POSUN PŘECHODOVÉ TEPLOTY VRUBOVÉ HOUŽEVNATOSTI OCELI P92 BĚHEM TEPLOTNÍ EXPOZICE

SHIFT OF IMPACT TRANSITION TEMPERATURE OF P92 STEEL DURING ISOTHERMAL AGEING

Marie Svobodová, Michal Junek, Josef Čmakal a Jindřich Douda

UJP PRAHA a.s.

Abstrakt

Martenzitická ocel P92, určená pro pracovní teploty okolo 600 °C, mění po prvních hodinách teplotní expozice svoji vrubovou houževnatost. Tato změna se projevuje především posunem přechodové teploty ze záporných ke kladným hodnotám. Příspěvek shrnuje výsledky zkoušek rázem v ohybu provedených na oceli P92 po teplotní expozici při teplotě 650 °C po dobu až 5 000 h. Tyto výsledky jsou dále doplněny o další mechanické (pevnost v tahu, tvrdost) a strukturní vlastnosti.

Martensitic steel of grade P92 designed for working temperatures around 600 ° C changes its impact toughness after the first hours of thermal ageing. This change is manifested mainly by shifting the impact transition temperature from below to above 0 °C. This paper summarizes the results of the impact tests carried out on P92 steel after thermal exposure at 650 °C for up to 5,000 hours. These results are further complemented by additional mechanical (tensile strength, hardness) and microstructure properties.

Úvod

Žáropevná martenzitická ocel P92, legovaná 9 hm.% Cr, 0,5 hm.% Mo, 0,2 hm.% V, 0,05 hm.% Nb, 0,05 hm.% N, 0,004 hm.% B a 1,75 hm.% W, je určená především pro parovody pracující při teplotách okolo 600 °C a při tlacích okolo 20 MPa. Její zvýšené žáropevnosti je dosahováno kombinací precipitačního a substitučního zpevnění vyvolaného tepelným zpracováním: normalizací při teplotě okolo 1 050 °C a popuštěním při teplotách (750 – 780) °C. V průběhu provozní expozice však klesá role precipitačního zpevnění díky hrubnutí karbidických precipitátů především na hranicích zrn a zároveň dochází k ochuzování tuhého roztoku o substituční legury, především W, které vytvářejí křehkou intermetalickou Lavesovu fázi [1]. Precipitace této fáze je pak doprovázena makroskopickou změnou mechanických vlastností, především vrubové houževnatosti.

Tato práce byla zaměřena na popis změn mechanických vlastností, především vrubové houževnatosti a přechodové teploty oceli P92 v prvních hodinách isotermické laboratorní expozice. Jako experimentální materiál byl vybrán výřez rovné části ohybu parovodní trubky z oceli P92 o rozměrech OD 350 x 39 mm od španělského výrobce Productos Tubulares, s.a.u. (tavba 60074, chemické složení a výchozí mechanické vlastnosti uvádí Tab. 1). Tato část trubky byla dodána po dvojím výchozím tepelném zpracování, nejdříve u výrobce trubky: 1 050 °C/60 min + 780 °C/140 min., poté u výrobce ohybu (MODŘANY Power, a.s.): 1 050 °C/60 min + 775 °C/140 min. Dodaný výřez oceli P92 byl rozřezán na 5 dílů (výchozí stav označen jako AR2) a čtyři díly byly následně isotermicky žíhány v elektrické odporové peci při teplotě 650 °C po dobu 500 h, 1 000 h, 2 000 h a 5 000 h. Poté byly ze všech 5 dílů vyrobeny metalografické výbrusy pro kontrolu mikrostruktury a měření tvrdosti a zkušební tělesa pro zkoušky rázem v ohybu a tahem při pokojové teplotě.

Zkouška rázem v ohybu

Z výchozího a degradovaných stavů oceli P92 byly vyrobeny podélně orientované standardní zkušební tyče dle ČSN ISO 148-1 s V vrubem, které pak byly přeraženy v souladu s normami ČSN ISO 148-1, ČSN 42 0350 a ČSN 42 0383 Charpyho kladivem 300 J při

teplotách od -190 °C do 100 °C. Naměřené hodnoty nárazové práce, podílu houževnatého lomu a bočního rozšíření byly zpracovány do teplotních závislostí, viz Obr. 1, z nichž pak byly stanoveny přechodové teploty jako inflexní body těchto závislostí (u podílu houževnatého lomu byla navíc stanovena FATT₅₀). Z grafů a shrnující tabulky na Obr. 1 je patrný postupný posun přechodové teploty z výchozích cca -20 °C k cca +25 °C, který se však po 1 000 h expozice zastaví. Delší doby expozice (2 000 h a 5000 h) se pak projevují již jen mírným, ale soustavným poklesem hodnoty vrubové houževnatosti, což lze doložit i na mírném poklesu nárazové práce při 20 °C během teplotní expozice při teplotě 650 °C (tabulka na Obr. 1).

Zkouška tahem za pokojové teploty

Společně s tělesy pro zkoušku rázem v ohybu byla ze všech strukturních stavů odebrány podélně orientované krátké závitové tyče dle ČSN EN ISO 6892-1 o průměru dříku 10 mm a se závitem M16 pro zkoušku tahem za pokojové teploty (s konstantní rychlostí 1 mm/min). Z naměřených hodnot meze pevnosti, meze kluzu (viz Obr. 2a a výchozí mechanické vlastnosti stavu AR2 v Tab. 1), tažnosti a kontrakce vyplynulo, že v průběhu teplotní expozice dochází nejdříve k poklesu meze pevnosti a meze kluzu o cca (30 až 40) MPa, po 2 000 h však zůstávají pevnostní charakteristiky nezměněné. Na hodnoty tažnosti a kontrakce nemá teplotní expozice výrazný vliv.

Rozbor mikrostruktury

Změny mechanických vlastností oceli P92 v průběhu teplotní expozice byly korelovány s mikrostrukturou, která byla pozorována na metalografických výbrusech v axiálním (podélném) a radiálním směru, a to pomocí světelné a elektronové mikroskopie, viz ukázka na Obr. 3. Mikrostruktura výchozího stavu AR2 je především v axiálním směru značně nehomogenní, vyskytují se zde oblasti s výrazně rozdílným stupněm popuštění martenzitické matrice (Obr. 3a) a kromě jemné karbidické disperze se zde nacházejí i karbidické řádky. Během teplotní expozice při teplotě 650 °C se postupným popouštěním martenzitických latěk tato nehomogenita vytrácí a mikrostruktura v obou směrech (axiálním i radiálním) se srovnává, karbidické řádky vzniklé při tváření trubky ovšem zůstávají (Obr. 3b). Na snímcích z elektronového mikroskopu (Obr. 3c,d) pak lze pozorovat změnu ve velikosti a počtu karbidických částic na hranicích martenzitických latěk v prvních 1 000 h expozice, kdy jejich počet klesá a dochází k hrubnutí karbidů M23C6 za vzniku Lavesovy fáze [1], jemné částice typu V(C,N) svoji velikost nemění (Obr. 3d). Delší doba expozice pak přináší kombinaci nové precipitaci karbidických částic a hrubnutí již vyloučených precipitátů.

Měření tvrdosti

Rozbor mikrostruktury doplňuje i měření tvrdosti HV10 dle ČSN EN ISO 6507-1 (Obr. 2b), které vyšším rozptylem naměřených hodnot ve výchozím stavu v axiálním a radiálním směru potvrzuje výchozí nehomogenitu mikrostruktury. Následný pokles tvrdosti po dobu 1 000 h pokračující opětovným mírným nárůstem pak odpovídá precipitačnímu ději a hrubnutí karbidických částic za současného popouštění martenzitické matrice.

Závěr

Vzájemnou korelací mechanických a mikrostrukturních vlastností oceli P92 během isotermické expozice při teplotě 650 °C bylo zjištěno, že k výrazným změnám, jako jsou pokles meze pevnosti a meze kluzu, posun přechodové teploty směrem ke kladným hodnotám a prvotní pokles tvrdosti, dochází do 1 000 h, kdy se ve struktuře vylučuje Lavesova fáze na úkor již primárně vyloučených karbidů, čímž celkový počet karbidických částic klesá. Pak ale dochází k nové precipitaci (proces zpevňování) a hrubnutí již vyloučených precipitátů za současného popouštění martenzitických latěk (proces odpevňování). Tyto děje během 1 000 h až 5 000 h expozice spolu vzájemně vyrovnaně soupeří, což se projevuje stagnací přechodové

teploty, pevnostních charakteristik i tvrdosti, pouze vrubová houževnatost mírně klesá (což bude způsobeno popouštěním martenzitické struktury).

Literatura

[1] Zieliński, A., Golański, G., Sroka, M. (2016): Assessment of microstructure stability and mechanical properties of X10CrWMoVNb9-2 (P92) steel after long-term thermal ageing for high-temperature applications. Kovove Mater. 54 (2016) 61-70.

Chemické složení v hm. %													
Materiál	С	Si	Mn	Р	S	Cr	Mo	V	Nb	Ν	W	ostatní	
ASTM	0,08 0,13	max. 0,50	0,30 0,60	max. 0,020	max. 0,010	8,50 9,50	0,30 0,60	0,15 0,25	0,04 0,09	0,030 0,070	1,50 2,00	B 0,001 - 0,006; Al max. 0,040	
60074	0,11	0,37	0,48	0,013	0,005	8,58	0,33	0,23	0,06	0,037	1,62	B 0,0015; Al 0,017	
Mechanické vlastnosti													
Materiál	mez kluzu Rp0,2			mez pevnosti Rm			tažno	tažnost A			další		
ASTM	min. 440 MPa			min. 620 MPa			min.	min. 20 %			-		
60074	555 MPa			737 MPa			23,7	23,7 %			tvrdost 218 HB (233 HV)		
AR2	558 MPa			724 MPa			23,0	23,0 %			229 HV10		

Tab. 1. Chemické složení oceli P92 a výchozí mechanické vlastnosti

100 -	P92 (39) "AR2"	
80 -	650 °C	
60 -	FATT 50	
40 -	• AR2 • 650°C/500h	
20 -	▲ 650°C/1000h ▼ 650°C/2000h 4 650°C/2000h ■ ▼	
-		
0 -		
-20	00 -150 -100 -50 0 50 100 15	0
	b) Teplota [°C]	
	100 - 80 - 60 - 40 - 20 -	100 P92 (39) "AR2" 650 °C 60 60 60 60 650 °C 650 °C 6

Přechodová teplota [°C]							
Stav	AR2	500 h	1 000 h	2 000 h	5 000 h		
KV20°C	182 J	120 J	77 J	71 J	66 J		
T KCV	-21 ± 6	-10 ± 5	29 ± 5	29 ± 5	29 ± 5		
T Δb	-16 ± 6	-12 ± 6	51 ± 33	51 ± 33	51 ± 33		
T FA	-22 ± 2	-9 ± 3	24 ± 2	24 ± 2	24 ± 2		
FATT50	-21,6	-8,4	23,4	23,4	23,4		

Obr. 1. Změny teplotní závislosti a) vrubové houževnatosti, b) podílu houževnatého lomu a c) bočního rozšíření oceli P92 během teplotní expozice při teplotě 650 °C. Nárazová práce při 20 °C a jednotlivé přechodové teploty jsou shrnuty v přehledové tabulce.

Obr. 2. Změny mechanických vlastností – a) mezí pevnosti a kluzu, b) tvrdosti – oceli P92 během teplotní expozice při teplotě 650 °C.

Obr. 3. Porovnání mikrostruktury oceli P92 a, c) ve výchozím stavu a b, d) po expozici 650 °C/1 000 h. Snímky byly pořízeny a, b) světelnou (axiální směr) a c, d) elektronovou (radiální směr) mikroskopií.