In summary, based on the evidence of similar results, it seems to be
better to use Basic scheme methods.

109

CHAPTER 6. EXPERIMENTS

Approach Des. Length Accuracy

HSV-Centrist-256-D 32 (256) 91.87%

RGB-Centrist-256-D 32 (256) 91.61%

HSV-Centrist-256-DS 2 (256) 91.11%

HSV-Centrist-128-D 32 (256) 90.91%

RGB-Centrist-256-DS 2 (256) 90.85%

BAG16-HSV-Centrist-CT-256 32 (256) 90.66%

BAG1-HSV-Centrist-CT-256 32 (256) 90.61%

HSV-Centrist-CT-256 32 (256) 90.60%

HSV-Centrist-256 32 (256) 90.47%

RGB-Centrist-128-D 32 (256) 90.27%

BAG1-HSV-Centrist-256 32 (256) 90.13%

RGB-Centrist-256 32 (256) 90.13%

BAG16-HSV-Centrist-256 32 (256) 90.11%

HSV-Centrist-64-D 32 (256) 89.99%

HSV-Centrist-128-DS 2 (256) 89.96%

RGB-Centrist-CT-256 32 (256) 89.95%

HSV-Centrist-CT-128 32 (256) 89.35%

RF-HSV-Centrist-256 32 (256) 89.32%

RGB-Centrist-128-DS 2 (256) 89.28%

HSV-Centrist-128 32 (256) 89.10%

Table 6.4: Results of TOP 20 Two-stage classification approaches

The Two-Stage results show that classifiers trained in the Two-Stage scheme have better
accuracy than the previous one. The best accuracy is achieved by combining the HSV color
space histogram with 256 bins for every channel and the Centrist texture descriptor. The
accuracy of the method is 91.87%.

In all cases, only an SVM classifier was used because of experience from Basic and Multi-
Scale schemes where the SVM outperforms other classifiers. The Two-Stage scheme results
are the best from the classic classification approaches. Thus, it is the best choice in the
case of offline classification. As will be discussed in the following subsection focusing on the
time consumption of the approaches, Two-Stage methods are usually improper for real-time
systems.

6.3.3 Neural nets

In this section, a deep learning approach to the indoor vs. outdoor classification will be
described. In this particular experiment, transfer learning is used as a good approach –
based on the benefits mentioned in paper [224] – to train a neural network for this particular

110

CHAPTER 6. EXPERIMENTS

task. Thus, all used network architectures were pretrained on the ImageNet database [225].
The last layer (fully-connected with 1000 outputs) was replaced by the layer with two outputs
– indoor, outdoor – and randomly initiated weights.

In this experiments, eleven network architectures was trained. In particular they are VGG16
[226], ResNet-50 [227], ResNetWide-50 [228], ResNeXt-50 [229], InceptionResNet [230], Xcep-
tion [231], InceptionNetv4 [230], DenseNet [232] and three Big Transfer (BiT) [233] based
architectures.

VGG16 architecture is a baseline because it is a common architecture for a wide range of
classification problems nowadays. The rest of the architectures can be divided into three
groups. The first one is based on ResNet architecture – or more precisely, on utilizing residual
skip connections. The second one is based on the inception module, which computes multiple
convolution filters on the same network level instead of stacking them sequentially. The
last group is based on BiT models, which utilizing upstream and downstream components
proposed by Google.

On the contrary to the classic approach, Neural Networks expects the whole image on its
input. In the case of the Miniplaces dataset, it is an RGB image of size 128 × 128 pixels.
Although the size of the dataset is big enough for the classic approach, it is not sufficiently
large for NNs. Therefore, augmentations had to be used during the training stage to enrich
the dataset. In particular horizontal flip and random crop with resizing to 128 × 128 pixels
were used.

Training parameters are set as follows. Training is stoped after 20 epochs. Mini-batch has
size 64. SGD optimizer is used with a learning rate l = 0.001. Moreover, momentum m = 0.9
is used as well. Cross-entropy loss is used. During training, the optimizer can fine-tune all
parameters because its freezing did not lead to satisfactory results.

The accuracy of all architectures is listed in Table 6.5. It worth mentioning that all neural
networks overcome the accuracy of classifiers learned using the classic approach. In other
words, the worst trained neural network accuracy starts at the point where is the accuracy
of the best classic approach classifier.

The best results are achieved by the usage of the BiT training protocol on Resnet-50 and
Resnet-101 architectures. It improves accuracy by more than 1.5% against the same archi-
tectures without BiT. The best architecture is the largest network based on Resnet-50 with
BiT (denoted as BiT-M-R50x3). It achieved 96.17% on the test set.

Computational cost

The accuracy is not only one property that is necessary to evaluate in this case. The approach
has to run in (almost) real-time7. Thus, the best three methods from the classic approach
and five neural networks were tested on its inference time. In the case of the classic approach,
it consists of data preprocessing and classification itself. Table 6.6shows the speed result of
the top three classic approaches from all mentioned classification schemes.

The first notable information is that the Two-stage scheme is not suitable to run in real-time.

7All approaches were tested on computer with Intel Core i7-8750H CPU and GTX 1060 GPU.

111

CHAPTER 6. EXPERIMENTS

Architecture Development set Test set

BiT-M-R50x3 96.70% 96.17%

BiT-M-R101x1 96.44% 95.49%

BiT-M-R50x1 96.39% 94.97%

DenseNet-161 94.65% 93.64%

ResNetWide 94.57% 93.55%

ResNeXt 94.56% 93.49%

ResNet-50 94.33% 93.34%

Xception 94.00% 93.17%

VGG16 93.98% 92.56%

InceptionResNet 93.38% 92.49%

InceptionNetv4 93.37% 91.87%

Table 6.5: Results of neural network based approaches. Sorted by test set accuracy.

Approach Des. Length Scheme CPU inf. time (ms)

Gist-960 960 Basic 71.6

Gist-PCA-512 512 Basic 54.8

HSV-Centrist-256 1024 Basic 10.1

Centrist-64 1344 Multi-Scale 68.8

Centrist-128P 3968 Multi-Scale 189.7

Centrist-256P 7936 Multi-Scale 256.7

HSV-Centrist-256-D 32 (256) Two-Stage 1125.4

RGB-Centrist-256-D 32 (256) Two-Stage 1111.1

HSV-Centrist-256-DS 2 (256) Two-Stage 1194.5

Table 6.6: Speed comparison of classic approach methods.

Its accuracy is better than the accuracy of other schemes, but its run time is above 1 second.
Significantly lesser computational cost is measured in the case of both Basic and Multi-Scale
schemes. Thus, the best trade-off between classification accuracy and computational cost is
represented by the Gist descriptor for the Basic scheme and 64 bins length Centrist descriptor
for the Multi-Scale scheme.

Similarly, inference times of Neural network based approaches are shown in Table 6.7. There
are listed both CPU and GPU inference times. It’s worth mentioning that the largest archi-
tectures – such as ones based on Inception – are omitted from this comparison.

In the case of GPU inference time, all mentioned are capable of running in real-time. On the
other hand, in the case of CPU – still, the real-life situation when the robot does not have
GPU – only network BiT-M-R50x1 can run at least 5 frames per second. Thus it offers the
best trade-off between accuracy and computational cost for usage on CPU.

112

CHAPTER 6. EXPERIMENTS

Method # of Param. CPU inf. time (ms) GPU inf. time (ms)

VGG16 134277186 258 12.4

DenseNet-161 26476418 223 21.6

BiT-M-R50x1 23504450 152 9.8

BiT-M-R101x1 42496578 1238 26.1

BiT-M-R50x3 211186370 708 15.6

Table 6.7: Comparison of the # of parameters and single image average inference times.

6.3.4 Edge detection experiment

At the beginning of this part, it is worth mentioning that this experiment is older than the
classification experiment above and uses different – and smaller – datasets. The dataset was
created by combining images from the dataset mentioned in Subsection 5.4 and the Kitti
dataset8. The dataset consists of 18980 images equally distributed to indoor and outdoor
classes. Its purpose was to examine the influence of edge detection on the training process
and the performance of a simple neural network (shown in Figure 6.19).

8
32
0x
24
0

Conv1

16
31
8x
23
8

Conv2

32
31
6x
23
6

Conv3

MaxPooling

64

Dense

64

Dropout(0.5)

2

SoftMax

Figure 6.19: Simple Neural Network Architecture

The results are shown in Table 6.8. I tested several approaches. All methods have the same
number of epochs, same learning rate, and same batch size. Only Canny and Roberts edge
detector worth mentioning. They had significantly better accuracy on the test set than other
methods or methods without edge detection.

Input preprocessing Training set accuracy Test accuracy

Without preprocessing 50.43% 51.34%

Fourier Transform 88.10% 50.45%

Sobel 94.25% 49.36%

Roberts 95.93% 86.39%

Canny 93.34% 92.45%

Table 6.8: Results of neural network trained on data from various edge detection methods.

It seems that edge detection improves learning speed in the case of small nets and small

8http://www.cvlibs.net/datasets/kitti/eval odometry.php

113

CHAPTER 6. EXPERIMENTS

datasets. On the other hand, larger networks trained on larger datasets can achieve the
same or better accuracy without any preprocessing. Thus, they should be more robust than
networks trained only on edges.

6.4 Proposed system design test

In this section, the system concept proposed in Chapter 5 will be tested. The goal of this
experiment is to confirm the hypothesis proposed in Chapter 3. The experiment is based on
an analysis of a recorded dataset from two points of view. The first one is a verification of
the proposed system concerning its proper working. The second point of view is statistical.
In other words, it is focused on the system accuracy and speed. In both cases, the results will
be compared with the system design proposed in paper [169] based on image classification
only – it will be referred to as the baseline system.

In the first part of this section, the system’s results will be evaluated qualitatively on three
records with various levels of difficulty. In three cases, the distance sensor will be used. In
the case of the most difficult record, the temperature sensor will be used as well to show
results on the sensor with a time delay (for details, see Chapter 4.1).

The second part is focused on quantitative evaluation. It consists of average classification
accuracy on the recorded dataset and average runs per second of presented methods. More-
over, several runs will be analyzed to show speed performance differences between proposed
and baseline systems.

6.4.1 Qualitative evaluation

The first evaluation criterion is based on human experts, which compares ground-truth data
with the response of both the proposed and the baseline systems. It will be done on two
shorter and one long records. All records start in an indoor environment. Then the robot
moves through the building and goes outside of the building. Finally, it returns inside after
some time.

Every single record is recorded with a mobile robot presented in Chapter 5.3 in a different
place (different building, different door space) and with a different difficulty level.

Record 01

The first record is the simplest one. The camera is pointed to the front of the robot with no
camera occlusion and balanced white color. In Figure 6.20, there are four example frames
from the record.

Figure 6.21shows a graph with ground-truth (GT) information for every timestep of the
record. The robot moves indoor for approximately the first 10 seconds of the record. For
the next 30 seconds robot moves in an outdoor environment. Finally, it comes back to the
indoor environment. The situation is more complicated. The exact timestamp of the change

114

CHAPTER 6. EXPERIMENTS

Figure 6.20: Examples frames from record 1

between environments is hard to determine, even for human experts. It will be shown in
Figures 6.22 and 6.23 that distance sensor and image classifier usually predict a change in
different timestep than GT information.

0 10 20 30 40 50
time [s]

indoor

outdoor

Figure 6.21: Groundtruth labels for Record 1

The distance sensor data shown in Figure 6.22 are similar to GT data, but the value changes
several times on the edge between indoor and outdoor environments. Moreover, the change
from indoor to outdoor occurred approximately three seconds later than GT data. The
change in the opposite direction, on the other hand, occurred 1 second sooner than GT data.

The result of the baseline system to detect change between environments is shown in Figure
6.23. It is visible that the system detects transition from the indoor to the outdoor envi-
ronment in the same second as GT data. In all Figures of this type, the blue data line is
the system result, and the orange data line is GT data. On the other side, it changes back
significantly sooner than GT data – As mentioned above, it is not usually an error because
it is difficult to select a single frame where the transition occurred. It is influenced by the
scene viewed by the camera, where the building entrance is visible.

Moreover, there are also several changes in timesteps where no change occurred. It is caused
by the accuracy of the classification system, which can incorrectly classify blurred data.
Overall, the system behaves as expected.

Figure 6.24 shows the triggers generated by the ECD part of the system – using the DifRatio
function in this case. There are two groups of triggers in the graph corresponding with the

115

CHAPTER 6. EXPERIMENTS

0 10 20 30 40 50
time [s]

500

1000

1500

2000

2500

3000

di
st

an
ce

 [c
m

]

Figure 6.22: Distance data for Record 1

0 10 20 30 40 50
time [s]

indoor

outdoor

Figure 6.23: Baseline system results for Record 1

first and second transition between environments.

Finally, the result of the proposed system is shown in Figure 6.25. It is visible that the
system reacts only in timesteps where triggers are generated. Thus, the first transition
occurred later than in the case without ECD triggers. On the other hand, there is much
fewer wrong classification in this case.

In more detail, the baseline system’s accuracy – using ResNext Neural Network architecture –
is 77% against GT data. In the case of the proposed system, it is 91%. It is worth mentioning
that real accuracy is better because it is compared with strict GT data containing exact
timesteps labeled by a human expert.

116

CHAPTER 6. EXPERIMENTS

0 10 20 30 40 50
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.24: Generated triggers from distance data for Record 1

0 10 20 30 40 50
time [s]

indoor

outdoor

Figure 6.25: The proposed system result for Record 1

Record 02

The second record is similar to the first record, but the camera is occluded by black wire, as
shown in 6.26.

Figure 6.26: Example frames from Record 2

117

CHAPTER 6. EXPERIMENTS

Figure 6.27 shows a graph with ground-truth (GT) information for every timestep of the
record. The robot moves indoor for approximately the first 24 seconds of the record. The
next 24 seconds robot moves in the outdoor environment. Finally, it returns to the indoor
environment.

0 10 20 30 40 50 60 70
time [s]

indoor

outdoor

Figure 6.27: Groundtruth labels for Record 2

The distance sensor data shown in Figure 6.22 shows the transition between environments.
Moreover, there are four peeks after 55 seconds of the record. It is an error in the data
because no transition occurred in that timestamps. Thus, the proposed system will generate
triggers for the classification module.

0 10 20 30 40 50 60 70
time [s]

0

500

1000

1500

2000

2500

3000

di
st

an
ce

 [c
m

]

Figure 6.28: Distance data for Record 2

The baseline system result is shown in Figure 6.29. The system behaves similar as in the
case of Record 1. The system behaves similarly as in the case of Record 1. There is a more
wrong classification, which can be caused by two factors. The first one is the black wire in
the camera view. The second one is sun glare visible in examples in Figure 6.26. On the
other hand, the system behaves reasonably accurately.

The triggers generated from distance sensor data are shown in 6.30. Two triggers are corre-

118

CHAPTER 6. EXPERIMENTS

0 10 20 30 40 50 60 70
time [s]

indoor

outdoor

Figure 6.29: The baseline system result for Record 2

sponding to the transition between environments. Moreover, after 55 seconds of the record
generated based on the error values, there are four false-positive triggers. Thus, the image
classification is also performed in these timesteps.

0 10 20 30 40 50 60 70
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.30: Generated triggers for Record 2

As shown in Figure 6.31, false-positive triggers do not influence the results because the image
classification module classifies them correctly. Moreover, the results follow GT data. The
proposed system again behaves reasonably.

The accuracy of the baseline system was 84% in this case. The proposed system achieved an
accuracy of 93%. Similarly, as in record 1, it reduces errors when the robot moves through
one environment without transition.

119

CHAPTER 6. EXPERIMENTS

0 10 20 30 40 50 60 70
time [s]

indoor

outdoor

Figure 6.31: The proposed system result for Record 2

Record 03

The third record is the hardest one considering the training data of the image classifier. The
mounted camera images are color unbalanced – more significant red channel – and the camera
itself is pointed 20 degrees up in contrast to previous records. Moreover, the building contains
many windows, which allows the robot to see the outdoor environment. It can confuse the
image classification module. Examples of recorded frames are shown in Figure 6.32.

Figure 6.32: Examples frames from record 3

In this case, the robot moves through the indoor environment most of the time of the record.
The robot starts on the 4th floor of the building. Then, it moves to the elevator and the
ground floor. In the next part, the robot moves in front of the building, turn around, and
goes back to the elevator and the 4th floor. The ground truth data is shown in Figure 6.33.

Figure 6.34 contains distance sensor data for Record 3. They are more interesting than in
the previous cases. There are visible changes in the ceiling height in the data, which are
different on the 4th floor – approximately 3 meters and the first floor – approximately 5
meters. Moreover, there is the visible lower ceiling height of the elevator around timesteps
100s and 400s. The robot is outside of the building between timestep 220s and 260s of the
record. The rest of the peeks in data are measurement errors.

The difficulty of the record is visible in Figure 6.35. There is a lot of the wrong classification
caused by different camera angles and by many situations when the robot looks outside

120

CHAPTER 6. EXPERIMENTS

0 100 200 300 400 500
time [s]

indoor

outdoor

Figure 6.33: Groundtruth labels for Record 3

0 100 200 300 400 500
time [s]

0

500

1000

1500

2000

2500

3000

di
st

an
ce

 [c
m

]

Figure 6.34: Distance data for Record 3

through the window. For example, it is a case of the wrong classification around timestep
100s of the record. Moreover, an industrial look of the outdoor environment in front of the
building also causes wrong classification – indoor instead of outdoor.

In Figure 6.36, there are again triggers generated by the change detection module. It generates
a lot of triggers when the robot is outside of the building. It is caused by the fact that there
is an outdoor canopy at a certain distance from the building. Thus, the distance sensor
measured no roof in one timestep and outdoor roof in another step. The result is that
the image classification module is triggered more times than in previous cases. There are
also several triggers after timestep 260s of the record. They corresponded with the error
measurement mentioned above.

Finally, Figure 6.37 shows the result of the proposed system. It eliminates most of the
wrong classifications. On the other hand, the classification module generates only two short
sequences for the outdoor environment.

121

CHAPTER 6. EXPERIMENTS

0 100 200 300 400 500
time [s]

indoor

outdoor

Figure 6.35: The baseline system result for Record 3

0 100 200 300 400 500
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.36: Generated triggers for Record 3

Overall, the accuracy of the baseline system for this record is 95%, and the accuracy of the
proposed system is 97%. The high accuracy of both systems is caused by the record length.
Thus, the length hides the number of wrong classifications because there are many more
correct classifications.

In the case of this record that was recorded in winter when the difference between indoor
and outdoor temperature was sufficient, the temperature sensor data can also be used for
trigger generation. Temperature data are shown in Figure 6.38. The temperature decreases
slowly in the first 200 seconds of the record. It is caused by the measurement delay of the
temperature sensor when the sensor gradually adapts to the temperature of the environment.
Suddenly, the temperature starts to decrease after the robot moves through a door to the
outdoor environment.

Similarly, the temperature starts increasing around timestep 250s of the record. The impor-
tant is that the temperature was not stable at the time of returning to the indoor environment.

122

CHAPTER 6. EXPERIMENTS

0 100 200 300 400 500
time [s]

indoor

outdoor

Figure 6.37: The proposed system result for Record 3

Then the temperature data gradually increasing with a slowing tendency. The temperature
sensor’s behavior can causes problems for the change detection when it is set to too little or
too sensitive to the temperature changes.

0 100 200 300 400 500
time [s]

17

18

19

20

21

22

23

te
m

pe
ra

tu
re

 [°
C]

Figure 6.38: Temperature data for Record 3

Triggers generated by the DifRatio method based on temperature data are shown in Figure
6.39. It is visible that it generates several triggers in the correct part of the record. Moreover,
one trigger is generated when the robot moves to the elevator, which temperature is lower
than in the rest of the building.

The result of the proposed system based on temperature data is shown in Figure 6.40. It
classifies the outdoor environment between timestep 200s and 250s. It is reasonable behavior
because the premature switch to outdoor and back to the indoor environment is caused by
the change in temperature, which occurred before the change in GT data created from visual
information. The accuracy of the proposed system is, in this case, 95%, which is worse than
in the case of a distance sensor, but it is identical to baseline system results.

123

CHAPTER 6. EXPERIMENTS

0 100 200 300 400 500
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.39: Generated triggers from temperature data for Record 3

0 100 200 300 400 500
time [s]

indoor

outdoor

Figure 6.40: The proposed system result for Record 3 – temperature data.

It is visible from the presented data that the baseline system and the proposed system are
usually similar in terms of accuracy. In the next section, the average accuracy and speed of
each type of system will be discussed.

6.4.2 Quantitative evaluation

The results presented in this section are divided into two parts. In the first part, the baseline
system’s average accuracy based on the classic and NN classification approach will be com-
pared with the proposed system. As will be discussed, the results suggest better accuracy of
the proposed system are not as clear-cut as they seem. On the other side, the speed perfor-
mance results shown in the second part of this section suggest that the proposed system is
more suitable for real-time processing on the mobile robot. It worth mentioning that these
tests were performed on a computer with Intel Core i5-6500 CPU and NVIDIA GeForce GTX

124

CHAPTER 6. EXPERIMENTS

1050 Ti graphic card. The number of image frames was reduced to 10 per second to ensure
better readability of the presented graphs.

Table 6.9 shows the average accuracy9 of both the baseline system and the proposed system
on the recorded dataset. As it is visible, the proposed system’s accuracy is higher than the
baseline system in both cases – Classic approach and NN approach.

Classification Approach Baseline system Proposed system

Classic approach 54.66% 88.36%

Neural Networks 84.72% 93.12%

Table 6.9: Average accuracy of classic approaches and NN approaches on recorded dataset

for baseline and proposed systems.

Nevertheless, it worth mentioning that the proposed system was set to perform classification
only when a trigger from the change detection module is generated. It means that the system
is entirely dependent on the change detection module, and it does not check the environment
between the triggers. It is a reasonable approach for many cases where the sensor can
be trusted – such as the ceiling height sensor –, but it could be appropriate to check the
environment once every few seconds, for example, in the case of a temperature sensor with a
small difference between temperatures in both environments.

It is worth mentioning that classic approach classifiers are less robust against different input
data kinds than the NN approach. It is visible on the difference between accuracy achieved
by baseline system for these two approaches – i.e., the difference between 54.7% for classic
and 84.7% for NN approach.

Speed results are shown in Table 6.10. It is represented by runs of each method per second
(RPS). It is computed for three cases of image-based classification and two cases of change
detection. As visible from the table, the fastest image-based classification approach is the NN
approach using GPU. It achieves 57.2 RPS on desktop PC with mentioned CPU and GPU.
Thus it can run realtime. The other image classification approaches are worse. Unfortunately,
the NN approach runs on CPU, and the Classic approach is significantly slower.

Moreover, the performance of the methods running on embedded hardware such as Nvidia
Xavier or Jetson TX2 is worse. For example, based on experiences while testing, the GPU
computation is 3-5 times slower than mentioned desktop hardware on Nvidia Xavier. This
problem can be solved by using non-visual sensors processing.

The results of change detection algorithms show that it can run in significantly more RPS
than image-based classification. It is caused by processing much less data than image-based
methods. The processing of distance sensor data achieved almost 64 000 RPS and tempera-
ture sensor data processing more than 24 000 RPS. Thus, it is reasonable to give priority to
the processing of these methods before image-based methods.

The difference between cumulative time requirements results of baseline and the proposed
system is also shown in Figures 6.41 and 6.42. The first one shows the Classic approach
results, and the second one the NN approach, where the blue line is the time requirements

9Computed on results of multiple classic and NN based image classifiers trained on Miniplaces database

125

CHAPTER 6. EXPERIMENTS

Process Runs per second

Image Classification, Classic Approach 11.037

Image Classification, NN Approach, GPU 57.193

Image Classification, NN Approach, CPU 8.400

Distance sensor change detection 6.397e+05

Temperature sensor change detection 2.414e+05

Table 6.10: Average runs per second of image classification, distance data processing and

temperature data processing – written for both the classic approaches and neural network

approaches on recorded dataset.

result of the baseline system and the orange line result of the proposed system. It is visible
that baseline system time requirements are significantly higher than in the proposed system.

0 100 200 300 400 500
record time [s]

0

50

100

150

200

250

300

350

du
ra

tio
n

[s
]

Figure 6.41: Example of time requirements results of baseline and proposed system using

Centrist method.

The results support and, in fact, confirm the hypothesis proposed in Chapter 3 that the
use of non-visual one-dimensional sensors can reduce the computational cost of the baseline
system. As mentioned, the accuracy of the proposed system is usually better than the
accuracy of the baseline system. On the other hand, complete trust in non-visual sensor
information can causes problems as well. Thus, it is not the best solution to perform image-
based classification only in the timesteps where triggers are generated. The better solution
is to compromise between the system’s speed and its robustness based on the image-based
checking of the current environment. Moreover, the switching strategy analysis should be
mentioned.

The simplest switching strategy was used in previous parts—the system switch immediately
after receiving classification to the opposite class. During system tests, the experiments
with using of switching coefficient were performed. It usually does not change the system’s
accuracy, but in some cases, it can increase robustness because the system does not switch
quickly. Instead, smooth switching between two or multiple environments can be achieved

126

CHAPTER 6. EXPERIMENTS

0 100 200 300 400 500
record time [s]

0

10

20

30

40

50

60
du

ra
tio

n
[s

]

Figure 6.42: Example of time requirements results of baseline and proposed system using NN

approach on GPU.

using the following approach.

The switching coefficient k can be defined as a number in the interval (0, 1〉. Thus it is
supposed to slow down the switching process. For two classes, the switching strategy is
defined by equation

stj = st−1
j + k · class, class ∈ {−1, 1} (6.5)

where stj is the value of the state j in step t, and class is either value −1 or 1 based on the
classification to the first or the second class – such as the indoor and theoutdoor class. The
value of k increases the state value of the class to which the image is classified. Similarly,
the other class is decreased by this number. Of course, the saturation to values 0 and 1 have
to be used to prevent excessive distance increase between states. For more than two classes,
following equation can be used

stj =

{
st−1
j + k c = j

st−1
j − k c 6= j,

(6.6)

where c is the number of class to which data is classified, and j ∈ {1, N} is the class number.
It works same way as the two classes case in equation 6.5. Equation 6.6 can be rewritten into
following formula

stj = st−1
j + k · cj − k · (cj) = st−1

j + k · (2cj − 1) , (6.7)

where cj is the member of one-hot vector C where cj = 1 when the class j is selected as a
class of classified image data. Values stj are members of vector St of all states. Finally the
following equation is used to select active class C∗ – i.e., robots environment.

C∗ = arg max
j

stj . (6.8)

In other words the class with maximal state value is selected.

In the end, it worth mentioning that smaller values of k can cause problems with slow
switching between environments. Thus, it is a good idea to generated multiple triggers with

127

CHAPTER 6. EXPERIMENTS

predefined pauses between them. The number of triggers can be defined as follows

tr = floor

(
1

k

)
, (6.9)

where floor is a rounding to the nearest lower integer number.

A particular setting of the classifier, trigger generation, and switching strategy should be
based on the robot’s current mission, defined by the robot’s environments, equipped sensors,
and required behaviors. On the other hand, experiments in this chapter show that the pro-
posed system significantly reduces computational costs and time requirements of the baseline
system presented in paper [169].

128

Chapter 7

Conclusion

The conclusion of this thesis is divided into three main parts. The first one is focused on the
summary of the thesis. In the second one, an evaluation of the defined goals is discussed.
Finally, possible future work of this research is described in the last part of this chapter.

7.1 Thesis summary

The thesis is composed of 7 Chapters, but it can be merged into two main parts. The first
part, including Chapters 1, 2, and 3, is focused on the theoretical background of mobile
robotics focusing on the Simultaneous Localization and Mapping (SLAM) problem. This
part of the thesis is closed with a Chapter defining dissertation goals based on previous
chapters. This thesis’s primary goal is to confirm the hypothesis that using one-dimensional
non-visual sensors can reduce the computational cost of an image-based robot environment
classification system. It is explained in Chapter 3 that in the rest of the thesis, the addressed
problem will be investigated in the general mobile robot system instead of focusing on SLAM
only systems. It worth mentioning that the thesis is also focused on the particular transition
between indoor and outdoor environments because it is an important problem for the robot
to operate both indoor and outdoor.

The second part focused on the addressing of defined goals is composed of the rest of the
thesis. The first addressed problem is an analysis of change point detection, which can detect
the transition between two environments. Then, the problem of analysis of image-based
scene classification focusing on indoor vs. outdoor environment is described. The end of
the theoretical Chapter 4 is focused on existing research of mobile robot systems capable of
working in multiple environments.

The next chapter is focused on the description of the proposed system and assembled mobile
robot designed for dataset recording. The proposed system is presented and described from
two points of view. The first one has focused on the system’s design, and the second one
is focused on implementing such a system in the Robot Operating System. The proposed
system and its parts are evaluated in the experiment in Chapter 6. Experiments on transi-
tion detection capability by non-visual sensors, image-based environment classification, and

129

CHAPTER 7. CONCLUSION

proposed system evaluation are described.

7.2 Discussion on defined goals and experiment results

In this part, all defined goals are discussed to confirm the hypothesis from Chapter 3. The hy-
pothesis says that one-dimensional non-visual sensors can significantly reduce computational
cost (especially time requirements) of the environment classification system.

This thesis’s first defined goal was an investigation of using one-dimensional non-visual (en-
vironmental) sensors for detecting the transition between two environments to allow a mobile
robot to operate within multiple environments. This particular goal is analyzed and evalu-
ated in the second part of this thesis, and its solving is dependent on solving all other defined
goals.

The second goal is research on the suitability of individual one-dimensional non-visual sen-
sors to detect the transition between environments. This particular problem is addressed
theoretically in 4.1 and evaluated in practice in Chapter 6.1. TThe first mentioned Chapter
contains the review of change point detection algorithms. The latter one is focused on the
use of these algorithms for a set of selected non-visual sensors. It is a temperature sensor,
humidity sensor, air pressure sensor, and ceiling height (distance) sensor. The sensors are
divided into two groups based on the delay in reaction to the change of the variable they
measured.

Based on the findings in the first part of this experiment – which is also the solution of the
third goal defined in Chapter 3 –, only the temperature sensor and ceiling height sensor are
used in the second part. Two simple methods for transition detection, named DifRatio and
VarRatio, are presented there. The result of the experiment is that one-dimensional non-
visual methods are capable of detecting transition between defined environments. Online
change detection methods usually have similar results based on their parameters. Of course,
the parameters of detection methods should be adapted to particular cases. For example, in
indoor vs. outdoor transition detection, the sensitivity of detection methods for temperature
sensors should be higher in summer than in winter weather.

The base design for the proposed system in this thesis is an image-based environment detec-
tion system proposed in [169]. It is one of two papers that focuses on developing a multi-
environment mobile robot system in the last decades. The fourth goal is focused on the
analysis of robot environment classification methods. Thus, the theory containing both clas-
sic machine learning and neural network approaches is described in Chapter 4.2. Moreover,
datasets suitable for training indoor vs. outdoor classifiers are listed. Unfortunately, it
showed that there is no sufficiently large dataset focusing on this problem for training neu-
ral networks. Thus, general scene classification datasets that classify images into tens or
hundreds of classes have to be used.

The second experiment in Chapter 6.3 is focused on a comparison of both classic and neu-
ral network methods for image-based scene classification – indoor vs. outdoor case. To my
knowledge, it is the most extensive comparison of this problem that has ever been realized.
It is mentioned many articles tested their method on their own dataset. The problem is that
they usually compare their own results with results of other methods obtained on different

130

CHAPTER 7. CONCLUSION

datasets. Thus, some methods have worse results in this comparison than in their original
papers. Finally, modern Neural network architectures are evaluated here, including the Big
transfer[233] (BiT) training protocol proposed by Google. The best neural network archi-
tecture capable of running in realtime on a desktop PC is based on Resnet-50 architecture
with BiT training protocol. It achieved 94.97 accuracy on the test set. The best neural net-
work architecture, in general, is another version of BiT Resnet-50 architecture that achieved
94.17%.

The classic approach using Support vector machines as a classifier was worse than neural
networks in all cases. The best method was the Two-stage scheme 1 method using HSV color
description and Centrist texture description with length 256 bins and 33 classifiers trained
on individual parts of the image divided into 16 regions. It achieved 91.87% on the test set of
the used dataset. Unfortunately, it is not a sufficiently fast solution for real-time processing.
Thus, the best trade-off among classic approaches between speed and accuracy has the Gist
method in the Basic scheme and Centrist method in the Multi-scale scheme. Both achieved
accuracy over 85% and inference time under 75 ms per one image classification. To use
Centrist in Python, it was necessary to implement my own version. The implementation can
be found on Github in the repository centrist2. It is a fast implementation of this method
based on the similar implementation of Local Binary Patterns in repository LbpLibrary3 that
I made during work on my Bachelor thesis. Both implementations are focused on avoiding
unnecessary if-else clauses and using pointers in the C++ programming language proposed
in paper [202].

The important part of the thesis is the design and the implementation of the system to detect
and classify the robot’s environment. Its design is proposed in Chapter 5, together with a
description of its implementation. The implementation itself can be found on Github in two
versions. The first version in repository ecs tests4 contains scripts for evaluating system
design. The second one in repository ecs5 contains ROS implementation of the system. There
are several change detection methods implemented in the proposed system, and it is prepared
for use with the sklearn package in Python. Moreover, it worth mentioning the respository
env detection6 which is a part of the proposed system capable of creating multilayer maps
of the environment. The example of created can be seen in the experiment in Chapter 6.2.

The last goal of this thesis is the evaluation of the proposed system. The evaluation is
performed and described in Chapter 6.4. In this experiment, the proposed system is used to
classify records from the recorded dataset. The results show that using one-dimensional non-
visual sensors can significantly reduce computational cost and especially time requirements
of the proposed system compared to the baseline system. In the performed experiment, it
was more than 2000 times less time-consuming. It is achieved by performing image-based
classification only in the timesteps when change is detected in non-visual sensor data.

Moreover, it can improve the system’s accuracy in some cases because it eliminated the wrong
classification in situations when no transition occurred. On the other hand, it can be less
robust to rely only on non-visual information because there can occur situations when image-

1For information about schemes see Chapter 4.2
2https://github.com/neduchal/centrist
3https://github.com/neduchal/lbpLibrary
4https://github.com/neduchal/ecs tests
5https://github.com/neduchal/ecs
6https://github.com/neduchal/env detection

131

CHAPTER 7. CONCLUSION

based classifiers make wrong decisions and can be set in the system until another trigger is
generated by change point detection. Thus, an alternative approach of using compromise be-
tween triggers and image-based classification at a lower rate is proposed. Moreover, switching
strategies are discussed at the end of this experiment.

Based on the conclusions described in previous paragraphs, it can be pointed that the hy-
pothesis defined in Chapter 3 is confirmed. On the other side, there are still several tasks
that should be addressed in future work.

7.3 Future work

After implementing the system and performing experiments, few other tasks capable of im-
proving the proposed solution were discovered. The first one is using multiple one-dimensional
sensors for combined change point detection. It is based on the fact that some environmental
properties usually change together. For example, temperature and humidity are both usually
changes when the robot moves from inside to outside. Thus, it can be an interesting research
direction to analyze these mutual relationships.

Another research direction can be focused either on image-based classification accuracy or
its speed on embedded computers. The solution of the first-mentioned direction can be in
using semantics segmentation to do preprocessing of the image that is classified. In particular,
masking all objects that can be found in multiple classes can be performed. A similar solution
for another problem of Simultaneous Localization and Mapping was used in paper [145].

The later mentioned direction can be based on the optimization of the neural networks for
run faster on embedded computers. This approach can be based on Tensor RT optimizer
from NVIDIA company as in the case of paper [234].

The last future work is the extension and publication of a recorded dataset containing both
data needed for performing Simultaneous Localization and Mapping, image stream from the
equipped camera, and non-visual sensors data. This dataset can also improve image-based
classification of the environment because it allows training classifiers directly from the robot’s
point of view. In the time of writing this thesis, I met two researchers that show interest in
this dataset.

In my future work, I would like to address all four mentioned tasks because they can improve
the results presented in this thesis.

132

Bibliography

[1] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, “A solu-
tion to the simultaneous localization and map building (slam) problem,” Robotics and
Automation, IEEE Transactions on, vol. 17, no. 3, pp. 229–241, Jun 2001.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005. [Online].
Available: http://www.probabilistic-robotics.org/

[3] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam: A factored solution
to the simultaneous localization and mapping problem,” in Aaai/iaai, 2002, pp. 593–
598.

[4] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable
slam system with full 3d motion estimation,” in Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on. IEEE, 2011, pp. 155–160.

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in
Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International
Symposium on. IEEE, 2007, pp. 225–234.

[6] M. Szummer and R. W. Picard, “Indoor-outdoor image classification,” in Proceed-
ings 1998 IEEE International Workshop on Content-Based Access of Image and Video
Database. IEEE, 1998, pp. 42–51.

[7] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. IEEE,
2006, pp. 2169–2178.

[8] L. F. Menabrea and A. Lovelace, “Sketch of the analytical engine invented by charles
babbage,” 1842.

[9] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. D. Reid,
and J. J. Leonard, “Simultaneous localization and mapping: Present, future, and the
robust-perception age,” arXiv preprint arXiv:1606.05830, 2016.

[10] L. Xia, J. Cui, R. Shen, X. Xu, Y. Gao, and X. Li, “A survey of image semantics-
based visual simultaneous localization and mapping: Application-oriented solutions to
autonomous navigation of mobile robots,” International Journal of Advanced Robotic
Systems, vol. 17, no. 3, p. 1729881420919185, 2020.

[11] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,”
in Computer Vision–ECCV 2014. Springer, 2014, pp. 834–849.

I

http://www.probabilistic-robotics.org/

BIBLIOGRAPHY

[12] R. Mur-Artal, J. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monoc-
ular slam system,” Robotics, IEEE Transactions on, vol. 31, no. 5, pp. 1147–1163, 2015.

[13] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image
segmentation using deep learning: A survey,” 2020.

[14] K. Horstmann, M. Ziegler, and J. Rauthmann, “Putting lewin’s equation to the test:
Assessing the person-situation interaction with the b5ps,” Ph.D. dissertation, Master
thesis, Humboldt-Universität zu Berlin, Berlin, 2015.

[15] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping (slam): Part
1,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–108, 2006. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1638022

[16] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson, D. Hahnel,
D. Montemerlo, A. Morris, Z. Omohundro et al., “Autonomous exploration and map-
ping of abandoned mines,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
79–91, 2004.

[17] A. Concha, P. Drews-Jr, M. Campos, and J. Civera, “Real-time localization and dense
mapping in underwater environments from a monocular sequence,” in OCEANS 2015-
Genova. IEEE, 2015, pp. 1–5.

[18] C. Luo, L. Cheng, M. C. Chan, Y. Gu, J. Li, and M. Zhong, “Pallas: Self-bootstrapping
fine-grained passive indoor localization using wifi monitors,” IEEE Transactions on
Mobile Computing, 2016.

[19] M. Leingartner, J. Maurer, A. Ferrein, and G. Steinbauer, “Evaluation of sensors and
mapping approaches for disasters in tunnels,” Journal of Field Robotics, 2015.

[20] R. T. Azuma, “A survey of augmented reality,” Presence: Teleoperators and virtual
environments, vol. 6, no. 4, pp. 355–385, 1997.

[21] T. Schöps, J. Engel, and D. Cremers, “Semi-dense visual odometry for ar on a smart-
phone,” in Mixed and Augmented Reality (ISMAR), 2014 IEEE International Sympo-
sium on. IEEE, 2014, pp. 145–150.

[22] P. Lottes, M. Hoeferlin, S. Sander, M. Müter, P. Schulze, and L. C. Stachniss, “An ef-
fective classification system for separating sugar beets and weeds for precision farming
applications,” in Robotics and Automation (ICRA), 2016 IEEE International Confer-
ence on. IEEE, 2016, pp. 5157–5163.

[23] P. Urcola, M.-T. Lorente, J. L. Villarroel, and L. Montano, “Robust navigation and
seamless localization for carlike robots in indoor-outdoor environments,” Journal of
Field Robotics, 2016.

[24] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based navigation for au-
tonomous micro helicopters in gps-denied environments,” Journal of Field Robotics,
vol. 28, no. 6, pp. 854–874, 2011.

[25] P. Mountney, D. Stoyanov, A. Davison, and G.-Z. Yang, “Simultaneous stereoscope lo-
calization and soft-tissue mapping for minimal invasive surgery,” in International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. Springer,
2006, pp. 347–354.

II

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1638022

BIBLIOGRAPHY

[26] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial un-
certainty,” The international journal of Robotics Research, vol. 5, no. 4, pp. 56–68,
1986.

[27] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion:
Dense 3d semantic mapping with convolutional neural networks,” arXiv preprint
arXiv:1609.05130, 2016.

[28] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping (slam): Part
2,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[29] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Computer vision and image understanding, vol. 110, no. 3, pp. 346–359, 2008.

[30] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient alternative to
sift or surf,” in Computer Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2564–2571.

[31] Z. Kurt-Yavuz and S. Yavuz, “A comparison of ekf, ukf, fastslam2. 0, and ukf-based
fastslam algorithms,” in Intelligent Engineering Systems (INES), 2012 IEEE 16th In-
ternational Conference on. IEEE, 2012, pp. 37–43.

[32] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam,” Intelligent Transportation Systems Magazine, IEEE, vol. 2, no. 4, pp. 31–43,
2010.

[33] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision.
Cengage Learning, 2014.

[34] R. Mur-Artal and J. D. Tardos, “Orb-slam2: an open-source slam system for monocular,
stereo and rgb-d cameras,” arXiv preprint arXiv:1610.06475, 2016.

[35] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[36] C. Harris and M. Stephens, “A combined corner and edge detector.” in Alvey vision
conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–5244.

[37] J. Neira and J. D. Tardós, “Data association in stochastic mapping using the joint
compatibility test,” IEEE Transactions on robotics and automation, vol. 17, no. 6, pp.
890–897, 2001.

[38] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[39] J. Civera, O. G. Grasa, A. J. Davison, and J. Montiel, “1-point ransac for extended
kalman filtering: Application to real-time structure from motion and visual odometry,”
Journal of Field Robotics, vol. 27, no. 5, pp. 609–631, 2010.

[40] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in 3-D Digital
Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE,
2001, pp. 145–152.

III

BIBLIOGRAPHY

[41] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O. von Stryk,
“Hector open source modules for autonomous mapping and navigation with rescue
robots,” in Robot Soccer World Cup. Springer, 2013, pp. 624–631.

[42] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation,”
Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[43] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A. Y. Ng, “Simultaneous
mapping and localization with sparse extended information filters: Theory and initial
results,” in Algorithmic Foundations of Robotics V. Springer, 2004, pp. 363–380.

[44] Y. Liu and S. Thrun, “Results for outdoor-slam using sparse extended information
filters,” in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International
Conference on, vol. 1. IEEE, 2003, pp. 1227–1233.

[45] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Proceedings
of the second international conference on genetic algorithms, 1987, pp. 14–21.

[46] R. Douc and O. Cappé, “Comparison of resampling schemes for particle filtering,” in
Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th
International Symposium on. IEEE, 2005, pp. 64–69.

[47] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with unknown
data association using fastslam,” in Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, vol. 2. IEEE, 2003, pp. 1985–1991.

[48] ——, “Fastslam 2.0: An improved paparti filtering algorithm for simultaneous local-
ization and mapping that provably converges,” FastSLAM: A scalable method for the
simultaneous localization and mapping problem in robotics, pp. 63–90, 2007.

[49] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Interna-
tional Conference on. IEEE, 2005, pp. 2432–2437.

[50] ——, “Improved techniques for grid mapping with rao-blackwellized particle filters,”
Robotics, IEEE Transactions on, vol. 23, no. 1, pp. 34–46, 2007.

[51] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to large-
scale mapping of urban structures,” The International Journal of Robotics Research,
vol. 25, no. 5-6, pp. 403–429, 2006.

[52] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,”
in Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 1271–1278.

[53] C. Posch, D. Matolin, and R. Wohlgenannt, “An asynchronous time-based image sen-
sor,” in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 2130–2133.

[54] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2, 2009, p. 5.

IV

BIBLIOGRAPHY

[55] W. Garage, “Robot operating system (ros),” 2012.

[56] Itseez, “Open source computer vision library,” https://github.com/itseez/opencv, 2015.

[57] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey, S. Paepcke,
J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside the virtual robotics challenge:
Simulating real-time robotic disaster response,” Automation Science and Engineering,
IEEE Transactions on, vol. 12, no. 2, pp. 494–506, April 2015.

[58] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Sendai, Japan, Sep 2004, pp. 2149–2154.

[59] M. F. E. Rohmer, S. P. N. Singh, “V-rep: a versatile and scalable robot simulation
framework,” in Proc. of The International Conference on Intelligent Robots and Systems
(IROS), 2013.

[60] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills, and
S. Chernova, “Robot web tools: Efficient messaging for cloud robotics,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 4530–4537.

[61] B. Steux and O. El Hamzaoui, “tinyslam: A slam algorithm in less than 200 lines c-
language program,” in Control Automation Robotics & Vision (ICARCV), 2010 11th
International Conference on. IEEE, 2010, pp. 1975–1979.

[62] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time sin-
gle camera slam,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 29, no. 6, pp. 1052–1067, 2007.

[63] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and mapping in the
space of appearance,” The International Journal of Robotics Research, vol. 27, no. 6,
pp. 647–665, 2008.

[64] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense tracking and map-
ping in real-time,” in Computer Vision (ICCV), 2011 IEEE International Conference
on. IEEE, 2011, pp. 2320–2327.

[65] A. Concha and J. Civera, “Dpptam: Dense piecewise planar tracking and mapping from
a monocular sequence,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. IEEE, 2015, pp. 5686–5693.

[66] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface
mapping and tracking,” in Mixed and augmented reality (ISMAR), 2011 10th IEEE
international symposium on. IEEE, 2011, pp. 127–136.

[67] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison, “Elas-
ticfusion: Dense slam without a pose graph,” in Robotics: science and systems. Vol.
11, 2015.

[68] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Reconstruction and track-
ing of non-rigid scenes in real-time,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 343–352.

V

https://github.com/itseez/opencv

BIBLIOGRAPHY

[69] J. Machado Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2d slam techniques
available in robot operating system,” in Safety, Security, and Rescue Robotics (SSRR),
2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6.

[70] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. Kelly, A. J. Davison, M. Luján,
M. F. O’Boyle, G. Riley et al., “Introducing slambench, a performance and accuracy
benchmarking methodology for slam,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5783–5790.

[71] B. Bodin, H. Wagstaff, S. Saecdi, L. Nardi, E. Vespa, J. Mawer, A. Nisbet, M. Luján,
S. Furber, A. J. Davison et al., “Slambench2: Multi-objective head-to-head bench-
marking for visual slam,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–8.

[72] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. O’Boyle, A. J. Davison,
P. H. Kelly, G. Riley, B. Lennox et al., “Slambench 3.0: Systematic automated repro-
ducible evaluation of slam systems for robot vision challenges and scene understanding,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 6351–6358.

[73] P. Neduchal and M. Fĺıdr, “Development of a laboratory framework for testing simul-
taneous localization and mapping approaches,” IFAC-PapersOnLine, vol. 49, no. 25,
pp. 493–498, 2016.

[74] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit stata center dataset,”
The International Journal of Robotics Research, vol. 32, no. 14, pp. 1695–1699, 2013.

[75] C.-C. Wang, D. Duggins, J. Gowdy, J. Kozar, R. MacLachlan, C. Mertz, A. Suppe, and
C. Thorpe, “Navlab slammot datasets,” www.cs.cmu.edu/˜bobwang/datasets.html,
May 2004, carnegie Mellon University.

[76] A. Howard and N. Roy, “The robotics data set repository (radish),” 2003. [Online].
Available: http://radish.sourceforge.net/

[77] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. C. 7, “A benchmark for
the evaluation of rgb-d slam systems,” in Proc. of the International Conference on
Intelligent Robot Systems (IROS), Oct. 2012.

[78] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated benchmark for
monocular visual odometry,” in arXiv:1607.02555, July 2016.

[79] R. Simpson, J. Cullip, and J. Revell, “The cheddar gorge data set,” Technical report,
Tech. Rep., 2011.

[80] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in Conference on Computer Vision and PatternRecognition
(CVPR), 2012.

[81] F. Moosmann and C. Stiller, “Velodyne slam,” in Intelligent Vehicles Symposium (IV),
2011 IEEE. IEEE, 2011, pp. 393–398.

[82] J.-L. Blanco-Claraco, F.-Á. Moreno-Dueñas, and J. González-Jiménez, “The málaga ur-
ban dataset: High-rate stereo and lidar in a realistic urban scenario,” The International
Journal of Robotics Research, vol. 33, no. 2, pp. 207–214, 2014.

VI

http://radish.sourceforge.net/

BIBLIOGRAPHY

[83] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, “The event-
camera dataset and simulator: Event-based data for pose estimation, visual odometry,
and slam,” arXiv preprint arXiv:1610.08336, 2016.

[84] W. K. Hastings, “Monte carlo sampling methods using markov chains and their appli-
cations,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[85] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.org.

[86] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge
university press, 2003.

[87] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent,
“Efficient sparse pose adjustment for 2d mapping,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 22–29.

[88] B. Sileshi, J. Oliver, R. Toledo, J. Gonçalves, and P. Costa, “On the behaviour of low
cost laser scanners in hw/sw particle filter slam applications,” Robotics and Autonomous
Systems, vol. 80, pp. 11–23, 2016.

[89] R. Goeddel, C. Kershaw, J. Serafin, and E. Olson, “Flat2d: Fast localization from
approximate transformation into 2d,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 1932–1939.

[90] M. Kreković, I. Dokmanić, and M. Vetterli, “Echoslam: Simultaneous localization and
mapping with acoustic echoes,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 11–15.

[91] A. J. Davison, “Real-time simultaneous localisation and mapping with a single camera,”
in ICCV ’03 Proceedings of the Ninth IEEE International Conference on Computer
Vision - Volume 2, 2003.

[92] S. Holmes, G. Klein, and D. W. Murray, “A square root unscented kalman filter for
visual monoslam,” in Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on. IEEE, 2008, pp. 3710–3716.

[93] J. Sola, A. Monin, M. Devy, and T. Lemaire, “Undelayed initialization in bearing
only slam,” in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on. IEEE, 2005, pp. 2499–2504.

[94] J. Civera, A. J. Davison, and J. M. Montiel, “Unified inverse depth parametrization for
monocular slam,” in In Proceedings of Robotics: Science and Systems. Citeseer, 2006.

[95] ——, “Inverse depth parametrization for monocular slam,” Robotics, IEEE Transac-
tions on, vol. 24, no. 5, pp. 932–945, 2008.

[96] D. Gutiérrez-Gómez, W. Mayol-Cuevas, and J. Guerrero, “Inverse depth for accurate
photometric and geometric error minimisation in rgb-d dense visual odometry,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 83–89.

[97] R. O. Castle, G. Klein, and D. W. Murray, “Combining monoslam with object recogni-
tion for scene augmentation using a wearable camera,” Image and Vision Computing,
vol. 28, no. 11, pp. 1548–1556, 2010.

VII

http://ceres-solver.org

BIBLIOGRAPHY

[98] J. e. a. Shi, “Good features to track,” in Computer Vision and Pattern Recognition,
1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on. IEEE,
1994, pp. 593–600.

[99] M. A. Atashgah and S. Malaek, “An integrated virtual environment for feasibility
studies and implementation of aerial monoslam,” Virtual Reality, vol. 16, no. 3, pp.
215–232, 2012.

[100] P. Tanskanen, T. Naegeli, M. Pollefeys, and O. Hilliges, “Semi-direct ekf-based
monocular visual-inertial odometry,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, 2015, pp. 6073–6078.

[101] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from
maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10, pp.
761–767, 2004.

[102] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 756–770, 2004.

[103] F. Devernay and O. Faugeras, “Straight lines have to be straight,” Machine vision and
applications, vol. 13, no. 1, pp. 14–24, 2001.

[104] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in Mixed
and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on.
IEEE, 2009, pp. 83–86.

[105] M. J. Cummins and P. M. Newman, “Fab-map: Appearance-based place recognition
and mapping using a learned visual vocabulary model,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10), 2010, pp. 3–10.

[106] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 881–892,
2002.

[107] F. R. Bach, M. I. Jordan et al., “Thin junction trees,” in NIPS, vol. 14, 2001, pp.
569–576.

[108] C. Chow and C. Liu, “Approximating discrete probability distributions with depen-
dence trees,” IEEE transactions on Information Theory, vol. 14, no. 3, pp. 462–467,
1968.

[109] M. Cummins and P. Newman, “Appearance-only slam at large scale with fab-map 2.0,”
The International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123, 2011.

[110] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
Computer vision–ECCV 2006, pp. 430–443, 2006.

[111] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent
elementary features,” in European conference on computer vision. Springer, 2010, pp.
778–792.

[112] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place recognition
in image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197,
October 2012.

VIII

BIBLIOGRAPHY

[113] R. Elvira, J. D. Tardós, and J. Montiel, “Orbslam-atlas: a robust and accurate multi-
map system,” arXiv preprint arXiv:1908.11585, 2019.

[114] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3:
An accurate open-source library for visual, visual-inertial and multi-map slam,” arXiv
preprint arXiv:2007.11898, 2020.

[115] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “Svo: Semidi-
rect visual odometry for monocular and multicamera systems,” IEEE Transactions on
Robotics, 2016.

[116] G. Dubbelman and B. Browning, “Closed-form online pose-chain slam,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
5190–5197.

[117] ——, “Cop-slam: closed-form online pose-chain optimization for visual slam,” IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1194–1213, 2015.

[118] H. Alismail, M. Kaess, B. Browning, and S. Lucey, “Direct visual odometry in low light
using binary descriptors,” IEEE Robotics and Automation Letters, 2016.

[119] S. Bu, Y. Zhao, G. Wan, and Z. Liu, “Map2dfusion: Real-time incremental uav image
mosaicing based on monocular slam,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 4564–4571.

[120] M. J. Milford, G. F. Wyeth, and D. Prasser, “Ratslam: a hippocampal model for si-
multaneous localization and mapping,” in Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, vol. 1. IEEE, 2004, pp. 403–408.

[121] M. Milford, A. Jacobson, Z. Chen, and G. Wyeth, “Ratslam: Using models of rodent
hippocampus for robot navigation and beyond,” in Robotics Research. Springer, 2016,
pp. 467–485.

[122] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a monocular
camera,” in Proceedings of the IEEE international conference on computer vision, 2013,
pp. 1449–1456.

[123] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g 2 o: A general
framework for graph optimization,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 3607–3613.

[124] J. Engel, J. Stuckler, and D. Cremers, “Large-scale direct slam with stereo cameras,”
in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 1935–1942.

[125] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for omnidirectional
cameras,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 141–148.

[126] L. Heng, G. H. Lee, and M. Pollefeys, “Self-calibration and visual slam with a multi-
camera system on a micro aerial vehicle,” Autonomous Robots, vol. 39, no. 3, pp.
259–277, 2015.

IX

BIBLIOGRAPHY

[127] P. Ondruska, P. Kohli, and S. Izadi, “Mobilefusion: Real-time volumetric surface recon-
struction and dense tracking on mobile phones,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 21, no. 11, pp. 1251–1258, 2015.

[128] A. Concha and J. Civera, “Using superpixels in monocular slam,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp. 365–
372.

[129] R. Mur-Artal and J. D. Tardós, “Probabilistic semi-dense mapping from highly accurate
feature-based monocular slam,” Proceedings of Robotics: Science and Systems, Rome,
Italy, vol. 1, 2015.

[130] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with a single moving
camera,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. IEEE, 2010, pp. 1498–1505.

[131] A. Concha, G. Loianno, V. Kumar, and J. Civera, “Visual-inertial direct slam,” in 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
1331–1338.

[132] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based
visual–inertial odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[133] J. G. Morrison, D. Gavez-Lopez, and G. Sibley, “Scalable multirobot localization and
mapping with relative maps: Introducing moarslam,” IEEE Control Systems, vol. 36,
no. 2, pp. 75–85, 2016.

[134] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology. ACM, 2011, pp. 559–568.

[135] S. O. R. Fedkiw and S. Osher, “Level set methods and dynamic implicit surfaces,”
Surfaces, vol. 44, p. 77, 2002.

[136] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense planar slam,”
in Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 157–164.

[137] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “Cpa-slam: Consistent plane-model align-
ment for direct rgb-d slam,” in Robotics and Automation (ICRA), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 1285–1291.

[138] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal processing mag-
azine, vol. 13, no. 6, pp. 47–60, 1996.

[139] E. Ataer-Cansizoglu, Y. Taguchi, and S. Ramalingam, “Pinpoint slam: A hybrid of
2d and 3d simultaneous localization and mapping for rgb-d sensors,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp. 1300–
1307.

[140] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, and A. Davison, “Slam++:
Simultaneous localisation and mapping at the level of objects,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1352–1359.

X

BIBLIOGRAPHY

[141] D. Gálvez-López, M. Salas, J. D. Tardós, and J. Montiel, “Real-time monocular object
slam,” Robotics and Autonomous Systems, vol. 75, pp. 435–449, 2016.

[142] T. Dharmasiri, V. Lui, and T. Drummond, “Mo-slam: Multi object slam with run-time
object discovery through duplicates,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 1214–1221.

[143] B. Mu, S.-Y. Liu, L. Paull, J. Leonard, and J. P. How, “Slam with objects using a
nonparametric pose graph,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, pp. 4602–4609.

[144] Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li, and J. Yang, “Joint task-recursive learning for se-
mantic segmentation and depth estimation,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 235–251.

[145] M. Kaneko, K. Iwami, T. Ogawa, T. Yamasaki, and K. Aizawa, “Mask-slam: Robust
feature-based monocular slam by masking using semantic segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018,
pp. 258–266.

[146] S. Wang, X. Lv, J. Li, and D. Ye, “Coarse semantic-based motion removal for robust
mapping in dynamic environments,” IEEE Access, vol. 8, pp. 74 048–74 064, 2020.

[147] S. Zhi, M. Bloesch, S. Leutenegger, and A. J. Davison, “Scenecode: Monocular dense
semantic reconstruction using learned encoded scene representations,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 776–
11 785.

[148] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: Dense 3d
semantic mapping with convolutional neural networks,” in 2017 IEEE International
Conference on Robotics and automation (ICRA). IEEE, 2017, pp. 4628–4635.

[149] B. Yang, Z. Lai, X. Lu, S. Lin, H. Wen, A. Markham, and N. Trigoni, “Learning
3d scene semantics and structure from a single depth image,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp.
309–312.

[150] L. Riazuelo, L. Montano, and J. Montiel, “Semantic visual slam in populated envi-
ronments,” in 2017 European conference on mobile robots (ECMR). IEEE, 2017, pp.
1–7.

[151] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger, “Fusion++:
Volumetric object-level slam,” in 2018 international conference on 3D vision (3DV).
IEEE, 2018, pp. 32–41.

[152] L. Nicholson, M. Milford, and N. Sünderhauf, “Quadricslam: Constrained dual quadrics
from object detections as landmarks in semantic slam,” IEEE Robotics and Automation
Letters (RA-L), 2018.

[153] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison,
“Codeslam—learning a compact, optimisable representation for dense visual slam,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 2560–2568.

XI

BIBLIOGRAPHY

[154] A. J. Davison, “Futuremapping: The computational structure of spatial ai systems,”
arXiv preprint arXiv:1803.11288, 2018.

[155] A. J. Davison and J. Ortiz, “Futuremapping 2: Gaussian belief propagation for spatial
ai,” arXiv preprint arXiv:1910.14139, 2019.

[156] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous
localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp.
55–81, 2015.

[157] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous localization
and mapping: A review,” Journal of Field Robotics, vol. 33, no. 1, pp. 3–46, 2016.

[158] A. Petland and B. Horowitz, “Recovery of nonrigid motion and structure,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 13, no. 7, pp. 730–742, 1991.

[159] L. Torresani, A. Hertzmann, and C. Bregler, “Nonrigid structure-from-motion: Es-
timating shape and motion with hierarchical priors,” IEEE transactions on pattern
analysis and machine intelligence, vol. 30, no. 5, pp. 878–892, 2008.

[160] S. Pillai and J. Leonard, “Monocular slam supported object recognition,” arXiv preprint
arXiv:1506.01732, 2015.

[161] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up slam: Semantic monocular plane
slam for low-texture environments,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 1222–1229.

[162] M. Liu, S. Huang, G. Dissanayake, and H. Wang, “A convex optimization based
approach for pose slam problems,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 1898–1903.

[163] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert, “Lagrangian
duality in 3d slam: Verification techniques and optimal solutions,” in Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015, pp.
125–132.

[164] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38,
no. 1, pp. 49–95, 1996.

[165] C. Leung, S. Huang, and G. Dissanayake, “Active slam using model predictive control
and attractor based exploration,” in Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on. IEEE, 2006, pp. 5026–5031.

[166] C. Leung, S. Huang, N. Kwok, and G. Dissanayake, “Planning under uncertainty using
model predictive control for information gathering,” Robotics and Autonomous Systems,
vol. 54, no. 11, pp. 898–910, 2006.

[167] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artificial intelligence, vol. 101, no. 1, pp. 99–134, 1998.

[168] H. Rebecq, T. Horstschafer, G. Gallego, and D. Scaramuzza, “Evo: A geometric ap-
proach to event-based 6-dof parallel tracking and mapping in real-time,” IEEE Robotics
and Automation Letters, 2016.

XII

BIBLIOGRAPHY

[169] D. C. Asmar, J. S. Zelek, and S. M. Abdallah, “Smartslam: localization and mapping
across multi-environments,” in 2004 IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No. 04CH37583), vol. 6. IEEE, 2004, pp. 5240–5245.

[170] X. Dai and J. Du, “Hierarchical simultaneous localization and mapping based on dis-
crete event systems,” in 2009 International Conference on Measuring Technology and
Mechatronics Automation, vol. 2. IEEE, 2009, pp. 234–237.

[171] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point
detection,” Knowledge and information systems, vol. 51, no. 2, pp. 339–367, 2017.

[172] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory and application.
prentice Hall Englewood Cliffs, 1993, vol. 104.

[173] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-
series data by relative density-ratio estimation,” Neural Networks, vol. 43, pp. 72–83,
2013.

[174] Y. Kawahara and M. Sugiyama, “Sequential change-point detection based on direct
density-ratio estimation,” Statistical Analysis and Data Mining: The ASA Data Science
Journal, vol. 5, no. 2, pp. 114–127, 2012.

[175] L. I. Kuncheva and W. J. Faithfull, “Pca feature extraction for change detection in
multidimensional unlabeled data,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 1, pp. 69–80, 2013.

[176] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to direct impor-
tance estimation,” The Journal of Machine Learning Research, vol. 10, pp. 1391–1445,
2009.

[177] M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama, “Relative density-
ratio estimation for robust distribution comparison,” Neural computation, vol. 25, no. 5,
pp. 1324–1370, 2013.

[178] Y. Kawahara, T. Yairi, and K. Machida, “Change-point detection in time-series data
based on subspace identification,” in Seventh IEEE International Conference on Data
Mining (ICDM 2007). IEEE, 2007, pp. 559–564.

[179] N. Itoh and J. Kurths, “Change-point detection of climate time series by nonparametric
method,” in Proceedings of the world congress on engineering and computer science,
vol. 1. Citeseer, 2010, pp. 445–448.

[180] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detection,” arXiv
preprint arXiv:0710.3742, 2007.

[181] Y. Saatçi, R. D. Turner, and C. E. Rasmussen, “Gaussian process change point models,”
in Proceedings of the 27th International Conference on Machine Learning (ICML-10).
Citeseer, 2010, pp. 927–934.

[182] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappé, “A regularized kernel-based
approach to unsupervised audio segmentation,” in 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2009, pp. 1665–1668.

[183] H. Chen, N. Zhang et al., “Graph-based change-point detection,” The Annals of Statis-
tics, vol. 43, no. 1, pp. 139–176, 2015.

XIII

BIBLIOGRAPHY

[184] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time
series,” in Proceedings 2001 IEEE international conference on data mining. IEEE,
2001, pp. 289–296.

[185] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans, “Time series epenthesis:
Clustering time series streams requires ignoring some data,” in 2011 IEEE 11th Inter-
national Conference on Data Mining. IEEE, 2011, pp. 547–556.

[186] J. Zakaria, A. Mueen, and E. Keogh, “Clustering time series using unsupervised-
shapelets,” in 2012 IEEE 12th International Conference on Data Mining. IEEE,
2012, pp. 785–794.

[187] D.-H. Tran, “Automated change detection and reactive clustering in multivariate
streaming data,” in 2019 IEEE-RIVF International Conference on Computing and
Communication Technologies (RIVF). IEEE, 2019, pp. 1–6.

[188] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[189] J. Mao and A. K. Jain, “Texture classification and segmentation using multiresolution
simultaneous autoregressive models,” Pattern recognition, vol. 25, no. 2, pp. 173–188,
1992.

[190] N. Serrano, A. Savakis, and A. Luo, “A computationally efficient approach to in-
door/outdoor scene classification,” in Object recognition supported by user interaction
for service robots, vol. 4. IEEE, 2002, pp. 146–149.

[191] I. Daubechies, Ten lectures on wavelets. Siam, 1992, vol. 61.

[192] N. Serrano, A. E. Savakis, and J. Luo, “Improved scene classification using efficient low-
level features and semantic cues,” Pattern Recognition, vol. 37, no. 9, pp. 1773–1784,
2004.

[193] A. Payne and S. Singh, “Indoor vs. outdoor scene classification in digital photographs,”
Pattern Recognition, vol. 38, no. 10, pp. 1533–1545, 2005.

[194] ——, “A benchmark for indoor/outdoor scene classification,” in International Confer-
ence on Pattern Recognition and Image Analysis. Springer, 2005, pp. 711–718.

[195] Z. Li and L. Itti, “Saliency and gist features for target detection in satellite images,”
IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2017–2029, 2010.

[196] A. Oliva and A. Torralba, “Building the gist of a scene: The role of global image
features in recognition,” Progress in brain research, vol. 155, pp. 23–36, 2006.

[197] W. Kim, J. Park, and C. Kim, “A novel method for efficient indoor–outdoor image
classification,” Journal of Signal Processing Systems, vol. 61, no. 3, pp. 251–258, 2010.

[198] S. Battiato, G. M. Farinella, G. Gallo, and D. Rav̀ı, “Exploiting textons distributions
on spatial hierarchy for scene classification,” EURASIP Journal on Image and Video
Processing, vol. 2010, no. 1, p. 919367, 2010.

[199] L. Zhou, Z. Zhou, and D. Hu, “Scene classification using a multi-resolution bag-of-
features model,” Pattern Recognition, vol. 46, no. 1, pp. 424–433, 2013.

XIV

BIBLIOGRAPHY

[200] J. Wu and J. M. Rehg, “Centrist: A visual descriptor for scene categorization,” IEEE
transactions on pattern analysis and machine intelligence, vol. 33, no. 8, pp. 1489–1501,
2010.

[201] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation in-
variant texture classification with local binary patterns,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[202] T. Mäenpää, M. Turtinen, and M. Pietikäinen, “Real-time surface inspection by tex-
ture,” Real-Time Imaging, vol. 9, no. 5, pp. 289–296, 2003.

[203] L. Zhou, Z. Zhou, and D. Hu, “Scene classification using multi-resolution low-level
feature combination,” Neurocomputing, vol. 122, pp. 284–297, 2013.

[204] C. Chen, Y. Ren, and C.-C. J. Kuo, “Large-scale indoor/outdoor image classification
via expert decision fusion (edf),” in Asian Conference on Computer Vision. Springer,
2014, pp. 426–442.

[205] S. S. Cvetkovic, S. V. Nikolić, and S. Ilic, “Effective combining of color and texture
descriptors for indoor-outdoor image classification,” Facta Universitatis, Series: Elec-
tronics and Energetics, vol. 27, no. 3, pp. 399–410, 2014.

[206] R. Raja, S. M. M. Roomi, and D. Dharmalakshmi, “Robust indoor/outdoor scene classi-
fication,” in 2015 Eighth International Conference on Advances in Pattern Recognition
(ICAPR). IEEE, 2015, pp. 1–5.

[207] M. Shahriari and R. Bergevin, “A two-stage outdoor-indoor scene classification frame-
work: experimental study for the outdoor stage,” in 2016 International Conference on
Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2016, pp.
1–8.

[208] Z. Tong, D. Shi, B. Yan, and J. Wei, “A review of indoor-outdoor scene classification,” in
2017 2nd International Conference on Control, Automation and Artificial Intelligence
(CAAI 2017). Atlantis Press, 2017.

[209] A. Ganesan and A. Balasubramanian, “Indoor versus outdoor scene recognition for
navigation of a micro aerial vehicle using spatial color gist wavelet descriptors,” Visual
Computing for Industry, Biomedicine, and Art, vol. 2, no. 1, p. 20, 2019.

[210] L. Tao, Y.-H. Kim, and Y.-T. Kim, “An efficient neural network based indoor-outdoor
scene classification algorithm,” in 2010 Digest of Technical Papers International Con-
ference on Consumer Electronics (ICCE). IEEE, 2010, pp. 317–318.

[211] W. Tahir, A. Majeed, and T. Rehman, “Indoor/outdoor image classification using gist
image features and neural network classifiers,” in 2015 12th International Conference
on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET).
IEEE, 2015, pp. 1–5.

[212] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features for
scene recognition using places database,” in Advances in neural information processing
systems, 2014, pp. 487–495.

[213] L. Wang, S. Guo, W. Huang, Y. Xiong, and Y. Qiao, “Knowledge guided disambigua-
tion for large-scale scene classification with multi-resolution cnns,” IEEE Transactions
on Image Processing, vol. 26, no. 4, pp. 2055–2068, 2017.

XV

BIBLIOGRAPHY

[214] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million
image database for scene recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

[215] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 413–420.

[216] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation
of the spatial envelope,” International journal of computer vision, vol. 42, no. 3, pp.
145–175, 2001.

[217] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural scene cat-
egories,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 2. IEEE, 2005, pp. 524–531.

[218] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-scale
scene recognition from abbey to zoo,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE, 2010, pp. 3485–3492.

[219] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva, “Sun database: Exploring
a large collection of scene categories,” International Journal of Computer Vision, vol.
119, no. 1, pp. 3–22, 2016.

[220] J. Collier and A. Ramirez-Serrano, “Environment classification for indoor/outdoor
robotic mapping,” in 2009 Canadian Conference on Computer and Robot Vision.
IEEE, 2009, pp. 276–283.

[221] P. Neduchal, L. Bureš, and M. Železný, “Environment detection system for localization
and mapping purposes,” IFAC-PapersOnLine, vol. 52, no. 27, pp. 323–328, 2019.

[222] P. Neduchal, I. Gruber, and M. Železnỳ, “Indoor vs. outdoor scene classification
for mobile robots,” in International Conference on Interactive Collaborative Robotics.
Springer, 2020, pp. 243–252.

[223] P. Fankhauser and M. Hutter, “A Universal Grid Map Library: Implementation and
Use Case for Rough Terrain Navigation,” in Robot Operating System (ROS) – The
Complete Reference (Volume 1), A. Koubaa, Ed. Springer, 2016, ch. 5.

[224] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning,” IEEE transactions on
medical imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

[225] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[226] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[227] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

XVI

BIBLIOGRAPHY

[228] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[229] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transforma-
tions for deep neural networks,” CoRR, vol. abs/1611.05431, 2016.

[230] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” in Thirty-first AAAI conference
on artificial intelligence, 2017.

[231] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.
1251–1258.

[232] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[233] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby,
“Big transfer (bit): General visual representation learning,” 2019.

[234] H. Liu, R. A. R. Soto, F. Xiao, and Y. J. Lee, “Yolactedge: Real-time instance seg-
mentation on the edge (jetson agx xavier: 30 fps, rtx 2080 ti: 170 fps),” arXiv preprint
arXiv:2012.12259, 2020.

XVII

BIBLIOGRAPHY

Authored and Co-authored Works

- Neduchal, P., Gruber I., and Železný, M. (2020). Indoor vs. Outdoor Scene Classi-
fication for Mobile Robots. In Proceedings of International Conference on Interactive
Collaborative Robotics 2020. – Document Type: Conference Paper.

- Neduchal, P., and Bureš, L., and Müller, L. (2020). Automatic Information Extraction
from Scanned Documents. In Proceedings of International Conference on Speech and
Computer 2020. – Document Type: Conference Paper.

- Gruber I., Ircing, P., Neduchal, P., Hrúz, M., Hlaváč, M., Zaj́ıc, Z., Švec, J., and Buĺın,
M. (2020). An Automated Pipeline for Robust Image Processing and Optical Character
Recognition of Historical Documents. In Proceedings of International Conference on
Speech and Computer 2020. – Document Type: Conference Paper.

- Neduchal, P., and Železný, M. (2020). Environment Classification Approach For Mobile
Robots. In Proceedings of 15th International Conference on Electromechanics and
Robotics “Zavalishin’s Readings”. Springer, Singapore. – Document Type: Conference
Paper.

- Neduchal, P., and Železný, M. (2020). Frontier Detection in Consecutive Grid Maps
with Set Reduction. In Proceedings of 14th International Conference on Electrome-
chanics and Robotics “Zavalishin’s Readings” (pp. 441-453). Springer, Singapore. –
Document Type: Conference Paper

- Neduchal, P., Bureš, L., and Železný, M. (2019). Environment detection system for
localization and mapping purposes. IFAC-PapersOnLine, 52(27), 323-328. – Document
Type: Conference Paper

- Bureš, L., Gruber, I., Neduchal, P., Hlaváč, M., and Hrúz, M. (2019). Semantic text
segmentation from synthetic images of full-text documents. SPIIRAS Proceedings,
18(6), 1381-1406. – Document Type: Journal Article (Jsc)

- Neduchal, P. (2019). Koncept systému pro detekci změny prostřed́ı a jeho klasifikaci,
SVK FAV 2019 – Document Type: Conference Paper

- Neduchal, P., Fĺıdr, M., and Železný, M. (2018, September). Fast Frontier detection
approach in consecutive grid maps. In International Conference on Interactive Col-
laborative Robotics (pp. 192-201). Springer, Cham. – Document Type: Conference
Paper

- Bureš, L., Neduchal, P., Hlaváč, M., and Hrúz, M. (2018, September). Generation of
synthetic images of full-text documents. In International Conference on Speech and
Computer (pp. 68-75). Springer, Cham. – Document Type: Conference Paper

- Zaj́ıc, Z., Skorkovská, L., Neduchal, P., Ircing, P., Psutka, J., Hrúz, M., ... and Müller,
L. (2018, May). Towards Processing of the Oral History Interviews and Related Printed
Documents. In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018). – Document Type: Conference Paper

- Neduchal, P. (2018). Detekce ćıl̊u z grid mapy v úloze explorace prostřed́ı, SVK FAV
2018 – Document Type: Conference Paper

XVIII

BIBLIOGRAPHY

- Neduchal, P., Berka, F., and Železný, M. (2017, September). Stationary device for
drone detection in urban areas. In International Conference on Interactive Collaborative
Robotics (pp. 162-169). Springer, Cham. – Document Type: Conference Paper

- Skorkovská, L., Neduchal, P., Zaj́ıc, Z., Ircing, P., Müller, L., and Bureš, L. (2017). First
insight into the processing of the historical documents from the period of totalitarian
regimes. – Document Type: Conference Paper

- Neduchal, P., and Fĺıdr, M. (2017). Vývoj multifunkčńıho kolového robota, SVK FAV
2017 – Document Type: Conference Paper

- Jirik, M., and Neduchal, P. (2016). Experiments with automatic segmentation of liver
parenchyma using texture description. Pattern Recognition and Image Analysis, 26(3),
572-575. – Document Type: Journal Article (Jsc)

- Neduchal, P., and Bureš, L. (2016). Využit́ı dvourozměrné Fourierovy transformace v
úloze zarovnáńı naskenovaného dokumentu, SVK FAV 2016 – Document Type: Confer-
ence Paper

- Neduchal, P., and Fĺıdr, M. (2016). Development of a laboratory framework for testing
simultaneous localization and mapping approaches. IFAC-PapersOnLine, 49(25), 493-
498. – Document Type: Journal Article (Jsc)

- Neduchal, P., and Bureš, L. (2015). Systém automatické kontroly odevzdávaných
semestrálńıch praćı (SAKo), SVK FAV 2015 – Document Type: Conference Paper

- Bureš, L., and Neduchal, P. (2015). Identifikace př́ıznak̊u diabetické retinopatie z
obrázk̊u oč́ı, SVK FAV 2015 – Document Type: Conference Paper

- Neduchal, P. (2014). Texturńı analýza 3D dat pomoćı metody LBP, SVK FAV 2014 –
Document Type: Conference Paper

- Neduchal, P. (2013). Texturńı analýza pomoćı knihovny LbpLibrary, SVK FAV 2013 –
Document Type: Conference Paper

- Neduchal, P. (2013). Návrh a testováńı metod vizuálńı simultánńı lokalizace a mapováńı.
Diplomová práce

- Neduchal, P. (2012). Texturńı analýza pomoćı metody LBP poč́ıtaná v reálném čase,
SVK FAV 2012 – Document Type: Conference Paper

- Neduchal, P. (2011). Texturńı analýza pomoćı metody LBP, SVKB FAV 2011 – Docu-
ment Type: Conference Paper

XIX

	Introduction
	Simultaneous Localization and mapping
	Robot Perception
	Environment Detection And Classification
	Thesis Outline

	Simultaneous Localization And Mapping
	Introduction to SLAM
	Information Extraction
	Data Association
	Loop Closure
	Motion Model of the Vehicle
	Map generation

	The classic definition of SLAM
	Two-step recursive algorithm

	Approaches based on the classic definition
	EKF-SLAM
	UKF-SLAM
	SEIF-SLAM
	Particle Filter SLAM

	Optimization based SLAM
	Nonlinear Least Squares
	Graph SLAM

	Robot platform
	Ground vehicle
	Aerial vehicles
	Underwater vehicles
	Handheld devices

	Sensors
	Non-vision
	Vision sensors
	Support sensors

	Available open source tools, implementations and datasets
	Tools
	SLAM Implementations
	Using of SLAM solving systems
	Datasets

	State of the Art
	Non-vision
	Vision based approaches

	Open Problems
	Open Problems of the SLAM
	Practical applications

	Disseration goals
	Motivation
	Formulation of tasks behind defined goals

	Environment Change Detection and Classification
	Environment Change Detection
	Supervised methods
	Unsupervised methods

	Image-Based Environment Classification
	Classification
	Classic classification approaches
	Neural nets based approaches
	Datasets

	Environment classification system – related work

	Environment classification system
	Problem statement
	Proposed system concept
	Environment Change Detection Module
	Image Based Environment Classification
	Robot Behaviour Adaptation Module

	Hardware
	Robot Chassis
	T-rex controller board
	On-board computer and software
	Equipped sensors
	Software equipment of the robot

	Dataset
	Recording
	Description of recorded data

	Implementation notes

	Experiments
	Environment change detection
	Description of used sensors
	Trigger generation
	Experiment discussion
	Computational cost

	Multilayered map generation
	Environment Classification
	Dataset
	Classic approaches
	Neural nets
	Edge detection experiment

	Proposed system design test
	Qualitative evaluation
	Quantitative evaluation

	Conclusion
	Thesis summary
	Discussion on defined goals and experiment results
	Future work

