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Abstract

The thesis focuses on the topic of speaker diarization, a speech processing task
that is commonly characterized as the question “Who speaks when?”. It also ad-
dresses the related task of overlapping speech detection, which is very relevant
for diarization.

The theoretical part of the thesis provides an overview of existing diarization
approaches, both offline and online, and discusses some of the problematic ar-
eas which were identified in early stages of the author’s research. The thesis also
includes an extensive comparison of existing diarization systems, with focus on
their reported performance. One chapter is also dedicated to the topic of overlap-
ping speech and the methods of its detection.

The experimental part of the thesis then presents the work which has been
done on speaker diarization, which was focused mostly on a GMM-based online
diarization system and an i-vector based system with both offline and online vari-
ants. The final section also details a newly proposed approach for detecting over-
lapping speech using a convolutional neural network.
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Abstrakt

Disertační práce se zaměřuje na téma diarizace řečníků, což je úloha zpracování
řeči typicky charakterizovaná otázkou „Kdo kdy mluví?“. Práce se také zabývá
související úlohou detekce překrývající se řeči, která je velmi relevantní pro diari-
zaci.

Teoretická část práce poskytuje přehled existujících metod diarizace řečníků,
a to jak těch offline, tak online, a přibližuje několik problematických oblastí, kte-
ré byly identifikovány v rané fázi autorčina výzkumu. V práci je také předloženo
rozsáhlé srovnání existujících systémů se zaměřením na jejich uváděné výsledky.
Jedna kapitola se také zaměřuje na téma překrývající se řeči a na metody její de-
tekce.

Experimentální část práce předkládá praktické výstupy, kterých bylo dosaže-
no. Experimenty s diarizací se zaměřovaly zejména na online systém založený na
GMM a na i-vektorový systém, který měl offline i online varianty. Závěrečná sek-
ce experimentů také přibližuje nově navrženou metodu pro detekci překrývající
se řeči, která je založena na konvoluční neuronové síti.

Klíčová slova

diarizace řečníků, detekce překrývající se řeči, zpracování mluvené řeči





Declaration

I hereby declare that this thesis is my ownwork and to my best knowledge it does
not contain any previously publishedmaterials except for the ones acknowledged
in the text.

.............................
Ing. Marie Kunešová





Contents

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1
1.1 Outline and Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5
2.1 Representation of Speakers . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 GMM-based Speaker Representation . . . . . . . . . . . . . . 5
2.1.2 i-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 DNN-based Speaker Embeddings, x-vectors . . . . . . . . . 7

2.2 Distance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 GMM-based Distance Metrics . . . . . . . . . . . . . . . . . . 9
2.2.2 Distances Between i-Vectors or Speaker Embeddings . . . . 12

3 Offline Speaker Diarization 15
3.1 General Framework of Offline Diarization Systems . . . . . . . . . . 15
3.2 Signal Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Standard Acoustic Features . . . . . . . . . . . . . . . . . . . 18
3.3.2 Additional Features . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 DNN-based Features . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Voice Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Speaker Change Detection . . . . . . . . . . . . . . . . . . . . 22
3.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.1 Segment Representation / Embedding Extraction . . . . . . 24
3.6.2 Agglomerative (Bottom-up) Clustering . . . . . . . . . . . . 24

i



ii CONTENTS

3.6.3 Top-down Clustering . . . . . . . . . . . . . . . . . . . . . . . 25
3.6.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Resegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Multimodal Speaker Diarization . . . . . . . . . . . . . . . . . . . . 26

4 Online Speaker Diarization 29
4.1 Additional Challenges of Online Diarization . . . . . . . . . . . . . 29

4.1.1 Limited Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 System Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Online Diarization Framework . . . . . . . . . . . . . . . . . . . . . 31
4.3 Online Diarization Approaches . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Sequential Clustering with Unknown Speakers . . . . . . . . 34
4.3.2 Speaker Identification Approaches . . . . . . . . . . . . . . . 38
4.3.3 Hybrid Online-Offline Approaches . . . . . . . . . . . . . . . 38
4.3.4 Multimodal Approaches . . . . . . . . . . . . . . . . . . . . . 39

5 Main Issues in Speaker Diarization 41
5.1 Very Short Speaker Turns . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Overlapping Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Initialization of Online Diarization . . . . . . . . . . . . . . . . . . . 44

6 Main Goals of the Thesis 47

7 Evaluation of Speaker Diarization 51
7.1 Diarization Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Other Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 52
7.2 Overview of the State of the Art . . . . . . . . . . . . . . . . . . . . . 53

7.2.1 Telephone Speech . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.2 Meeting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.3 Radio and Television Broadcast . . . . . . . . . . . . . . . . . 59
7.2.4 The DIHARD Speech Diarization Challenge . . . . . . . . . 62
7.2.5 Online Diarization . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Overlapping Speech 69



CONTENTS iii

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Detection of Overlapping Speech . . . . . . . . . . . . . . . . . . . . 70

8.2.1 Overlap Detection Using Hand-crafted Features . . . . . . . 70
8.2.2 Overlap Detection Using Deep Neural Networks . . . . . . . 71
8.2.3 Evaluation of Overlap Detection . . . . . . . . . . . . . . . . 72

8.3 Data for Overlap Detection . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4 Other Overlap-related Speech Processing . . . . . . . . . . . . . . . 74

8.4.1 Identification of Simultaneous Speakers . . . . . . . . . . . . 74
8.4.2 Signal Source Separation . . . . . . . . . . . . . . . . . . . . . 75

8.5 Overlapping Speech in Speaker Diarization . . . . . . . . . . . . . . 75

9 Experiments 77
9.1 Used Datasets for Speaker Diarization . . . . . . . . . . . . . . . . . 77

9.1.1 Czech Parliament Sessions . . . . . . . . . . . . . . . . . . . . 78
9.1.2 The CALLHOME American English Corpus . . . . . . . . . 78
9.1.3 AMI Meeting Corpus . . . . . . . . . . . . . . . . . . . . . . 78
9.1.4 DIHARD Challenge Data . . . . . . . . . . . . . . . . . . . . 79

9.2 GMM-based Online Diarization . . . . . . . . . . . . . . . . . . . . . 80
9.2.1 Online Diarization System . . . . . . . . . . . . . . . . . . . . 80
9.2.2 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2.4 Application to Conversational Data . . . . . . . . . . . . . . 87
9.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3 Speaker Diarization Using i-Vectors . . . . . . . . . . . . . . . . . . . 92
9.3.1 Baseline Offline Diarization System . . . . . . . . . . . . . . 92
9.3.2 i-Vector-based Online Diarization . . . . . . . . . . . . . . . . 94
9.3.3 Segmentation Experiments . . . . . . . . . . . . . . . . . . . 95
9.3.4 Results on Telephone Data . . . . . . . . . . . . . . . . . . . . 98
9.3.5 Hybrid Speaker Diarization . . . . . . . . . . . . . . . . . . . 99

9.4 The DIHARD Speaker Diarization Challenge . . . . . . . . . . . . . 103
9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.4.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.4.3 The Modified Diarization System . . . . . . . . . . . . . . . . 104
9.4.4 Kaldi Diarization System . . . . . . . . . . . . . . . . . . . . 107
9.4.5 Official DIHARD Evaluation Metrics . . . . . . . . . . . . . . 109



iv CONTENTS

9.4.6 Final Results in the Challenge . . . . . . . . . . . . . . . . . . 110
9.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.5 Overlap Detection Using a CNN . . . . . . . . . . . . . . . . . . . . 113
9.5.1 The Overlap Detector . . . . . . . . . . . . . . . . . . . . . . . 113
9.5.2 Synthetic Training Data for Overlap Detection . . . . . . . . 114
9.5.3 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10 Conclusion 123

Bibliography 127

Dataset References 143

Software References 145

Authored and Co-authored Publications 147



List of Figures

1.1 An illustration of the final result of speaker diarization. . . . . . . . 1
2.1 Supervector extraction process. . . . . . . . . . . . . . . . . . . . . . 7
3.1 Typical framework of a step-by-step offline diarization system. . . . 16
3.2 Speaker change detection. . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 The typical framework of an online diarization system. . . . . . . . 32
4.2 Sequential clustering with an unknown number of speakers. . . . . 35
5.1 Illustration of an attempted distance-based speaker change detec-

tion with very short speaker turns. . . . . . . . . . . . . . . . . . . . 42
8.1 Part of a spectrogram with relatively distinguishable overlapping

speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.1 The decision process of the implemented diarization system. . . . . 81
9.2 Logarithm of the likelihood ratio L(X, λsp) from Equation 9.1 for

all speaker models in a part of one recording . . . . . . . . . . . . . 82
9.3 Diagram of the offline diarization system . . . . . . . . . . . . . . . 92
9.4 The process of splitting longer segments in the GLR segmentation

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.5 Illustration of CNN-based speaker change detection. . . . . . . . . . 97
9.6 Development of the hybrid system’s SER over time . . . . . . . . . . 101
9.7 Reference signal for CNN training. . . . . . . . . . . . . . . . . . . . 113
9.8 Illustration of the creation of artificial overlapped data from the

TIMIT corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.9 Illustration of the creation of training data with different types of

overlap from the LibriSpeech corpus. . . . . . . . . . . . . . . . . . . 116
9.10 Example of the CNN’s output for a LibriSpeech test file. . . . . . . . 117
9.11 Example output for dereverberated SSPNet data and the corre-

sponding reference labels . . . . . . . . . . . . . . . . . . . . . . . . 118
9.12 False Positive vs True Positive for SSPNet data . . . . . . . . . . . . 119
9.13 False Positive vs True Positive for AMI data . . . . . . . . . . . . . . 121

v



vi LIST OF FIGURES



List of Tables

2.1 DNN architecture in the Kaldi implementation of x-vectors . . . . . 8
7.1 Comparison of recent diarization systems aimed at telephone speech. 54
7.2 Comparison of offline diarization systems for conference meetings,

evaluated on NIST RT datasets. . . . . . . . . . . . . . . . . . . . . . 57
7.3 Comparison of diarization systems for conference meetings, evalu-

ated on the AMI Corpus. . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Comparison of offline diarization systems: TV broadcast (part 1) . 59
7.5 Comparison of diarization systems participating in the Albayzin

2018 Evaluation / IberSpeech-RTVE 2018 Challenge . . . . . . . . . 61
7.6 Comparison of diarization systems in the First DIHARD Challenge. 63
7.7 Comparison of diarization systems in the Second DIHARD Chal-

lenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.8 Comparison of online diarization systems. . . . . . . . . . . . . . . . 65
8.1 Comparison of recent systems featuring the detection of overlap-

ping speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.1 Overview of the datasets used for evaluating diarization systems. . 77
9.2 Comparison of the diarization performance on test data (Czech par-

liament sessions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Results of the GMM-based diarization system on AMI data. . . . . 89
9.4 Results of the GMM-based diarization system on AMI data, with

precomputed speaker models. . . . . . . . . . . . . . . . . . . . . . . 91
9.5 Offline and online diarization results for different segmentation ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.6 Results of the hybrid online-offline system . . . . . . . . . . . . . . . 101
9.7 Average DER on the DIHARD II development set for an earlier ver-

sion of our system and for the Kaldi system . . . . . . . . . . . . . . 106
9.8 Experimentally chosen parameters for each DIHARD II corpus. . . 107
9.9 Official results on the DIHARD I evaluation data. . . . . . . . . . . 110
9.10 Official results on DIHARD II evaluation data, Track 1 only. . . . . 111
9.11 Average DER on individual corpora of the DIHARD II dev. set . . . 112
9.12 Summary of the architecture of the CNN . . . . . . . . . . . . . . . 114
9.13 Results of overlap detection on evaluation data. . . . . . . . . . . . . 120

vii



viii LIST OF TABLES

9.14 Comparison of the proposed overlap detection systemwith similar
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Abbreviations

AHC Agglomerative hierarchical clustering
ASR Automatic speech recognition
BiLSTM Bi-directional long short-term memory network
BIC Bayesian Information Criterion
CLR Cross-Likelihood Ratio
CMN Cepstral Mean Normalization
CNN Convolutional Neural Network
DER Diarization Error Rate
DNN Deep Neural Network
EER Equal Error Rate
EM Expectation-Maximization (algorithm)
FA Factor Analysis
FFT Fast Fourier Transform
GLR Generalized Likelihood Ratio
GMM Gaussian Mixture Model
HCI Human-computer interaction
HMM Hidden Markov Model
HRI Human-robot interaction
IB Information Bottleneck
ILP Integer Linear Programming
JER Jaccard Error Rate
JFA Joint Factor Analysis
KL Kullback-Leibler divergence
KL2 Symmetric Kullback-Leibler divergence
LDA Linear discriminant analysis
LFCC Linear Frequency Cepstral Coefficients
LPC Linear Predictive Coding
LSTM Long Short-Term Memory (neural network)
MAP Maximum a posteriori probability
MI Mutual Information
MDM Multiple distant microphones
MFCC Mel Frequency Cepstral Coefficients

ix



x LIST OF ABBREVIATIONS

NCLR Normalized Cross-Likelihood Ratio
NIST National Institute of Standards and Technology
ODE Overlap Detection Error
PCA Principal Component Analysis
PLDA Probabilistic linear discriminant analysis
PLP Perceptual Linear Prediction
RNN Recurrent Neural Network
SAD Speech activity detection, also known as voice activity detection

(VAD)
SCD Speaker change detection
SER Speaker error (one of the components of DER), also “(speaker)

confusion error”
SDM Single distant microphone
SVM Support vector machines
TDNN Time Delay Neural Network
TDOA Time difference of arrival (also “time delay of arrival”)
UBM Universal background model
VAD Voice activity detection, also known as speech activity detection

(SAD)
VB Variational Bayes
VB-HMM (Variational) Bayesian Hidden Markov Model
WCCN Within-class covariance normalization



Chapter 1

Introduction

In the current times, an increasing amount of audio data is being recorded and
stored. This leads to a need for automated methods which can process the large
volume of data and extract relevant information, sparking increased interest in
various areas of automated speech processing. Among themain topics are speech
recognition, speaker recognition and also speaker diarization.

Speaker diarization is the task of determining “Who speaks when?” within
a recorded conversation of several speakers. In contrast to the related task of
speaker recognition, speaker diarization does not aim at identifying the actual
identities of the speakers and is typically performedwithout any prior knowledge
about the number of speakers or their identities.

In other words, a diarization system is presented with an audio recording
which contains the speech of several unknown speakers. The goal of the system is
then to find the intervals of speech within the recording, divide them into speaker
homogeneous segments and label these segments such that the intervals of speech
of the same speaker are assigned an identical label. This task is complicated by
the fact that some of the speakers may be talking simultaneously. An example of
such labeling is illustrated in Figure 1.1.

Figure 1.1: An illustration of the final result of speaker diarization, with three speak-
ers who sometimes talk simultaneously.

The main use for speaker diarization is in situations where it is necessary to
annotate the speech signal based on the individual speakers without the need to
know their identities. The most common examples are audio indexing and rich
transcription. Other applications may include voice assistants and similar forms
of human-computer interaction (HCI) with multiple simultaneous users (such as
shown by Minotto et al., 2015) and human-robot interaction (HRI).

Additionally, detecting speaker changes can be beneficial in improving the per-
formance of speech recognition systems, by allowing such system to switch be-
tween different acoustic models based on the current speaker or to reset language
models when a change is detected.

1
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Diarization systems generally fall into one of two distinct categories: offline
and online, depending on the manner in which they operate. An offline system
processes a complete audio recording after it has already been fully recorded, al-
lowing the system to base all of its decisions on the entirety of the data.

By contrast, online systems are used to process an incoming audio stream se-
quentially, while it is being received. All decisions are based only on the data seen
up to the current point. This allows such systems to be used for real-time diariza-
tion of live data, at the cost of lower performance, as less information is available
to the system at the time of decision.

Diarization tasks have traditionally been divided into three distinct domains
with different characteristics, based on the type of the audio recording they are
intended for. These groups are telephone speech, broadcast news and conference meet-
ings (Tranter and Reynolds, 2006). These domains differ in several characteris-
tics such as the typical number of speakers, length of speaker turns, background
speech, etc., leading to different advantages and challenges.

In telephone speech applications, the number of different speakers is typically
very small. In many circumstances, it can be expected that only two speakers are
present in a recorded call. Such knowledge allows for simpler approaches and for
this reason, some of the systems found in literature work under this assumption
(e.g. Sell and Garcia-Romero, 2014).

A less convenient property of telephone speech arises from the spontaneous
nature of most conversations. One can generally expect very short speaker turns
and frequent instances of overlapping speech, both of which pose additional chal-
lenge to the diarization process. In addition, the audio quality of telephone record-
ings is generally poorer than that of the other two audio types and background
noise may be present.

Broadcast news, by contrast, tend to involve a larger, unknown number of speak-
ers with generally longer speaker turns and significantly less overlapping speech.
However, this type of audio may also contain different types of noise and non-
speech sound sources, such as music, which often have to be detected as well, in
order not to influence the diarization process. Additionally, it is also necessary
take into account that a single speaker may be encountered in more than one sit-
uation or environment – for instance, they may sometimes speak from the studio
and sometimes during a report in the field, such as on a busy street. This will
influence the acoustic characteristics of the speech signal in different ways.

A defining characteristic of conference meetings diarization is the frequent uti-
lization of multiple sound sources. While both telephone speech and broadcast
news typically involve speech on a single channel, conference meetings often em-
ploy multiple microphones, which are either worn by the participants, or placed
on various points around themeeting room. This allows for the additional speech
sources to be used to enhance the acoustic signal or to obtain spatial information
about the speakers (e.g. Pardo et al., 2006).

While speaker diarization is mainly used for the processing of audio informa-
tion, there has also been significant effort put into the research of multimodal
diarization techniques, which combine audio and visual information in order to
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improve the performance of diarization systems in situations where the visual in-
formation is available (e.g. Noulas et al., 2012). However, this thesis will focus
primarily on the audio domain. Multimodal approaches will only be briefly ac-
knowledged in the interest of completeness.

In the time since the work on this thesis was started, many things have rapidly
changed in the field of speech processing. In the early 2010s, the most common
approaches involved traditional and time-tested concepts likeMFCC features and
GMMs (and later the then-new i-vectors), and the majority of speaker diarization
systems followed a framework of several clearly separated steps, each with their
own specialized algorithms. Yet continued interest in deep learning has meant
that over the past few years, more andmore of this process is being substituted by
neural networks, with some of the very newest cutting-edge research now focus-
ing on end-to-end systems which aim to encompass the entire process in a single
neural architecture.

In order to maintain continuity in research, most of the contents of this thesis
still focus on the classic approaches. However, references to newer methods have
been added where appropriate.

1.1 Outline and Aims of the Thesis

The structure of this thesis reflects the initial aims which were established based
on the preceding thesis report (Kunešová, 2017):

• Survey existing speaker diarization methods – both offline and online

• Identify some of the main challenges and obstacles in speaker diarization

• Create an overview of previous results reported in literature, comparing the
performance of individual systems

• Implement some of the described methods in a new diarization system and
propose new methods or improvements

• Address one or more of the previously identified challenges

These points mainly served as the initial framework of the research. The spe-
cific goals and objectives of the thesis will be presented and discussed in more
detail in chapter 6, after the theoretical part of the thesis which provides the nec-
essary background.

The thesis is divided into 10 chapters. The first third of the text presents the the-
oretical background, basic approaches and challenges of speaker diarization. This
is followed by an extensive overview of recent state-of-the-art results in literature,
and a large penultimate chapter which details the newly proposed techniques, ex-
periments and results.

Chapter 2 introduces certain theoretical concepts which are referred to multi-
ple times throughout the later chapters.



4 CHAPTER 1. INTRODUCTION

Chapter 3 focuses on offline diarization. It presents the typical framework of
offline systems and describes the most common methods used for each of the
individual subtasks. Multimodal diarization is also briefly touched upon in this
chapter.

In chapter 4, this is followed by a presentation of online diarization approaches,
of which many stem from offline diarization or share some of the same methods.
This chapter includes the description of the additional challenges and limitations
presented in the task of online diarization.

Chapter 5 introduces several important obstacles frequently encountered in
speaker diarization – including overlapping speech, which is more closely ad-
dressed in chapter 8.

The specific goals of the thesis are presented in chapter 6.
Chapter 7 introduces the methods used for the evaluation of diarization sys-

tems and presents a comparison of many recent state-of-the-art systems and their
reported results.

Chapter 8 focuses on overlapping speech as one of the aforementioned impor-
tant obstacles in speaker diarization and provides an overview of existing research
into overlap detection.

Chapter 9 then contains the experimental part of this thesis. It presents the
work which has been done on speaker diarization, which was focused mostly on
a GMM-based online diarization system and an i-vector based system with both
offline and online variants. The final section also details a newly proposed ap-
proach for detecting overlapping speech.

Finally, chapter 10 summarizes the thesis and its contributions.
Some of the text in this thesis has previously appeared in the preceding thesis

report (Kunešová, 2017). In the experimental part of the thesis, certain passages
and tables have also been adapted from the author’s previous publications, gen-
erally indicated at the start of the relevant sections.



Chapter 2

Theoretical Background

Before we can focus on the topic of speaker diarization itself, it is necessary to
introduce certain important concepts which play a significant role in this process
and which will be referred to multiple times throughout the subsequent chapters.

Section 2.1 presents a brief overview of the standard ways for representing
speaker information. Namely, the traditional GMMs, the more recent and still
widely popular i-vectors, and the newly emerging DNN-based approaches.

Section 2.2 then contains an overview of several commonly used distance met-
rics, which serve for the comparison of sound sources in different intervals of
speech as well as between the representations of individual speakers.

2.1 Representation of Speakers

As speaker diarization involves differentiating between individual speakers in an
audio stream and finding parts of speech spoken by the same speaker, it is im-
portant for a system to be able to represent and store relevant speaker-dependent
information in some way.

Over the last decade, the state of the art has gradually shifted from the use of
GaussianMixture Models (GMMs) to i-vectors and, more recently, to approaches
based on Deep Neural Networks.

2.1.1 GMM-based Speaker Representation

Until relatively recently, the traditional approach was to use GMMs to represent
individual speakers. While their use has declined over the past years, GMMs have
long been popular in both speaker diarization and speaker recognition contexts
due to their robustness and ability to estimate the underlying distribution from
given data. A description of their use for speaker representation can be found in
e.g. (Reynolds, 1995).

Some diarization approaches also employ Hidden Markov Models (HMMs),
modeling the transitions between speakers as a Markov process. Typically, each
speaker is represented by a single HMM state and GMM-based models are
utilized for this purpose, such as in (Fredouille and Evans, 2008).

Besides the individual speaker models, many GMM-based diarization sys-
tems also employ a so-called universal background model (UBM), which is a model

5
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trained to represent the voice of a generic speaker. A UBM is generally obtained
by training a model on a large amount of data from a wide array of different
speakers, so as to suppress any speaker-specific characteristics. A UBM can then
serve as the basis from which the models of specific speakers are adapted.

Onemore important related concept is the supervector. In the context of speech
processing, this term refers to a high-dimensional vector, obtained by concatenat-
ing the statistics of a GMM – typically the mean vectors of individual GMM com-
ponents. Supervectors are of a fixed dimension, and thus can serve as a simple
representation of speech segments of variable length for use in classification (e.g.
in W.M. Campbell et al., 2006).

Supervectors and UBM are also used as the basis for obtaining i-vectors, a
more recent alternative to GMM-based models which became widely popular
for both speaker diarization and speaker recognition for a time. Because of their
widespread use, i-vectors will be examined in more detail in the next section.

Finally, the less commonly used binary key modeling technique, proposed by
Anguera and Bonastre (2010) andmore recently used by e.g. Patino et al. (2018a),
shows some similarities to i-vectors, in that it also uses a GMM-UBM approach to
obtain a vector representation of speaker information. However, the approaches
differ in the statistical modeling and in the case of binary keys, the vectors consist
of only binary values.

2.1.2 i-Vectors

For a long time, GMMs were the most common models used in speaker diariza-
tion. However, they were eventually replaced in this role by i-vectors.

First introduced by Dehak et al. (2011) for speaker verification, i-vector repre-
sentation of individual speakers’ utterances has since been successfully applied to
speaker recognition tasks (e.g. Garcia-Romero and Espy-Wilson, 2011; Machlica,
2012) and has now seen wide-spread use for speaker diarization as well.

Although i-vectors are arguably better suited for the extraction of speaker in-
formation from longer utterances (preferably tens of seconds of speech, as ob-
served by e.g. Hasan et al., 2013), they can also be used for representing shorter
speech segments in speaker diarization.

The theory behind i-vectors stems from factor analysis and the Joint Factor
Analysis (JFA) approach (Kenny, 2005). Bydefining a new low-dimensional space
called the total variability space, the i-vector approach aims at representing each
speaker’s utterance by a single vector of a fixed length.

Following is a brief summary of the i-vector extraction process. A more de-
tailed description can be found in the original paper by Dehak et al. (2011).

The first step of the process consists of extracting a supervector (see previous
section) from a speaker’s utterance. This is done with the use of a large GMM-
based UBM:

The general approach consists of performing maximum a posteriori probabil-
ity (MAP) adaptation to obtain a new GMM for the utterance, based on the UBM.
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The concatenated mean vectors of the adapted GMM then form the supervector.
This process is illustrated in Figure 2.1.

Speech from a
single speaker

Feature
Extraction

MAP
Adaptation

GMM UBM

GMM
Supervector

Figure 2.1: Supervector extraction process.

The i-vector extraction itself is then based on the decomposition of the speaker-
and channel-dependent supervector M via factor analysis into the following com-
ponents:

M = m + Tw , (2.1)

where m is the speaker-independentmean supervector of theUBM, T is a low-rank
rectangular matrix called the total variability matrix, which defines the total vari-
ability space, and w is a vector with standard Gaussian distribution w ∼ N(0, I),
referred to as an i-vector.

The resulting i-vector w has a lower dimension than the original supervector or
a GMM, while containing most of the important information. In some situations,
the dimension can be decreased even further with the use of methods such as the
Principal Component Analysis (PCA) (e.g. Sell and Garcia-Romero, 2014).

Because the MAP adaptation process does not adapt only the speaker-depen-
dent characteristics of the speech, but also information about the channel and
background noise, all of these factors are also present within the resulting i-vector.
To resolve this, one may additionally perform channel compensation using ap-
proaches such as linear discriminant analysis (LDA) and within-class covariance
normalization (WCCN) (Dehak et al., 2011). Alternatively, the use of PLDA as a
distance metric (see section 2.2.2) can also serve a similar purpose.

Though i-vectors remain an important concept, they are now being replaced
in turn by x-vectors and other DNN-based approaches.

2.1.3 DNN-based Speaker Embeddings, x-vectors

Following the success of Deep Neural Networks (DNNs) in many areas of ma-
chine learning, people have naturally started investigating their potential for ex-
tracting speaker-specific information. Initially, this mainly focused on obtaining
short-term bottleneck features (see section 3.3.2), but over the last few years, there
have been several proposed methods which aim to replace i-vectors as the state-
of-the-art speaker representation.

The simplest approach to obtaining such embeddings is very similar to the
aforementioned bottleneck features – training a DNN to discriminate between
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Table 2.1: DNN architecture in the Kaldi implementation of x-vectors, adapted from
(Snyder et al., 2018)

Layer Layer context Total context Input x output
frame1 [t − 2, t + 2] 5 120x512
frame2 t − 2, t, t + 2 9 1536x512
frame3 t − 3, t, t + 3 15 1536x512
frame4 t 15 512x512
frame5 t 15 512x1500

stats pooling [0, T) T 1500Tx3000
segment6 0 T 3000x512
segment7 0 T 512x512
softmax 0 T 512xN

speakers and then removing the last one or more layers. The output of the re-
maining layers then can be used to obtain vector representation.

The most notable example of this is x-vectors (Garcia-Romero et al., 2017; Sny-
der et al., 2018), which are extracted using a feed-forward neural network trained
to classify speakers. They are briefly described in the subsection below.

Other notable examples include the LSTM-based d-vectors (Wan et al., 2018;
Wang et al., 2018) and the work of Song et al. (2018), which combines DNN em-
beddings with triplet loss metric learning.

x-vectors

x-vectors (Garcia-Romero et al., 2017; Snyder et al., 2018) are DNN-based speaker
embeddings which were recently proposed as a direct replacement for i-vectors
for both speaker recognition and speaker diarization. They have been shown to
achieve better results, particularlywhen dealingwith short speech segments (Sny-
der et al., 2017). In the few years since their original introduction, x-vectors have
become the de facto successors to i-vectors as the most popular state of the art
approach.

The x-vector extraction process uses a feed-forward DNN trained for speaker
classification in speech segments of variable length, and in the original version,
the input is given in the form of a sequence of MFCC feature vectors.

The network consists of three blocks of layers: a frame-level time-delay
(TDNN) architecture (Peddinti et al., 2015), followed by a temporal-pooling layer
which obtains long-term speaker characteristics, and a final set of segment-level
layers fromwhich the speaker embeddings can be extracted. The specific number
and size of the layers can vary between implementations. Table 2.1 shows the
architecture proposed in (Snyder et al., 2018).

A more detailed description of x-vectors can be found in (Snyder et al., 2017).
An open-source implementation of x-vector extraction (using the architecture
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described in Table 2.1) is available in the Kaldi1 speech recognition toolkit. This
was also used in the diarization system described in section 9.4 of this thesis.

2.2 Distance Calculation

Among the common diarization approaches which will be introduced in later
chapters, many involve the comparison of a pair of speech segments or their rep-
resentations, in order to decide whether the two segments contain the speech of
the same speaker. Additionally, some other methods similarly compare pairs of
speaker models, most commonly GMMs, which potentially represent the same
speaker, and all of their associated data.

In both cases, the usual approach is to calculate the distance between the pair
of speech segments or models using one of many distance measures which are
suitable for the purpose. This section provides an overview of some of the most
popular metrics which can be usedwith the different forms of speaker representa-
tion which were discussed in section 2.1: section 2.2.1 shows metrics which have
been historically used in GMM-based systems, while section 2.2.2 presents sev-
eral options which are more suitable for use with i-vectors or various other vector-
based speaker embeddings.

2.2.1 GMM-based Distance Metrics

The metrics listed here are mostly used with single Gaussian or GMM represen-
tations of the data. These metrics follow one of two basic principles: they are
either statistics-based distances, which compare the statistics of two sets of data,
and likelihood-based, which evaluate the likelihood of the data according to models
representing it (Anguera, 2007). As GMMs are being replaced by more modern
approaches, these metrics are becoming obsolete. However, they are still relevant
for some of the earlier work in this thesis.

In all subsequent equations, Xi and Xj will refer to two speech segments con-
sisting of Ni and Nj feature vectors, respectively. X = Xi ∪ Xj is the segment of
length N = Ni + Nj, obtained by joining Xi and Xj. L(X, M) denotes the likeli-
hood of X given model M.

Bayesian Information Criterion (BIC)

For a long time, the arguably most wide-spread distance metric in speaker diariz-
ation was based on the calculation of the Bayesian Information Criterion (BIC).

BIC is a likelihood-based model selection criterion, penalized by model com-
plexity. The value of the criterion indicates how well a specific model fits a given
set of data. In order to prevent over-fitting, there is an added penalty term which
is dependent on the number of free parameters in the model.

1https://kaldi-asr.org/

https://kaldi-asr.org/
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For speaker diarization, BIC is usually defined as

BIC(M) = log L(X, M)− λ
1
2

#(M) log N , (2.2)

where #(M) is the number of parameters of model M and λ is a data-dependent
penalty weight.

When comparing two speech segments Xi and Xj in speaker diarization, we
usually calculate the difference ∆ BIC in total BIC value, which would result from
representing X = Xi ∪ Xj with two different models, as opposed to a single one. If
∆ BIC is less than 0, singlemodel representation is preferable (Chen andGopalakr-
ishnan, 1998).2

BIC has historically been very widely used in speaker diarization systems, due
to its relative simplicity and good performance. However, it was shown by Chen
and Gopalakrishnan (1998) that in the speaker change detection task (see sec-
tion 3.5.1), BIC has problems with the detection of very short speaker turns, es-
pecially those under 2 seconds of length. As such, it may not be as suitable for
applications where short speaker turns occur frequently, such as in spontaneous
telephone conversations.

BICwas not used for any of the experimental work in this thesis. However, it is
frequently referenced in the overview of existing diarization systems in chapter 7,
as many of them have used BIC in the past, most commonly for segmentation.

Generalized Likelihood Ratio (GLR)

Generalized Likelihood Ratio (GLR) is another likelihood-basedmetric. Similarly
to ∆BIC, its purpose is to expresswhether a given pair of speech segments is better
represented by a single model or two different ones. This is achieved by comput-
ing the ratio between two hypotheses: Hypothesis H0 says that both segments Xi
and Xj contain the speech of the same speaker and as such, a single model M rep-
resents the data best. Conversely, hypothesis H1 says that the segments belong to
different speakers and are best represented by two different models, Mi and Mj.

GLR is then defined as

GLR(Xi, Xj) =
H0

H1
=

L(Xi ∪ Xj|M)

L(Xi|Mi) · L(Xj|Mj)
. (2.3)

In the above expression, high values of GLR(Xi, Xj) indicate the similarity of
the two speech segments. In order to obtain a distance, the negative logarithm of
the GLR is typically used:

d(Xi, Xj) = − log GLR(Xi, Xj) . (2.4)

In this thesis, GLR is used mainly in the segmentation experiments in sec-
tion 9.3.3.

2There is some inconsistency in the definition of ∆BIC in literature. Some authors, such as
Delacourt and Wellekens (2000), swap the order of comparison of the two alternatives. Values
less than 0 then indicate different speakers.
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Kullback-Leibler Divergence (KL, KL2)

Kullback-Leibler (KL) divergence, also called relative entropy, is a statistics-based
distance measure used to calculate the difference between two probability distri-
butions.

For two random variables Yi and Yj with distributions Pi and Pj, KL divergence
is defined as

KL(Yi, Yj) = Ei(log Pi − log Pj) , (2.5)
where Ei() signifies expectation computed with respect to Pi (Siegler et al., 1997).

In the context of speaker diarization, Pi and Pj can be understood as the under-
lying distributions of the feature vectors belonging to speech segments Xi and Xj,
respectively.

SinceKLdivergence is asymmetrical, a symmetrical variant knownasKL2may
be used, defined by Siegler et al. (1997) as

KL2(Yi, Yj) = KL(Yi, Yj) + KL(Yj, Yi) . (2.6)

Kullback-Leibler divergence does not appear in the experimental part of this
thesis, but it is referenced in the overview of literature.

Cross-Likelihood Ratio (CLR)

Cross-LikelihoodRatio (CLR) is a distancemetricmost commonly used to express
the similarity between two different speaker models which have been obtained by
adapting the same UBM using different sets of data. As the name implies, it is a
likelihood-based metric.

It is defined as (Reynolds et al., 1998)

CLR(Mi, Mj) =
1
Ni

· log
L(Xi|MUBM)

L(Xi|Mj)
+

1
Nj

· log
L(Xj|MUBM)

L(Xj|Mi)
. (2.7)

Here, Mi and Mj are a pair of speakermodels, whichwere both obtained by adapt-
ing the same UBM, MUBM, with data Xi and Xj, respectively.

If we consider only the expression

L(Xi|MUBM)

L(Xi|Mj)
, (2.8)

we are comparing the likelihood of the data Xi given the model Mj with the likeli-
hood of the same data given the original UBM and the following can be observed:

If data Xi and Xj corresponds to the same speaker, the adapted model Mj will
also represent the other set of data, Xi, better than the non-adapted UBM. There-
fore, the resulting value of this expression will be low.

On the other hand, a high value of this expression would indicate that Xi is
better represented by the original UBM than the adapted model Mj, indicating
that there are two different speakers.
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Note: The weak point of this method is the UBM. In order to achieve reliable
results, the UBM needs to represent all speakers in the recording sufficiently well.
If the UBM fits the data Xi very badly, it is possible that any adapted model Mj
will always be better than the UBM, regardless of whether the speakers match.
This would result in a misleadingly low value of the CLR. This is especially likely
to occur if we attempt to use a diarization system with significantly different data
than it was developed for, such as applying a UBM trained purely on broadcast
news data to a telephone speech task.

In this thesis, CLR was used in the GMM-based online diarization system in
section 9.2.1. It or the related NCLR metric (see below) were also used by several
of the systems listed in the literature overview.

Normalized Cross-Likelihood Ratio (NCLR)

Normalized Cross-Likelihood Ratio (NCLR) is a likelihood-based metric closely
related to the previously described CLR. It was first used by Reynolds (1995) for
speaker verification.

The only difference between CLR and NCLR is that compared to Equation 2.7,
L(Xi|MUBM) is replaced by L(Xi|Mi) (and similarly for Xj). In other words, we
are not comparing the two models in question with a speaker-independent UBM,
but rather directly with each other.

The NCLR distance is then obtained as

NCLR(Mi, Mj) =
1
Ni

· log
L(Xi|Mi)

L(Xi|Mj)
+

1
Nj

· log
L(Xj|Mj)

L(Xj|Mi)
, (2.9)

removing the dependence on the UBM.

2.2.2 Distances Between i-Vectors or Speaker Embeddings

One of the advantages shared by i-vectors and various DNN-based approaches is
that as simple vectors of a fixed dimension, they allow the use of very basic meth-
ods for speaker comparison. In contrast to the various likelihood-based distance
metrics which are used with GMMs, one of the most common options here is the
simple cosine distance. This is given by

dC(w1, w2) = 1 −
wT

1 w2

∥w1∥ · ∥w2∥
, (2.10)

where w1 and w2 are vectors representing two speakers or speech segments. Ex-
amples of its use with i-vectors include (Dehak et al., 2011) or (Senoussaoui et al.,
2014).

Much less commonly, Mahalanobis distance is also used for the same purpose.
It is defined as

dM(w1, w2) = (w1 − w2)
TW−1(w1 − w2) . (2.11)
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where W is a covariance matrix of the underlying distribution. In (Larcher et
al., 2012), Mahalanobis distance is used for comparisons between normalized i-
vectors for speaker verification, with W being the within-class covariance matrix
obtained on the development data.

In addition to these simpler metrics, approaches based on probabilistic linear
discriminant analysis (PLDA) have also been proposed for i-vectors (e.g. Garcia-
Romero and Espy-Wilson, 2011). These rely on a further decomposition of the in-
dividual i-vectors into separate speaker-dependent and channel-dependent com-
ponents. While more computationally demanding, this has been shown to out-
perform the more traditional cosine distance on the i-vector clustering task (e.g.
Sell and Garcia-Romero, 2014; Salmun et al., 2016) and has since been used for
x-vectors as well. PLDA is described in more detail below.

Finally, there are also metrics based on neural networks, such as the triplet
loss (Hoffer and Ailon, 2015) approaches used by Le Lan et al. (2017) and Song
et al. (2018) to score i-vectors and DNN embeddings, respectively.

Probabilistic Linear Discriminant Analysis

Probabilistic Linear Discriminant Analysis (PLDA) is a generative probabilitymo-
del originally proposed by Prince and Elder (2007) and Ioffe (2006) for face recog-
nition.

In the context of speech processing, it is commonly applied to i-vectors or a
similar form of speaker representation. PLDA then can serves two purposes: it
further decomposes the i-vectors into separate speaker-dependent and channel-
dependent components and at the same time it also provides a way to measure
the distances between the resulting representations, in the form of a PLDA score
matrix.

There are multiple different variants of PLDA used in speech processing. In
the most commonly used variant, the i-vector w is decomposed into a speaker
factor y and a channel factor x as

w = µ + Vy + Ux + ε (2.12)

where µ is the mean of all the i-vectors in the dataset, ϵ is noise (assumed to be
Gaussian, with P(ε) = N(0, Σ)), and V and U are matrices which represent the
between-speaker and within-speaker variability, respectively. These parameters
are obtained on training data.

In the above equation, µ + Vy represents the speaker dependent part of the
i-vector, and Ux + ε is channel dependent. Vectors x and y are assumed to be
generated by a random distribution, most commonly Gaussian.

Finally, the PLDA scores for each pair of i-vectors are obtained as a log likeli-
hood ratio comparing two hypotheses:

PLDA score(wi, wj) = log
p(wi, wj|Hd)

p(wi|Hs)p(wj|Hs)
(2.13)
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where wi and wj is a pair of i-vectors, Hd is the hypothesis that wi and wj belong to
different speakers, and Hs is the hypothesis that they belong to the same speaker.

A more detailed exploration of i-vectors and PLDA can be found in e.g. the
work of Silovský (2011).



Chapter 3

Offline Speaker Diarization

In the introductory chapter, several of the most common uses for speaker dia-
rization were listed, with the two most important being audio indexing and rich
transcription. In most such applications, the relevant information does not have
to be obtained in real-time. Rather, the audio data in question can be processed
retroactively, once the entire recorded conversation is available. Therefore it is not
surprising that the majority of the world’s research in speaker diarization has so
far been focused on systems which perform this task offline.

As a consequence, there is a large number of different offline approaches in
existence. Online diarization systems, by contrast, are fewer in number and can
generally be considered a special, limited variant of the task. Also, many of the
common approaches used in offline systems cannot be applied to the online task,
although a large portion of the underlying principles can be adapted with some
changes.

For these reasons, it is best to examine these two variants of the diarization
task separately. This chapter will focus solely on the offline approaches. This will
then also serve as the foundation for an overview of online approaches, which
will follow in chapter 4.

This chapter describes the main methods used for offline speaker diarization.
First, the general framework of a typical offline diarization system is introduced,
followedby amore detailed exploration of the individual steps and commonmeth-
ods. The final section presents a short overview of multimodal diarization ap-
proaches.

3.1 General Framework of Offline Diarization
Systems

A large number of different offline diarization systems can be found in literature.
While they employ a wide range of different methods and approaches, the major-
ity of these systems share the same general framework, consisting of a number of
standard steps.

This typical framework is shown in Figure 3.1. It begins with the extraction
of acoustic features from the audio stream and the detection of speech activity.
Following this, the detected speech is split into short segments and then clustered
so that each speaker is represented by a single cluster. Finally, most offline systems
also include a resegmentation step which further refines the boundaries between

15
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Signal enhancement (optional)

Feature extraction

Voice activity detection

Segmentation

Segment representation /
Embedding extraction

Clustering

Resegmentation

labels

Figure 3.1: Typical framework of a step-by-step offline diarization system.

speakers.
Before this standard process, there may also be an optional first step: the ap-

plication of some sort of signal enhancement, such as the suppression of noise
and reverberation. Such techniques are not generally considered a core part of
the diarization pipeline, but they can greatly improve the system’s performance,
especially with audio obtained under adverse conditions.

Typically, the clustering step employs an agglomerative (“bottom-up”) hierar-
chical algorithm, using one of several popular distance metrics to find the closest
pairs of clusters andmerging them. Such systems have traditionally been referred
to as bottom-up systems, as opposed to top-down systems, which use the less pop-
ular divisive (“top-down”) clustering process. However, these are not the only
two options.

It should also be noted that the framework as pictured here is merely the most
basic scheme, which mainly applies to the classic bottom-up systems (which are
still the most common type). However, there are also other approaches which
do not strictly follow this scheme – although the basic concepts remain, in some
systems, certain steps may be combined with others or left out entirely.

For instance, systems utilizing the top-down clustering approachmay not have



3.2. SIGNAL ENHANCEMENT 17

a separate segmentation step. Rather, segmentation and clustering are combined
into a single iterative process, in which a single starting cluster is iteratively split
into individual speaker clusters. Such systems are sometimes referred to as using
an integrated approach, as opposed to the step-by-step approaches which have sepa-
rate segmentation and clustering steps. This terminology was first introduced by
Meignier et al. (2006).

Finally, recently there has been some effort at creating end-to-end neural ar-
chitectures, which would perform all or most of the diarization process within a
single neural network. Thus they do not follow the standard framework shown
in Figure 3.1. One example of this can be found in the work of Horiguchi et al.
(2020). A more detailed examination of such approaches, as well as DNN-based
speaker diarization in general, can be found in the very recent review paper of
Park et al. (2021).

In the following sections, the individual steps of the offline diarization process
will be explored more closely.

3.2 Signal Enhancement

Similarly to other speech processing tasks, diarization can be greatly affected by
audio quality, background noise and other adverse conditions and distortions.
For this reason, it can be beneficial to apply some sort of signal enhancement tech-
niques on the input data before the extraction of audio features.

This most commonly includes the suppression of noise (e.g. Sun et al.,
2018a), dereverberation (i.e. reducing the level of reverberation in the signal, e.g.
Nakatani et al., 2010), or both (e.g. Plchot et al., 2016).

Additionally, acoustic beamforming also falls into this category. Such tech-
niques can be used to take advantage of multi-channel recordings (e.g. from a
microphone array or individual microphones worn by speakers). One such ex-
ample is the widely used acoustic beamforming tool BeamformIt (Anguera et al.,
2007), which extracts time-delay features from multiple sound channels and uses
them to obtain a single enhanced speech signal.

These optional techniques fall out of the scope of this thesis, and so they will
not be examined here in any detail.

3.3 Feature Extraction

The extraction of acoustic features represents one of the first major steps in many
speech processing tasks and the choice of features can have a great effect on the
overall performance of such systems.

In the field of speaker diarization, our main concern is distinguishing between
individual speakers in an audio recording. Thus, the chosen features should con-
tain relevant information characterizing the voice of each speaker. This is very
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similar to the task of speaker recognition and as such, many of the same methods
can be employed.

The options can be divided into two categories: standard “hand-crafted” (or
“hand-engineered”) features, such as the MFCC, and learned features obtained via
deep learning.

3.3.1 Standard Acoustic Features

Some of the most popular feature extraction methods used for speech representa-
tion are the Mel Frequency Cepstral Coefficients (MFCC, Davis and Mermelstein,
1980), Perceptual Linear Prediction (PLP, Hermansky, 1990) and Linear Predic-
tive Coding (LPC, Atal and Hanauer, 1971). Another overview of these methods
can be found in e.g. (Psutka et al., 2006).

In speaker diarization, MFCC is by far the most prevalent method found in
literature. These features are commonly used on their own or in combination
with other, additional information (see section 3.3.2).

By contrast, the other two methods, PLP and LPC, are seen only rarely and
most often in combination with the traditional MFCC, as additional features (e.g.
Gallardo-Antolín et al., 2006). In particular, the use of LPC is generally limited to
the detection of overlapping speech (see chapter 8). However, one rare example
of a mostly PLP-based diarization system can be found in the work of Tranter et al.
(2004).

Another notable example of less commonly used acoustic features are the Lin-
ear Frequency Cepstral Coefficients (LFCCs), a feature set closely related to the
MFCCs. They have been shown to outperformMFCC in speaker recognition tasks
under certain conditions, particularly with female voices (Zhou et al., 2011), but
otherwise remain rather uncommon in literature. An example of their use can be
found in (Fredouille et al., 2009) and they were also used in several of our exper-
iments described in chapter 9 of this thesis.

3.3.2 Additional Features

Although the vastmajority of the diarization systems found in literature use acous-
tic features based on the MFCC, these are occasionally combined with other addi-
tional information.

Besides the previously mentioned LPC and PLP coefficients, this may include
prosodic features (Friedland et al., 2012), short-term i-vectors (Madikeri et al.,
2015), information bottleneck features (Yella and Valente, 2011) or features ob-
tained using deep neural networks (Yella and Stolcke, 2015; McLaren et al., 2015).

In conference meeting diarization, where multiple microphones are routinely
employed, it may also be advantageous to obtain spatial features such as the time
delay between microphones to improve diarization performance. One such ex-
ample is the widely used acoustic beamforming tool BeamformIt (Anguera et al.,
2007), which was previously mentioned in section 3.2.
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3.3.3 DNN-based Features

With the rise of deep neural networks in speech processing, some authors are
starting to abandon the use of traditional hand-crafted features like the MFCC,
and now rely on neural networks to extract relevant information from the signal.
The input of these networks can be in the form of a spectrogram or even the raw
waveform.

Such systems often do not even have an explicit feature extraction step, or it
is merely a byproduct of a more complicated task. One such example is the work
of Miasato Filho et al. (2018), who directly extract speaker embeddings from a
spectrogram.

Similarly, the SincNet neural architecture proposed by Ravanelli and Bengio
(2018) performs end-to-end speaker recognition from raw waveform. However,
the output of the first convolutional layer of this network can also be used as a
form of feature extraction, such as in (Garcia Perera et al., 2020).

3.4 Voice Activity Detection

The second step of most diarization systems is the voice activity detection (VAD),
also known as speech activity detection (SAD). Its goal is to identify regions of
speech in the audio stream.

Traditional VADmethods can be divided into two categories: energy-based and
model-based detection. More recently, there are also DNN-based VAD systems.

Energy-based detection distinguishes between regions of speech and silence
based on short-term energy values. In earlier literature, this involves a decision
process based on an adaptive threshold (e.g. Prasad et al., 2002). Later, an
Expectation-Maximization (EM) approach with two Gaussian components using
log-energy as features also become common (Stafylakis and Katsouros, 2011).

This sort of approach may not be able to perform correctly in the presence of
a high level of noise or frequent changes in noise level. It may also not be able to
distinguish between speech and music very well, making it possibly less suitable
for applications where the presence of music is expected, such as in broadcast
news.

One example of a diarization system which uses energy-based VAD is in the
work of Zheng et al. (2014), who use an energy based 3-state HMM for this pur-
pose.

Besides the energy itself, many approaches also employ other characteristics
of the signal, such as signal-to-noise ratio, periodicity or entropy (Ramirez et al.,
2007).

Model-based detection approaches involve the use of models such as GMMs to
represent speech and non-speech. Depending on the target application, the latter
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category may include silence, various types of noise, as well as music. Individual
frames are then classified into these categories using methods such as the maxi-
mum likelihood criterion.

The model based approach may also be combined with the identification of
speaker gender (e.g.Markov andNakamura, 2007) or bandwidth (e.g.Meignier et
al., 2006), by usingmultiple different models to represent each category of speech
– such as “female speaker + telephone”, “male speaker + wide band”, etc.

DNN-based detection involves the use of a DNN specifically trained to distin-
guish between speech and non-speech. These can have very different architec-
tures, from simple feed-forward networks (e.g. Diez et al., 2018b) to convolutional
neural networks (Thomas et al., 2014; Zelinka, 2018), bidirectional LSTMs (Viñals
et al., 2018a), or convolutional LSTMs (Zazo et al., 2016). Matějů (2020) used a
combination of a feed-forward network and a weighted finite-state transducer.

The input of the networks likewise varies: possible choices include MFCC or
similar acoustic features (Viñals et al., 2018a; Diez et al., 2018b), the log spectrum
(Thomas et al., 2014; Zajíc et al., 2018), or even the raw waveform (Zazo et al.,
2016).

Similarly to themodel-based approaches, such networks can often also be used
to distinguish between speech and various types of noise or music, or even for the
detection of overlapping speech (this topic is covered in chapter 8).

3.5 Segmentation

The segmentation step of speaker diarization aims at dividing the audio recording
into short segments. In the subsequent steps, these segments are merged into
clusters corresponding to the individual speakers. In order for the clustering step
to perform correctly, each segment should ideally only contain the speech of a
single speaker.

Common approaches to the segmentation task can be divided into three
groups with different levels of accuracy and complexity.

• Many systems attempt to detect the exact points where a change of speakers
occurs, so that they can split the audio stream in these places and create
segments containing the speech of only one speaker. Some of the methods
used for this purpose will be explored in section 3.5.1.

• Other systems, mainly those used for situations where overlapped speech is
less likely to occur, such as broadcast news, may rely on segmentation based
on VAD, on the assumption that there is usually a short pause between the
speech of two different speakers. This can be seen for example in (Markov
and Nakamura, 2007).

• Finally, in some cases, the segmentation step consists simply of splitting the
audio into short segments of equal length, possibly in combination with the
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VAD approach. This is often seen in diarization systems intended for tele-
phone speech, which typically has short speaker turns and frequent occur-
rences of overlapping speech, making it difficult to correctly detect speaker
turns. Such systems usually include a resegmentation step (see section 3.7)
in order to refine the speaker boundaries at a later point. One example of
this approach can be found in (Senoussaoui et al., 2014).
This approach has also become more common with the rise of DNN-
based speaker embeddings, many of which have been shown to handle
short speech segments significantly better than i-vectors and other earlier
alternatives (e.g. Snyder et al. (2017) and Patino et al. (2018b)).

In all of the above cases and particularly in the third, the length of the result-
ing segments has a significant influence on the performance of the subsequent
clustering step and with it, on the whole diarization system.

On one hand, longer segments will contain a greater amount of information
about the speakers, which should make the subsequent clustering step easier.
However, there is also an increased chance of a missed change of speakers be-
ing present in the middle of a segment, resulting in segments which contain the
speech of multiple speakers and contaminate the clusters. Such occurrences are
particularly likely when performing segmentation without any speaker change
detection, i.e. in approaches which fall into the second and third groups. In such
situations, it may be preferable that the individual segments are as short as possi-
ble, so that the relative number and influence of these impure segments is limited.

Very short segments, on the other hand, face a different issue: Many of the
common feature extractionmethods, such as cepstral coefficients, are intended for
both speaker- and speech recognition, meaning that the resulting acoustic features
contain information on not only the current speaker, but also the phonetic content
of the speech. This can be problematic during the clustering step of speaker diariz-
ation, as the system may attempt to create clusters based on phonetic similarity,
rather than speaker-dependent characteristics (as observed by e.g. Bozonnet et
al., 2011). This issue is not limited to GMMs – even the popular i-vectors demon-
strably have issues with very small amounts of data (e.g. Kanagasundaram et al.
(2011)).

Thus, we need to strike a balance between these two opposing requirements.
The typical choice in literature is around 2-3 seconds, with 1 second being the
absolute minimum.

Some more recent systems which use i-vectors or DNN embeddings, such as
the one proposed by Sell andGarcia-Romero (2014), resolve the dilemmabyusing
partially overlapping segments – thus increasing the amount of data available for
i-vector extraction, while keeping a higher total number of segments.

Finally, although the ideal goal of segmentation is to obtain segments which
contain only the speech of a single speaker, this may be impossible to achieve
due to overlaps between the speakers. In such a situation we may want to detect
these overlaps so that they can be dealt with separately. This issue is examined in
section 5.2 and in chapter 8.

It should also be repeated here that not all systems have a standalone segmen-
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tation step. As previously mentioned in section 3.1, some of the systems which
utilize a top-down approach obtain segment boundaries during a combined itera-
tive segmentation and clustering process. This will be explored in more detail in
section 3.6.3.

3.5.1 Speaker Change Detection

The purpose of speaker change detection (SCD) is to identify the instances in an
audio stream, where a change of speakers is likely to occur. This often serves as
the basis of the segmentation step of a speaker diarization system.

As with the previous steps of the diarization process, there are the traditional
approaches – in this case using various distance metrics – and newer DNN-based
approaches.

Distance-based Speaker Change Detection

The traditional approach to the problem consists of applying a pair of sliding
windows on the signal and computing the distance between their contents. A
change is detected on the boundary between the twowindows if the distance met-
ric achieves a significant local extreme or, alternatively, as soon as its value exceeds
a fixed threshold. Figure 3.2 offers an illustration of the process.
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Figure 3.2: Speaker change detection. Upper plot illustrates a pair of slidingwindows
going through the signal, resulting in the distances shown in the lower plot (the cor-
responding region is framed). One can see distinct peaks in the distance function at
the locations of speaker changes.

The size of thewindowsmay be fixed, or theymay be gradually increased until
a change is found, at which point the window resets to the original size (e.g. Chen
and Gopalakrishnan, 1998).

Historically, the most popular distance metrics used for this purpose included
BIC, GLR and KL2, all of which were introduced in section 2.2. More recent al-
ternatives include extracting i-vectors (Neri et al., 2017), DNN-based speaker em-
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beddings (Bredin, 2017b) or binary keys (Patino et al., 2017) from each window
and calculating the distance between them.

Different distance metrics may also be combined in order to obtain a two-step
change detection, such as in the case of the DISTBIC method, proposed by Dela-
court and Wellekens (2000) and later modified in (Zochová and Radová, 2005).
In this method, KL2 or GLR distance is used to identify potential speaker change
points, located in significant local maxima. In the second pass, BIC is used to
confirm or reject these points, using the entire neighboring segments for the cal-
culations.

Other examples of the use of two-pass segmentation include (Rouvier et al.,
2013) and (Grašič et al., 2010).

It is also important to note that the distance-based speaker change detection
approach requires the selection of a suitable threshold or a similar parameter with
the same function (such as the penalty weight λ in the case of BIC). This value
is data-dependent and typically must be found experimentally on development
data.

A more detailed exploration of metric-based speaker change detection can be
found in e.g. (Fischerová, 2007).

DNN-based Speaker Change Detection

In more recent works, the traditional distance metrics are sometimes replaced by
a specialized neural network. The main principle is generally very similar to the
above-mentioned metric-based methods – the network evaluates a sliding win-
dow of the conversation, and outputs some sort of distancemeasure or probability
of speaker change.

Examples include the works of Gupta (2015), who uses a feed-forward DNN
for this purpose, Hrúz and Kunešová (2016), where an image processing ap-
proach is used by applying a convolutional network to a spectrogram1, Yin et al.
(2017), who use a bi-directional LSTM network, and Matějů (2020), who used a
combination of a convolutional network and a weighted finite-state transducer.

3.6 Clustering

Following speech segmentation, the next major step of a typical speaker diariza-
tion system performs the clustering of individual speech segments, such that each
resulting cluster corresponds to a single speaker.

Based on the general clustering approach, offline systems have historically
been divided into two categories: bottom-up or top-down, corresponding to the ag-
glomerative and divisive hierarchical schemes (e.g. Tranter and Reynolds, 2006;
Anguera et al., 2012). Of these two options, agglomerative approaches are sig-
nificantly more common, to the point where the term top-down rarely appears in

1This is described in more detail in section 9.3.3
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recent literature. However, there are also other possibilities which do not fit either
of these labels.

3.6.1 Segment Representation / Embedding Extraction

Before the individual speech segments can be clustered, it is necessary to obtain
some sort of practical representation of the relevant speaker-dependent data.

While older GMM-based systems typically work directly with the variable-
length sequences of feature vectors, most modern approaches aim to represent
each individual segment as a single vector of fixed length. This can take the form
of i-vectors, x-vectors, binary keys, or various DNN-based embeddings.

The specifics of these forms of speaker representation and the process of ob-
taining them have already been discussed in section 2.1, so the topic will not be
revisited here. Instead, the next sections will present the different clustering ap-
proaches which can be find in literature.

3.6.2 Agglomerative (Bottom-up) Clustering

The bottom-up category refers to systemswhich use the agglomerative hierarchical
clustering (AHC) scheme, which is still the most popular choice found in litera-
ture.

In this approach, each speech segment first represents an individual cluster.
These are then progressively merged based on the closest distance between pairs
of clusters. The process typically ends when the minimum distance exceeds a
fixed threshold or a target number of clusters is reached.

In older systems, the individual clusters are typically represented by GMMs,
which are trained on the data from the given cluster. Similarly to the previously
detailed process of speaker change detection, the distance between clusters is then
usually calculated using one of the distance metrics presented in section 2.2, such
as BIC (e.g. Rouvier et al., 2013), CLR or NCLR.

More recent works have switched from GMMs to vector-based speaker rep-
resentation, in the form of i-vectors, binary keys, or x-vectors and various other
DNN-based speaker embeddings (see section 2.1 for details). In this approach,
each segment produces a single vector representing the speaker. These can then
be easily clustered using simplermethods, such as the cosine distance, used by e.g.
Senoussaoui et al. (2014). Alternatively, many recent systems use PLDA scoring
(e.g. Silovský (2011), Sell and Garcia-Romero (2014) and many others).

Finally, a small number of authors have very recently proposed agglomerative
clustering algorithms based on deep learning. Two such works were published
by Aronowitz et al. (2020), who use a neural network for scoring the distances be-
tween clusters, and Singh andGanapathy (2020), whopresented a self-supervised
clustering framework which also learns speaker embeddings.
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3.6.3 Top-down Clustering

Top-down clustering approaches are significantly less common in literature than
the previously described bottom-up approaches.

The top-down clustering process starts with a single cluster containing all of
the speech segments. This represents unlabeled speech. In each clustering step,
we first select a suitable unlabeled speech segment from this cluster, forming a
new speaker cluster. Then, the entire speech is reclassified into the currently ex-
isting clusters (including the original one). Typically, the individual clusters are
represented by GMMswhich are updated at the end of each step. (Anguera et al.,
2012)

It is common for such approaches to use HMMs to model the transitions be-
tween individual speakers, with Viterbi realignment being applied for reclassifica-
tion. This allows the system to identify the speaker boundaries and makes a prior
standalone segmentation step largely unnecessary. In (Meignier et al., 2006), only
a gender and bandwidth detection is performed as an initial segmentation.

Examples of top-down systems include (Meignier et al., 2006) and (Fredouille
et al., 2009).

3.6.4 Other Approaches

Besides the bottom-up and top-down approaches, there are also other clustering
techniques which can be used for speaker diarization and do not fall into either
of these categories. This section presents a very brief overview of some notable
examples.

• In the special case where the number of speakers is known in advance
(such as in most telephone speech) or can be estimated by other means, one
may simply use k-means clustering instead of AHC (e.g. Shum et al. (2011),
Wang et al. (2018), Zajíc et al. (2018)). There also exists a variation of the
k-means algorithm, called “X-means” (Pelleg and Moore, 2000), which is
capable of estimating the number of speakers automatically and was used
by e.g. Dimitriadis and Fousek (2017).

• One approach, known as the Information Bottleneck (IB), is based on an in-
formation-theoretic framework. It tries to find apartition of the audio stream
which “maximizes the mutual information between observations and vari-
ables relevant for the problem while minimizing the distortion between ob-
servations” (Vijayasenan et al., 2009).

• In (Rouvier and Meignier, 2012) and (Broux et al., 2018), authors search a
globally optimal solution to the clustering task by presenting it as an Integer
Linear Programming (ILP) problem.

• The spectral clustering algorithm (Ng et al., 2001) has been successfully used
for speaker diarization by multiple authors, including Ning et al. (2006),
Shum et al. (2012), Wang et al. (2018), and Park et al. (2019a). The main
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principle of spectral clustering lies in constructing an affinity matrix from
the data (e.g. i-vectors) and then using k-means clustering based on the
eigenvectors of the affinity matrix.

• Kounadis-Bastian (Kounades-Bastian et al., 2017; Kounadis-Bastian, 2017)
proposed a method which combines multichannel source separation and
speaker diarization.

• Finally, Valente and Wellekens (2006) proposed a diarization approach
based on Variational Bayes (VB). This principle has since been expanded by
others (e.g. Kenny, 2008), most notably into the Bayesian HMM (VB-HMM)
approach (Diez et al., 2018a). It has also become popular as a form of reseg-
mentation or final refinement following the more traditional segmentation
and clustering steps (see section 3.7).

3.7 Resegmentation

Most offline diarization systems include a resegmentation step in the final pro-
cessing stages. The goal is to refine speaker boundaries after an initial labeling
has been obtained. This is particularly important in cases where the initial seg-
mentation step does not include speaker change detection (see section 3.5) as the
segment boundaries do not properly correspond to the speaker turn points.

Typically, resegmentation is an iterative process. Following themain clustering
step of the diarization system, the obtained segment labels are used to create a new
model for each cluster, trained on all of the relevant data. Thesemodels then serve
to reclassify the entire conversation, most commonly using the Viterbi algorithm
(e.g. Kenny et al., 2010) or frame-by-frame, with subsequent smoothing (e.g. Zajíc
et al., 2016). The whole process may be repeated a set number of times or until
convergence is reached.

Alternatively, as mentioned in section 3.6, diarization approaches based on
Variational Bayes (including VB-HMM) have also become relatively popular as a
form of resegmentation (e.g. Kenny et al., 2010; Sell and Garcia-Romero, 2015).
Here, one may also view the traditional segmentation and clustering steps as
merely the initialization of a VB diarization system (e.g. Diez et al., 2018b).

3.8 Multimodal Speaker Diarization

In recent years, an increasing amount of research has been dedicated to multi-
modal diarization techniques, which combine information from the audio and
video modalities in order to perform the diarization of audio-visual recordings.

When available, a video recording can offer a significant amount of additional
information compared to mere audio. Multimodal systems such as the ones pre-
sented by Noulas et al. (2012), Bredin and Gelly (2016), or Kapsouras et al. (2017)
employ face tracking techniques, often together with lip-movement detection, in
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order to identify themost likely current speaker in the videomodality. By combin-
ing this information with the traditional audio diarization methods, an improved
performance can be obtained compared to an audio-only system (e.g. Campr et
al., 2014; Ramos-Muguerza et al., 2018).

Multimodal diarization techniques are outside the scope of this thesis and are
acknowledged here only in the interest of completeness. The rest of this thesis will
focus exclusively on methods which are limited to the audio modality.
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Chapter 4

Online Speaker Diarization

Following the overview of offline diarization approaches, which was presented in
the previous chapter, this chapter will focus on online speaker diarization.

Online diarization can be considered a special limited case of the speaker dia-
rization task, in which the system is required to process an incoming audio stream
in a sequential manner and to output the corresponding labels in real-time.

While many common applications of speaker diarization do not have this re-
quirement, there are other potential uses for which online processing is necessary.
This includes possibilities such as HCI and HRI, as well as any other situations
in which the information obtained by speaker diarization is intended to be used
by other real-time systems, such as one which performs automatic speech recog-
nition (ASR).

The online task is more difficult than offline diarization, because the system
needs to make decisions based on incomplete data and in a limited amount of
time. Additionally, these restrictions mean that many of the popular methods
and approaches which have proved successful for offline diarization, such as hier-
archical clustering or resegmentation (see Figure 3.1), cannot be employed here.
As a consequence, online systems generally exhibit worse performance compared
to those which operate offline. This can also be observed in the overview of recent
diarization systems which will be presented in section 7.2.

This chapter contains an overview of the main differences between offline and
online diarization and the additional challenges posed by the latter. This is fol-
lowed by a review of the four main groups of approaches found in literature.

4.1 Additional Challenges of Online Diarization

As stated in the introduction of this chapter, online diarization systems face addi-
tional challenges and restrictions compared to those which perform speaker dia-
rization in an offline manner. These challenges include limited resources, particu-
larly with regards to available data and processing time, as well as the unsuitabil-
ity of certain types of otherwise popular approaches. This section will focus on
the former aspect, while the latter will be explored later in the chapter.

29
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4.1.1 Limited Data

The main characteristic of online diarization is that an incoming audio stream is
processed sequentially, as it is being received by the system. This is a significant
difference from offline diarization, in which the entire conversation is recorded in
advance and is available at the start of the diarization process.

This sequential processing means that the decisions at any given time have
to be based only on previous data, as the system does not have access to future
information.

This limitation is particularly significant at the beginning of an audio stream.
There, the amount of available data is very small, which makes correct decision-
makingdifficult and the system can be expected tomake a higher number of errors.
These may in turn negatively influence the rest of the diarization process, further
degrading the performance of the system.

In order to minimize the above-mentioned issue, it is very important that on-
line systems are properly initialized, such as by training the system on a very sim-
ilar set of data, or by making use of prior information about speakers. This matter
will be further explored in section 5.3.

4.1.2 Processing Time

Another significant restriction which applies to online diarization systems relates
to the processing time. Specifically, the systemmust by necessity be able to process
the audio stream faster than real time, in order to keep up with the incoming data.

Among other things, this limits the degree to which previous data can be used
in the processing of a new speech segment. Particularly in longer recordings, there
may not be enough time to revisit the entirety of the previously labeled speech in
any way (such as for comparison with the new segment), so the system needs to
be able to work with more simplified representations of the individual speakers.

A similar limitation applies to the complexity of the used methods. For exam-
ple, it may often be possible to improve the performance of offline systems to some
degree by e.g. increasing the complexity of speaker models at the cost of computa-
tion speed. However, in online systems, which are subject to the aforementioned
time constraints, the possibilities of such improvements are significantlymore lim-
ited.

4.1.3 System Latency

Besides the overall processing speed, online diarization systems are typically also
bound by requirements regarding latency, meaning the delay between the input
audio stream and the system’s corresponding output.

While this delay cannot be completely avoided, mainly due to the reasons be-
low, it is usually required to be as short as possible. This is particularly important
in situations where the information about speaker turns, which is provided by the
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diarization system, is intended to be immediately used for other time-sensitive
purposes, such as in an ASR system.

System latency is essentially determined by two factors. The main source of
latency is the amount of “future” data needed for a decision. Similarly to the of-
fline segmentationmethods whichwere discussed in section 3.5, an online system
requires a certain amount of further data after a potential speaker change point, in
order to detect this event and to be able to determine the correct label for the new
speaker. As with offline segmentation, the exact amount of necessary data de-
pends on the used methods, but usually, at least 1-3 seconds of speech are needed
for a reasonably reliable result.

Note: The above does not necessarily mean that the individual speech seg-
ments are limited in length. It is also possible to determine the speaker based on
only the first few seconds of an utterance, even before it is finished. This approach
is used by e.g. Markov and Nakamura (2007).

The second factorwhich is relevant to the system’s latency is the time needed to
process the aforementioned minimum amount of data and to assign a correct label
to it – such as by extracting a speaker embedding and comparing it to existing
clusters. Such processing can occur after this interval is obtained in its entirety,
directly adding to the delay given by its length, or it may be possible to perform
some of the necessary calculations, such as likelihood computation, on a frame-
by-frame basis as the data is received, thus reducing the added delay.

When listing the latency of a system, authors typically only include the first
factor - the amount of data required for decisions. The second factor, processing
time, largely depends on the computational abilities of the specific device which
runs the system.

Typically, the target latency of the online diarization systems found in litera-
ture ranges between 1 and 5 seconds, as can also be seen in an overview of recent
online systems which is presented in Table 7.8 on page 65. Shorter values are
usually not achievable without significantly compromising the accuracy of the re-
sults (e.g. Soldi et al., 2015), while longer delays may be impractical for real-time
applications.

4.2 Online Diarization Framework

Due to the previously stated additional requirements present in online diariza-
tion, the typical structure of online systems differs from the offline framework
presented in Figure 3.1 in multiple points, although the majority of the basic steps
still apply and can remain relatively similar.

First of all, an online system needs to perform all the individual steps on a
segment-by-segment basis. This is different from offline systems, where the in-
dividual steps are typically performed consecutively, each starting only after the
previous one is finished on the entirety of the data.

The second important difference, which has already been mentioned, lies in
the fact that some of the techniques used in offline systems are unsuitable for on-
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Signal enhancement (optional)

Feature extraction

Voice activity detection

Segmentation

Segment representation /
Embedding extraction

Clustering

labels

a single segment

Figure 4.1: The typical framework of an online diarization system. The main differ-
ences from the offline framework shown in Figure 4.1 are the absence of a resegmen-
tation step, as well as the sequential nature of the process, here signified by the back
arrow.

line processing. This reflects in significant changes in the clustering process, as
well as the complete absence of a resegmentation step.

If we use the previously explored offline framework as a baseline, the online
variants of the individual steps will be subject to some changes and limitations
compared to the descriptions in chapter 3. The main differences are as follows:

• The feature extraction and voice activity detection steps both need to be per-
formed in an online, left-to-right manner. However, otherwise they do not
usually significantly differ from the aforementioned offline versions, which
were described in sections 3.3 and 3.4, respectively, and as such, will not be
revisited here. The same also applies to the optional signal enhancement step.

• The segmentation step can be likewise relatively similar to the approaches
used in offline systems (described in section 3.5). However, the lack of fu-
ture data is a limiting factor in the case of segmentation using distance-based
speaker change detection (presented in section 3.5.1) or, to a lesser extent,
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segmentation based on VAD, as they both require access to a certain amount
of data past a possible segment boundary. This can also play an important
role in the system latency, as discussed in section 4.1.3.
In particular, this means that if speaker change detection is desired, it may
be preferable to use a simple threshold-based approach (in which a change
of speakers is found at the first point where the criterion exceeds a set value),
rather than the alternative of searching for local extremes, which is common
in offline systems, but would require a much greater delay.

• Segment representation / embedding extraction is essentially unaffected, asmost
approaches already function on a segment-by-segment basis.

• For the clustering of speech segments, we cannot use hierarchical approaches,
which are typical in offline systems, as they require access to the entire audio
recording at once. Instead, sequential clustering algorithms are typically
utilized, allowing the system to make decisions on a segment-by-segment
basis. This will be explored in more detail in section 4.3.

• Finally, as previously noted, it is likewise not possible to employ resegmenta-
tion in order to refine speaker boundaries (see section 3.7), as all decisions
must be made in real-time and are final and unchangeable in the context of
the online application.
This restriction means that proper segmentation becomes even more critical
and it is highly important that the boundaries between individual segments
correspond to the actual speaker change points as accurately as possible.

4.3 Online Diarization Approaches

The previous section presented a brief summary of the main changes between the
typical structure of offline and online systems. This will now be followed by a
more detailed exploration of the specific methods which appear in current litera-
ture.

Because of the historically lower need for online processing in most common
applications of speaker diarization, there has been relatively little interest in this
area until recently. As a consequence, there have also been significantly fewer rele-
vant publications compared to those focused at offline diarization. Additionally, a
large portion of the existing literature targets specific conditions which involve ad-
ditional assumptions or sources of information, rather than focusing on the most
general form of the diarization task.

Based on the presence of these additional assumptions and the general ap-
proaches used, most of the systems found in literature can be divided into several
groups:

• Themost general approaches, which alsomost closely follow the framework
presented in section 4.2, typically involve the use of sequential clusteringwith
an unknown number of speakers.
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• A number of authors simplify the task by assuming that the models of all
speakers are obtained in advance. This essentially transforms the diarization
problem into one of speaker identification.

• With sufficient processing power, one may employ hybrid online-offline dia-
rization. Such systems use very fast offline algorithms to periodically revisit
past data and improve online decisions.

• Finally, a number of systems rely heavily on additional sources of information
such as microphone arrays or cameras, in order to determine which individ-
uals are currently speaking.

As these main groups significantly differ, they will be explored individually
in the following sections.

4.3.1 Sequential Clustering with Unknown Speakers

Section 3.6 presented a number of different clustering approaches which can be
employed by offline diarization systems, the most common being AHC. However,
while these methods have proved successful on the offline task, they are unsuit-
able for use in online systems, as their use generally requires access to the entirety
of the data at the beginning of the diarization process. For this reason, online
systems have to rely on other approaches.

Of the common solutions, the perhaps most generally applicable one involves
the use of sequential clustering methods with an unknown number of clusters.
In this approach, the individual speech segments, obtained by splitting the audio
stream, are processed in a chronological order, with each of them being either
assigned to an existing cluster or used to create a new one, as illustrated in Fig-
ure 4.2.

The implementation details can differ, but the basic clustering process typically
proceeds as follows (Liu and Kubala, 2004):

• At the beginning of the diarization process, there are usually no existing
clusters, although it is often possible to use previously obtained data for ini-
tialization. If no such initial clusters are used, the first cluster will be created
from the first speech segment.

• Then, for each new segment Xi, the systemmust decide whether Xi belongs
to

a) one of the already known speakers, which are represented by N previ-
ously created clusters C1, . . . , CN, or

b) an entirely new speaker.

For this, the system will usually first find the cluster Cj which is the closest
to Xi according to a specific criterion, such as one of the distance metrics
introduced in section 2.2.
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Figure 4.2: Sequential clustering with an unknown number of speakers.

Then it is necessary to decide if the distance between Xi and Cj is such that
Xi and Cj are likely to represent the same speaker. This is often decidedwith
the use of a preselected threshold, found on development data.

– If Xi is believed to belong to Cj, Xi is labeled as the j-th speaker and Cj
is updated.

– Otherwise, Xi is used to create a new cluster CN+1.

Following the terminology used by Markov and Nakamura (2007), the
above decision will be also referred to as novelty detection.

• After updating the correct cluster, the system obtains the next speech seg-
ment and the above step is repeated. This continues until the end of the
audio stream.

The most critical part of the clustering process lies in the novelty detection.
The system must be capable of correctly deciding whether a given speech seg-
ment belongs to the most similar speaker or whether it represents an entirely new
one. An incorrect decision in either direction, particularly in the beginning of the
audio stream, can have a significant effect on all future decisions and as such, can
drastically reduce the overall performance of the system:

If a new cluster is created erroneously, there will be multiple competing clus-
ters for the same speaker and future speech segments of this speakersmay be split
between them, creating the illusion of changing speakers. Conversely, if the first
occurrence of a previously unseen speaker is mistakenly assigned to an existing
cluster, the corresponding two speakers may remain merged and the system will
be unable to distinguish between them.

Such issues will be examined more closely in chapter 5.
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In older systems, the individual clusters are typically represented by GMMs.
The updating of the clusters then consists of either the creation of a new GMM
(this would, however, be rather computationally intensive), or of its update us-
ing e.g. MAP adaptation. Alternatively, if one uses i-vectors or a similar form of
segment representation, then clusters can simply consist of a gradually expanding
set of individual vectors.

Examples of online diarization systems which employ the sequential cluster-
ing approach with GMM-based cluster models include the works of Markov and
Nakamura (2007, 2008), Geiger et al. (2010), Soldi et al. (2015) and Oku et al.
(2012). Additionally, Grašič et al. (2010) also employ GMMs, albeit in a slightly
different manner.

• Markov and Nakamura (2007, 2008) propose a GMM-based online system
which starts with no speakers and iteratively creates new speaker models as
time progresses, by adapting one of a pair of universal models (male and
female) using an incremental EM algorithm. The system’s segmentation
step is entirely VAD-based with no maximum segment length, but in order
to lower the latency, clustering decisions are based on only the beginning
part of a segment, with the entire segment being used for updating models.
This system also served as the basis for the experimental implementation
described in section 9.2 and a detailed description of the altered system can
be found there.

• Similar approaches were also chosen by Geiger et al. (2010) and Soldi et al.
(2015). The main difference compared to the former system is in the use of
MAP for GMM adaptation as opposed to the incremental EM algorithm.

• Grašič et al. (2010) describe a diarization system largely based on the use of
the Normalized Cross-Likelihood Ratio (NCLR, see section 2.2.1) for both
segmentation and clustering. Speech segments are obtained using a speaker
change detection algorithm combining the BIC and NCLR metrics, as well
as a special normalization technique, which includes a comparison with ref-
erence points and a window length dependent decision threshold.
Unlike themajority of the systems described in this section, this one does not
use simplified models such as GMMs to represent the individual clusters.
Instead, a small subset of each speaker’s assigned segments is kept as-is and
is used for comparison between each new segment and the clusters, using
the NCLR distance metric as a criterion.

• Oku et al. (2012) suggest an approach which incorporates phoneme recog-
nition. A phoneme recognizer is used to find the boundaries between pho-
nemes and to classify feature vectors into two classes: vowels and conso-
nants. Only the phoneme boundaries are considered as potential speaker
change points and both speaker change detection and speaker clustering are
based on the use BIC, using models consisting of two Gaussian components
– one for each phoneme class.

It is worth noting that all of the above systems employed aUBM trained specifi-
cally on very similar data as their evaluation set, withmost using a different subset
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of the exact same corpus. This raises the question of whether such systems can
generalize or if they have be trained for a specific purpose.

More recently, several authors have proposed online systems based on
i-vectors or neural speaker embeddings.

• One example of an i-vector based online diarization system was presented
by Zhu and Pelecanos (2016) Their system, which is based on the work of
Shum et al. (2013), extends the latter’s offline approach to online diariza-
tion by introducing an adapted i-vector transform which is applied to all
observed i-vectors when processing every new segment. This allows them
to better discriminate between segments of different speakers as the length
of the conversation increases. Although limited in its restriction of the prob-
lem to only two speakers, the paper nevertheless offered a novel approach
with a potential for future improvements.

• Patino et al. (2018b) likewise employ i-vectors, with sequential clustering
based on cosine distance.

• Wang et al. (2018) developed a new online clustering algorithm called links
clustering (published as Mansfield et al., 2018) and then used it in combina-
tion with either i-vectors or LSTM-based speaker embeddings (d-vectors).
The links clustering approachmodels individual speakers as clusters consist-
ing of multiple smaller subclusters. The algorithm estimates the probability
distributions of individual clusters and subclusters based on the currently
available vectors. These estimates are used to classify new incoming vec-
tors and are updated after each new one. While the assignment of vectors
to subclusters is permanent, the subclusters themselves can be merged or
reassigned to a different cluster.

• Zhang et al. (2019) built upon the aforementioned system by proposing
a new DNN-based clustering approach, using what they call unbounded
interleaved-state recurrent neural network (UIS-RNN). In this system, different
speakers are represented by different RNN states.

• Ghahabi and Fischer (2019) proposed so-called speaker-corrupted embeddings.
These are extracted by a DNN fromUBM supervectors which had been “cor-
rupted” by data from other speakers. This is meant to improve the general-
ization power of the network. The resulting speaker embeddings are then
clustered using a simple sequential algorithm with cosine similarity.

• Finally, von Neumann et al. (2019) presented an unusual system which per-
forms diarization via source separation. A recurrent neural network pro-
cesses the audio stream in blocks of 2.5 seconds, and iteratively separates
each block into multiple signals corresponding to individual speakers. The
system tracks speaker identities between blocks, thus acting similarly to
sequential clustering and providing speaker diarization which can handle
overlapping speech.
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4.3.2 Speaker Identification Approaches

A number of diarization systems bypass the issue of novelty detection by assum-
ing that the models of all speakers are obtained in advance, essentially transform-
ing the diarization problem into one of speaker identification. In some circum-
stances, such as meetings with known participants, this may be a reasonable as-
sumption, though the approach generally fails in the presence of one or more
unexpected additional speakers.

Unlike the sequential clustering approaches which were in the previous sec-
tion, the systems found here do not entirely follow the basic online framework
which was presented in section 4.2, although much of the process remains simi-
lar.

An example of this approach can be seen in the system proposed by Vinyals
and Friedland (2008) (later also described by Friedland et al., 2012). This system
requires one minute of speech from each of the participants to be recorded prior
to a meeting, in order to construct a GMM for each speaker. Alternatively, it is
possible to use models obtained from a more traditional offline diarization of an
earlier meeting with the same participants.

The online system itself then performs speaker identification by calculating the
likelihoods of individual frames against each GMM and applying majority voting
over a window of 2.5 seconds. The models themselves remain unchanged during
this process.

Similarly, Soldi et al. (2016) propose a “semi-supervised” system partly based
on their earlier work (Soldi et al., 2015) which used the sequential clustering ap-
proach. In this newer system, all speakers are assumed to be known a priori, but
only a very small amount of speech (as little as 3 seconds) from each is required in
advance. This small amount is used to construct initial speaker models, which are
then incrementally adapted using MAP adaptation during the online diarization
process.

The clear weakness of the two above approaches lies in the inability to cor-
rectly identify unexpected speakers whose models were not obtained in advance.
This could be potentially mitigated by various methods of “unknown speaker de-
tection”, although such attempts may also lead to a significant number of false
alarms. For instance, according to the authors of (Friedland et al., 2012), all such
experiments “decreased [the] total score significantly on the development set.”

4.3.3 Hybrid Online-Offline Approaches

As the performance of modern computers increases and fast GPU-based compu-
tation becomes more common, it is possible to process larger amounts of data or
perform more computationally demanding calculations in relatively short time.
In regards to speaker diarization, this not only enables the use of more compli-
cated algorithms and more complex models, but also means that simpler offline
diarization systems can now operate at a very small fraction of real time. For in-
stance, Friedland (2012) reported a real-time factor of 0.004 in a GPU-optimised
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system.
Such high speed allows the creation of hybrid online-offline systems which

continuously perform offline diarization of previously seen data and use the re-
sulting information to improve the decision process of the online component.

One of the earliest examples is the system proposed by Vaquero et al. (2010),
which combines speaker-identification-based online diarization with standard
bottom-up clustering. The system consists of two subsystems running in parallel:

• One subsystem constantly performs offline bottom-up diarization on all
available data up to the current time.
It starts with the first 60 seconds of the audio stream and every time the pro-
cess is completed, it is initiated again with the addition of the data obtained
in the meantime. Meanwhile, the resulting labels are remapped to ensure
consistency with previous iterations and sent to the online subsystem.

• The second subsystem performs speaker identification in a similar way to
the system of Vinyals and Friedland (2008) which was previously described
in section 4.3.2. However, instead of using an unchanged set of speakermod-
els for the entire duration, themodels are adapted every time the offline sub-
system outputs a new set of labels. This way, the speaker models gradually
improve and new speakers can be discovered during the diarization process,
albeit with a delay.

As the amount of available data increases, so does the accuracy of the offline
subsystem, but also the time between updates. This means that in very long con-
versations, it can take a long time for the online subsystem to start correctly iden-
tifying a late appearing speaker. However, this effect can be mitigated by limiting
the amount of data used by the offline subsystem to only the most recent X sec-
onds, such as in (Friedland, 2012) and (Dimitriadis and Fousek, 2017).

Naturally, the offline subsystem needs to be very fast and simple, and should
not require any significant recalculations when adding more data. A simple AHC
clustering of i-vectors (or similar vector-based representations) makes a suitable
choice, as these only need to be extracted once and, as discussed in section 2.2.2,
allow for very fast clustering. This option was used by the above-mentioned Dim-
itriadis and Fousek (2017).

In this thesis, the hybrid diarization concept will also be briefly explored. The
relevant experiment will be presented in section 9.3.5.

4.3.4 Multimodal Approaches

A number of systems rely on additional sources of information, such as micro-
phone arrays or cameras, in order to determine which individuals are currently
speaking. In the context of online diarization, such setups are particularly com-
mon in systems intended for HCI and HRI applications.
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As it was already stated in the analogous section 3.8 that multimodal tech-
niques are out of scope of this report, following will be only a very brief overview
of several notable examples.

In one interesting and unusual example, Minotto et al. (2015) propose a multi-
modal system which performs speaker diarization purely by means of face track-
ing and signal source localization, with no voice comparison being performed.
The system employs a microphone array, a color camera and a depth sensor and
is capable of determining the spatial location and voice activity of up to three si-
multaneous speakers in a human-computer interaction scenario.

In another system, Gebre et al. (2014a) similarly perform speaker and signer
diarization solely on the basis of movement, working on the assumption that
speech and gesticulation are highly correlated. In a subsequent paper (Gebre et
al., 2014b), this was extended by also adding more traditional acoustic modeling.

Finally, Ito et al. (2018) suggest an online diarization algorithmwhich is based
purely on estimated direction of arrival of each source signal, obtained via a mi-
crophone array.

Other notable online systems include the works of Noulas and Krose (2007),
who combine acoustic information with face tracking, and Schmalenstroeer et al.
(2009), who also add amicrophone array, in order to track the location of speakers
within a room. More recently, Gebru et al. (2017) employed visual and spatial
tracking using a camera and a pair of microphones.



Chapter 5

Main Issues in Speaker Diarization

Despite the large amount of research that has been dedicated to speaker diariz-
ation, there are still multiple problematic areas and restrictions which have not
been fully resolved or are difficult to deal with. This chapter explores a few of
such issues.

During the early stages of work on this thesis, three different issues were iden-
tified as important obstacles to speaker diarization: very short speaker turns, over-
lapping speech, and the problem of initialization in an online diarization system.
The first two of them apply to the diarization task in general, while the last one is
specific to online diarization.

Besides these three topics which are examined below, diarization performance
can also be significantly negatively affected by poor audio quality – including
background noise, reverberation, channel distortions and other similar effects.
However, this is a problem shared by all speech processing tasks, and not spe-
cific to speaker diarization.

5.1 Very Short Speaker Turns

One of the common obstacles which can significantly degrade the performance of
a diarization system is the presence of very short speaker turns. This can be very
difficult to detect and also poses problems during segmentation and clustering.

Background:

Most of the diarization approaches which were introduced in chapters 3 and 4
involved splitting the audio stream into short segments of speech and merging
these into clusters corresponding to the individual speakers.

In section 3.5, it was also stated that in order to achieve the best results dur-
ing the clustering process, these individual segments must be sufficiently long, so
that they contain an adequate amount of information about the speakers. This en-
sures that segments are clustered based on the speakers themselves, and not the
phonetic content.

Based on the results reported in literature, it appears that in the absence of
short speaker turns, the ideal segment length for GMM-based systems is at least
2–3 seconds. With shorter segments, system performance tends to significantly

41



42 CHAPTER 5. MAIN ISSUES IN SPEAKER DIARIZATION

degrade, as shown for example by Soldi et al. (2015) and Markov and Nakamura
(2007). Speaker recognition studies have also shown that many other forms of
speaker representation, including the popular i-vectors, have issues with very
short utterances (e.g. Kanagasundaram et al. (2011)).

A similar requirement also applies to the speaker change detection methods
presented in section 3.5.1, which attempt to identify the points where speakers
change by calculating the distance between a pair of sliding windows. Here, too,
it is important to have a sufficient amount of data in order to obtain an accurate re-
sult, and the recommendedwindow length is similar. For traditional GMM-based
distance metrics it typically ranges between 1–5 seconds (Tranter and Reynolds,
2006).

The Problem:

In ideal circumstances, the above-mentioned length of 2–3 seconds is sufficient for
both the length of the speaker change detectionwindows and the speech segments
themselves. However, it proves problematic in the presence of very short speaker
turns.

When working with spontaneous speech, particularly in the case of telephone
conversations, one may frequently encounter one-word utterances such as “Yes”,
“Hello” or “Maybe”. These can be spoken very quickly, leading to speaker turns
which are shorter than one second.

172.5 173 173.5 174 174.5 175 175.5 176 176.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

sliding windows

"[...] I talked to Kristen though 
when I was home."

Speaker 1

"yeah?"

Speaker 2
"yeah. She seems to be 
 doing well. [...]"

Speaker 1

time [s]

Figure 5.1: Illustration of an attempted distance-based speaker change detection with
very short speaker turns, shown on an excerpt from the CALLHOME American En-
glish corpus of telephone speech (Canavan et al., 1997). The length of the two win-
dows used here is 1.5 s, while the utterance of Speaker 2 (“yeah?”) is only 0.55 s long,
making it difficult to detect the two changes of speakers with this setup.

In Figure 5.1, we can see this issue illustrated on an example from the CALL-
HOME corpus of telephone speech. The illustration shows an attempt to perform
speaker change detection using a pair of windowswhich are both 1.5 s long. How-
ever, the utterance of Speaker 2 (“yeah?”) is only 0.55 s long and we can make the
following observations:
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a) At any given position in the surrounding area, both of the windows will
contain mostly the speech of Speaker 1.

b) While moving the sliding windows over the signal, there is a relatively long
interval in which the entirety of the second speaker’s utterance lies within
a single window and the amounts of speech from each speaker within each
window are constant.

As a consequence, we can expect that the resulting distance between the con-
tents of the two windows will likely remain relatively low, with a slightly in-
creased value over a larger area, rather than a single distinct peak at the boundary
between speakers. This, in turn, makes it significantly more difficult to detect the
presence and locations of both change points.

Similarly, even if we were to correctly locate the two points, the resulting
speech segment would be too short to reliably cluster.

Possible Improvements and Workarounds:

Because of situations such as the one described above, diarization systems which
focus on telephone speech and other natural conversational data, where such oc-
currences are most common, often forgo speaker change detection altogether. In-
stead, they often simply split the audio stream into short segments of equal length,
compensating for the inaccurate segment boundaries by performing a resegmen-
tation step at a later point (e.g. Senoussaoui et al., 2014; Sell and Garcia-Romero,
2015). In (Zajíc et al., 2016), we confirmed this to be a reasonable solution in this
context, as also shown in section 9.3.3 of this thesis. However, this method of
compensation is not available to online systems.

In either case, there is also still the problem of obtaining accurate representa-
tions of speakers from these short segments, so that the system can cluster them
correctly.

• One idea pursued by several authors is the use of phone-based normaliza-
tion for lowering the variability of very short utterances, and thus allowing
the use of shorter segments.
Bozonnet et al. (2011), for instance, have observed that the linguistic con-
tent of speech has a significant influence on the performance of bottom-up
clustering, as such a systemmay attempt to cluster short segments based on
phonetic similarity, rather than speaker-dependent characteristics.
Following this observation, in a subsequent work (Bozonnet et al., 2012)
they propose a process for suppressing the phonetic variability, by train-
ing a set of transforms used for phone-dependent normalization of acoustic
features. They refer to this process as Phone Adaptive Training (PAT) and
show that it improves the performance of their diarization system. In a later
paper by Soldi et al. (2014), this approach is also expanded to i-vector based
speaker recognition.
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Similarly, Larcher et al. (2012) explore the possibility of improving the accu-
racy of i-vector based speaker verification in utterances under 3 s of length
by applying phonetic-content-dependent i-vector normalization.

• Alternatively, the authors of some i-vector or x-vector based systems, such
as Sell and Garcia-Romero (2014), employ partially overlapping segments
– thus achieving a higher density of segmentation while keeping more in-
formation in each segment. This was also used in the system described in
section 9.3 of this thesis.

• Finally, whilemany forms of speaker representation, including the popular i-
vectors, demonstrably have issues with small amounts of data (e.g. Kanaga-
sundaram et al. (2011)), DNN-based speaker embeddings such as x-vectors
have been shown to be more resilient in this regard (e.g. Snyder et al. (2017)
and Patino et al. (2018b)) and can allow for finer segmentation. One notable
example is in the work of Wang et al. (2018), who use a maximum segment
length of 400 ms in their LSTM-based system.

5.2 Overlapping Speech

A second potential issue often faced during speaker diarization is the presence
of overlapping speech, i.e. intervals in which multiple speakers are talking simul-
taneously. This frequently occurs in spontaneous conversations, where speakers
may regularly interrupt each other or interject short utterances while the original
speaker keeps talking.

Such occurrences are generally very difficult to detect or correctly label, yet
they can have a significant negative effect on the performance of a diarization
system. Besides contributing to missed speech rate (see section 7.1), incorrectly
labeled overlapping speech can also contaminate the models of individual speak-
ers, decreasing the overall system performance. Alternatively, such segmentsmay
end up being assigned to a separate cluster, leading to the system mistakenly cre-
ating an additional “speaker”.

Currently, many of the diarization systems found in literature still ignore the
issue of overlapping speech altogether. Among the rest, some merely detect its
presence in order to exclude such segments from the clustering process. Correctly
identifying the exact speakers present in the overlapped regions is amore difficult
task.

The detection of overlapping speech was chosen as one of the focus areas of
this thesis, so a more detailed exploration of the topic can be found in chapter 8.

5.3 Initialization of Online Diarization

The last issue explored in this chapter is limited to online speaker diarization.
More specifically, it deals with the lack of available data at the beginning of the
diarization process, as alluded to in section 4.1.1.
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Assuming that the speakers are not known in advance, the arguably most dif-
ficult part of online diarization concerns the detection of new speakers. Given
a new speech segment, we need to decide whether it contains the speech of one
of the speakers we have previously encountered, or whether it is an entirely new
speaker. This is a non-trivial task in any situation, but is especially challenging at
the very beginning of the audio stream when only the first speaker is known and
their model is based on very limited data.

Similarly, if the system performs distance-based speaker change detection, this
process itself can also involve a decision threshold which needs to be chosen cor-
rectly.

When faced with a new speech segment or a potential speaker change point,
we then have to ask the question “Does this part seem different because there’s a
change of speakers, or is it only because of a slight change in tone or background?”.
With no basis for comparison, this may be extremely difficult to answer correctly.

There are, in essence, three possible approaches to this issue:
The one chosen by the authors of the systems described in section 4.3.2 is to

obtain a model of each speaker in advance, thus completely circumventing the
problem. However, this has its own drawbacks and is often simply not possible.

A second, very common option is to obtain a set of development data that is
very similar to what the system is intended for. This can be used to set all relevant
parameters such as decision thresholds to appropriate values. Such an approach
works best if the development datawere recordedunder the exact same conditions
as used by the live system (e.g. previous meetings in the same room and with the
same microphones, previous episodes of a specific TV broadcast, etc.), but failing
that, at least a similar type of recording is required.

Finally, if neither of these options are available, one may have to resort to a
long initialization period at the start of the diarization process. During this time,
the systemwill not provide speaker labels, but merely gather information in order
to adapt to the specific data at hand. For instance, one may perform offline diariz-
ation on the first several minutes of a conversation in order to obtain the models
of some of the speakers and to adjust the decision threshold for novelty detection.
After this, the system can continue in an online manner.

The hybrid online-offline systems which were described in section 4.3.3 could
also be considered an example of such an initialization - they perform offline dia-
rization of past data and use the results for improving future online decisions.
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Chapter 6

Main Goals of the Thesis

The introductory chapter of this thesis listed the following points as the initial
aims of the research:

• Survey existing speaker diarization methods – both offline and online

• Identify some of the main challenges and obstacles in speaker diarization

• Create an overview of previous results found in literature, comparing the
reported performance of individual systems

• Implement some of the described methods in a new diarization system and
propose new methods or improvements

• Address one or more of the previously identified challenges

The first two points have already been covered by chapters 3 and 4, which pre-
sented an overview of different offline and online speaker diarization approaches,
and chapter 5, which listed three problematic areaswhichwere discovered during
early stages of research – namely, very short speaker turns, overlapping speech,
and the issue of initialization in an online diarization system.

With this background, it is now possible to solidify the rest of this initial frame-
work into the specific goals of the thesis and their motivation.

Motivation and Goals of the Thesis

The diarization approaches presented in the previous chapters were divided into
two main groups: offline and online. Offline systems process data retroactively,
after an entire conversation has been obtained. Online systems, by contrast, oper-
ate in a sequential manner, typically processing an audio stream in real-time.

In the past, most of the research on speaker diarization has concentrated on
offline approaches. While not rare, online systems are comparatively fewer in lit-
erature, likely due to the additional challenges posed within and the historically
relatively low demand for applications which require real-time output.

However, this is slowly changing now. With increasing interest in real-time
information extraction, voice-controlled devices and other forms of human-
computer interaction, online speaker diarization is becoming more relevant and
is starting to attract more attention than before.
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One specific motivation for further research of online speaker diarization is
also its potential use in automatic subtitling of television broadcasts. The informa-
tion about changes of speakers, which is provided by a diarization system, could
be used to improve the performance of a real-time ASR system, such as by al-
lowing such a system to switch between different acoustic models when speakers
change.

Finally, when the work in this thesis was first started, a significant majority of
the existing online diarization systems was still based on the use of the traditional
GMMs – a stark difference from offline diarization, where there already existed
a greater variety of approaches, including the vastly popular i-vectors, as well as
other less wide-spread options. Though the situation has since improved, online
diarization still remains behind.

Given all of the above, it was decided in the initial thesis report (Kunešová,
2017) that some of the future work would go specifically towards online diariza-
tion, and particularly towards applying some of the more modern methods, such
as i-vectors, to the task.

Yet at the same time, offline approaches are still in higher demand and orga-
nized evaluation campaigns and challenges likewise focus mostly on this topic.
During the course of the doctoral study, participation in several collaborative
projects lead to work on a variety of different tasks, including the development
of both online and offline diarization. Thus, they are covered in this thesis in
equal measure.

The above-mentioned thesis report also suggested a number of different op-
tions as the possible directions of further research. However, the field of speaker
diarization has significantly evolved in the intervening time, and the state of the
art has changed. It was therefore necessary to modify and update the original
plans, as well as limit them to a smaller number of viable research directions.

For instance, the issue of very short speaker turns, which was one of the chal-
lenges discussed in chapter 5, seems to have lost much of its importance, as the
newest state-of-the-art systems already appear to handle them relatively well. On
the other hand, overlapping speech is still as problematic as ever, and represents
a promising avenue of research.

In the end, based on the information which was presented in the previous
chapters and the recent developments in the field, the final focus of the thesis is
twofold: firstly, improving speaker diarization in general (both online and offline)
and secondly, detecting overlapping speech, which is very relevant for diarization.

• Speaker diarization remains the primary topic of the thesis. In this regard,
the main goal is to first implement a working diarization system based on
existing methods, and then to propose further improvements.
The specific methods concentrate on the most common scenario of single-
channel speech with no additional sources of information (i.e. excluding
multi-modal approaches).
Between the needs of collaborative projects and independent research, as
well as the rapidly evolving field of speaker diarization, several different ap-
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proaches were explored: from GMMs, to i-vectors, and eventually x-vectors.
Additionally, equal attention was given to both online and offline speaker
diarization. To take advantage of this, a hybrid approach is also examined –
one which employs offline methods in an online system. Such an approach
also helps to address the issue of initialization in online diarization, which
was one of the challenges discussed in chapter 5.
At the time the research was first started, i-vectors were the newest state of
the art, and thus they became the focus of several of the experiments de-
scribed in this thesis. Including, as originally planned, an i-vector based
online diarization system. In the intervening time, the field has progressed
to x-vectors and similar DNN embeddings, but in order to avoid switching
in the middle of work, the experiments in this thesis have mostly contin-
ued using i-vectors. Nevertheless, x-vectors were eventually utilized as well,
during work on the DIHARD Speaker Diarization Challenge, which will be
covered in section 9.4.

• Overlapping speech is another one of the obstacles of speaker diarization
which were discussed in chapter 5. It was found to have a significant effect
on the performance of a diarization system, and as such, its detection was
selected as the secondary focus of the thesis, alongside diarization itself.
In regards to overlap detection, the main objective was to propose a single
functional overlap detector oriented towards improving speaker diarization.
In pursuit of this goal, it also became necessary to construct a new custom
dataset for the training of this overlap detector.

Finally, besides the experiments and new or improvedmethods, the thesis also
aims to provide an extensive overview of existing systems, with focus on compar-
ing their reported performance.

This will be covered in chapter 7, which presents comparisons of many recent
diarization systems and their reported results. A similar comparison of selected
systems for detection of overlapping speech can be found in chapter 8.
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Chapter 7

Evaluation of Speaker Diarization

The goal of this chapter is to provide an extensive comparison of existing diariz-
ation systems in regards to their reported performance. To facilitate this, the first
section describes the standard evaluation metric which is most commonly used
for this purpose, the Diarization Error Rate.

7.1 Diarization Error Rate

In order to evaluate the results of speaker diarization and compare the perfor-
mance of different systems on a given set of testing data, a metric called Diariza-
tion Error Rate (DER) has been introduced by the National Institute of Standards
and Technology (NIST). It was first used for their Rich Transcription evalua-
tions (NIST, 2009) and now represents the de facto standard evaluation metric
for speaker diarization systems.

DER ismeasured as the fraction of speaker time that is not correctly assigned to
a speaker. It can be calculated using a script provided by NIST (md-eval.pl1), or
using other implementations such the pyannote.metrics toolkit2 (Bredin, 2017a).

The script first finds an optimal one-to-one mapping between the reference
speaker IDs and the system output. The speech file is then split into segments at
all speaker change points, including both reference and system labels.

DER itself is defined by NIST (2009) as

ErrorSpkrSeg =

∑
all segments

{dur(seg) · (max(NRef(seg), NSys(seg))− NCorrect(seg))}

∑
all segments

{dur(seg) · NRef(seg)}
,

(7.1)
where for each segment seg,
dur(seg) is the duration of seg,
NRef(seg) is the number of reference speakers in seg,
NSys(seg) is the number of “system speakers” (i.e. the clusters created by the sys-
tem) in seg,
NCorrect(seg) is the number of correctly matched speakers in seg.

1Part of the Speech Recognition Scoring Toolkit (SCTK), NIST (2018),
Available from: https://github.com/usnistgov/SCTK
2Available from: https://pyannote.github.io
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DER can also be expressed as the sumof three types of error rates: missed speech
(which includes both speech incorrectly labeled as silence and missing speakers
in segments with overlapping speech), false alarm (silence incorrectly labeled as
speech, or excess speakers), and speaker error (SER) or (speaker) confusion rate
(speech labeled as the wrong speaker), all calculated as a percentage of total
speaker time.

Customarily, a forgiveness collar of 0.25 seconds is used around the reference
speaker boundaries, in order to account for inconsistent annotation of speech and
the difficulty of pinpointing the exact point when speech starts or ends.

By the original definition stated here, segments containing overlapping speech
are counted multiple times, once for each speaker. In practice, however, these seg-
ments are sometimes excluded from the evaluation in systemswhich do not detect
such occurrences, particularly in the case of those aimed at telephone speech (e.g.,
Sell and Garcia-Romero, 2014; Senoussaoui et al., 2014).

7.1.1 Other Evaluation Metrics

Besides DER, diarization performance can also be evaluated in terms of purity
and coverage. These measures essentially express how well the individual speech
frames are clustered between the reference speakers.

Purity measures how homogeneous the clusters are - a low value indicates
that created clusters contain the speech of multiple speakers. Coverage expresses
whether the speech of a specific speaker is fully contained within a single cluster
(coverage = 100%), or split between multiple.

In the context of agglomerative clustering, high purity and low coverage
would indicate that the clustering was stopped too early and the results are still
too fractured. Low purity and high coverage would indicate the opposite.

With minor modifications, these measures can also be used to evaluate only
the segmentation step of a diarization system.

Two different ways to calculate these measures appear in literature:

• In the pyannote.metrics evaluation toolkit, Bredin (2017a) defines the pu-
rity of a single cluster as the ratio between the number of frames which be-
long to the most common reference speaker in the cluster and the total num-
ber of frames in the cluster. Similarly, for one reference speaker, coverage is
calculated as the ratio between the number of the speaker’s frames in his/her
most commonly assigned cluster and the total number of frames belonging
to the speaker.
The overall purity and coverage are then obtained as

purity(S, R) =
∑k maxj |sk ∩ rj|

∑k |sk|
(7.2)

and
coverage(S, R) =

∑j maxk |sk ∩ rj|
∑j |rj|

(7.3)
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where S = {s1, . . . , sK} is the set of clusters found by the system and R =
{r1, . . . , rJ} corresponds to the reference speakers (notation based on Man-
ning et al., 2008, p. 357).

• Earlier works, such as (Gauvain et al., 1998; Ajmera et al., 2002; Kotti et
al., 2008) defined cluster purity and coverage differently. Using the same
notation as above, they can be expressed as

avg. cluster purity(S, R) =
1
N ∑

k
∑

j

|sk ∩ rj|2

|sk|
(7.4)

and

avg. cluster coverage(S, R) =
1
N ∑

j
∑
k

|sk ∩ rj|2

|rj|
(7.5)

where N is the total number of speech frames.

There are two main differences between these two versions of purity and cov-
erage. First, the pyannote.metrics version can handle overlapping speech, while
the second version’s definition assumes that each speech frame belongs to only a
single reference speaker.

Secondly, when calculating purity, Equation 7.2 only considers the most com-
mon speaker for each cluster, while Equation 7.4 counts all the speakers. Thus,
the resulting values will be different. The difference in calculating coverage is
analogous.

Purity and coverage were mainly used for evaluation in older systems, before
the popularization of DER. In most recent publications, speaker diarization is
evaluated solely on the basis of DER or its components. For this reason, purity
and coverage are not listed in the overview of state of the art in this chapter, nor
used for evaluating the experiments in chapter 9.

7.2 Overview of the State of the Art

This section presents a comparison of the reported performance of the diarization
systems published in the last decade. Offline systems are grouped by domain:
telephone speech, conference meetings, and radio or television broadcasts, with a
separate table focusing on the results of the recent DIHARD diarization challenge.
Online systems, which are considerably fewer, are listed in a single table at the
end.

Note: For the most part, the listed error rates of individual systems should not
be directly compared with each other, as they were often obtained under different
evaluation conditions or even on different subsets of the same corpus. The only
exceptions are where the results come from an official evaluation campaign, such
as the DIHARD Challenge in Table 7.6.
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7.2.1 Telephone Speech

In telephone speech diarization, the traditional evaluation dataset is the CALL-
HOME corpus, amultilingual corpus of spontaneous telephone conversations. Ta-
ble 7.1 shows an overview of some of the most notable offline systems which have
been evaluated on this corpus or its parts.

While the CALLHOME corpus itself includes conversations between up to 7
speakers, some systems are explicitly limited to 2-speaker conversations only. For
this reason, the results are presented here in two columns: one for error rates
reported for the 2-speaker scenario and the other for those achieved with variable
number of speakers.

Additionally, some systems used the so-called “NIST SRE 2000 CALLHOME”
(LDC2001S97, disk 8), which includes 6 different languages, while others were
limited to different subsets of the corpus, such as only the American English
recordings (Canavan et al., 1997).

Table 7.1: Comparison of recent diarization systems aimed at telephone speech, list-
ing results on the CALLHOME corpus or its parts. Unless otherwise stated, all sys-
tems ignored regions of overlapping speech during evaluation and the errors were
computed with oracle VAD – therefore the values essentially represent only the
speaker error component of DER. With the exception of [6], [8], [9] and [12], all
systems are strictly offline.

Error [%]

Sys. Description 2 speakers any number

[1] speaker factors + eigenvoices; VAD & overlaps un-
specified

8.7(a) 13.7(b)

[2]
i-vectors + spectral clustering

a) known number of speakers 5.2(c) 8.9(c)

b) estimated number of speakers 13.9(c) 14.4(c)

[3] i-vectors + PCA + iterative optimization 14.6(c) 14.5(b,c)

[4] i-vectors + normalization + PCA, unspecified VAD 7.5 12.1(b)

[5] i-vectors with DNN UBM 4.7 10.3

[6] a) i-vectors + normalization, 2 speakers only, online 3.2(d)
N/Ab) above system, offline 2.1(d)

[7] DNN speaker embeddings → AHC – 12.8
+ VB resegmentation – 9.9

[8]
ASR → speaker change detection between words,
i-vec+WCCN → online X-means clustering

(SER / DER)(e)
4.86 / 16.23 4.82 / 16.24

+ retroactive label updates 3.02 / 14.39 3.24 / 14.66
(continued on the next page)
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Table 7.1: (continued)

Error [%]
Sys. Description 2 speakers any number

[9]

CALLHOME Am. Eng., performed VAD (SER) (SER / DER)
i-vectors, spectral clustering (offline) – 14.59 / 20.54
i-vectors, “links” clustering (online) – 25.40 / 31.36
d-vectors, spectral clustering (offline) 5.97 6.03 / 12.48
d-vectors, “links” clustering (online) – 11.02 / 17.47
entire CALLHOME – d-vectors, spectral – 12.0 / 18.8

[10] baseline: i-vectors + PLDA – 17.6
triplet network speaker embeddings – 12.7

[11]
Bayesian HMM & VB, random init. – 12.0

random init. x5 – 9.0
i-vector/PLDA & VB, AHC init. (baseline) – 9.7

[12]
system from [9] + updated d-vectors extraction (SER)
spectral clustering (offline) – 8.8
UIS-RNN clustering (online) – 7.6

[13]

Bi-directional LSTM, spectral clustering
a) i-vectors + LSTM + spect. cl. – 8.53
b) x-vectors + LSTM + spect. cl. – 7.73
c) weighted sum of a), b) – 6.63

[14] CALLHOME Am. Eng., VAD, ASR; overlaps unspeci-
fied

(SER / DER)

x-vectors + word embeddings from ASR→ spect.
clust. with word-level speaker turn probabilities

1.73 / 6.03 2.9 / 6.97

[15] End-to-endDNN system: MFCC→ speaker labels; in-
cludes VAD and overlapping speech

8.50 15.29

[16]

x-vectors + PLDA, AHC; Kaldi VAD? (implied) – 8.00
x-vectors → deep self-supervised AHC clustering – 8.26
fusion system – 7.38

[1] Castaldo et al. (2008)
[2] Shum et al. (2012)
[3] Shum et al. (2013)
[4] Senoussaoui et al. (2014)
[5] Sell et al. (2015)
[6] Zhu and Pelecanos (2016)
[7] Garcia-Romero et al. (2017)
[8] Dimitriadis and Fousek (2017)
[9] Wang et al. (2018)
[10] Song et al. (2018)
[11] Diez et al. (2018a)
[12] Zhang et al. (2019)
[13] Lin et al. (2019)

[14] Park et al. (2019a)
[15] Horiguchi et al. (2020)
[16] Singh and Ganapathy (2020)
a “Segmentation error” obtained with NIST’s script

seg_scoring.v2.1.pl (https://www.nist.gov/document/
segscr-v21tgz)

b Value reported in (Sell et al., 2015)
c Estimated from plots separated by number of speakers,

total err. was calculated as a weighted average, based on
the number of files in each group

d Sys. directly uses ref. transcripts for segmentation
e System performs VAD with a relatively high miss rate

(∼ 11% miss, ∼ 0.5% FA). Overlaps not mentioned.

It should be noted that the error rates shown in this table do not represent the
DER as defined by NIST, but more closely resemble only the speaker error com-
ponent. In telephone speech diarization, or at least on the CALLHOME corpus,

https://www.nist.gov/document/segscr-v21tgz
https://www.nist.gov/document/segscr-v21tgz


56 CHAPTER 7. EVALUATION OF SPEAKER DIARIZATION

it appears to be an accepted practice to make certain changes in the evaluation
procedure. Namely, the voice activity detection step is customarily replaced by
information taken directly from reference transcripts, presumably to prevent the
choice of VAD algorithm from influencing the performance of the rest of the sys-
tem. Additionally, regions of overlapping speech are typically excluded during
the final calculation of a system’s error rate. This differs from the systems listed
in the later sections of this chapter, most of which use the standard definition of
DER, as described in section 7.1.

Additionally, the resulting error rate is not entirely equivalent to the speaker
error (SER) of a system with a proper VAD – in such systems, a high miss rate
may mean that the most problematic regions are excluded, making the rest easier
to correctly process.

Besides the achieved error rates, Table 7.1 also summarizes the basic methods
employed by each system. One may notice that the majority of these systems em-
ploy i-vectors (or, in one case, the closely related speaker factors), but the most
recent works have replaced this with DNN-based speaker embeddings.

7.2.2 Meeting Data

For the conference meetings scenario, the best-known evaluation data come from
the Rich Transcription (RT) Evaluations3, which were organized by NIST, most
recently in 2009. Table 7.2 presents an overview of some of the diarization systems
which were evaluated on the RT datasets, and their achieved results.

The RT meeting datasets contain recordings obtained with the use of multiple
microphones (typically several distant microphones, microphone arrays and indi-
vidual head microphones worn by the speakers) and the official evaluation tasks
included several options with different input configurations. Where available, ta-
ble Table 7.2 lists the results corresponding to the two most common options: the
multiple distant microphones (MDM) and single distant microphone (SDM) sce-
narios.

While the systems listed in the table used a wide range of approaches, they all
share a common aspect: for the MDM scenario, all systems employed the Beam-
formIt toolkit (Anguera et al., 2007), an acoustic beamforming tool which can be
used to transform multiple input channels into a single enhanced speech signal.
Additionally, with the sole exception of (Bozonnet et al., 2010), all MDM systems
also used time difference of arrival (TDOA) as additional features.

From the listed error rates, one may observe that the MDM systems consis-
tently score better than their SDM counterparts. This shows that when available,
the additional information obtained frommultiple sound sources is helpful in im-
proving diarization performance.

Outside of organized evaluations, some more recent publications have listed
results on another notable dataset – the AMI Meeting Corpus. These are shown
in Table 7.3. The AMI corpus was also used for some of the experiments shown in

3Rich Transcription Evaluation,
https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation

https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation
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this thesis, and a more detailed description is included in section 9.1.3. The listed
results on the AMI corpus may not be directly comparable with each other, as
different authors appear to use different subsets of the corpus or different audio
channels (recorded via distantmicrophones or individual headsets) and there are
also multiple different sets of reference transcripts in existence.

Table 7.2: Comparison of offline diarization systems for conference meetings, evalu-
ated on NIST RT datasets under MDM or SDM conditions. In addition to the listed
methods, all MDM systems also performed beamforming with the use of the Beam-
formIt toolkit and with the sole exception of [6], all employed time delay features.
Results marked with a cross in the “Overlaps scored” column correspond to error
rates calculated without regions of overlapping speech.
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[1]
RT-07 Results from multiple evaluation participants 7 3 11.6

3 3 7.5

RT-09 Results from multiple evaluation participants 7 3 17.7
3 3 10.1

[2] RT-09 BIC-based bottom-up clustering 7 3 29.0
3 3 21.5

[3] RT-09

Viterbi-based initialization (30 clusters), then bottom-up
clustering, resegmentation

7 3 16.0
7 7 10.7

Quantized TDOA → 9 initial clusters, then bottom-up
clustering, resegmentation

3 3 9.2
3 7 3.8

[4] RT-09 Fundamental freq. est., BIC-based bottom-up clust. 3 3 21.4

[5] RT-09 Ergodic HMM/GMM, BIC-based top-down clustering 7 3 34.5
3 3 32.0

[6] RT-09 Evolutive HMM (top-down approach)

7 3 21.1
7 7 16.0
3 3 20.3
3 7 15.2

[7] RT-09 BIC-based bottom-up clustering with added prosodic
features

7 3 31.3
3 3 17.2

[8] RT-06 i-Vectors + information bottleneck 3 3 20.4(a)

RT-09 3 3 21.3(a)

[1] NIST Rich Transcription Evaluations participants
Values represent the average of the best results for each recorded meeting among four evalua-
tion participants, compiled by Anguera et al. (2012)

[2] Huijbregts et al. (2009)
[3] Nguyen et al. (2009)
[4] Pardo et al. (2009)
[5] Luque and Hernando (2009)

[6] Bozonnet et al. (2010)
[7] Friedland et al. (2012)
[8] Madikeri et al. (2015)
a Reported value is only the Speaker Error Rate.
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Table 7.3: Comparison of diarization systems for conference meetings, evaluated on
theAMICorpus or its parts. Individual systemsmay have been evaluated on different
subsets of the corpus or using slightly different ground-truth references.
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[1]
AMI (IS) BIC-based AHC

3 3
30.7

+ HMM-based overlap detector (see [1] in Table 8.1) 29.2

AMI (all) BIC-based AHC
7 3

32.8
+ HMM overlap detector 32.0
+ oracle overlap detection 23.7

[2] AMI (IS) GPU version of system [7] in Table 7.2
3 3

32.1
+ online: offline process performed every 2.5 s 32.0

[3] AMI uniform initialization into 20-55 clusters → Viterbi →
BIC-based AHC, + HMM overlap detection 3 3

22.8

+ real VAD 29.6

[4] AMI online: i-vectors + sequential clustering with a threshold 7 ? 34.2

[5] AMI

ref. VAD, i-vec. + PLDA, AHC, no reseg.
a) single distant microphone 7 7 12.8
b) multiple distant microphones 3 7 7.6
c) headset mix (single channel) 7 7 4.8

[6] AMI

ref. VAD, Viterbi segmentation → BIC or i-vec clustering
a) base GMM/BIC system (MFCC only)

7 ? 24.0
b) i-vectors + PLDA – MFCC only 23.0
c) i-vectors + PLDA – MFCC + long-term features 18.2

[7] AMI

LSTM overlap detection, overlap-aware VB-HMM resegmentation
baseline (no VB resegmentation)

7 3

29.7
+ VB-HMM resegmentation 28.9
+ overlap assignment 23.8

[8] AMI SincNet features → x-vectors → compositional speaker
embeddings for identifying speakers in overlaps 7 3

26.0

+ a dedicated overlap detector 22.9

[9] AMI

overlap detection, overlap-aware clustering, combination
of multiple systems (DOVER-Lap method)

a) VB-HMM, top two speakers assigned in overlaps

7 3

21.5
b) overlap-aware spectral clustering (Raj et al., 2020a) 23.6
c) region proposal networks (Huang et al., 2020) 25.5
combined outputs - DOVER-Lap approach 20.5

[1] Boakye et al. (2008b)
[3] Zelenák et al. (2012)
[5] Maciejewski et al. (2018)
[7] Bullock et al. (2020)
[8] Li and Whitehill (2020)

[2] Friedland (2012)
[4] Patino et al. (2018b); overlap scoring not explicitly mentioned
[6] Zewoudie et al. (2018); best scores among all feature

combinations; overlap scoring not explicitly mentioned
[9] Raj et al. (2020b)
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7.2.3 Radio and Television Broadcast

For the broadcast news domain, there have been several evaluation campaigns.
Someof themost notable ones include the ESTER2 (Galliano et al., 2009), REPERE
(Galibert and Kahn, 2013) and ETAPE (Galibert et al., 2014) campaigns, all of
which focused on French-language radio or television broadcasts.

Specifically, the ESTER 2 dataset contains radio broadcast news and debates,
the REPERE dataset consists of television news and debates and the ETAPE
dataset includes television news, debates and entertainment shows, as well as
various radio shows.

Table 7.4 shows an overview of some of the diarization systems which were
evaluated on these datasets, including official evaluation results. However, some
of the latter appear to have only been made public in an anonymized form, and as
such, the full specifications of the participating systems are not available. Never-
theless, the achieved error rates can serve for comparison with the other systems.

The Albayzin series of speech evaluations has also included speaker diariza-
tion tasks, most recently in 2018 as the “IberSpeech-RTVE 2018Challenge” (Lleida
et al., 2019). The 2018 challenge dataset contained a variety of Spanish language
TV broadcasts by the Spanish Television (RTVE). The official results of participat-
ing teams are shown in Table 7.5.

Table 7.4: Comparison of recent offline diarization systems aimed at TV broadcast,
evaluated on the datasets from three different French evaluation campaigns. Included
are also official evaluation results, most of which are available only in anonymized
form, without system details.
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[1] ESTER 2

Official evaluation results (details not specified):
Team IRIT 14.0
Team LIA 15.1
Team LIG 10.9
Team LIMSI 12.4
Team LIUM (the same system as [4]) 10.8

[2] REPERE

Official evaluation results (anonymized):
Team “A” 13.7
Team “B” 13.4
Team “C” (most likely the same system as [4]) 11.1

[3] ETAPE Official evaluation results – all 7 participants 15.61–28.70(a)

[4]

ESTER 2 BIC-based clustering, resegmentation, followed by
CLR-based clustering

10.8
ETAPE 18.9

REPERE BIC-based clustering, resegmentation, then ILP +
i-vector clustering

11.1
ETAPE 18.5

(continued on the next page)
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Table 7.4: (continued)
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[5] ESTER 2
a) CLR-based agglomerative clustering 9.6
b) Gaussian supervectors + SVM classifiers 12.5
c) combination of both above approaches 8.3

[6] ETAPE Exploiting similarities between different episodes of the
same show + LIUM diarization toolkit ([4])

16.2

[7] ETAPE a) initial BIC-based clustering, then iterative recluster-
ing + resegmentation

23.8

b) above system + overlap detection 17.6

[8] REPERE binary keys 15.2

[9]

(Custom A) best baseline: i-vectors → PLDA or cosine distance →
AHC or Connected Components (CC) clustering

8.5
(Custom B) 9.9

(Custom A) i-vectors → triplet network embeddings → CC
clustering

7.9
(Custom B) 9.6

[10]
ESTER 2 S4D Speaker Diarization Toolkit: Gaussian divergence

+ BIC segmentation; BIC + AHC or i-vectors + ILP;
HMM/Viterbi resegmentation

6.2
ETAPE 15.6
REPERE 9.2

[11] ETAPE

almost fully RNN-based system: LSTM VAD, SCD,
speaker embeddings and resegmentation

a) clustering: AHC 28.5
b) clustering: Affinity Propagation 24.2

baseline: S4D Toolkit (see [10]) 24.5

[1] ESTER 2 Evaluation participants (Galliano et al., 2009)
[2] REPERE Evaluation participants (Galibert and Kahn, 2013)
[3] ETAPE Evaluation participants (Galibert et al., 2014)
[4] LIUM_SpkDiarization Toolkit (Rouvier et al., 2013), results adapted from Meignier et al.

(2013)
[5] Le et al. (2010)
[6] Khemiri et al. (2013)
[7] Charlet et al. (2013)
[8] Delgado et al. (2015)
[9] Le Lan et al. (2017), Data = custom mix of REPERE, ETAPE and ESTER
[10] Broux et al. (2018)
[11] Yin et al. (2018), evaluated without a collar and including overlapping regions
a Results reported in the paper were anonymized and no system details were specified. Most

participants provided multiple submissions – the listed range corresponds to the best scoring
system configuration from each participant.
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Table 7.5: Comparison of diarization systems participating in the Albayzin 2018
Evaluation / IberSpeech-RTVE 2018 Challenge. Column “Closed-set?” indicates if
systems competed in the closed-set category (trained using only specific challenge-
provided data) or open-set category (external training data were allowed). Listed
DER represents the final results on the evaluation set, as published in the official pa-
per (Lleida et al., 2019)

Sy
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m
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am

D
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cr
ip
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n
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os

ed
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t?
D
ER

[%
]

[1] G1-GTM-UVIGO x-vectors, two-stage segmentation and “Chinese
Whispers” clustering, music detection

7 11.4

[2] G11-ODESSA

C1c: uniform seg., binary key + AHC 3 30.2
C2c: BiLSTM SCD, triplet-loss embeddings, affinity
propagation clustering

3 37.6

fusion: C1c + C2c 3 26.6

C1o: uniform seg., x-vectors + AHC 7 20.3
C2o: BiLSTM SCD, triplet-loss embeddings + AHC 7 36.7
fusion: C1o + C2o + C1c 7 25.9

[3] G20-STAR-LAB DNN speaker embeddings → initial clusters, then
VB with DNN bottleneck based i-vector subspaces

7 30.8

[4] G21-EMPHATIC CNN & LSTM speaker embeddings, PCA, spectral
clustering, HMM reseg.

7 31.0

[5] G22-JHU fusion: x-vectors + PLDA & x-vectors + PLDA 7 28.2
3 39.1

[6] G4-VG S4D toolkit ([10] in Table 7.4): BIC segmentation,
AHC, HMM reseg.

3 25.4

[7] G8-AUDIAS-UAM DNN embeddings (BiLSTM) 3 31.4
total variability 3 28.7

[8] G10-VIVOLAB i-vectors + PLDA, unsupervised PLDA adaptation 3 17.3

[9] G19-EML speaker vectors based on GMM supervectors +
WCCN & LDA, mean-shift based clustering

3 26.6

[10] [later publication] online system: “speaker-corrupted” DNN embed-
dings, sequential clustering

– 27.7

[1] Ramos-Muguerza et al. (2018) (paper describes a multimodal system by the same team)
[2] Patino et al. (2018c)
[3] Castan et al. (2018)
[4] Khosravani et al. (2018b)
[5] Huang et al. (2018)

[6] E. L. Campbell et al. (2018)
[7] Lozano-Diez et al. (2018)
[8] Viñals et al. (2018b)
[9] Ghahabi and Fischer (2018)

[10] Ghahabi and Fischer (2019) (later publication)
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7.2.4 The DIHARD Speech Diarization Challenge

This section presents an overview of the official results of the recent First and Sec-
ond DIHARD Speech Diarization Challenge4 (DIHARD I and DIHARD II). The
DIHARD evaluation series, which first took place in 2018, focuses on challenging
recordings from a variety of domains. The original DIHARD I evaluation dataset
included recordings from 10 different corpora and was expanded with additional
data for DIHARD II.

Table 7.6 lists the results achieved by all participating teams in the first run of
the challenge, aswell as a very brief summary of the published systemdescription.

Table 7.7 similarly shows the participants of DIHARD II. However, system de-
scriptions from this run have never been published and as such, the details ofmost
systems are missing.

Our team has also participated in the challenge, and our results appear in the
two tables as Zajíc et al. (2018) and Zajíc et al. (2019). Further details about the
challenge, as well as a description of our system, will be presented in section 9.4
of chapter 9.

4https://dihardchallenge.github.io/dihard1/ and .../dihard2/

https://dihardchallenge.github.io/dihard1/
https://dihardchallenge.github.io/dihard2/
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Table 7.6: Comparison of diarization systems participating in the First DIHARD
SpeakerDiarizationChallenge (best system fromeach team, except teamCPqD).DER
values correspond to the official challenge results - evaluated without any tolerance
collar and including overlapping regions. Track 1 and Track 2 correspond to results
with and without reference speech labeling.

DER [%]

Team Description Track 1 Track 2

[1] JHU x-vectors + AHC, VB resegmentation 23.73 37.19
[2] USTC-iFLYTEK denoising, initial BIC-based clustering →

i-vectors + PLDA, resegmentation
24.56 36.05

[3] BUT dereverb., x-vectors + AHC, VB resegm. 25.07 35.51
[4] ViVoLab BIC segm., i-vectors + PLDA, Variational Bayes 26.02 38.00
[5] ZCU-NTIS domain classification, i-vectors + AHC (domain-

dependent threshold)
26.90 45.78

[6] STAR-LAB domain classification→ VAD settings, bottleneck
DNN features → i-vectors, VB diarization

27.61 41.56

[7] LEAP i-vectors + PLDA, AHC (threshold) 28.52 –
[8] BISC binary keys 29.33 –

[9] CPqD a) DNN-based VAD + LIUM Toolkit (Rouvier et
al. (2013), [4] in Table 7.4)

32.76 41.17

b) DNN: log spectrum → DNN embeddings +
VAD + overlap; then k-means clustering

40.94 48.85

[10] SAIVT i-vectors + PLDA, AHC (threshold) 33.15 57.14
[11] CDS KL2 segmentation→ 2x (Viterbi reseg. + BIC)→

gender id., spk. id. based clust.
33.79 52.38

[12] IntelligentVoice LSTM speaker embed., PCA, spectral clust. 36.73 –
– SINICA [did not provide a system description] 37.46 –

– – baseline (same label for all data) 39.14 68.48

[1] Sell et al. (2018)
[2] Sun et al. (2018b)
[3] Diez et al. (2018b)
[4] Viñals et al. (2018a)
[5] Zajíc et al. (2018)
[6] McLaren et al. (2018)

[7] Ganesh et al. (2018)
[8] Patino et al. (2018a)
[9] Miasato Filho et al. (2018)
[10] Himawan et al. (2018)
[11] Gupta and Alam (2018)
[12] Khosravani et al. (2018a)
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Table 7.7: Comparison of diarization systems participating in the Second DIHARD
SpeakerDiarizationChallenge (best system from each team). DER values correspond
to the official challenge results at the end of Phase 2 - evaluated without any toler-
ance collar and including overlapping regions. Track 1 and Track 2 correspond to
results with and without reference speech labeling. Individual system descriptions
were never officially made public.

DER [%]

Team Description Track 1 Track 2

[1] BUT x-vectors, AHC, Variational Bayes HMM 18.42 27.11
[2] DKU_LENOVO overlap detection, ResNet-LSTM VAD, ResNet

spk. embeddings, LSTM similarity scoring,
spectral clustering, VB

18.84 27.90

– YD_lab [description not available] 20.75 –

[4] DI-IT DNN-based speaker embeddings, recording
environment classifier, AHC (environment-
specific threshold)

20.83 33.45

– nelslip [description not available] 21.03 35.75
[6] LEAP i-vec. + x-vec., weighted average of PLDA

scores, AHC, then a modified VB-HMM
21.90 42.69

– ty [description not available] 22.62 48.56
[8] Speed domain type classification (4 groups), speech

enhancement, LSTM VAD, x-vectors + AHC,
LSTM+GMM resegmentation

22.82 31.03

[9] USC_SAIL DNN embeddings, spectral clustering, overlap
detection, Viterbi resegmentation

22.89 46.72

– THS [description not available] 23.31 –
[11] UWB-NTIS domain classification, i+x-vectors, AHC or

PLDA+k-medoids (domain-specific settings)
23.47 –

– PDL [description not available] 23.50 31.04
– JHU [description not available] 23.70 –
– HUM [description not available] 24.97 –

[15] VIVOLAB i-vectors, tree-based sequential clustering 25.02 37.22
– Elektronika [description not available] 25.37 45.03

– (baseline)
DIHARD II baseline system
x-vectors + PLDA, AHC 25.99 50.12
+ denoising – 40.86

– IITB_DAPLAB [description not available] 26.33 –
– CSTR-Edinburgh [description not available] 26.49 –
– lizeqian [description not available] 30.78 –
– Shazam [description not available] 63.35 –

[21] (later work) End-to-end DNN sys.: MFCC → spk. labels – 32.59

[1] Landini et al. (2020)
[2] Lin et al. (2020)
[4] Novoselov et al. (2019)
[6] Singh et al. (2019)
[8] Sahidullah et al. (2019)

[9] Park et al. (2019b)
[11] Zajíc et al. (2019)
[15] Viñals et al. (2019)
[21] Horiguchi et al. (2020) (non-participants,

see also in Table 7.1)
baseline: https://github.com/iiscleap/DIHARD_2019_baseline_alltracks

https://github.com/iiscleap/DIHARD_2019_baseline_alltracks
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7.2.5 Online Diarization

For online diarization, there appears to be no single universally accepted evalua-
tion standard or baseline, as different authors focus on different target domains
and conditions. Nevertheless, Table 7.8 aims to provide a basic overview of some
of the more notable examples of online systems and their specific features.

Several of these systems were evaluated on datasets which were discussed
in the previous sections – namely the CALLHOME corpus, AMI corpus, and
data from the NIST RT and Albayazin 2018 evaluations. Besides these, the
following also appear in the table: 1996 HUB-4 (English-language broadcast
news database), BNSI (Slovenian broadcast news database) and TC-STAR 2006
and 2007 (European Parliament plenary speeches).

Table 7.8: Comparison of online diarization systems. Dataset types are telephone
(T), broadcast news (B), conference meetings (M) and plenary speeches (P). Listed
latency corresponds to the length of speech segments or decision windows and does
not include processing time or other factors.
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[1] TC-STAR P
GMM, sequential clustering with
incremental EM model adaptation,
gender dependent decision threshold

3 3

1.0 11.9
2.0 8.3
3.0 6.1
4.0 5.4
5.0 5.3

[2] BNSI B NCLR-based sequential clustering 3 3 up to 20.5
HUB-4 B 3 3 20.0 17.3

[3] HUB-4 B GMM, sequential clustering with MAP
model adaptation 3 3

1.0 42.2(a)

2.0 45.2
3.0 39.1

[4] RT-09 M GMM, hybrid system: parallel offline
bottom-up and online speaker ID

3 3 2.5(b) 37.8
3 7 N/A 18.1

[5] RT-09 M a) GMM-based speaker ID
7 3

2.5 44.6
b) above system + MDM 2.5 39.3

[6] AMI (IS) M GPU version of [7] in Table 7.2 3 7 N/A 32.1
+ online = offline diar. every 2.5 s 3 3 2.5 32.0

[7] HUB-4 B GMM, sequential clustering with MAP
model adaptation 3 3

0.3 57.0(c)

0.5 50.0
1.0 45.0
2.0 44.0
3.0 40.0
4–7 ∼ 42

(continued on the next page)
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Table 7.8: (continued)
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[8] CALLHOME T i-vectors + normalization, only 2
speakers

3 3 ∞(d) 3.2(e)

3 7 N/A 2.1

[9] RT-07, 09 M
GMM, speaker ID with only a small
amount of initial data and gradual
adaptation

7 3

3.0 18.9
5.0 16.3
7.0 15.3

[10] CALLHOME T

hybrid sys.: ASR → possible speaker
turns only between words, BIC segm.,
i-vec. + WCCN → repeated X-means
clust.

3 3 ? 16.2

+ retroactive label updates 3 3 ∞ 14.7

[11] AMI M i-vectors + sequential clustering 3 3 3.0 34.2

[12] (Custom) M multiple micr. → direction of arrival 3 3 ∼ 0 15.4

[13] CALLHOME
(AmEng) T

LSTM spk. embeddings: d-vectors
i-vectors, spectral clust. (offline) 3 7 N/A 20.5
i-vectors, “links” clust. (online) 3 3 0.4 31.4
d-vectors, spectral clust. (offline) 3 7 N/A 12.5
d-vectors, “links” clust. (online) 3 3 0.4 17.5

[14] CALLHOME T
[13] with updated d-vector extraction.
err. = SER only
spectral clustering (offline) 3 7 N/A 8.8
UIS-RNN clustering (online) 3 3 1.6 7.6

[15] Albayzin
2018 B “speaker-corrupted” DNN embed-

dings, sequential clustering 3 3 2.0 27.69

[1] Markov and Nakamura (2008)
[2] Grašič et al. (2010)
[3] Geiger et al. (2010)
[4] Vaquero et al. (2010)
[5] Friedland et al. (2012)
[6] Friedland (2012)
[7] Soldi et al. (2015)
[8] Zhu and Pelecanos (2016)

[9] Soldi et al. (2016)
[10] Dimitriadis and Fousek (2017), see also in

Table 7.1
[11] Patino et al. (2018b)
[12] Ito et al. (2018)
[13] Wang et al. (2018), see also in Table 7.1
[14] Zhang et al. (2019)
[15] Ghahabi and Fischer (2019)

a Error was measured as a custom “misclassification rate”, rather than DER. Listed values are
the average of results on two different evaluation files.

b After an initialization period of 60 s
c Error rates for this system were estimated from a plot, some values were omitted.
d Segments correspond to entire utterances with no set maximum length (the average is 2.1 s)
e System uses reference transcripts in place of segmentation and excludes overlapping speech

from evaluation, both of which reduce the resulting error rate
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The table also lists the latency of each system. Some authors have provided
results formultiple different latency settings andwe can observe that this attribute
greatly affects the systemperformance. Very short latencies in particular generally
correspond to significantly larger error rates.

It is difficult to make comparisons between these systems, as there are great
differences in the type of data, system latency, the amount of prior knowledge and
even evaluation criteria, all of which affect system performance.

7.2.6 Summary

The previous sections provided an overview of recent state-of-the-art diarization
systems aimed at different domains and their reported results on a variety of dif-
ferent datasets.

From the values presented in the tables, we can obtain the approximate range
of error which can be achieved in different areas of speaker diarization. However,
it is difficult to determine which approaches are best, as there are often significant
differences in the evaluation conditions, particularly in cases of different datasets
or even different domains. This includes aspects such as the sound quality, the
level of noise, the amount of overlapping speech and the length of the individual
utterances in each dataset, all of which can greatly affect the final system perfor-
mance.

The results for telephone speech in particular cannot be directly compared to
those from the other domains, as most of the values in Table 7.1 were obtained
using different evaluation criteria than the standard DER and as such, are likely
significantly lower than they would have been otherwise.

Nevertheless, we can at least observe that many of the online systems shown
in Table 7.8 achieve very large error rates, greatly exceeding those of seemingly
comparable offline systems. This illustrates the relative difficulty of online diariz-
ation.

Finally, if we look at the approaches used by each system and their years of
publication, we can see how drastically the state of the art has shifted over a rela-
tively short time. While a decade ago, everyone still used GMMs and BIC-based
clustering (e.g. most of the systems in Table 7.2), by 2015 i-vectors became stan-
dard for offline diarization, with only online systems lagging behind. Then amere
few years later, x-vectors and other DNN-based speaker embeddings came to the
forefront. And now, the first end-to-end neural systems are making their appear-
ance. It is almost certain that there will be more of them in the near future.
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Chapter 8

Overlapping Speech

One of the main issues in speaker diarization which were discussed in chapter 5
was overlapping speech. This chapter expands upon that topic by providing a
more detailed introduction to the problem as well as an overview of the standard
techniques for overlap detection and a comparison of notable systems. Related
experiments will be found in section 9.5.

8.1 Introduction

The term “overlapping speech” refers to instances during which two or more in-
dividuals speak at the same time. This is a very common occurrence in any sort
of natural conversation: it includes situations such as speakers interrupting each
other, one participant offering backchannel responses to the active speaker (e.g.
“yeah”, “uh-huh”), or simply brief natural overlaps during rapid turn-taking.

There have been multiple works analyzing the amount of overlaps in conver-
sational speech. Ten Bosch et al. (2005) found overlaps to be present in 44 % of
all speaker changes in face-to-face dialogues and in 52 % in the case of telephone
speech. Similarly, Heldner and Edlund (2010) reported a value of 40 % on their
data, with a median duration of 470 ms in such overlaps.

As previously discussed in chapter 5, such overlapping speech can have mul-
tiple negative effects on the accuracy of speaker diarization: In terms of DER, un-
detected overlaps directly contribute to missed speech rate. Incorrectly labeled
overlapping speech can also contaminate the models of individual speakers, de-
creasing the overall system performance. Alternatively, such segments may end
up being assigned to a separate cluster, leading to the system mistakenly creating
an additional “speaker”.

The effect onDER can be very large: Huijbregts andWooters (2007) found that
“the lack of ability to model overlapping speech [was] the source of 22 % of the
total diarization error rate” of their system, while Boakye et al. (2008b) reported
up to 27.6 % relative improvement in DER when using oracle overlap labels.

A similar result was also obtained during one of the experiments described in
this thesis (section 9.4.7, also published in Zajíc et al., 2019) – on the development
set of the DIHARD II corpus, the addition of overlap handling with ground-truth
overlap labeling decreased the DER of our system from 20.78% to 16.16% (22%
relative improvement).

These observations all suggest that automatic detection of overlapping speech

69
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has great potential for improving the performance of speaker diarization. For this
reason, it was chosen as one of the subtopics of this thesis.

8.2 Detection of Overlapping Speech

Common methods for detecting overlapping speech follow one of two different
directions: Until relatively recently, the best systems have relied on combining a
variety of carefully selected hand-crafted features. However, the current boom in
deep learning has also lead to the appearance of DNN-based approaches. These
usually rely on the neural network itself to extract the most relevant information
from unprocessed data, often with equal or better results.

8.2.1 Overlap Detection Using Hand-crafted Features

The more traditional approach to overlap detection is based on the use of HMM
and Viterbi decoding, typically modeling three classes: non-speech, single-
speaker speech and overlapping speech. A variety of different features are used
for the purpose.

One very common choice is LPC residual energy. LPC analysis estimates the
formants of a speaker, using them tomodel the spectrum of the speech. The resid-
ual energy is then the difference between the linear approximation and the spec-
trum. The use of LPC for overlap detection arises from the assumption that LPC
can model the speech of a single speaker reasonably well, but fails in the pres-
ence of multiple different speakers, resulting in a larger residual energy. Systems
which use this residual energy for overlap detection include (Zelenák et al., 2012)
and (Boakye et al., 2008a).

Boakye et al. (2008a; 2008b) also explore the use of various other features such
as spectral flatness or harmonic energy ratio in a HMM-based overlap detector.

Charlet et al. (2013) propose two different approaches. One of these is based
on the standard HMM with models for overlapped and non-overlapped speech,
while the other relies on multi-pitch detection using spectral combs.

If multiple sound sources are available, it is also possible to use this additional
information for detecting simultaneous speech. This is used by e.g. Pfau et al.
(2001) and Pardo et al. (2006).

In (Zelenák et al., 2012), overlapping speech is detected by a combination of
theHMM-based approach (with LPC features) and spatial features obtained from
multiple microphones. After obtaining speaker models from non-overlapped
data, the system also attempts to assign correct labels to the overlapped segments
by selecting the two most likely models for each such segment.

Finally, Geiger et al. (2013a) suggest that linguistic content may also help to
detect overlapping speech. In particular, they found that certain words (such as
“uh-huh”, “yeah”, “but” or “wait”) were more likely to occur during short over-
lapping segments, suggesting that automatic speech recognition may be able to
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Figure 8.1: Part of a spectrogram with relatively distinguishable overlapping speech:
there are two speakers who overlap in the middle (highlighted in a red frame).

offer useful information in a diarization system. However, this assumes that the
automatic transcription is accurate, which may be difficult to achieve for overlap-
ping speech.

8.2.2 Overlap Detection Using Deep Neural Networks

As an alternative to manually selecting hand-crafted features, one may also take
advantage of deep learning – a well-trained neural network can be capable of ex-
tracting the relevant information from appropriate “raw” input or from less spe-
cialized features.

One relatively popular choice of input data is the spectrogram. One may
observe that when looking at a spectrogram of a multi-speaker conversation, it
is sometimes possible to distinguish between a single speaker and overlapping
speech by sight. An example of this can be seen in Figure 8.1: On the left side
of the image, the first speaker’s speech shows very clear and regular parallel
lines, corresponding to the harmonics. Meanwhile, the overlapped region in the
middle looks significantly more chaotic. A neural network should also be able to
detect such patterns.

Examples of the use spectrograms for overlap detection include Sajjan et al.
(2018) and Kazimirova and Belyaev (2018). Such an approach was also used
for the overlap-related experiments in section 9.5 of this thesis (also published
as Kunešová et al., 2019). Miasato Filho et al. (2018) also presented a DNN
which uses the log spectrum to provide information about overlaps together with
speaker embeddings and VAD.

Additionally, Shokouhi et al. (2015) also detect overlaps from spectrograms
(or, more precisely, from pyknograms, which are enhanced spectrograms), but they
do not use deep learning. Instead, their system simply detects sudden jumps in
the harmonic structure by calculating the euclidean distance between consecutive



72 CHAPTER 8. OVERLAPPING SPEECH

frames.
Andrei et al. (2017) use the signal’s frequency spectrum, but also combine it

with hand-crafted features – specifically MFCC, signal envelope and auto-regres-
sive model coefficients.

Other examples of DNN-based overlap detection include the works of Diez
et al. (2018b), who use a feed-forward network with an input of MFCC and pitch
features, Geiger et al. (2013b), who were among the first to employ a LSTM net-
work for overlap detection, with a variety of hand-crafted features as its input, and
Bullock et al. (2020), who use a BiLSTM with SincNet features.

8.2.3 Evaluation of Overlap Detection

Table 8.1 shows an overview of some of the recent works featuring overlap detec-
tion, including many of the examples which were listed above.

As evidenced in the table, there is no single established standard for evalu-
ating overlap detection. While most authors report some combination of frame-
level precision, recall, F-score and accuracy, some evaluate using Equal Error Rate
(EER) based on per-overlap miss and false alarm, or in terms of Overlap Detec-
tion Error (ODE), which is calculated as the total duration of missed and false
alarm overlaps, relative to the total duration of overlapping speech in the record-
ing. Alternatively, some authors simply state the relative decrease in a diarization
system’s DER.

Table 8.1: Overview of recent systems featuring the detection of overlapping speech
and their reported results.

Sys. Dataset Prec. Rec. F-score Acc. Other

[1] AMI (IS) 0.76 0.25 0.38 – – –
AMI (all) 0.67 0.26 0.37 – – –

[2] AMI 0.85 0.30 0.44 – ODE 75%

[3] AMI 0.82 0.28 – – ODE 78.3%

[4] AMI 0.79 0.32 – – ODE 76.9%

[5]
AMI – – 0.51 –

rel. DER decrease
20.3%

RT-09 – – 0.46 – 6.7%
ICSI – – 0.49 – 7.2%

[6] AMI 0.66 0.45 0.53 – ODE 78.67%

[7] Prof-Life-Log – – – – EER 5–45%

[8] (Custom) 0.81 0.78 0.80 0.80 – –

[9] AMI 0.78 0.36 – – OL detect. err.(*)14.13%
EER 8.52%

[10] SSPNet 0.71 0.78 0.75 0.92 EER 11.31%
(continued on the next page)
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Table 8.1: (continued)

Sys. Dataset Prec. Rec. F-score Acc. Other

[11] DIHARD I (dev) – – – – rel. DER decrease 1.2%
VAST only – – – – 6.3%

[12] AMI – – – – single spk. acc. 87.9%
overlap acc. 71.0%

[13] AMI + ICSI 0.51 0.41 0.46 – – –
DIHARD I (dev) 0.62 0.10 0.17 – – –

[14]
AMI 0.87 0.66 0.75 – rel. DER decrease 24.8%

DIHARD II 0.65 0.27 0.38 – – –
ETAPE 0.70 0.62 0.65 – – –

[15] AMI – – – 0.95 Average Precision 56.6%
CHiME – – – – 51.1%

[1] Boakye et al. (2008b), handcrafted features → HMM, see also in Table 7.3
[2] Zelenák et al. (2012) – handcrafted features + spatial f. from multiple microphones → HMM
[3] Geiger et al. (2013a) – HMM using handcrafted features + linguistic information from tran-

script
[4] Geiger et al. (2013b) – handcrafted features → LSTM predictions, both → HMM
[5] Yella and Bourlard (2014) – HMM: handcr. f. + OL prob. based on silence and spk. changes
[6] Dighe et al. (2014) - OL detection + speaker identification for diarization, using Vector Taylor

Series; listed result is with GMMs trained on oracle segmentation
[7] Shokouhi et al. (2015), enhanced spectrograms→ detecting sudden jumps in harmonic struc-

ture (Euclid. dist. betw. frames); EER depends on the amount of added noise
[8] Andrei et al. (2017), handcrafted features → DNN
[9] Hagerer et al. (2017) – MFCC → bidirectional LSTM
(*) Unlike other listed systems, overlap detection error in [9] appears to be calculated relative to

the length of the entire recording
[10] Kazimirova and Belyaev (2018), spectrogram → CNN, evaluated only on voiced frames
[11] Diez et al. (2018b) – MFCC + pitch features → feed-forward NN (2 hid. lay.)
[12] Sajjan et al. (2018) – spectrogram → LSTM classifier, Viterbi decode
[13] Miasato Filho et al. (2018) – spectrogram → DNN for joint embedding extraction, overlap

detection and VAD. Listed results correspond to system “B1”.
[14] Bullock et al. (2020) – SincNet features (Ravanelli and Bengio, 2018) → BiLSTM
[15] Cornell et al. (2020) – MFCC → temporal convolutional network

8.3 Data for Overlap Detection

Training and evaluating an overlap detector, especially a DNN-based one, gener-
ally requires a large amount of well-annotated data with frequent overlaps. Un-
fortunately, there do not appear to be any publicly available datasets made specif-
ically for this purpose, and other corpora often lack sufficiently precise labels.1

One option is to obtain improved time labels by performing force-alignment
(e.g. Boakye et al. (2008b) and Sajjan et al. (2018) on the AMI corpus). This is
viable for data where we have both accurate transcriptions and separate single-
speaker channels available, but there still may be issues with the amount of data.

1as seen for example in section 9.5.2 with the SSPNet Conflict Corpus
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The second, commonly used option, is to create synthetic data by artificially
combining multiple single-speaker recordings (e.g. Hagerer et al., 2017; Edwards
et al., 2018; von Neumann et al., 2019).

This leads to somewhat unrealistic data compared to a natural conversation
– in a real scenario, speakers usually do not talk independently, but rather react
to each other. For example, a speaker who was interrupted may abruptly cut off
mid-sentence, or one of the speakers may raise their voice, trying to drown out
the other. It is also important to take care in combining the data so that there are
no discernible seams or sudden changes in background noise which a DNN may
inadvertently learn to detect instead of the overlap itself.

On the other hand, by automatically generating such a dataset from clean
single-speaker recordings, it is possible to obtain large amounts of data with ac-
curate timing and plenty of overlaps. This option was also used for training an
overlap detector as part of the experiments in section 9.5.2.

When preparing data for overlap detection, one more thing to consider is the
classification of overlaps with non-speech sounds such as laughter or humming.
From an acoustic point of view, these sounds can clearly be identified as a specific
speaker and such overlaps should be excluded from the clustering process. On
the other hand, this may not be desirable in the final labeling.

This is also a concern when evaluating an overlap detector: speech transcrip-
tions often do not include non-speech sounds such as laughter or humming, espe-
cially when they happen in the background of another speakers’ speech, so such
regions may be (in this case incorrectly) marked as non-overlap. This may in turn
lead to a seemingly high false alarm rate of an overlap detector evaluated on such
data.

8.4 Other Overlap-related Speech Processing

Section section 8.2 provided an overview of the existing literature focused on the
detection of overlapping speech. Besides this topic, there are also other overlap-
related speech processing tasks which can be relevant for speaker diarization.

8.4.1 Identification of Simultaneous Speakers

Some authors attempt to identify the speakers involved in overlapping speech,
beyond simply assigning the two labels which are individually most likely. How-
ever, most such research is in the context of speaker identification and as such,
assumes that the models of these speakers are known in advance.

Tsai and Lee (2010) in particular identify simultaneous speakers by a priori
training models for every possible combination of two different speakers found
in their database, then following a standard speaker identification approach with
these combined models as separate “speakers”.

Another example is the work of Sundar et al. (2013), who model the speech
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signal as a combination of known speaker models, estimating the weights of these
individual models. Based on the estimated weights, they decide which speakers
are present in a given speech interval.

Walsh et al. (2007) proposed a system for joint source separation and identifi-
cation of known speakers in a multi-microphone scenario. This is done using an
expectation propagation approach.

More recently, Li and Whitehill (2020) proposed compositional embeddings,
which “extend single-speaker embeddings through a composition function that is
trained to estimate the location in the embedding space of where the union of two
(or more) speakers is located. By composing the embedded one-shot examples
(i.e., a sample of each person speaking in isolation) and comparing the result to
the embedding of the test audio, the set of speakers can be inferred.”

Finally, Dighe et al. (2014) combine overlap detection and speaker identifica-
tion using a Vector Taylor Series approach, and directly apply it to speaker dia-
rization. Though their system can use speaker models obtained from speaker
diarization, it appears to work significantly better with GMMs based on oracle
segmentation.

8.4.2 Signal Source Separation

Finally, there is also the related task of signal source separation: when faced with
overlapping speech, one may also attempt to separate it into multiple signals cor-
responding to individual speakers (e.g. Xu et al., 2018).

This is more relevant in the field of ASR, where such separation can help in rec-
ognizing the speech of simultaneous speakers (e.g. Kanda et al., 2020). However,
a small number of authors have also used blind source separation techniques for
speaker diarization.

One example is the work of von Neumann et al. (2019), which was previously
mentioned in section 4.3.1: A recurrent neural network processes the audio stream
in blocks of 2.5 seconds, and iteratively separates each block into multiple signals
corresponding to individual speakers. The system tracks speaker identities be-
tween blocks, thus acting similarly to sequential clustering and providing speaker
diarization which can handle overlapping speech.

Similarly, (Kounades-Bastian et al., 2017), proposed amethodwhich combines
multi-channel voice separation and speaker diarization.

8.5 Overlapping Speech in Speaker Diarization

In the context of speaker diarization, the problem of properly handling overlap-
ping speech can be divided into two tasks:

1. Detecting the presence of overlapping speech

2. Identifying the exact speakers involved
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Not all systems fully implement both of these tasks – while obtaining correct
labels is desirable, identifying the exact speakers is arguably more difficult than
mere overlap detection.

However, even if we do not know which speakers are active in an overlap-
ping region, we can still at least prevent the overlaps from negatively influencing
the rest of the diarization process by excluding the data from any clustering or
model adaptation. The effects of this were explored by e.g. Otterson and Osten-
dorf (2007) and Boakye et al. (2008b).

In offline systems, detected overlapping speech is typically left unlabeled until
the rest of the conversation is processed. Afterwards, each such interval can be
assigned one or two labels. Thesemay be chosen on the basis of acoustic similarity
to individual clusters, or simply as the speakers of the nearest non-overlapping
speech on each side of the interval.

This simple approach can be also further improved by e.g. using different deci-
sion thresholds for overlap exclusion and for assigningmultiple labels, as in (Diez
et al., 2018b) and (Yella and Bourlard, 2014). This way, all potential overlaps are
excluded from clustering, but only those with a higher confidence are given two
labels.

In an online system, the process can be similar, although it is made somewhat
more difficult by the need to assign labels immediately, without having future
information.

Finally, some authors have recently proposedmodified diarization approaches
which take overlaps into account as part of the main diarization steps. This in-
cludes compositional speaker embeddings by Li and Whitehill (2020), overlap-
aware spectral clustering (Raj et al., 2020a), the region proposal network approach
by Huang et al. (2020) (combined overlapped speech segments proposal and
embeddings extraction), overlap-aware VB-HMM resegmentation (Bullock et al.,
2020), and theDOVER-Lapmethod for combining the outputs ofmultiple overlap-
aware speaker diarization systems (Raj et al., 2020b).



Chapter 9

Experiments

The experiments in this chapter were focused on two different implementations
of speaker diarization. Earlier experiments involved the implementation of an
online GMMdiarization system and the exploration of its possible improvements.
Later experiments were centered around an i-vector based system. This second
system primarily operated offline, but an online variant was also explored. The
offline systemwas also used for participation in the DIHARD Speaker Diarization
Challenge, which is likewise described here.

A final set of experiments, described in section 9.5, focused on the detection of
overlapping speech.

9.1 Used Datasets for Speaker Diarization

The systems and algorithms described in this thesis were developed and tested
using several different datasets with distinct characteristics. This section gives a
brief overviewof themost important ones. Relevant statistics are also summarized
in Table 9.1.

This list does not include the synthetic data which were created for overlap
detection – for the details on these, see section 9.5.2.

Table 9.1: Overview of the datasets used for evaluating speaker diarization systems.
Values for DIHARD vary between different subsets. Overlap is relative to the total
amount of speech and the values for AMI are based on word-level transcripts, exclud-
ing non-speech sounds.

Dataset files hours speakers
per file

unique
speakers

overlap %
per file

overlap
total %

Czech Parliament 8 28 10–56 131 0.1-0.5 0.2
AMI Meeting Corpus 171 100 3–5 189 2.7–30.5 13.5
CALLHOME (AmEng, 2 spk) 109 17 2 208 1.9–32.5 8.8
DIHARD I (development) 164 19 1–10 ∼500 0.0-94.0 7.9
DIHARD I (evaluation) 172 20 1–9 ∼500 0.0-86.4 8.9

77
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9.1.1 Czech Parliament Sessions

Initial experiments with online diarization were performed on a set of television
broadcasts of Czech parliament sessions. This consisted of eight video recordings,
each several hours in length, with a total length of 28 hours. All sound sources
were on a single channel, sampled at 16 kHz.

In contrast to the other corpora, these recordings contained very long speaker
turns (themajority being longer than 10 seconds, withmany severalminutes long)
of single individuals with very little overlapping speech.

Additionally, as these parliament sessions took place in a large hall, with the
speakers’ voices being amplified by loudspeakers, there is very high reverberation.

Unlike the other datasets listed in this section, these recordings were not part
of a publicly available corpus.

9.1.2 The CALLHOME American English Corpus

First experiments with i-vector based diarization were focused on the American
English subset of the CALLHOME corpus (Canavan et al., 1997). CALLHOME is
amultilingual corpus of telephone conversations between up to seven participants
in six different languages. However, only English-language recordings with two
speakers were included in the experiments.

This consisted of 109 separate conversations with a total length of 16.5 hours
and a typical length of 5–10 minutes per conversation. The speakers in each
recording were mixed into a single telephone channel, sampled at 8 kHz.

As the corpus consists of spontaneous conversations, the data contain many
very short speaker turns (see Figure 5.1 for an example of a short speaker turn)
as well as frequent instances of overlapping speech.

The CALLHOME Corpus is a very popular choice for evaluating diarization
systems. For an overview of recent state-of-the-art results on this dataset, see Ta-
ble 7.1.

9.1.3 AMI Meeting Corpus

The AMIMeeting Corpus1 (Carletta et al., 2006) is a corpus of recordedmeetings,
usually with 4 participants, although a small number of recordings have 3 or 5
speakers. This includes both real, natural conversations and staged “scenario”
meetings.

The corpus consists of 171 conversations from six sets of meetings at different
locations, with a total time of 100 hours and individual lengths of 8–90 minutes.
There are 189 different speakers and usually 2-4 recordings with each group of
3–5 participants.

1Available from: https://groups.inf.ed.ac.uk/ami/corpus/

https://groups.inf.ed.ac.uk/ami/corpus/
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The conversations are recorded using multiple microphones – including a mi-
crophone array as well as individual headsets worn by each speaker. However,
for the experiments described within this thesis, only the single-channel “headset
mix” recordings were used.

Most of the recordings contain relatively large amounts of overlapping speech
(up to 30 % of all speech in the conversation) as well as some noise. The average
amount of overlapping speech is 13.5%. If overlapswith non-speech sounds (such
as laughter, breath and whistling) are also considered, this increases to 15.8%,
with a maximum of 40%.

For an overviewof past state-of-the-art results on theAMI corpus, see Table 7.3.
However, there are some difficulties in comparing the results with each other.
Aside from the fact that various authors use different subsets of the data, such as
only meetings from a specific location, there are also several different sets of ref-
erence labels in existence – the original data contain both word-level (“words”)
and utterance-level (“segments”) transcripts and the speaker boundaries in these
are not identical. Additionally, some authors use force-aligned references.

For the experiments in this thesis, the reference labels were generated from
word-level transcripts, ignoring non-speech sounds.

9.1.4 DIHARD Challenge Data

Certain experiments which are described in this chapter were performed during
the author’s participation in the First and Second DIHARD Speaker Diarization
Challenge (DIHARD I, DIHARD II).

These two challenges used a set of data from multiple corpora with a variety
of different domains – such as meetings, radio interviews and YouTube videos. A
more detailed description of this dataset can be found in section 9.4.
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9.2 GMM-based Online Diarization

One of the initial objectives of the research was specifically online diarization of
television broadcasts from Czech parliament sessions, so early work focused on
this scenario.

This lead to the following expectations and requirements:

• Long duration of individual recordings (multiple hours)

• Long individual utterances, infrequent speaker changeswith very little over-
lap.

• A large number of speakers in each recording, the total number is not known
in advance.

• New speakers may appear at any point in time.

• Although the list of possible speakers (i.e. current members of parliament)
is technically known in advance, the system should not require such prior
knowledge for its operation.

The proposed system started as a re-implementation of the work of Markov
and Nakamura (2007), which is one of the GMM-based sequential clustering sys-
tems referenced in section 4.3.1. Its main principle is iterative creation of new
speaker models by adapting one of a pair of gender dependent UBMs (male and
female). This specific approach was chosen because the aforementioned system
had been designed for a very similar type of data (European parliament plenary
speeches) and fits all the requirements listed above.

Subsequent work then focused on improving the implemented system. The
results obtained on the target data were also published as part of two conference
papers (Campr et al., 2014; Kunešová and Radová, 2015), portions of which are
reproduced in the text of this chapter.

It is important to note that the work on this system started in 2013, in the first
months of the author’s doctoral study. AlthoughGMM-based speaker diarization
can be considered obsolete today, at the point when these experiments were orig-
inally started, it was still the state-of-the-art for online diarization (as seen in the
overview of online diarization systems in Table 7.8).

9.2.1 Online Diarization System

Following is a description of the implemented system, adapted from (Kunešová
and Radová, 2015).

The system uses a sequential clustering approach, starting with only two
GMMs, one for each gender, which are trained in advance. The audio stream
is divided into short segments and for each of them, the system decides if the
segment corresponds to an already known speaker or a new one by comparing
the likelihoods of the gender dependent and speaker models. In the case of a new
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speaker, a new model is created by copying one of the gender dependent models.
Otherwise, one of the existing models is selected. The assigned model is then
adapted using the data from the segment. The entire process is also illustrated in
Figure 9.1.

get new
speech
segment

find best
UBM

Existing
models?

find best
model

compute
likelihood
ratio L

L > θ?
create new

model
from UBM

update
model

no

yes

yes

no

Figure 9.1: The decision process of the implemented diarization system.

The system consists of several modules:

1. Feature extraction and voice activity detection

2. Speech segmentation

3. Speaker identification and novelty detection

4. Online GMM learning

Feature Extraction and Voice Activity Detection

The system used 20 LFCCs as features. These were extracted using 25 filters in
range from 50 Hz to 8 kHz, with a 25 ms FFT window and 10 ms shift. The 20
cepstral coefficients were computedwithout the energy coefficient and no cepstral
normalization was performed.

The feature extractor also performs energy-basedVAD,with every frame being
labeled as speech or silence based on a threshold.

Speech Segmentation

Using the information obtained from the VAD and parameters such as the mini-
mumandmaximumsegment length and themaximumpause length in a segment,
the speech is divided into short segments. Of each segment, only the frameswhich
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Figure 9.2: Logarithm of the likelihood ratio L(X, λsp) from (9.1) for all speaker mod-
els in a part of one recording. Each color represents a different model. Highest value
of L(X, λsp) corresponds to the winning model for the given speech segment.

were labeled as speech by the energy-based VAD are used in the subsequent steps,
as experiments have shown that this leads to both reduced computation time and
improved performance of the system.

For the Czech Parliament data, segments were between 1 and 5 seconds long.
For later tests on the AMI corpus (section 9.2.4), this was lowered to 1–2 seconds,
as there were more frequent speaker changes.

Speaker Identification and Novelty Detection

For each speech segment the system uses a maximum-likelihood classification to
determine both the speaker’s probable gender (using the gender dependent mod-
els) and their most likely identity out of the existing speaker-model candidates.
Afterwards, a likelihood ratio test is used to decide whether the segment belongs
to the chosen identity, or represents an entirely new speaker.

The likelihood ratio is as follows:

L(X, λsp) =
Pλsp

Pλgen

, (9.1)

where X is a speech segment and Pλsp and Pλgen are the likelihoods of the winning
speaker and the appropriate gender dependent model, respectively.

If log L(X, λsp) ≥ θ, the segment X belongs to the speaker represented by the
model λsp. Otherwise it belongs to an entirely new speaker. In this latter case, a
new model is created by duplicating the corresponding UBM.

The optimal value of decision threshold θ was found experimentally.
The speaker identification process is illustrated in Figure 9.2, which shows an

example graph of the likelihood ratios of all models in a part of one recording.
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Online GMM Learning

Once the new speech segment is assigned to an appropriate speakermodel (either
a previously existing one or onewhichwas newly created fromaUBM), themodel
is adapted using the data from the segment. This is achieved using an online
variant of the EM algorithm, which was proposed by Sato and Ishii (2000).

This single-pass algorithm works by updating the parameters of a GMM af-
ter every new observation, allowing the diarization system to adapt individual
speakermodels gradually, on a frame-by-frame basis. The details of the algorithm
can be found in the above-mentioned paper.

For the experiments, the adjustable parameters of the algorithm (the learning
rate) were chosen to be the same as used by Markov and Nakamura (2007).

9.2.2 Improvements

As is usual in systems of this type, one of the most problematic areas of the sys-
tem is the selection of the data-dependent decision threshold θ, which is used to
decide whether a speech segment belongs to a new speaker or an already known
one. If this threshold is set too low, multiple speakers may be assigned the same
model. Conversely, if it is too high, speech belonging to a single real speaker may
be divided between several different models.

To combat this issue, it was decided to select a higher decision threshold, so
that an excess number of speaker models is created, but then implement an ad-
ditional algorithm that identifies any models that are likely to correspond to the
same speaker and cluster them all into one.

For this purpose, several approaches to clustering were explored. In the first
round of experiments, the task was simplified by performing an offline clustering
after thewhole audio recording had been processed (Campr et al., 2014). Later ex-
periments improved the offline approach and then extended it in order to perform
the clustering process online, as part of the main diarization system (Kunešová
and Radová, 2015).

In (Campr et al., 2014), the resulting offline diarization system was also com-
binedwith facemodels obtained from the video domain into amultimodal system
which achieved slightly improved results over the audio modality alone. How-
ever, these aspects of the final system were handled solely by the other authors of
the paper and as such are not included in this thesis.

Offline Clustering

The offline clustering approach used the Cross-Likelihood Ratio (CLR, described
in section 2.2.1) to compute distances between all pairs of models and identify
groups of models which likely correspond to the same real speakers.

The clustering itself is then performed as follows:
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1. Let Λ = {λ1, λ2, . . . , λN} be the set of speaker models obtained from the
online diarization.

2. Find model λi ∈ Λ which had the lowest number of speech frames assigned
to it during the online part of the diarization.

3. Set Λ = Λ − {λi}.

4. Find model λj ∈ Λ such that CLR(λi, λj) is minimal

5. If CLR(λi, λj) < ϕ, where ϕ is a data-dependent threshold, consider λi and
λj to represent the same speaker and reassign speech from λi to λj. However,
do not update λj or its distances to other models.

6. Repeat steps 2–5 until Λ only contains one model.

As with the novelty detection threshold θ, ϕ is found experimentally.

Online Clustering

To identify similarities betweenmodels online, a method based on the offline vari-
ant was used. It has the benefit of requiring very little additional computation
time, as most of the necessary calculations, namely the likelihoods of speaker
models for each speech segment, are already being performed as part of the base
system.

To find the distance between models λi and λj at time t, the following modifi-
cation of the CLR distance was employed:

d(λi, λj, t) = min (D(i, j, t), D(j, i, t)) , (9.2)

D(i, j, t) =
1

Ni(j, t)
· ∑

x∈Si(j,t)
log

(
max(P(x|λm), P(x|λ f ))

P(x|λj)

)
. (9.3)

Here, Si(j, t) represents a set of all the speech segments which were assigned to
speaker model λi between the creation of λj and the current time t (and for which
we thus have calculated the likelihood of λj), Ni(j, t) is the total number of frames
of the speech segments contained in Si(j, t).

Once the system decides that several of themodels represent the same speaker,
there are two possible approaches to clustering, apart from simply discarding all
of the models except one. We can either use a suitable method to transform all of
the similar models into a single GMM, or we can retain all of them while treating
them as a single speaker.

• Merging multiple GMMs into a single one
The simplest choicewhichwas considered for themerging of severalmodels
into a single one is to obtain a weighted sum of the original Gaussian mixtures.
This is computationally very simple and thus causes no immediate delay
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for the system. Yet the increased number of Gaussian components causes
redundancy in the model and will also slow down future calculations.
As an alternative which preserves the original number of Gaussian compo-
nents, it was chosen to replace all of the models to be merged with a single
new GMM trained using all the data originally assigned to all. This causes a
significant delay in the whole process, so it is not suitable for use in practical
applications where online diarization is required. However, this approach
can be used to represent the best way to merge the models together, which
is why it was used for comparison.

• Treating multiple GMMs as belonging to a single speaker
In this approach to dealing with similarities of speaker models, the system
retains all of the models. However, the models are treated as belonging to
the same speaker. It means that all of them are being updatedwith the same
data every time one of them is assigned a new segment.
Because of this, after a certain number of updates these models should be-
come nearly identical. At that point, it may be possible to discard all of them
except one. Further experiments showed that the model which was trained
on least data should be retained. The likely reason for this is that the “bigger”
models can be more “polluted” by noise and misclassified speech.
Similarly to the weighted sum of GMMs described above, this approach also
causes no immediate delay for the system, but the additional GMMupdates
will slow down the calculations for future speech segments.

9.2.3 Results

The original experiments were performed on a set of recordings from Czech par-
liament sessions (detailed in section 9.1.1).

The UBMs were also created from these data. The two models (male and fe-
male speakers) were trained by using up to 1 minute of speech from each named
speaker in the corpus (28 women, 103 men). The use of in-domain data allowed
the models to be very small - the final system usedmodels with only 8 GMM com-
ponents (with full covariance matrices). This size was chosen during the initial
testing as a good trade-off between computation time and error rate.

Note: It would have been more appropriate to use different subsets of the data
for training the UBMs and for testing. However, this was impractical due to the
small number of available recordings. It is the author’s belief that this should
not affect the results in any significant way, given the large number of different
speakers and small complexity of the models.

The achieved results, comparing the three approaches to online speaker clus-
tering as well as the offline variant, can be seen in Table 9.2. The errors were
calculated with the customary 0.25 s forgiveness collar around reference speaker
boundaries.

In addition to the evaluation of the immediate decisions, which are obtained
after a segment is processed (online results, Table 9.2a), the table also contains the
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Table 9.2: Comparison of the diarization performance on test data (Czech parliament
sessions) in terms of DER [%], adapted from (Kunešová and Radová, 2015). The
slight differences in missed speech and false alarm rates among different variants are
caused by the removal of very short pauses within the speech of a single speaker.

(a) Online results

miss FA SE DER
Without additional clustering 1.56 1.05 5.96 8.57
Weighted GMM summation 1.55 1.07 4.94 7.55
GMM retraining 1.51 1.06 4.08 6.66
Delete one GMM immediately (Nupd = 0) 1.55 1.06 3.52 6.13
Multiple GMMs for a speaker, Nupd = 30 1.52 1.07 3.35 5.94
Multiple GMMs for a speaker, Nupd = ∞ 1.52 1.07 3.46 6.05

(b) Final results

miss FA SE DER
Offline clustering 1.51 1.05 2.18 4.75
Weighted GMM summation 1.50 1.06 3.90 6.46
GMM retraining 1.47 1.06 3.66 6.19
Delete one GMM immediately (Nupd = 0) 1.50 1.06 3.00 5.57
Multiple GMMs for a speaker, Nupd = 30 1.49 1.06 2.99 5.54
Multiple GMMs for a speaker, Nupd = ∞ 1.48 1.06 3.00 5.54

final values which can be achieved by retroactively relabeling previous speech
whenever two models are found to represent the same speaker (final results, Ta-
ble 9.2b).

The online results show that rather than attempting to create a new model
by merging two similar ones, it is better to treat them as belonging to the same
speaker and discard one of them after some time. Best results were obtainedwhen
discarding the model which was trained using the greater amount of speech after
30 updates. In this case, there was a relative improvement in DER of 30.69% in
comparison with the base system.

Even better results can be achieved with offline clustering, but this method
cannot be used for online diarization.

Due to the relatively unique nature of the Czech parliament recordings which
were used as test data, it is difficult to compare these results with those of other
past works. The most similar system, both in the choice of test data and in design,
is that of Markov and Nakamura (2007; 2008), which originally served as inspi-
ration for this approach. As previously mentioned, these authors evaluated their
work on a very similar dataset of European parliament plenary speeches, and re-
ported a DER between 5.3 and 11.9 % (depending on the selected latency of their
system – see Table 7.8 on page 65). This is comparable to the results achieved
here, which were 8.57 % DER in the initial system and 5.94 % with additional on-
line clustering.
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9.2.4 Application to Conversational Data

After the initial success on the original task, further experiments explored the sys-
tem’s suitability for more complicated data such as natural conversations.

The AMI corpus was selected for this purpose. As described in section 9.1.3,
the corpus contains real and staged conversations between small numbers of
speakers. Unlike the previously used parliament data, AMI has very frequent
speaker changes and relatively large amounts of overlapping speech and noise,
all of which complicates the diarization process.

The majority of the system’s parameters were kept the same as in previous
work. However, some aspects were modified during the testing on the AMI
corpus. The number of LFCC features was increased to 52, including delta
coefficients. Instead of real voice activity detection, the system used oracle
speech/silence labels obtained from reference transcripts. Longer speech inter-
vals were cut into segments of only 1–2 seconds (as opposed to the previous 1–5
seconds), to account for more frequent speaker changes.

UBMs had 16 Gaussian components and were trained on the LibriSpeech cor-
pus, using approximately 80 s of randomly selected speech from each of the 2338
speakers (1128 female, 1210 male) in the three LibriSpeech training sets.

Influence of Overlapping Speech

The AMI data contain a large amount of overlapping speech. This is problematic
for reasons previously noted in section 5.2. Amongother issues, if a speakermodel
is updated with a segment containing overlapping speech, it may later lead to
confusion between speakers, decreasing the system’s overall performance.

In order to determine howmuch this affects the results onAMI, the systemwas
also evaluated with such intervals excluded from the diarization process. This
used oracle overlap labels, based on the reference transcripts.

Tables 9.3 and 9.4 provide results for the following different options:

a) The standard system with no information about overlaps

b) Intervals with overlapping speech are excluded from the diarization process
and labeled as silence (resulting in a higher rate of missed speech)

c) Overlaps are initially excluded, but they are later assigned to the most sim-
ilar speaker model, using maximum-likelihood classification. This classifi-
cation is currently done in an offline manner at the end of the diarization
process, as the alternative would require significant modification of the ex-
isting system.

d) The offline classification in c) assigns two labels to each overlap, representing
the two most similar models. This will result in the lowest miss rate.

By default, the system’s output is evaluated using the entire conversation. For
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options a) and b), the error rates are additionally also calculated with overlap
intervals not scored.

The latter pair of values provide the most straightforward measure of how
much the presence of overlapping speech affects the results on the rest of the
data. In both Table 9.3 and in Table 9.4 (for results with updated models), the
difference between the two options is noticeable, suggesting that the system may
benefit from some form of overlap detection.

Initial Results on AMI

Unfortunately, the initial tests have proven rather poor, resulting in a Diarization
Error Rate in excess of 50 %, as seen in Table 9.3. Meanwhile, most of the state-of-
the-art systems which were listed in the overview in Table 7.3 (page 58) achieved
between 20–35 % DER on AMI.

An analysis of the system’s output has shown that the system in its current
state is not able to correctly distinguish between speakers, particularly when de-
ciding if a new speech segment belongs to an existing speaker or a new one. Re-
gardless of the selected threshold θ, the system creates an excessive number of
additional models while at the same time combining other speakers together.

The most likely explanation is that the used models were not representing the
individual speakers sufficiently well. This could be an issue of the models’ size or
structure, the updating process, or the initial UBM itself.

In the original experiments with Czech Parliament recordings, as well as in
three of the four GMM-based sequential clustering systems which were men-
tioned in section 4.3.1, UBMs were trained on data from the same corpus. This
is not the case here and it may be one of the major reasons behind the system’s
poor performance.

Overlapping speech also played a role in the result. However, it was clearly
not the sole factor, as attempts to exclude overlaps prior to diarization lead to only
a partial improvement.

AMI Diarization with Known Speakers

To better understand the problems with the AMI corpus, a different experiment
was performed. Instead of sequential clustering with unknown speakers, the sys-
tem was modified to work on a speaker identification basis, similar to the ap-
proach described in section 4.3.2.

The system receives themodels of all speakers at the start andmerely classifies
each segment. Two alternatives were considered:

a) The models are unchanged during the entire process

b) The models are still being updated after each use, as they would be in the
standard system
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Table 9.3: Results of the GMM-based diarization system on AMI data with UBM
trained on LibriSpeech, θ = 0 and oracle VAD. These numbers correspond to the
final labels, with merged models retroactively relabeled (using Nupd = 30). “eval
OL” denotes if overlaps are scored during evaluation (3) or excluded (7)

option eval
OL? DER miss FA SE

base 3 61.53 8.30 0.00 53.23
exclude overlaps, label as silence 3 61.73 15.93 0.00 45.80
exclude + classify at the end (1 spk) 3 57.70 9.06 0.00 48.64
exclude + classify at the end (2 spk) 3 55.68 2.18 0.00 53.50
base, overlaps not scored 7 58.34 0.94 0.00 57.39
exclude + do not score overlaps 7 55.33 1.91 0.00 53.42
offline clustering - base 3 41.48 8.30 0.00 33.17

+ overlaps not scored 7 37.81 0.94 0.00 36.87
offline clustering - exclude 3 42.81 15.93 0.00 26.88

+ overlaps not scored 7 33.16 1.91 0.00 31.25

In either case, no additional models are created and none are merged or
deleted. This means that there is no issue with novelty detection, and any errors
will be simply due to confusion between speaker models.

The initial speakermodelswere created fromLibriSpeechUBMs using a single
pass of the same online GMM learning process which is used during diarization.
Each speaker’s model was updated using a small amount of speech selected either
from the test file itself (option 1), or from a different file with the same speakers
(option 2).

Most of the AMI participants recorded more than a single session; usually
there are 2-4 meetings with each group of speakers. This means that one of the
meetings from each set can be used to obtain speaker models for the other files
in the set. In most cases the files share the same name, distinguished by a final
letter (e.g. “ES2002a”, “ES2002b”, “ES2002c” and “ES2002d” all share the same 4
speakers). For the purpose of this experiment, files “a” were used for preparing
the models and the corresponding “b”, “c” and “d” files were used for testing.

Table 9.4 shows the results for all four combinations of settings (with or with-
out model updates, models from the tested file or from a different one), with
models updated using different amounts of data from each speaker. (However,
this is merely the maximum duration; in some cases the amount of available data
from a speaker is lower.)

The results in Table 9.4 suggest that when using only a single pass of the on-
line GMM learning algorithm, the system requires approximately one minute
of speech from each speaker to sufficiently adapt the LibriSpeech UBMs. With
smaller amounts of training data, there is relatively high confusion between speak-
ers. This helps explain the poor results in Table 9.3 – many errors likely originate
from a single mistake at the beginning of the diarization process. This then in-
creases through snowballing effect – as models are updated with incorrect data,
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even more subsequent segments are classified incorrectly.
This effect is also clearly demonstrated here by the difference between the re-

sultswith andwithoutmodel updates, particularly in the 10 s and 30 s cases –with
smaller amounts of training data, resultswith updates are significantlyworse than
when models are unchanged.

The benefits of considering overlapping speech are alsomore evident here than
in Table 9.3. In the results with updated models, we can see that there is always
a significant decrease in speaker error when overlaps are completely excluded by
the system. In the case where models are fixed and never updated, the difference
is much smaller.

Assigning labels to overlaps results in a slightly increased speaker error, as
the classification is not completely accurate. However, as this also decreases the
miss rate by a much larger amount, the overall DER still improves by a significant
margin.

9.2.5 Conclusion

The basic approach which was implemented here appears to be best suited for
situations matching the original scenario: long recordings with a large number of
speakers, where additional speakers appear throughout the entire duration. Un-
der these conditions, the system was able to achieve a very low DER of less than
6 %, a comparable result to those previously reported on a similar dataset.

However, in cases where there is only a small number of speakers who are
present from the start, this approach proves problematic. Most importantly, the
success is highly dependent on whether the speakers can be correctly tracked dur-
ing their first appearance. If a pair of speakers is mistaken for the same person at
the very start, they will likely remain combined for the entire duration and a large
portion of the system’s output will be incorrect.

It also appears that a suitable choice of UBMs may be critical. Based on the
poor results on the AMI corpus with LibriSpeech UBM (section 9.2.4), it is sus-
pected that the UBM needs to match the target data as closely as possible - prefer-
ably by being trained on recordings from the same source (such as previous epi-
sodes of the same broadcast or different meetings recorded in the same room).
This suspicion could be verified by conducting further experiments with a UBMs
trained directly on AMI, but this was not pursued at the time.

Finally, some fault also likely lies with the relatively simplistic speaker models
which were used. Increasing their complexity may lead to improvements. How-
ever, at this point in time, GMMs are no longer considered the state-of-the-art
solution, so it was decided to abandon their use entirely and move towards other
options for speaker representation. For this reason, further experiments in this
thesis are focused on the more recent i-vectors and x-vectors.
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Table 9.4: Results of the GMM-based diarization system on AMI data, with speaker
models precomputed using different (maximum) amounts of data. Evaluated on a
subset of 106 files, with oracle VAD. False alarm rate was equal to zero in all cases.
Non-zero miss rate is due to both overlapping speech and the exclusion of very short
utterances during segmentation. “eval OL” denotes if overlaps are scored during
evaluation (3) or excluded (7). Listed values are averages calculated from individ-
ual results for all files.

eval
OL?

speaker error
option miss 10s 30s 60s 100s
speaker models from the same file, models updated during diarization
base 3 8.21 35.09 16.06 5.08 3.90
exclude overlaps, label as silence 3 15.80 29.50 11.48 2.53 1.87
exclude + classify at the end (1 spk) 3 9.05 30.93 12.26 2.99 2.32
exclude + classify at the end (2 spk) 3 2.29 34.17 14.90 5.34 4.69
base, overlaps not scored 7 0.94 39.13 17.74 5.47 4.13
exclude + do not score overlaps 7 2.00 34.09 13.33 2.97 2.21
speaker models from the same file, no model updates
base 3 8.21 27.28 11.60 4.60 3.27
exclude overlaps, label as silence 3 15.80 24.47 9.19 3.02 1.88
exclude + classify at the end (1 spk) 3 9.05 26.46 10.57 3.65 2.33
exclude + classify at the end (2 spk) 3 2.29 29.54 13.43 6.21 4.78
base, overlaps not scored 7 0.94 29.72 12.21 4.78 3.39
exclude + do not score overlaps 7 2.00 28.58 10.83 3.57 2.23
speaker models from file ”a”, models updated during diarization
base 3 8.21 39.88 29.64 13.40 9.76
exclude overlaps, label as silence 3 15.80 33.32 25.34 9.63 6.96
exclude + classify at the end (1 spk) 3 9.05 34.76 26.53 10.21 7.50
exclude + classify at the end (2 spk) 3 2.29 37.82 29.39 12.80 10.01
base, overlaps not scored 7 0.94 44.45 32.86 14.73 10.58
exclude + do not score overlaps 7 2.00 38.61 29.09 11.11 7.99
speaker models from file ”a”, no model updates
base 3 8.21 35.13 17.29 9.02 9.49
exclude overlaps, label as silence 3 15.80 32.26 14.82 7.24 7.86
exclude + classify at the end (1 spk) 3 9.05 34.40 16.30 8.06 8.53
exclude + classify at the end (2 spk) 3 2.29 37.41 19.18 10.73 11.13
base, overlaps not scored 7 0.94 38.58 18.69 9.66 10.27
exclude + do not score overlaps 7 2.00 37.52 17.40 8.45 9.05
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9.3 Speaker Diarization Using i-Vectors

This section details the work which was done with i-vector-based speaker diariz-
ation. This initially started as an offline system (section 9.3.1), but was later also
adapted into an online variant (section 9.3.2). The segmentation experiments in
section 9.3.3 examine both of these variants. Finally, section 9.3.5 presents a hybrid
system which employs offline methods for online diarization.

Although all the experiments in this sectionutilize only i-vectors, the described
system was later modified to use x-vectors as well. This was during the work on
the DIHARD Speaker Diarization Challenge, which will be covered in section 9.4.

9.3.1 Baseline Offline Diarization System

Offline diarization experiments used an i-vector-based system which was devel-
oped together with Z. Zajíc (Zajíc et al., 2016; Kunešová et al., 2017; Zajíc et al.,
2018; Zajíc et al., 2019). Its original purpose was the diarization of telephone
speech, but it was later adapted for a wider variety of domains (see section 9.4).

The system follows the standard “bottom-up” framework of segmentation,
clustering and resegmentation, as introduced in section 3.1. In its basic form, it
operates as follows (some passages have been adapted from the above-mentioned
publications):

First, each recording is divided into short segments, from which i-vectors are
extracted. The i-vectors are then clustered to determine which parts of the signal
were produced by the same speaker. Finally, the system performs GMM-based
resegmentation to refine the positions of boundaries between speakers.

Figure 9.3: Diagram of the offline diarization system.

Feature Extraction Similarly to the GMM-based system (see section 9.2.1) this
also used LFCC features with a Hamming window of 25 ms and 10 ms shift. In
this case, there were 40 triangular filter banks linearly spread across the frequency
spectrum, resulting in 25 LFCCs and delta coefficients, for a total of 50 features.

Voice Activity Detection The base system does not employ VAD. Following
established practice in evaluating telephone speech diarization, the speech/non-
speech information was taken from the ground-truth references.



9.3. SPEAKER DIARIZATION USING I-VECTORS 93

Segmentation The baseline system used a simple time-based segmentation into
intervals of equal length. Following the example of Sell and Garcia-Romero
(2014), there are partial overlaps between neighboring segments. This increases
the amount of data available for i-vector extraction while maintaining a higher
number of segments. Other possibilities for segmentation have also been consid-
ered and are described in section 9.3.3.

Segment Description In the baseline system, each segment is represented by
an i-vector. These are extracted via Factor Analysis (FA) (Kenny and Dumouchel,
2004; Machlica and Zajíc, 2012), using a UBM with 1024 components, trained on
a variety of different corpora.

The size of the total variability matrix was 400 for telephone data (CALL-
HOME corpus) and 100 for later work with the DIHARD corpus. The dimen-
sionality of the i-vectors is also further reduced using PCA, as in (Shum et al.,
2011).

Clustering The initial version of the system was intended for the diarization of
telephone speech, with the assumption of only two speakers in each conversation.
Therefore, the system used a simple k-means clustering with cosine distance, into
two target clusters.

Later, this was changed to AHC to allow an unknown number of speakers
within an expected range:

The system starts with each i-vector in a separate cluster and then merges the
closest pairs until it reaches a stopping point. The distance between two clusters is
calculated as the average cosine distance between each pair of i-vectors. There is a
fixed stopping threshold. However, if the resulting number of clusters would not
fall within the expected range, the stopping point is adjusted so that the system
reaches either the minimum or maximum allowed number of clusters.

If two partially overlapping segments are assigned to different clusters, the
shared interval is initially left unlabeled and the final decision is left for the reseg-
mentation step. Alternatively, if resegmentation will not be performed (such as
in the online variant of this system), these intervals are simply split in the middle,
with each half being assigned to the closer segment.

The k-means clustering variant was used for CALLHOME data (section 9.3.4),
while AHC was used for the DIHARD Challenge (section 9.4).

Resegmentation The final step of the offline system is a frame-wise resegmenta-
tion of the entire data. This will refine the speaker boundaries and help to correct
mistakes caused by imprecise segmentation.

First, the original feature vectors are used to train a GMM from each cluster.
The number of GMM components depends on the amount of data in the clusters:
1 GMM component for every 2 segments, rounded down to the nearest power of
2 and with a maximum of 64.
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As the second step, the entire conversation is redistributed frame by frame
according to the likelihoods of the GMMs, filtered by a Gaussian window (with
a length of 75 ms and 50 ms shift) to smooth the peaks in the likelihoods.

9.3.2 i-Vector-based Online Diarization

Experiments with i-vector based online diarization started with a modified ver-
sion of the offline system which was described in section 9.3.1.

As the initial purpose of this version of the system was simply to investigate
the sequential segmentation and clustering process, without the need for actual
real-time output, it was decided against implementing a complete, fully online
diarization system. Rather, the original offline process was simply adjusted so
that each of the steps separately operates in a left-to-right manner, simulating an
online system.

As such, the initial steps of both systems are identical. However, the orig-
inal k-means clustering is replaced by a sequential algorithm, while both the
conversation-dependent PCA reduction of i-vectors and the final resegmentation
step, which are not possible to perform online, are removed entirely.

As the clustering step, the system employs the i-vector adaptation process pro-
posed by Zhu and Pelecanos (2016), which is given by

Tn = αVnVT
n + (1 − αn)I , αn =

n
n + R

, (9.4)

where n is the number of i-vectors which have been processed so far, Vn is the first
principal component of the i-vectors, Tn is an i-vector transformation matrix and
R is the relevance factor which controls the rate of the adaptation.

The resulting sequential clustering then works as follows: For each new i-
vector (which corresponds to a new segment), the system first updates the trans-
formation matrix Tn using the formula in Equation 9.4 and uses it to transform all
i-vectors seen up to this point. Then the cosine distance is calculated between the
new transformed i-vector and all existing clusters, where the distance to a cluster
is calculated as the average of the distances to all of its i-vectors. If the distance
to the closest cluster is lower than a fixed threshold θ or the maximum number
of clusters is reached (for CALLHOME, this number was 2), the new i-vector is
assigned to this cluster. Otherwise, a new cluster is created.

Because all decisions made by the system are final and unchangeable, an in-
correct decision at an early point in a recording can significantly impact the rest
of the clustering process. In this regard, extremely short segments, particularly
those under 0.5 seconds are the most problematic, as they typically do not con-
tain sufficient information about the speaker in order to be correctly clustered.

Some of the segmentation approaches which were examined in section 9.3.3
may produce such short segments, so it was necessary to slightly adjust the clus-
tering algorithm in order to avoid this issue. This is achieved by excluding any
segments under 1 second in length from the regular clustering process. Instead,
the corresponding i-vectors are simply labeled as the nearest existing cluster (they
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are never used to create a new one), but they are not included in the calculation
of Tn in Equation 9.4 nor considered in later distance calculations.

The results obtained by this system on CALLHOME data can be found in sec-
tion 9.3.4.

9.3.3 Segmentation Experiments

The baseline system uses a simple segmentation into intervals of equal length.
However, options involving speaker change detection were also considered and
tested with both the offline and online versions of the system. These experiments
are described in this section.

As previously stated in chapter 3, speaker change detection is often applied
for the segmentation step of speaker diarization systems, as it allows to obtain
segments which ideally contain only the speech of a single speaker. However,
due to some of the common obstacles typically present in spontaneous telephone
conversations, namely very short speaker turns and frequent overlapping speech,
diarization systems aimed at telephone speech often omit the speaker change de-
tection process. Instead, they use a simple constant length segmentation of re-
gions of speech found by a speech activity detector (e.g. Sell and Garcia-Romero,
2014; Senoussaoui et al., 2014), with the expectation that the resegmentation step
would resolve any inaccuracies.

This reasoning is often stated in relevant literature. However, to the author’s
best knowledge, no source had previously presented a detailed comparison of the
two segmentation approaches on telephone data. For this reason, experiments
comparing the two approaches were performed in order to investigate this matter.

Both offline and online diarization were considered – the individual cluster-
ing approaches are evaluated using the offline and online versions of the i-vector
based system, which were described in sections section 9.3.1 and section 9.3.2, re-
spectively.

Segmentation Approaches

Four different segmentation approaches were considered. All of these assume the
possibility of their use in online diarization, i.e. they operate sequentially or could
likely be relatively easily adjusted in such manner.

Some of the described approaches rely on information about the presence of
silence and speech which would under real conditions be provided by a VAD.
However, in order to avoid any specific VAD method from influencing the results
of the segmentation, we chose to use oracle VAD obtained from the reference tran-
scripts.

Fixed Length Segments The simplest segmentation option is to split all speech
into short intervals of equal length, without considering any potential speaker
boundaries. This is the baseline approach which was described in section 9.3.1.
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As previously stated, the implementation follows the example of Sell and
Garcia-Romero (2014) by using overlapping segments. This allows us to increase
the amount of information contained in a single i-vector while retaining a higher
precision of the segmentation. Specifically, we chose to use segment length of 2
seconds with a 1 second overlap between neighboring segments.

GLR-based Speaker Change Detection Two of the segmentation options em-
ployed speaker change detection. The first one of these followed a more tradi-
tional distance-based approach, using the Generalized Likelihood Ratio (GLR,
described in section 2.2.1). In order to obtain segments of consistent length, com-
parable to the constant length approach, a two-step algorithm was implemented,
incorporating a fixed minimum and maximum segment length. The two-pass na-
ture of this algorithm means that it is not suitable for true online diarization in
its current form. However, it should be possible to implement a relatively similar
algorithm in a strictly left-to-right form.

In the first step of the segmentation process, the system identifies a smaller
number of the most likely speaker change points by performing standard GLR-
based speaker change detection using two neighboring sliding windows of 2 s
with a step size of 0.1 s.

Likely speaker changes are identified as the locations of significant local max-
ima of the distances. For this purpose, the system calculates the prominence2 of
individual peaks in the distances and selects thosewith values exceeding a thresh-
old.

The second step of the segmentation consists of further splitting any segments
which are longer than the maximum allowed length. The point where a long seg-
ment is split is found in the following manner:

First, the system identifies an interval where a split can occur, such that nei-
ther of the resulting new segments would be shorter than the minimum allowed
length. If there are any peakswithin this smaller interval, the onewith the highest
prominence (as calculated during the first step of the segmentation) is selected as
the new segment boundary. If no peaks are present, the segment is cut at the edge
of the interval, at the point where the distance is highest. Figure 9.4 illustrates this
process.

Finally, any segments which contain only a small percentage of speech frames
(as determined by VAD), are labeled as silence and subsequently discarded.

2Peak prominence measures howmuch a given peak stands out within the signal. It was calcu-
lated using MATLAB’s built-in findpeaks function.
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Figure 9.4: The process of splitting longer segments in the GLR segmentation ap-
proach.

CNN-based Speaker Change Detection The third approach which was consid-
ered was also based on speaker change detection, this time using a Convolutional
Neural Network (CNN). This methodwas primarily designed byM. Hrúz (Hrúz
and Kunešová, 2016; Hrúz and Zajíc, 2017).

The CNNwas trained on spectrograms of acoustic signal using themethod de-
scribed in (Hrúz and Zajíc, 2017). It receives a short window (1.4 s) of a spectro-
gram and outputs the probability of speaker change in the middle of this window.
The process is illustrated in Figure 9.5.

Figure 9.5: Illustration of CNN-based speaker change detection. The input speech as
spectrogram is processed by the CNN into the output function P(t) (probability of
speaker change at specific time, shown in blue at the bottom right). The reference
signal for the CNN training is depicted on top. Image reproduced from (Kunešová
et al., 2017).

Speaker changes are identified as peaks in the output signal P(t), with a
threshold to remove insignificant local maxima. The signal between two detected
speaker changes is considered to be one segment.

In the offline version of this segmentation approach, we discard any segments
under 1 second in length, as they are considered unreliable. They are only pro-
cessed later during resegmentation. However, in the online variant, which does
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not have resegmentation, we keep all segments, regardless of length.
Processing the spectrogramwindowusing a CNN takes only a very short time,

which makes this approach suitable for online diarization.
This segmentation option also included an additional modification of i-vector

extraction – during the statistics accumulation process, the data in each segment
are weighted by 1 − P(t). The reasoning behind this is that we still cannot be
certain that each segment only contains the speech of a single speaker. The parts
of the audio segment with a high probability of a speaker change are likely less
appropriate to represent the speaker than those with a small value of P(t) (Zajíc
et al., 2017).

Oracle Segmentation For comparison purposes, we also implemented oracle
segmentation. In this approach, the conversations are split according to the ref-
erence transcripts: each individual record from the transcript becomes a single
segment. As many of these segments are very short (often under 1 second), we
adjust them slightly by joining any two segments from the same speaker which
are separated by a silence of less than 0.5 seconds (this does not, however, elim-
inate all short segments). These relabeled silences are removed again at the end.
Otherwise, the segments are kept exactly as recorded in the transcripts, including
any partial overlaps.

9.3.4 Results on Telephone Data

For the evaluation of the offline and online system and the four different segmen-
tation approaches which were described in section 9.3.3, we used the American
English subset of the CALLHOME corpus of telephone speech (described in sec-
tion 9.1.2). As a portion of the recordings had been used for training the CNN
whichwe use for one of the segmentation approaches, we limited our experiments
to the remaining 77 conversations with only two participants.

The results are evaluated in terms of DER, as described in section 7.1, with the
customary tolerance collar of 0.25 seconds around speaker boundaries. Contrary
to a common practice in telephone speech diarization, we do not ignore overlap-
ping segments during the evaluation.

Table 9.5 presents the results achieved with the four segmentation methods by
the offline and online versions of the system, whichwere described in section 9.3.1
and section 9.3.2, respectively.

The online system was evaluated with a fixed decision threshold θ = 0.6 and
different values of the relevance factor R, which controls the rate of the adaptation
(see section 9.3.2). The adaptation process proposed by Zhu and Pelecanos (2016)
can improve the final DER in all four cases, but the individual segmentation ap-
proaches have different optimal values of R.

The results of these experiments were initially published as part of two con-
ference papers (Zajíc et al., 2016; Kunešová et al., 2017). In the original publi-
cations, the reported values for the fixed length segmentation were erroneously
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high. Based on this, it was mistakenly suggested that this naïve approach works
bestwith resegmentation and is unsuitable for online diarization. Themistake has
since been corrected, but the updated results in Table 9.5 unfortunately no longer
support the original conclusion – for the online system, fixed length segmentation
surpasses both variants of speaker change detection. However, as the results with
oracle segmentation show, there is still room for improvements.

Overall, the achieved results fallwithin the range of those of other past systems,
which were shown in Table 7.1 on page 54. However, it is difficult to draw direct
comparisons. As discussed in section 7.2.1, despite using the same corpus, differ-
ent authors use different subsets of the data and evaluate them under different
conditions (e.g. conversations with only two speakers or multiple; with system
VAD, oracle VAD or even oracle segmentation; with overlapping speech excluded
or not).

To obtain a more precise comparison, we instead sought a more standardized
method of evaluation. This resulted in our participation in the DIHARD Speaker
Diarization Challenge, which will be covered in section 9.4.

Table 9.5: Offline and online diarization results for different segmentation ap-
proaches, measured in terms of Diarization Error Rate (DER) [%]. R is the relevance
factor of the i-vector adaptation, with the value of ∞ being equal to no adaptation.
Decision threshold for the online approach was θ = 0.6. (Results have been updated
since the publication of the original paper.)

(a) Offline system (after resegmentation)

DER [%]
fixed length segments 7.63
GLR speaker change detection 7.44
CNN speaker change detection 7.69
oracle segmentation 6.80

(b) Online system

R ∞ 16384 ... 1024 512 256 128 64 32
fixed l. 12.50 12.36 ... 12.67 12.98 13.22 13.63 13.87 14.39
GLR 15.04 – 14.29 14.15 14.12 13.74 14.23 14.29
CNN 14.90 – 14.52 14.69 14.66 15.68 16.49 17.33
oracle 9.66 – 9.35 8.47 8.25 8.04 8.55 9.57

9.3.5 Hybrid Speaker Diarization

One of the online diarization approacheswhichwere listed in chapter 4was hybrid
online-offline diarization (section 4.3.3). Such systems repeatedly perform fast offline
diarization of past data in order to improve future online decisions.

This section details a brief experiment which explored such an approach.
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The Hybrid System

The system used here is based on the earlier online i-vector experiments which
were described in section 9.3.2 (including the i-vector adaptation process). How-
ever, the implementation was largely rewritten from scratch, in order to allow
truly online processing with the option of parallelizing the offline part. Due to
some preliminary simplifications and differences in configuration, the resultsmay
not be directly comparable with those in Table 9.5.

The hybrid aspect of the system is currently achieved via a simple recluster-
ing process which is performed after every new segment. It is a centroid-based
reclustering using cosine distance between i-vectors. In order to maintain conti-
nuity in labeling, the initial centroids are obtained from the existing clusters. As
in section 9.3.2, segments shorter than 1 s are excluded from this process, and are
simply given the label of the closest cluster at the time of their creation.

After the entire recording is processed, there is an optional final round of
reclustering which retroactively relabels past segments. Since it also starts from
the existing clusters, it is not fully equivalent to an offline clustering from scratch.

Currently, there are three segmentation options used by the system:

• Oracle segmentation - identical to section 9.3.3

• CNN segmentation - is based on the same CNN-based speaker change de-
tection as in section 9.3.3. However, due to some differences in the imple-
mentation of the segmentation process, the resulting segments are slightly
different.

• Uniform segmentation - the entire recording is split into intervals of 2 s. Un-
like in earlier experiments, there are no overlaps between neighboring seg-
ments

At this moment, the system does not consider overlapping speech – all frames
are given only a single label.

Results

The experimental hybrid system was evaluated on the same subset of the CALL-
HOME American English Corpus as in section 9.3.4: the 77 two-speaker conver-
sations which were not used for training the speaker change detector.

Table 9.6 shows the results of four different configurations:

a) Baseline online system with no reclustering

b) Final reclustering only – there is only a single round of reclustering, per-
formed at the end of the online diarization process. All segments are retroac-
tively relabeled.



9.3. SPEAKER DIARIZATION USING I-VECTORS 101

ref. VAD + CNN segmentation

1 2 3 4 5 6 7 8 9 10
time interval (Nth minute)

0

2

4

6

8

10

12

14

S
E

R
 [%

]
no reclustering
online reclustering

oracle segmentation

1 2 3 4 5 6 7 8 9 10

time interval (Nth minute)

0

2

4

6

8

10

S
E

R
 [%

]

no reclustering
online reclustering

Figure 9.6: Development of the hybrid system’s speaker confusion error (SER) on
CALLHOME over time during diarization with and without periodic reclustering.
SER is calculated from specific one-minute intervals of all recordings (n-th column
corresponds to SER calculated from only the n-th minute of each recording). Plots
show SER obtained when overlapping intervals are excluded from evaluation.

c) Online reclustering only – the system performs reclustering after each new
segment. These results correspond to the immediate system outputs, with-
out retroactive relabeling

d) Both online and final reclustering – these results correspond to the “Online
reclustering” option, but with all segments retroactively relabeled at the end

Table 9.6: Results of the hybrid online-offline system with periodic offline recluster-
ing (with 2 target clusters) on a subset of the CALLHOME corpus. Unlike in pre-
vious experiments in section 9.3, the uniform segmentation did not use overlapping
segments. (However, oracle segmentation did – this is the reason behind its variable
miss.)

Speaker Error (SER) [%]

System miss
[%]

FA
[%]

no
reclust.

final
reclust.
only

online
reclust.
only

both
reclust.

Oracle seg. + ref. VAD 2.06–2.23 0.00 4.88 3.07 4.58 2.37
+ overlaps not evaluated 0.02 0.00 5.24 3.30 4.93 2.55

Uniform seg. + ref. VAD 3.52 5.07 12.94 7.74 10.89 7.36
+ overlaps not evaluated 0.05 5.45 13.91 8.32 11.71 7.91

CNN seg. + ref. VAD 3.51 2.48 10.14 7.53 9.54 7.61
+ overlaps not evaluated 0.03 2.67 10.90 8.09 10.25 8.18

The system is evaluated here primarily in terms of the speaker error (SER)
component of DER, as it is the only one significantly affected by the reclustering.

Figure 9.6 also shows how the system’s performance on the same recording
changes over time. To obtain these results, all recordings were processed in full,
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but only a specific one-minute interval was evaluated. The individual bars in the
plot correspond to the speaker error (SER) calculated on these specific intervals
(i.e. the third bar corresponds to the third minute of each recording).

The plots show that even in the baseline system the highest SER is at the start,
when there are not enough segments yet to properly represent the clusters. After
some time, the clustering quality improves. This effect is most dramatic in the or-
acle case, likely because the pure segments allow for the most accurate clustering.

Still, with online reclustering the SER decreases even further, particularly dur-
ing later parts of the recordings, as the reclustering process begins improving the
existing clusters.

Conclusion

The main purpose of this experiment was to replicate the hybrid diarization con-
cept which is used by a small number of online systems, and to evaluate its po-
tential. Although the chosen implementation is relatively simple, the results in
Table 9.6 show a small but noticeable improvement in all tested cases.

The reclustering process is also sufficiently fast to be used in a real online sce-
nario. The main bottleneck of the system is currently i-vector extraction, but this
only needs to be performed once. If all the i-vectors are already precomputed
at the start, then the entire hybrid diarization of a single ten-minute recording
(including i-vector adaptation during sequential clustering) takes less than five
seconds on a modern computer.
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9.4 The DIHARD Speaker Diarization Challenge

The previous sections described the i-vector-based diarization system which was
created in collaboration with Z. Zajíc. The system was initially evaluated on data
from the CALLHOME corpus, but this did not give us a complete idea of how it
compares to other contemporary works: as seen in chapter 7, comparisons using
other authors’ reported results can be complicated, even among systems tested
on similar data. The exception is during organized evaluation campaigns, when
it can be ensured that all systems are tested under the same conditions.

Thus, when we heard of one such evaluation being organized, we decided to
participate with our own system, to see how it compares with the works of other
research groups.

The evaluation in question was the DIHARD Speaker Diarization Challenge -
a new series of diarization evaluations focusing on offline diarization of “difficult”
data. This section describes our participation in the first two runs of the challenge
(DIHARD I and DIHARD II) as part of team “ZCU-NTIS” / “UWB-NTIS”.

The descriptions of the updated system and its results in both challenges were
also published in two papers (Zajíc et al., 2018; Zajíc et al., 2019). Parts of the
following text and tables are adapted from these sources.

9.4.1 Introduction

The First DIHARD Speaker Diarization Challenge (Ryant et al., 2018b) took place
in February and March 2018, and was repeated for a second run from March to
June 2019. The focus of the challenge was on offline diarization of such data where
speaker diarization is difficult or where standard methods may fail.

This involved issues such as long single speaker monologues, very short utter-
ances, large amounts of overlapping speech, varying levels of background noise,
or speakers with unusual voices (e.g. very young children).

The challenge data come from a variety of different source corpora (listed in
section 9.4.2). For this reason, there are great differences between individual
recordings. This includes channel variations due to different recording equip-
ment, the number of speakers, and the amount and type of background noise,
which sometimes includes music.

Development data included information about the source corpus of each
recording. However, for evaluation data, this information was not provided.

The systems in the challenge were evaluated under two different conditions –
using reference VAD (Track 1) and with VAD provided by the system (Track 2).

9.4.2 The Data

In the first run of the challenge, the DIHARD datasets consisted of the following
separate corpora (Ryant et al., 2018a):
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• SEEDLingS = Child language acquisition recordings (Bergelson, 2016)

• SCOTUS = Supreme Court oral arguments

• DCIEM = “Map tasks”

• ADOS = Clinical interviews

• YouthPoint = Radio interviews

• RT-04S (development) and ROAR (evaluation) = Meetings

• LibriVox = Audiobooks (1 speaker per recording)

• SLX (development) = Sociolinguistic interviews in the field

• MIXER6 (evaluation) = Sociolinguistic interviews in a laboratory setting

• VAST = Web videos (audio only)

• CIR = Restaurant conversations (evaluation set only)

The development and evaluation datasets for DIHARD II included all of the
original recordings from DIHARD I, as well as two additional corpora in the de-
velopment set (CIR and SLX, both ofwhichwere previously only in the evaluation
set) and one entirely new corpus in the evaluation set (DASS - sociolinguistic inter-
views conducted in the field). Recordings from the SEEDLingS andVAST corpora
were also re-annotated to correct errors which were present in DIHARD I data.

9.4.3 The Modified Diarization System

We entered the challenge with our existing offline diarization system, which was
described in section 9.3.1. However, the specifics of the challenge required some
changes in the system, particularly to deal with the variety of different data and
higher number of speakers. We also made some additional updates in the time
between the two runs of the challenge - these will be noted where appropriate.

The main distinguishing characteristic of our new approach was the use of a
classifier to automatically identify the source of each recording in the evaluation
set. This in turn allowed us to fine-tune the parameters of the diarization system
separately for each of the known corpora, as opposed to using a single, universal
setup.

Aside from the domain classifier, the most important change from the earlier
CALLHOME experiments in section 9.3.4 was the use of agglomerative clustering
rather than k-means, to allow the system to be used with an unknown number of
speakers. ForDIHARD II,we also added x-vector extraction alongside the original
i-vectors, combining both into a single “xi-vector”.

For comparison purposes, we have also tested an official Kaldi implementa-
tion of speaker diarization, as well as a combined systemwhich switches between
the two alternative options based on a per-corpus basis. These are described in
section 9.4.4.
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Corpus classification

The corpus classifier is neural network with a single hidden layer, which classi-
fies each recording as one of the corpora seen in the development data, or as “un-
known corpus”. The network’s input is a single i-vector computed from the entire
recording.

The classifier was designed and implemented by Z. Zajíc.
Classification accuracy was 95% on the DIHARD I development set and 90%

on the evaluation set (excluding unseen corpora).
For DIHARD II this was extended to a two step classifier: the first level distin-

guishes between recordings with a single speaker and those with multiple speak-
ers. The second step attempts to identify the source of multi-speaker data.

Feature Extraction

As a newly added step, Cepstral Mean Normalization (CMN) is applied to com-
pensate for channel variations. Otherwise this is unchanged.

Voice Activity Detection

Results for Track 2 of DIHARD I were obtained with a DNN-based voice activity
detector provided by J. Zelinka (Zelinka, 2018). During DIHARD II, we focused
solely on Track 1 (diarization using reference VAD), so no voice activity detection
was performed.

Segmentation

During DIHARD I, we tried two segmentation approaches: the default fixed
length segmentation and an updated version of the CNN-based speaker change
detection which was described in section 9.3.3.

In both cases, the entire conversation is first split into long intervals containing
only speech; silence is excluded from subsequent processing.

As a second step, the speech is further segmented, either

a) into fixed length intervals of 2 seconds, with 1 second of overlap between
neighboring segments, or

b) according to the speaker changes found by the CNN-based speaker change
detector. As previously, each interval between two detected speaker
changes (or between a speaker change and silence) is a single segment. In
the DIHARD I version of the system, these are not split further.

To ensure that each segment contains sufficient information about the speaker,
we set the minimum duration of each segment to 0.5 s. Shorter segments are dis-
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carded from the clustering stage and the decision about the speaker is left for the
resegmentation step.

In the final evaluation of DIHARD I, the segmentation based on speaker
change detection achieved worse results than the fixed length segmentation (as
shown in Table 9.9). Upon later examination, we found that the system had failed
to detect some of the speaker changes and as there was initially no upper limit
for segment length, this could sometimes result in very long segments containing
multiple speakers.

During DIHARD II, we resolved this issue by using a segmentation approach
which combines both of the above options: The initial speech intervals are first
split according to the detected speaker changes, and then further cut into shorter
segments of 2 seconds, with 1 second of overlap.

Speaker Representation

For the first DIHARD, the system used standard i-vectors, as described in sec-
tion 9.3.1. For DIHARD II, we replaced our previous i-vector extractor with a
Kaldi implementation of both i-vector and x-vector extraction3.

We compared the Kaldi i-vectors and x-vectors, and as shown in Table 9.7, we
achieved the best results by extracting both an i-vector and an x-vector from each
segment and concatenating them into what we refer to as a “xi-vector”.

For generating i-vectors, we trained a UBMwith 2048 components and a trans-
formation matrix with a latent dimension of 128. The x-vectors were extracted
from the second-to-last layer of a Time Delay Neural Network and also had a di-
mension of 128.

We performed whitening of the resulting xi-vectors by subtracting the mean
of the development set’s xi-vectors. Finally, the dimension of the vectors is re-
duced using conversation-dependent PCA computed on the data in the current
conversation. The final dimension depends on the identified corpus.

Table 9.7: Average DER [%] on the DIHARD II development set for an earlier version
of our system and for the Kaldi system (see section 9.4.4) with different segment
descriptors (x/i/xi-vectors).

System DER

proposed
i-vectors 24.31
x-vectors 23.81
xi-vectors 22.51

Kaldi
i-vectors 25.83
x-vectors 25.32
xi-vectors 24.13

3https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v1 and
/v2

https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v1
https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
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Clustering

The system uses one of two different clustering approaches, depending on the
identified corpus of each recording.

A small number of corpora in the development set almost always have the
same number of speakers in each conversation. For these, we can continue using
k-means clustering with a fixed number of clusters. For DIHARD II, we replaced
this option with k-medoids clustering, using PLDA rather than cosine distance.

For the rest of the data, the system uses an AHC algorithm, based on the av-
erage cosine distance between vectors. There is a fixed stopping threshold. How-
ever, if the resulting number of clusters would not fall within an expected range,
the stopping point is adjusted so that the system reaches either the minimum or
maximum allowed number of clusters. TheAHC clustering approach always uses
cosine distance. We have also tested PLDA as an alternative, but this did not lead
to an improvement in our system.

The parameters of both clustering approaches were selected on a per-corpus
basis using the development set. The target number of speakers is based on the
actual numbers in each conversation, while the optimal threshold for the merging
distance in AHCwas found experimentally. The specific values used for DIHARD
II are listed in Table 9.8.

Table 9.8: Experimentally chosen parameters for each DIHARD II corpus. In the
“PCA dimension” column, “-” indicates that no PCA was performed.

Corpus Clustering
algorithm

No. of
clusters

AHC
threshold

PCA
dimension

LibriVox none 1 - -
SEEDLingS AHC 2–3 0.62 6
CIR k-medoids 4 - -
ADOS k-medoids 2 - -
SCOTUS AHC 5–10 0.46 12
DCIEM k-medoids 2 - -
RT-04S AHC 3–10 0.46 6
SLX AHC 2–6 0.76 6
MIXER6 k-medoids 2 - -
VAST AHC 1–9 0.58 3
YouthPoint AHC 3–5 0.54 9
unknown AHC 2–6 0.10 -

9.4.4 Kaldi Diarization System

During DIHARD II, we also compared our diarization system with one based on
an official Kaldi recipe for diarization4.

4https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v1 and
/v2

https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v1
https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome_diarization/v2
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In the Kaldi system, we used the same LFCC features as in our main system
and we also combined i-vectors and x-vectors into xi-vectors. Otherwise it fol-
lowed the standard Kaldi recipe.

• Segmentation is based only on VAD, without speaker change detection. De-
tected speech intervals are divided into segments of 1.5 s and overlap 0.75 s.
The minimum length of a segment is 0.5 s.

• As in our main system, individual segments are represented by xi-vectors,
a concatenation of i-vectors and x-vectors. The vectors are whitened by sub-
tracting the mean and via transformation by an LDA matrix.

• The Kaldi system performs standard AHC clustering, with a simple stop-
ping threshold set on development data. This threshold was found for the
entire development set – this system does not treat different subsets of the
DIHARD II data differently.

• The Kaldi system did not use resegmentation, as this was not a part of the
original Kaldi recipe at the time of the challenge.

Combined System

As our third option for the challenge, we have also implemented a combined sys-
tem, which simply switches between the first two systems based on the detected
corpus of each recording:

Ourmain diarization systemworks verywell when facedwith known corpora.
As long as it is properly configured, it surpasses the performance of the Kaldi
system. However, for optimal results, its parameters have to be specifically tuned
for the target domain.

On the other hand, the Kaldi system is more universal. It does not use the
information from the domain classifier, and its setting is very general. Therefore,
it is able to work on any of the evaluation data relatively well.

For this reason, our combined system uses the following approach:

• If we can identify the corpus of a specific conversation with a sufficient cer-
tainty, we process it using our own system, with the corresponding settings.

• If we cannot identify the corpus (i.e. the domain classifier marked the con-
versation as “unknown corpus”), we use the more generic Kaldi system, as
it is more suitable in this situation.

• In the final evaluation, we also used the Kaldi system for the twomost prob-
lematic corpora – SEEDLingS and VAST. On average, our system slightly
outperformed the Kaldi system on the development data for these corpora,
but the DERs of individual conversations had a higher variance than the
ones from Kaldi.

The combined system resulted in the lowestDERof the three options, as shown
in Table 9.10.
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9.4.5 Official DIHARD Evaluation Metrics

In the official DIHARD evaluation, system performancewasmeasured in terms of
DER, as well as an additional secondary metric. During DIHARD I this was Mu-
tual Information (MI) between reference labels and those assigned by the system,
while for DIHARD II, the secondary metric was Jaccard Error Rate (JER).

• To obtain Mutual Information, the reference and system labels are first con-
verted to a sequence of individually labeled 10ms frames. MI is then calcu-
lated as follows (Ryant et al., 2018b):

MI =
NRe f

∑
i=1

NSys

∑
j=1

nij

N f
log2

nijN f

risj
(9.5)

where NRe f is the number of reference speakers, NSys is the number of sys-
tem speakers (i.e. the clusters created by the system), ri is the number of
frames belonging to the i-th reference speaker, sj is the number of frames
belonging to the j-th system speaker, nij is the number of frames belonging
to both ri and sj, and N f is the total number of frames.

• Jaccard Error Rate is new metric which was first introduced for DIHARD II
(Ryant et al., 2019). Similarly to DER, calculating JER requires finding the
optimal one-to-one mapping between the reference and system speakers.
Then, for each reference speaker re f and the corresponding system speaker
sys (if any), a speaker-specific Jaccard error rate JERre f is calculated as

JERre f =
FA+MISS
TOTAL (9.6)

where

– MISS is the duration of speech which is assigned to reference speaker
re f , but not to the corresponding system speaker sys

– FA is the duration of speech which is assigned to sys, but not to re f

– TOTAL is the total duration of speech which is assigned to either re f or
sys

If reference speaker re f was not pairedwith any of the system speakers, then
JERre f = 1.
Finally, the overall JER is obtained as the average of JERre f over all speakers:

JER =
1

NRe f
∑
re f

JERre f (9.7)

In contrast to usual practice, the systems in DIHARD challenge were evalu-
atedwithout any sort of tolerance collar around speaker boundaries. Overlapping
speech was also evaluated.
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9.4.6 Final Results in the Challenge

The DIHARD Challenge consisted of two separate tracks:

• Track 1: Diarization using reference VAD

• Track 2: Diarization using system VAD

During DIHARD I, we participated in both of these tracks, with the help of
an external voice activity detector. However, we focused most of our efforts on
optimizing the Track 1 system. During the second run of the challenge, we partic-
ipated only in Track 1.

DIHARD II evaluation was divided into 2 phases: the initial evaluation ran
for exactly one month in March–April 2019, but it was possible to submit further
improvements for another three months after the first deadline. While several
other teams took advantage of this extended second phase, wewere unfortunately
unable to devote any more time to this task.

Based on DER, our final placement was as follows:

• DIHARD I:

– Track 1 (diarization using reference VAD): 5th place out of 14 teams
– Track 2 (diarization from scratch): 7th place out of 11 teams

• DIHARD II:
Track 1 only

– First phase: 4th place out of 12 teams
– Second phase: 11th place out of 20 teams (our system was unchanged)

Tables 9.9 and 9.10 show the official results of our submitted systems in the
challenge, as well as the results of the winning teams. A full overview of the
results achieved by all participating teams can be found in Tables 7.6 (page 63)
and 7.7 (page 64).

Table 9.9: Official results (DER [%] and MI [bits]) on the DIHARD I evaluation data
for both types of segmentation.

Track1 Track2
System DER MI DER MI
Fixed length segmentation 26.90 8.34 45.78 7.79
CNN-based speaker change detection 27.12 8.31 46.14 7.77
Track 1 winner (Team “JHU” [1]) 23.73 8.44 37.19 8.04
Track 2 winner (Team “BUT” [2]) 25.07 8.46 35.51 8.07

[1] Sell et al. (2018)
[2] Diez et al. (2018b)
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Table 9.10: Official results (DER and JER [%]) on DIHARD II evaluation data, Track
1 only.

System DER JER
Proposed system 24.59 49.63
Kaldi system 25.17 54.94
Combined system 23.47 48.99
Phase 1 winner (Team “DI-IT” [1]) 21.62 48.82
Phase 2 winner (Team “BUT” [2]) 18.42 44.58

[1] Novoselov et al. (2019)
[2] Landini et al. (2020)

9.4.7 Discussion

Table 9.11 shows the results of our original system on each corpus in the DIHARD
II development set, as well as the results of several experimental modifications:
with simple VAD-based segmentation instead of speaker change detection, with
denoised input data, and with information about overlapping speech.

• Alternative segmentation
The alternative VAD-based segmentation was the same ”fixed-length” op-
tion which we had previously used for DIHARD I. From the results here we
can see that the new combined approach provides better results in almost
all cases.

• Denoising
Some of the DIHARD data contain a relatively large amount of noise.
During DIHARD I, denoising was succesfully used by teamUSTC-iFLYTEK
(Sun et al., 2018b) and their speech enhancement tool5 was later made
available to all participants of DIHARD II.
We have explored the use of this tool in our own system. However, the tool
itself appears to be primarily intended for improving the accuracy of VAD,
and as shown in Table 9.11, did not prove beneficial for our system in Track 1.

• Overlapping speech
Challenge data contained a large amount of overlapping speech. This was a
significant source of error and accurate detection could improve the results,
as shown during DIHARD I by teams such as BUT (Diez et al., 2018b).
To investigate the potential benefits for our system, we first tested it with ref-
erence overlap labels and the following simple modification: Intervals with
overlapping speech are excluded from clustering. During resegmentation,
these intervals are assigned the labels of the twomost similar GMMs, rather
than only one.

5https://github.com/staplesinLA/denoising_DIHARD18

https://github.com/staplesinLA/denoising_DIHARD18
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As shown in Table 9.11, we have found that with perfect overlap detection,
we could decrease our DER on the development set of DIHARD II from
20.78% to 16.16%.

Additionally, the final column of the table shows baseline results, whichwould
be achieved by assigning the same label to all speech. We can see that for most of
the corpora, the system achieves a significantly better DER than the baseline. The
only exceptions are SEEDLingS and VAST, where the difference is rather small,
suggesting that the system does not work well on these data. This likely has to
do with the character of these two corpora – SEEDLingS contains recordings of
children between 6 and 18 months old, who have very different voices from adult
speakers. VAST originates from unrelated web videos, recorded under different
conditions, so there does not appear to be a single system configuration which
would work well for all recordings.

Overall, our system placed fairly well in the challenge, but as the results of the
winning teams show, there is still room for improvement.

Table 9.11: Average DER [%] on individual corpora of the DIHARD II development
set (Track 1), for our system (without Kaldi) and for several different modifications –
withKaldi VAD-based segmentation instead of speaker change detection (SCD), with
denoised data, and with reference overlap labels – as well as baseline results where
all speech is given the same label.

Corpus our
system

without
SCD

with
de-noise

with ref.
overlap

all one
speaker

LibriVox 0.00 0.00 0.00 0.00 0.00
SEEDLingS 31.32 31.22 32.30 24.56 36.38
CIR 45.83 47.88 46.70 37.71 66.49
ADOS 14.06 13.26 14.25 10.73 39.64
SCOTUS 6.92 10.67 8.01 5.99 47.56
DCIEM 8.88 8.66 8.74 6.24 29.39
RT-04S 33.14 36.38 34.53 25.69 54.70
SLX 17.56 19.14 17.36 13.64 37.98
MIXER6 9.42 9.29 9.93 5.02 33.08
VAST 38.00 38.91 38.61 30.09 41.11
YouthPoint 4.55 5.26 5.49 3.89 24.61

All 20.78 21.52 21.31 16.16 37.47
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9.5 Overlap Detection Using a Convolutional Neural
Network (CNN)

This section describes a separate set of experiments which focused on the detec-
tion of overlapping speech. As discussed in chapter 8, overlapping speech is a
major source of error in speaker diarization, and its correct handling can lead to
significant improvements. This was also observed in Table 9.11, where oracle over-
lap labeling reduced the proposed system’s DER from 20.78 % to 16.16 %.

The main idea of these experiments was inspired by the CNN-based speaker
change detection used in (Hrúz and Kunešová, 2016), which is also mentioned in
section 9.3.3. The proposed overlap detector uses a very similar network architec-
ture and the same general approach.

As the overlap detector processes the input data sequentially, with a simple
sliding window, it can be used for both online and offline diarization.

Parts of this section have also been published in (Kunešová, 2018) and
(Kunešová et al., 2019).

9.5.1 The Overlap Detector

The overlap detector is implemented as a Convolutional Neural Network. Its ar-
chitecture is summarized in Table 9.12.

The input of the network is a spectrogram of a short window of the acoustic
signal. The output of the last layer is a value between 0 and 1, indicating the proba-
bility of overlapping speech in the middle of the window. Training references use
a fuzzy labeling function, with a linear slope at the boundaries between overlap
and non-overlap, as shown in Figure 9.7. The sliding window has a length of 1 s
and is shifted with a step of 0.05 s.

Not overlap     Not overlapOverlap

0.4 s

Figure 9.7: Reference signal for CNN training. Gray area denotes the interval with
overlapping speech.

A median filter with a window length of 5 samples is used to smooth the raw
network output, then a threshold is applied to obtain overlap / non-overlap classi-
fication. Additionally, the post-processing fills in any gaps (non-overlaps within
a longer overlap) which are shorter than 0.1 s, and then discards overlaps under
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Table 9.12: Summary of the architecture of the CNN.

Layer Kernels Size Shift
Convolution 128 8 x 16 2 x 2
Max pooling 2 x 2 2 x 2
Batch Norm
Convolution 256 4 x 4 1 x 1
Max pooling 2 x 2 2 x 2
Batch Norm
Convolution 512 3 x 3 1 x 1
Max pooling 2 x 2 2 x 2
Batch Norm

Fully Connected 1024
Fully Connected 256
Fully Connected 1

0.5 s, as these are unlikely to be included in the reference labeling (as discussed
in section 8.3).

9.5.2 Synthetic Training Data for Overlap Detection

Given the lack of sufficient real data (as mentioned in section 8.3), training data
for experiments were artificially created from two corpora of read English speech
– LibriSpeech (Panayotov et al., 2015) and TIMIT (Garofolo et al., 1993) – using
an automated and randomized process. Some of the ideas used in the creation of
this synthetic dataset were inspired by those used by Edwards et al. (2018) and
Sajjan et al. (2018).

Both of the corpora consist of a large amount of short recordings from many
different speakers.

TIMIT The TIMIT corpus consists of the recordings of single English sentences,
approx. 2–5 s long. The data from 320 speakers were used for training.

To obtain overlapped data, all utterances from a single speaker are first con-
catenated into one file of approx. 30 s, with random-length pauses (up to 2 s) in-
between. In order to avoid noticeable seams, the silence at the beginning and end
of each utterance is linearly tapered. Then, files from two random speakers are
combined at different volumes and with added background noise and, for 50 %
of the files, also reverberation (see the end of this section for details). The result
is illustrated in Figure 9.8.

Reference labels were created with the use of the original phone-level tran-
scripts - so that only the intervals where both speakers are truly active are labeled
as overlap.

The same process was also used to generate test data from the LibriSpeech
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individual sentences from one speakerrandom pause
up to 2s

Background
noise

Speaker 2

Speaker 1

Figure 9.8: Illustration of the creation of artificial overlapped data from the TIMIT
corpus.

corpus (but with pauses of 5–10 s between utterances).

LibriSpeech The second part of the training data was created from the “train-
other-500” set of the LibriSpeech corpus – this consists of approx. 500 hours of
speech from over 1000 speakers, in the form of 10–15 s long recordings derived
from audiobooks.

Given the very large amount of available LibriSpeech data, it was possible to
create several different types of overlaps, in order to better represent the various
possibilities which may occur in real data (see Fig. 9.9):

a) Two full length (approx. 10–15 s) utterances, with a long overlap of 1/2 the
length of the first one

b) Two shortened utterances with a brief overlap (up to 2 s) or pause (up to
1 s) in-between

c) A single utterance with an inserted word or phrase from another speaker:
Utterance 1 is split on pauses and a randomly selected speech interval (0.25–
2 s) is placed over utterance 2:

• fully overlapping speech
• fully inside a pause
• random placement

In the case of b) and c), the resulting file is shortened to 5 s of non-overlap
data on each side of the overlap or pause, as seen in Fig. 9.9. The is done to keep
a better ratio between non-overlaps and overlaps.

Aswith TIMIT, the silence at the beginning and endof each utterance is linearly
tapered to avoid discernible seams.

Reference labels were created with the use of a VAD on the original single
speaker datawithout added noise – so that only the intervals where both speakers
are truly active are labeled as overlap.

Data augmentation For both of the corpora, the data were also augmented with
additional effects:

• A very small amount of added white noise – serves merely to avoid exact
zeros in artificial pauses
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5s
5s

~1/2 1st utterance length

5s 5s

5s 5s

up to 2s
0.25 to 2s

up to 1s

Figure 9.9: Illustration of the creation of training data with different types of overlap
from the LibriSpeech corpus. (Additional noise not shown.)

• Additive noise (“office”, “hallway” and “meeting”) from the DEMAND
database (Thiemann et al., 2013a)

• Reverberation – via convolution with room impulse response from the AIR
database (Jeub et al., 2009). This was applied for 50 % of the resulting files.

9.5.3 Test Data

The overlap detector was primarily evaluated on three different sets of data: one
artificially created dataset and two corpora of real conversations.

LibriSpeech Test Data

Synthetic test data were created from the “test-other” subset of the LibriSpeech
corpus, in a very similar way to the TIMIT training data – but with longer pauses
between a single speaker’s utterances (5–10 s) on account of greater utterance
length.

Figure 9.10 shows an example of the system’s output on this corpus.

SSPNet Conflict Corpus

The SSPNet Conflict Corpus6 (Kim et al., 2014) is a dataset of French-language po-
litical debates, consisting of 1430 clips of 30 s each, cut from 45 separate debates.
Each clip usually involves between 2–5 people and, as these are spontaneous dis-
cussions, there are frequent instances of overlapping speech. The same corpus
was also used for overlap detection by Kazimirova and Belyaev (2018).

Clips from 5 debates (06-05-31, 06-09-20, 06-10-11, 07-05-16, and 08-01-15; 161
files total = 80.5 minutes of audio data) were used as development data for tun-
ing the decision threshold, the remainder (1269 files = 10.6 hours) was used for
evaluation.

6https://web.archive.org/web/20180313145831/http://www.dcs.gla.ac.uk/vincia/
?p=270 (archived webpage)

https://web.archive.org/web/20180313145831/http://www.dcs.gla.ac.uk/vincia/?p=270
https://web.archive.org/web/20180313145831/http://www.dcs.gla.ac.uk/vincia/?p=270


9.5. OVERLAP DETECTION USING A CNN 117

Figure 9.10: Example of the CNN’s output for a LibriSpeech test file with unseen
speakers (top), the corresponding reference labels (second plot) and each speaker’s
soundwave.

As the corpus hadn’t been createdwith overlaps inmind, the original reference
labels are relatively rough in this regard – they do not include very short overlaps
at speaker changes or during isolated backchannel responses (e.g. “Oui, ... oui.”),
nor shorter non-overlap intervals within a longer overlap region (e.g. pauses in
the speech of one speaker). However, the network proved capable of detecting
all of the above. For this reason, the labels of a small number of audio clips were
manually corrected7 to better correspond to the audio data (see Fig. 9.11 for an
example). Due to the time-consuming nature of such precise corrections, it was
limited to 30 semi-randomly selected files, or a total of 15 minutes. These 30 files
were then evaluated separately, using both the original and corrected labels, to
illustrate how labeling quality affects the reported results (see Table 9.13).

AMI Meeting Corpus

The AMI Meeting Corpus, described in section 9.1.3, is a set of recordings from
meetings between 3–5 people. The overlap detector was tested on the “headset
mix” variant of the data, using the same train/validation/test split as Sajjan et al.
(2018). Ground truth labels were generated from the original transcripts, rather
than using Sajjan et al. (2018)’s force-aligned labels8, as initial testing found the
latter to be less accurate in some regards, but both versions have errors – in partic-
ular, there are many instances where overlaps with non-speech such as laughter
are not labeled.

The corpus consists of several subsets of meetings which were recorded at dif-
7The corrected labels can be found at: https://github.com/mkunes/CNN-overlap-detection
8Available on: https://github.com/BornInWater/Overlap-Detection

https://github.com/mkunes/CNN-overlap-detection
https://github.com/BornInWater/Overlap-Detection
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00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
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CNN output (06-11-08_1290_1320.wav)

00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
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0

0.5

1
reference - original

00:00.00 00:05.00 00:10.00 00:15.00 00:20.00 00:25.00 00:30.00
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0

0.5

1
reference - corrected

Figure 9.11: Example output (raw + median filter) for dereverberated SSPNet data
(top) and the corresponding reference labels – original (middle) and manually cor-
rected (bottom). Individual speakers are shown as colored bars at the bottom of the
latter two plots.

ferent sites and vary in audio and transcription quality. The Idiap scenario meet-
ings (IS) in particular appear to have very different optimal settings from the rest
of the test set, so they are also used separately.

For this Idiap-only evaluation, the development and test data included addi-
tional AMI files, which were not used by Sajjan et al. The full list of the used “IS”
files was as follows:

Development set: IS1001, IS1003 and IS1004 (a,b,c,d)
Evaluation set: IS1005 (a,b,c); IS1006, IS1007, IS1008 and IS1009 (a,b,c,d)

9.5.4 Evaluation

As seen in Table 8.1, previous works on overlap detection use a variety of differ-
ent evaluation metrics, such as frame-level precision, recall and F-score, or per-
overlap miss and false alarm rate. Others evaluate their systems indirectly, by
measuring the improvement in the DER of a diarization system.

As the main motivation here is to improve speaker diarization, it seems to be
more suitable to evaluate the overlap detector primarily in terms of the improve-
ment in diarization performance. However, using only the actual difference in
Diarization Error Rate is not ideal, as it depends not only on the overlap detector,
but also on the diarization system itself.

Thus it may also be useful to calculate merely the potential or expected gain,
which could be theoretically achieved given an otherwise perfect diarization sys-
tem (i.e. one which does not make any mistakes):

As described in section 7.1, DER consists of three types of error: missed speech
(includingmissing speakers in overlaps), false alarm (silence mislabeled as speech
or non-overlap as overlap), and speaker confusion (wrong speaker). In a perfect
diarization system with no overlap handling, false alarm and speaker confusion
will be zero, while missed speech will correspond to the amount of overlapping
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Figure 9.12: False Positive vs True Positive for SSPNet data (frame-level percentage
of all audio). Original labels (all 1269 test files) on the left, corrected labels (30 files,
15 minutes total) on the right. “Real overlaps” denotes the overlap percentage in the
ground truth.

speech in the data.
For calculating the potential gain from overlap detection, the following as-

sumptions will be used:

• The diarization system assigns two speaker labels to every detected region
of overlapping speech, regardless of the true number speakers

• For correctly detected overlap and non-overlap, the system assigns speaker
labels perfectly – the speaker confusion is zero.

In such a scenario, correctly detected overlaps will directly decrease the
amount of missed speech compared to the baseline system, while false overlaps
will increase the false alarm. Thus, we can estimate the potential improvement as
the difference between the two values.9

9.5.5 Results

The results achieved on the different corpora are shown in Table 9.13 and in Fig-
ures 9.12 and 9.13.

The overlap detector appears to work very well on clean audio, such as the
synthetic LibriSpeech data and the SSPNet Conflict Corpus. The network also
seems to be very sensitive and capable of detecting even very short overlaps and
non-overlaps, down to the level of individual words – a much greater precision

9By the correct definition, DER is calculated as a ratio of total speech (excluding silence), with
overlaps being counted multiple times – once for each speaker. However, for simplicity, we calcu-
late the potential improvements here as relative to the total length of the audio data.
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Table 9.13: Results of overlap detection on evaluation data. Overlap percentages are
relative to total audio length, precision and recall are calculated per frame. (Ref. =
Reference, TP = True Positive, FP = False Positive, ∆ = TP - FP). Updated since the
publication of (Kunešová et al., 2019).

Overlaps [% of all frames]
Dataset Ref. TP FP ∆ Prec. Rec. Thresh.

LibriSpeech test mix 16.32 11.99 2.82 9.18 0.81 0.73 0.25
SSPNet – original labels (all) 14.77 7.86 2.94 4.92 0.73 0.52 0.80

+ dereverberation 9.58 2.68 6.90 0.78 0.63 0.70
SSPNet – corrected l. (30 files) 12.62 8.05 1.42 6.63 0.85 0.65 0.80

+ dereverberation 8.90 1.41 7.49 0.86 0.71 0.70
SSPNet – original l. (30 files) 12.86 7.47 2.00 5.47 0.79 0.59 0.80

+ dereverberation 8.60 1.71 6.89 0.83 0.68 0.70
AMI test (all subsets - 16 files) 12.21 2.25 0.96 1.30 0.70 0.19 0.50

+ dereverberation 1.94 0.70 1.25 0.74 0.16 0.40
AMI test (“IS” - 10 files) 10.43 3.62 1.65 1.97 0.69 0.35 0.80

+ dereverberation 4.62 1.87 2.76 0.71 0.45 0.60

Retrained network – with added AMI training data:
AMI test (all subsets) 12.21 5.48 2.08 3.40 0.72 0.46 0.50

+ dereverberation 4.92 1.61 3.31 0.75 0.41 0.50
AMI test (“IS” files) 10.43 4.21 1.61 2.60 0.72 0.41 0.70

+ dereverberation 4.29 1.40 2.90 0.75 0.42 0.70

than typically found in the reference annotations (as illustrated by the example
output in Figure 9.11).

On the other hand, the detector had issues with the AMI corpus. This may be
in part due to errors in the reference labels – a closer inspection revealed instances
ofmissing speech, or longunlabeled intervalswheremultiple people are laughing,
which the network also considers to be overlaps. However, the lower performance
is likely also caused by the higher level of noise in the these recordings, as well as
the sometimes very large differences in the voice volumes of individual speakers.
This is evidenced by the fact that the results improved to some extent after includ-
ing the training set of the AMI corpus in the training data – this suggests that the
synthetic dataset may need more improvements.

Initial experiments also suggested that the network had problems with rever-
berant speech, whichwas often incorrectly labeled as overlap. This effect has been
partly mitigated by adding reverberation to the training data (as described in sec-
tion 9.5.2). However, there have also been some additional experiments with dere-
verberation of the test data – the potential benefits were evaluated with the use
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Figure 9.13: False Positive vs True Positive for AMI data (frame-level percentage of
all audio), with overlap detector trained only on synthetic LibriSpeech + TIMIT data
or with the addition of AMI training data. Results are for all test files (left) and only
for the Idiap scenario meetings (right).

of the WPE Speech Dereverberation package10 created by Nakatani et al. (2010).
Even with the default settings without any adjustments, this has proven to be
clearly beneficial for SSPNet data, but for AMI the difference is negligible (with
the exception of the Idiap scenario (IS) meetings).

Finally, Table 9.14 presents a comparison of the overlap detector with some
of the other works on the topic which were listed in Table 8.1. This comparison
is somewhat complicated by the fact that other authors have used many differ-
ent combinations of datasets (or their parts) and metrics to evaluate their sys-
tems. For instance, while 4 other systems in the table used the AMI corpus, each
of them selected different files. Similarly, the results of Kazimirova and Belyaev
(2018) on the SSPNet Conflict Corpus are not directly comparable with those of

10Available from: http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html

http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html
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the proposed system, as their system was evaluated only on voiced frames.

Table 9.14: Comparison of the proposed overlap detection system (selected results from
Table 9.13, trained only on the synthetic corpus) with similar works. With the exception
of the proposed “all subsets” and Sajjan et al.’s “original labels” AMI results, no two
systems used identical test data and ground-truth labeling. However, the final set of
results, included at the bottom, also shows the performance of the version of the system
with added AMI training data when evaluated under identical conditions to system [6].

System Dataset Prec. Rec. F-score Accuracy
proposed SSPNet (original labels) 0.73 0.52 0.61 0.90

+ dereverberation 0.78 0.63 0.70 0.92
AMI (all subsets – 16 files) 0.70 0.19 0.30 0.89

+ dereverberation 0.74 0.16 0.27 0.89
AMI (19 “IS” files) 0.69 0.35 0.47 0.92

+ dereverberation 0.71 0.45 0.55 0.92
[1] Custom dataset 0.81 0.78 0.8 0.802
[2] SSPNet (voiced frames only) 0.71 0.78 0.75 0.92
[3] AMI (12 “IS” files, force aligned) 0.67 0.26 0.38 –
[4] AMI (16 files, original labels) – – – 76.0 / 60.6*

AMI (16 files, force aligned) – – – 87.9 / 71.0*
[5] AMI (25 files) – – 0.51 –
[6] AMI (24 files) 0.868 0.658 – –

proposed AMI (identical to [6])**
+ AMI train data, dereverb. 0.758 0.446 – –

[1] Andrei et al. (2017)
[2] Kazimirova and Belyaev (2018)
[3] Boakye et al. (2008b)

[4] Sajjan et al. (2018)
[5] Yella and Bourlard (2014)
[6] Bullock et al. (2020)

* overlap-detection accuracy / single-speaker detection accuracy [%]
** used identical reference labels, test set and evaluation script as in [6]. Obtained with the help
of Hervé Bredin and also seen as the baseline in the aforementioned paper.

The overall results achieved here appear to be very promising, particularly
those on relatively clean and noise-free data, although some more work may be
required in order to improve the performance on data with higher levels of noise.
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Conclusion

This thesis focused on the topic of speaker diarization. It explored several diariz-
ation approaches, both online and offline, and also proposed a new method for
detecting overlapping speech, which is very relevant for diarization.

As an additional contribution, chapter 7 of the thesis also included an extensive
overview of many of the previous diarization systems which have appeared in
literature and compared their reported results.

Speaker Diarization

The work on speaker diarization focused on two very different principles: the
earliest experiments involved a GMM-based online diarization system, while later
work progressed to the more recent i-vectors and x-vectors.

The GMM-based online system, presented in section 9.2, initially started as a re-
implementation of a sequential clustering approach used by several other authors
(see section 4.3.1), but subsequentwork focused on providing improvements. The
main contribution here was the introduction of a newmerging process which can
identify similar speaker models on the fly and combine them back into a single la-
bel. This helps to alleviate a common issue where the systemwould create several
different models for the same speaker.

The systemwas specifically intended for the diarization of recordings from the
Czech parliament sessions and the results on these data were also published as
part of two conference papers (Campr et al., 2014; Kunešová and Radová, 2015).
Later, the systemwas also tested on a very different dataset of conversational data
(the AMI corpus), though this was unfortunately significantly less successful. Fi-
nally, one more experiment with the AMI data also considered the possibility of
acquiring speakermodels in advance and then performing diarization via speaker
identification, akin to the systems mentioned in section 4.3.2. Despite its inher-
ent limitation, this approach showed promise, achieving significantly lower error
rates than the original system. These same experiments, described in section 9.2.4,
also explored the impact that overlapping speech has on speaker diarization, and
showed that its proper handling could provide a noticeable benefit.

Overall, the GMM-based system still offers room for improvement, particu-
larly in situations where there is mismatch between the system’s UBM and the
test data, such as was in the case of the AMI corpus. However, in the time since
this part of the researchwas first initiated, the field of speaker diarization has grad-
ually shifted from the use of GMMs as speaker models and towardsmoremodern

123
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solutions, and as such, there appears to be little point in following this particular
direction any further. Instead, later workwas focused on themore recent i-vectors
and x-vectors.

Thus, the second part of the diarization research mostly involved an i-vector
based diarization system, which was created in collaboration with Z. Zajíc (Zajíc et
al., 2016). The initial system, described in section 9.3.1, performed offline diariz-
ation, but a modified online version was implemented as well (Kunešová et al.,
2017) and was presented in section 9.3.2.

Some of the experimental work with the system focused on the segmentation
step of speaker diarization. In section 9.3.3 and 9.3.4, we investigated the com-
monly held belief that conventional speaker change detection is largely unneces-
sary in modern offline diarization systems. The results we obtained from compar-
ing several different segmentation methods suggest this to be mostly true, though
there is still clearly room for improvement if a more accurate speaker change de-
tector could be obtained.

Besides the basic offline and online versions of the system, a hybrid on-
line/offline variant (see section 4.3.3) was also independently explored. As
described in section 9.3.5, this was implemented as standard sequential cluster-
ing with a periodic reclustering process applied to all past data. While the initial
implementation was relatively simple, it showed clear improvements compared
to the baseline system without reclustering.

Finally, as part of the shared work on the offline version of the system, we
also participated in the DIHARD Speaker Diarization Challenge (section 9.4, also
published as Zajíc et al. (2018) and Zajíc et al. (2019)). In the first iteration of this
international competition, we managed to achieve 5th place out of the 14 partic-
ipating teams, in part thanks to our unique domain classifier which allowed us
to better fine-tune our system. However, as the second run of the competition
showed, there is still much to improve if we want to catch up to the winners.

During most of the above-mentioned experiments, the system used i-vectors
for speaker representation. However, the majority of the methods can be equally
easily applied to x-vectors (or similar embeddings) as well. In the final version
which was used during the DIHARD challenge (section 9.4.3), we employed both
i-vectors and x-vectors, and the combination of the two offered a better perfor-
mance than either option alone.

Overlapping Speech Detection

Several of the experiments with speaker diarization also explored the influence
of overlapping speech on the results by using oracle overlap labels. In all cases,
there was a stark difference between the diarization performance with and with-
out overlap handling. Thus, the final part of the thesis focused on the detection
of such overlaps.

The main contribution here was a newly proposed approach to overlapping
speech detection, based on the use of a convolutional neural network with a spec-
trogram as its input (section 9.5, also published as Kunešová et al., 2019). The
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initial idea arose from the CNN-based speaker change detection method which
previously appeared in section 9.3.3 as one of the segmentation options in the
i-vector diarization system.

In order to train the CNN, it was necessary to obtain sufficiently accurate train-
ing data. As there were no appropriate available corpora, this also led to the cre-
ation of a new synthetic dataset, composed of artificially created overlaps of sev-
eral different types. As described in section 9.5.2, the dataset was generated from
single-speaker recordings from the LibriSpeech and TIMIT corpora, with added
noise and reverberation effects.

The overlap detector was tuned specifically with the goal of lowering the dia-
rization error rate, and was tested both on synthetic overlaps and on real data
from the SSPNet Conflict Corpus and the AMI corpus. The overlap detector ap-
pears to be sensitive to reverberation, although this can be improved by applying
dereverberation techniques to the test data. Overall, the detector achieves similar
results to those of other recent works, although it is difficult to directly compare.

Summary of Contributions

In summary, this thesis provides the following contributions:

• Overview of current literature on the topic of speaker diarization and de-
tection of overlapping speech, including an extensive comparison of the re-
ported performance of recent state-of-the-art systems

• Implementation of a GMM-based online diarization system and its further
improvements

• Experimental work with an offline i-vector based system and its extension
to online diarization
The system in question also placed relatively well in the DIHARD Speaker
Diarization Challenge

• Comparison of several segmentation options for speaker diarization

• Implementation of a hybrid online/offline diarization approach

• Proposed approach for detecting overlapping speech using a CNN

• Creation of a synthetic dataset for training the aforementioned overlap de-
tector

Future Work

The work in this thesis still offers several possible avenues for further improve-
ment.

In particular, the hybrid diarization concept which was briefly explored in sec-
tion 9.3.5 appears both promising and relatively uncommon, and any further re-
search would likely pursue a similar direction. Future work could also aim at
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applying this principle to some of the cutting-edge diarizationmethods which ap-
peared during the late stages of work on this thesis and could not be included here
– such as end-to-end diarization.

Likewise, the overlap detector (section 9.5) could be further improved, such as
by providing a greater variety of training data and improving the training process,
or even by extending its functionality to also act as a voice activity detector. The
network’s weakness to reverberant speech is also an aspect which could hopefully
be alleviated in the future.
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