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This thesis focuses on cross-lingual aspect-based sentiment analysis (ABSA), an un-
derstudied area in contrast to monolingual ABSA. This thesis proposes two methods
that can be used with prompting and traditional-based fine-tuning. The first method
is a sequence-to-sequence method that solves multiple ABSA tasks simultaneously
and outperforms previous state-of-the-art results on benchmark datasets in mul-
tiple languages. Prompting improves the performance of the T5 model and its mul-
tilingual version significantly, which resulted in the best overall results among the
tested models. The best cross-lingual results are also promising. The second method
classifies the sentiment polarity of aspect terms and categories, establishing new
state-of-the-art results in multiple languages and achieving excellent cross-lingual
results, often within 2% of monolingual results. In addition, this thesis presents a
newly annotated Czech dataset for ABSA.

Tato prace se zaméruje na mezijazycnou aspektové orientovanou analyzu senti-
mentu (ABSA), ktera je na rozdil od jednojazyéné ABSA malo probadanou oblasti.
V této praci jsou navrzeny dvé metody, které 1ze pouzit jak s tradi¢nim trénova-
nim (fine-tuning), tak s pouzitim techniky zvané ,prompting“ Prvni metodou je
sequence-to-sequence metoda pro reseni vice uloh ABSA soucasné a prekonava
predchozi state-of-the-art vysledky na referen¢nich datasetech. Prompting vyrazné
zlepsuje tspésnost modelu T5 a jeho vicejazycné verze, coz vedlo k nejlepsim cel-
kovym vysledkim mezi testovanymi modely. Slibné jsou také nejlepsi mezijazycné
vysledky. Druhd metoda klasifikuje polarity sentimentu aspektovych vyraza a ka-
tegorii, pricemz stanovuje nové nejlepsi vysledky ve vice jazycich a dosahuje vyni-
kajicich mezijazy¢nych vysledkd, casto v rozmezi 2 % od jednojazy¢nych vysledkda.
Kromeé toho tato prace predstavuje nové anotovany Cesky dataset pro ABSA.

Natural language processing » Aspect-based sentiment analysis « Machine learning
« Cross-lingual aspect-based sentiment analysis « Neural networks « Prompting e
Transformers « Sequence-to-sequence models
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Introduction

With the rapid growth of social media and online reviews, sentiment analysis (SA)
has become an increasingly important task in natural language processing (NLP).
Aspect-based sentiment analysis (ABSA) is a subfield of sentiment analysis that aims
to identify the sentiment of each aspect or feature of a product or service. ABSA has
various practical applications, including product marketing, customer feedback ana-
lysis, and reputation management. However, most ABSA research has been conduc-
ted in English, and there is a lack of studies addressing the challenges of performing
ABSA in other languages.

One of the main challenges of ABSA in languages other than English is the lack
of annotated data. Annotated data is crucial for supervised machine learning, the
most common approach for ABSA. However, manually annotating data is expensive
and time-consuming, especially for languages with small speaker populations. To
overcome this challenge, cross-lingual ABSA has emerged as a promising direction.
Cross-lingual ABSA aims to transfer knowledge from a resource-rich language to a
low-resource language, allowing the model to learn from annotated data in a source
language and perform ABSA in the target language.

This thesis focuses on cross-lingual aspect-based sentiment analysis, which is
challenging due to the high variability in language usage and the complexity of
sentiment expressions in identifying aspect-level sentiment in customer reviews.
The thesis aims to explore the state-of-the-art transfer learning methods for solv-
ing ABSA and cross-lingual ABSA, as well as to examine the datasets used in ABSA
and to investigate models based on the Transformer architecture, including their
multilingual versions. The primary goal of this thesis is to propose methods for solv-
ing multiple ABSA tasks, such as aspect term extraction or target-aspect-sentiment
detection, based on the research of the state-of-the-art approaches for ABSA and
to evaluate their effectiveness in solving these tasks in multiple languages, includ-
ing cross-lingual settings. The overall objective is to contribute to the development
of robust and accurate cross-lingual ABSA models that can be applied in various
domains and languages.






Aspect-Based
Sentiment Analysis

Sentiment analysis (SA) is a field of natural language processing (NLP) that aims
to identify and understand subjective information in text, such as opinions, feelings,
and emotions, towards a target (B. Liu, 2012). According to Mintyli et al. (2018),
sentiment analysis is a fast-growing field of study in NLP. Businesses commonly
use it to determine whether their clients have a favourable, unfavourable or neutral
opinion of their products or services.

Several tasks within the SA domain include document-level, sentence-level, and
aspect-based-level polarity detection (Indurkhya & Damerau, 2010). However, this
chapter and thesis solely focus on aspect-based sentiment analysis.

Aspect-based sentiment analysis (ABSA) is a specific type of SA that aims to
identify targets described by aspect terms or aspect categories and the sentiment
associated with each target, which can be sentiment polarity or opinion term (Zhang
et al., 2022). Aspect terms can be expressed explicitly, such as the word “screen” in
the sentence “The screen is nice”, or implicitly, as in the sentence “It is bad”. Aspect
categories are usually predefined categories for each domain that define a unique as-
pect of an entity (e.g. HARDWARE and SOFTWARE for the laptops domain). The sentiment
polarity describes the sentiment orientation over an aspect term or category (e.g.
positive or negative). The opinion term expresses the sentiment towards the target
(e.g. “nice” in the example “The screen is nice”). ABSA provides a more detailed ana-
lysis of customer feedback data, allowing businesses to analyze customer sentiment
towards specific aspects of their products or services.

Consider the following review: “The steak was delicious, and the service was
friendly, but I did not like the beer.”. Document-level sentiment analysis would clas-
sify this sentence as positive. On the other hand, the aspect-based sentiment analysis
would identify the specific aspect categories, aspect terms and sentiment polarities,
as shown in Table 2.1, providing a more comprehensive review analysis than the
document-level or sentence-level sentiment analysis. ABSA allows businesses to
create better products and services that meet customers’ demands.



2. Aspect-Based Sentiment Analysis

Aspect Aspect Sentiment
category term polarity

FOOD steak positive
SERVICE service positive
DRINKS  beer negative

Table 2.1: Aspect categories, aspect terms and sentiment polarities for review “The
steak was delicious, and the service was friendly, but I did not like the beer.”.

This section describes some selected tasks related to aspect-based sentiment analysis.
However, it is important to keep in mind that there are additional ABSA tasks beyond
the ones covered here, and different researchers or works may have their own names
or definitions for these tasks.

Zhang et al. (2022) divide ABSA tasks into single and compound based on
whether the desired output is a single sentiment element or multiple coupled ele-
ments. They also describe several ABSA tasks (for each, the input and output ex-
amples can be found in Table 2.2.):

« Aspect term extraction (ATE) focuses on extracting individual aspect terms
on which the opinion is expressed in a text.

+ Aspect category detection (ACD) aims to identify discussed aspect categor-
ies in a given text.

+ Opinion terms extraction (OTE) is to identify opinion expressions towards
an aspect. It can be divided into two tasks. The first task is aspect opinion
co-extraction (AOCE), which aims to predict the aspect and opinion terms
together. The second task is target-oriented opinion word extraction (TOWE),
which aims to extract the corresponding opinion terms given a specific aspect
term.

+ Aspect sentiment classification (ASC) focuses on predicting the sentiment
polarity for a specific aspect.

+ Aspect-opinion pair extraction (AOPE) aims to extract the set of aspects
and the set of opinions.

« End-to-end ABSA (E2E-ABSA) focuses on extracting the aspect term and its
corresponding sentiment polarity. It has two types: joint and unified (UABSA).



2.1. Aspect-Based Sentiment Analysis Tasks

- Aspect category sentiment analysis (ACSA) aims to detect the discussed
aspect categories and their corresponding sentiment polarities.

+ Aspect sentiment triplet extraction (ASTE) focuses on extracting all triplets
(aspect term, opinion term, sentiment polarity) from a given text.

+ Aspect-category-sentiment detection (ACSD) aims to detect all triplets
(aspect term, aspect category, sentiment polarity) for a given sentence. The
task is also called target-aspect-sentiment detection (TASD).

+ Aspect sentiment quad prediction (ASQP) focuses on predicting all quad-
ruplets (aspect term, aspect category, opinion term, sentiment polarity) from
a given sentence.

Example Example

Task .
mput output

Single tasks

ATE s {steak, service}

ACD S {FOOD, SERVICE}

AOCE s {steak, service}, {delicious, terrible}
s, steak delicious

TOWE
s, service  terrible

ASC s, steak positive

s, service  negative

Compound tasks

AOPE s (steak, delicious), (service, terrible)
E2E-ABSA s (steak, positive), (service, negative)
ACSA s (FOOD, positive), (SERVICE, negative)

(steak, delicious, positive),
ASTE s ) ' i
(service, terrible, negative)
(steak, FOOD, positive),

(service, SERVICE, negative)

ACSD / TASD s

(steak, FOOD, delicious, positive),
ASQP s ' ' .
(service, SERVICE, terrible, negatwe)

Table 2.2: An overview of the input and output examples for each ABSA task con-
sidering an input sentence s: “The steak was delicious, but the service was terrible.”



2. Aspect-Based Sentiment Analysis

The rest of this section describes selected ABSA tasks for which datasets are also
available.

SemEval-2014 Task 4 (Pontiki et al., 2014) involves two domains (laptops and res-
taurants) and four subtasks: aspect term extraction (ATE), aspect sentiment classific-
ation (ASC), aspect category detection (ACD) and detecting sentiment analysis for a
given aspect category.

In the ATE subtask, the objective is to identify aspect terms (e.g. “wine”, “food”,
“price”, or “waiter”) in each review sentence. The aspect terms without expressed
polarity towards them (neutral polarity) should also be identified.

In the ASC subtask, given the aspect terms, the task is to classify polarity (positive,
negative, neutral or conflict) for each aspect term. Conflict occurs when both negative
and positive sentiment is expressed for a given aspect term (e.g. “Not the best salad
in town, but it is always fresh”).

The ACD subtask requires identifying all aspect categories from the given set
(e.g. FOOD, PRICE) in each sentence. Aspect categories do not always appear as terms
in sentences (e.g. aspect categories PRICE and FOOD in “Expensive but delicious”). No
information linking an aspect with the categories of the aspect was provided.

In the last subtask, the task is to identify the polarity (same categories as in the
second subtask) for the aspect category given the aspect categories for each sentence.

An English dataset is available for each domain for the first two subtasks. How-
ever, only a dataset for restaurant reviews is available for the third and fourth sub-
tasks.

SemEval-2015 Task 12 (Pontiki et al., 2015) defines an aspect category E#A as a
combination of entity type E (e.g. laptop) and attribute type A (e.g. durability). The
entity and attribute do not need to occur in a sentence. For example, in the sentence
“Delicious steak”, the reviewer evaluates the quality (&) of the food (E) without explicitly
mentioning it. The authors provided English datasets for three domains (laptops,
restaurants and hotels). The task consists of two subtasks.

The first subtask is in-domain ABSA. The goal is to identify all the opinion tuples
from a restaurant or laptop review. There are three types (tuple slots) of opinion
tuples. The first type is the aspect category. Given the sentence with opinions, the
goal is to find every entity E and attribute A pair corresponding to the opinions.
The entities and attributes are predefined for each domain. An example of an entity
for the restaurant domain is RESTAURANT and FOOD, of an attribute QUALITY and
PRICE. The second type (required only in the restaurant domain) is opinion target

10



2.1.3. SemEval-2016 Task 5

expression. The goal is to identify the linguistic expression referring to the reviewed
entity E of each E#A pair in the given sentence. The slot should be “NULL” if the
entity is not explicitly mentioned. The expression is defined by starting and ending
position in the text. The third type is sentiment polarity. The goal is to assign a
polarity label (positive, negative or neutral) to each given E#A pair. An example of an
opinion tuple for a given sentence is depicted in Figure 2.1.

Opinion tuple:

Sentenc {cat FOOD#PRICE
B category="
The food w.as”v ey target="food”, from: “4”, to: “8”,
expensive

polarity="negative}

Figure 2.1: Example of an opinion tuple for a given sentence for the first subtask of
the SemEval-2015 Task 12.

The second subtask is out-of-domain ABSA. The goal is to test systems in the
previously unseen domain (hotel reviews) with no training data available.

SemEval-2016 Task 5 (Pontiki et al., 2016) introduces three subtasks similar to those
in SemEval-2015 Task 12. For this task, 19 training and 20 testing datasets are avail-
able for seven domains and eight languages. In contrast, datasets from the previous
years’ tasks cover fewer domains and are available only in English.

The first subtask is sentence-level ABSA, the same as the first in 2015. The third
subtask is out-of-domain ABSA, similar to the second subtask in 2015, but with a
changed domain (museum domain in French instead of hotel domain in English).

The second subtask is text-level ABSA. The goal is to identify a set of tuples
containing category (cat) and polarity (pol) in a given customer review. These tuples
summarize the opinions expressed in the review. The category is E#A tuple as in the
first subtask, and polarity is either positive, neutral or negative. Figure 2.2 shows an
example of opinion tuples for a given review containing two sentences.

Review with sentences Opinion tuples

“The best restaurant | have ever
been to. The burger is out of this
world”

{cat: “"RESTAURANT#GENERAL”, pol: “positive”},
{cat: “FOOD#QUALITY”, pol: “positive”}

Figure 2.2: Example of an opinion tuple for a given sentence for the second subtask
of the SemEval-2016 Task 5.

11



2. Aspect-Based Sentiment Analysis

Saeidi et al. (2016) introduce the SentiHood dataset for targeted aspect-based senti-
ment analysis (TABSA). The dataset is derived from a question-answering platform
where users discuss urban neighbourhoods. Previously mentioned tasks can only
handle cases where all opinions about the target entity (e.g. restaurant or hotel)
refer to the same entity (e.g. a single restaurant). On the other hand, the TABSA task
also addresses cases where, for instance, more than one restaurant is discussed, and
restaurants for which opinions are expressed are explicitly mentioned. Consider
the following example (where aspects are underlined and specific entities are high-
lighted in bold): “The space design is good in Boqueria. Still, the service is horrid. On

the other hand, the staff in Gremio is amiable, and the food is always delicious.”. Tasks
described earlier can only recognize positive and negati_ve opinions expressed about
the aspect “service”. The TABSA task can also identify the specific target entity for
these opinions (in this case, Gremio and Boqueria).

SemEval-2022 Task 10 (Barnes et al., 2022) deals with structured sentiment analysis.
The task is to find all opinion tuples O;,..., O, in a text. Each opinion tuple O; is
a tuple (h, t, ¢, p) that implicitly defines the connections between the components
of a structured sentiment graph by having a holder h express a polarity p towards
a target t via a sentiment expression e. Holders and targets can be null. Figure 2.3
shows an example of a structured sentiment graph.

negative

give [the new UMUC’ ‘5 stars’ - ‘don’t believe ‘them ]
holder target expression expression target

Figure 2.3: A structured sentiment graph composed of a holder, target, sentiment
expression, their relationship and a polarity attribute (adapted from Barnes et al,,
2022).

Seven datasets in five languages (English, Norwegian, Basque, Catalan and Span-
ish) are available for this task. The task consists of two subtasks. One subtask is
monolingual, where models are trained and tested on data in the same language.
The second subtask is cross-lingual, where the Catalan, Basque and Spanish datasets
are used for testing, and any other language can be used for training. The second
subtask explores the ability of models to generalize across languages.

12



2.2. Focus of the Thesis

2.2 Focus of the Thesis

The primary objective of this thesis is to address subtask 1 of the SemEval 2016 Task
5, which involves identifying aspect categories, aspect terms, (aspect category, aspect
term) tuples, and sentiment polarity for given (aspect category, aspect term) tuples.
Additionally, the thesis deals with the target-aspect-sentiment detection task. The
experiments are conducted on datasets for the restaurant domain in all available
languages and include monolingual and cross-lingual approaches.

13






Transformers

This chapter briefly introduces the pre-trained models for language representation,
then describes sequence-to-sequence models, the Transformer architecture, token-
ization and a few chosen models based on the Transformer architecture.

3.1 Pre-trained Models

Han et al. (2021) discuss the challenges associated with training deep neural net-
works such as CNN or RNN, which often suffer from overfitting due to limited
training data and a large number of parameters. Efforts have emerged to address
this issue by manually creating high-quality datasets for training neural networks for
specific tasks (Deng et al., 2009; Lin et al., 2014). However, this is a time-consuming
and expensive process. Transfer learning (Pan & Yang, 2009; Thrun & Pratt, 1998)
offers an alternative approach by using previously acquired knowledge to solve new
problems instead of training a model from scratch.

Transfer learning involves pre-training a model on one or more source tasks
to capture information and knowledge and then fine-tuning it for target tasks to
transfer the captured knowledge. This technique can help models perform well on
target tasks even with limited samples, thanks to the richness of knowledge gained
during the pre-training phase.

Two widely researched pre-training techniques in transfer learning are feature
and parameter transfer (Han et al., 2021). Parameter transfer involves sharing model
parameters between source and target tasks to transfer knowledge (Evgeniou &
Pontil, 2004). These methods transfer the knowledge that they first pre-encode into
the shared model parameters by fine-tuning the pre-trained parameters using the
data from the target tasks. Feature transfer pre-trains effective feature representa-
tions to pre-encode knowledge across tasks and domains, significantly enhancing
model performance on target tasks (Argyriou et al., 2006).

Another approach to deal with a limited amount of labelled data is to use unsu-
pervised and self-supervised learning methods. Both methods use unlabelled data,
of which a large amount is available. Self-supervised training uses unlabelled data

15



3. Transformers

with the input data alone as supervision to extract knowledge. On the other hand,
unsupervised learning focuses on detecting patterns in data, such as clustering.

Figure 3.1 shows the spectrum of pre-training methods. More details can be
found in (Han et al., 2021).

Transfer > Self-Supervised

Labelled
Source
Data

Learning

Unlabelled
Source
Data

Learning

| [ |
Unlabelled Labelled Unlabelled

Target Target Target Target
Data Data Data Data

v v v v

Inductive Transductive Self-Taught Unsupervised
Transfer Learning  Transfer Learning Learning Transfer Learning

| | | |
v v

Supervised
Pre-training

[
Labelled

Self-Supervised
Pre-training

Feature Parameter

Transfer Transfer

GloVe, ELMo, GPT, BERT,
Word2Vec... BART, T5...

Figure 3.1: The spectrum of pre-training methods (adapted from Han et al., 2021).

Parameter
Transfer

CoVE, VGG11,
ResNet50...

Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) are examples
of pre-trained networks that capture the semantic meanings of words and are used
to create embeddings for different words. However, these models have a disadvant-
age in that they cannot distinguish between polysemous words, which are words with
multiple meanings. The reason is that these models always provide the same vector
for the same word regardless of its meaning given by the surrounding words. For
example, the word “crane” occurring in the context of “that bird is a crane” and “they
had to use a crane to lift the object” always has a different meaning but is expressed
by a single static vector. To mitigate this problem, pre-trained recurrent neural net-
works, such as ELMo (from Embeddings from Language Models) introduced by Peters
et al. (2018), provide contextualized word embeddings. However, the size of these
models still limits their performance.

The pre-trained models based on the Transformer architecture (described later
in this chapter) perform well in language generation and understanding (Han et al.,
2021). These models can deal with polysemous words and capture factual knowledge
and semantic and lexical structures from texts. As the size of the model grows, so

16



3.2, Sequence-to-Sequence Model

does its performance. Fine-tuning these models yields excellent performance in
downstream NLP tasks (Han et al.,, 2021).

To understand transformer design, it is initially necessary to introduce the concept
of sequence-to-sequence (Seq2Seq) models. These models map sequences of input
vectors to sequences of output vectors (Sutskever et al., 2014). Sequence-to-sequence
models are commonly used in NLP tasks like machine translation, question answer-
ing, summarization and code generation.

Sequence-to-sequence models consist of an encoder and a decoder and, there-
fore, are also referred to as encoder-decoder models. The encoder maps the input
sequence to a context vector, a function of the hidden contextualized representation
of the input. The decoder then generates an output sequence based on this context
vector. Depending on the task, the output sequence can be words (in the same or
another language), symbols or a copy of the input sequence. Figure 3.2 illustrates
the encoder-decoder architecture.

yv. Y2 Ym

t 4
| Encoder '—) Context —)l Decoder I
T

X1 X2 Xn

Figure 3.2: The encoder-decoder architecture.

Sequence-to-sequence models are conditional language models because the de-
coder predicts the next word y, of the target sequence y of length T based on the
previous words in that sequence and is also conditioned on the input sequence x.
Sequence-to-sequence models calculate the conditional probability P(y|x) as

P(ylx) = P(y1lx)P(y2|y1, %) ... P(y7ly1,.- -, yr-1,%)

T (3.1)
= 1_[ P(J/tb)ly e Y1 x),
t=1
where P(y¢|y1,..., yi-1, x) is the probability of next target word y, given previous
target words and input sentence x (Jurafsky & Martin, 2009).

The decoder and encoder can be implemented using various sequence architec-
tures, including recurrent neural networks (RNN) (Elman, 1990), gated recurrent unit
(GRU) (Cho et al., 2014), long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997), convolutional neural networks (CNN) (Le Cun et al., 1989) and Transformers.
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3. Transformers

As described before, sequence-to-sequence models estimate the probability of word
¥ in a sequence given the previous words y1,..., y;—1 and input sentence x, which
can be denoted as P(y;|y1,..., yi-1, x). The probability distribution can be derived
by calculating the probability for each word in the vocabulary. Based on this dis-
tribution, it can then be decided which word will be generated next. The effective
choice of the following word to be generated depends significantly on the chosen
method of using the probability distribution. This aspect significantly impacts the
overall quality of the generated text. This subsection gives a brief overview of text-
generating decoding algorithms.

The first and simplest decoding algorithm is greedy search. Greedy search selects
the word y, with the highest probability on each step ¢t as

yy = argmax P(w|yy,..., ¥i-1, X). (3.2)

weV

However, this algorithm has several problems (Jurafsky & Martin, 2009), including
the inability to undo an earlier decision, which can lead to incorrect predictions.
Figure 3.3 shows an example of greedy search decoding.

0.4
has '

< 0.3
an

<::: lion
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.

0.7
They

0.4

Figure 3.3: Visualization of the greedy search decoding.

Beam search (Freitag & Al-Onaizan, 2017) is an algorithm used to generate text
by keeping track of the k most probable partial output sequences (hypothesis) on
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3.2.1.2. Beam Search Decoding

each step. The k is called beam size or width and is typically set between 5 and 10
to balance computation cost and performance. When k is set to 1, the algorithm
becomes equivalent to greedy search decoding. The partial sequence of length ¢ is
composed of words y;j, ..., y;. A hypothesis yy, ..., y; has a score defined as

t
score(y1,..., Y1) = Z log P(yily1,---, Yi-1, X). (3.3)

The scores are all negative; the higher the score, the better. At each step, the beam
search finds the top k next words for each of the k hypotheses and calculates scores.
Only the k hypotheses with the highest scores of these k? hypotheses are kept. Hypo-
theses can have different lengths, depending on the step when beam search decoding
produced the token indicating sentence end. However, longer hypotheses tend to
have lower scores than shorter ones, so Equation 3.3 is normalized by dividing it by
the length of the hypothesis as

t
1
score(y1,..., Y1) = " E log P(yily1,---, Vi1, X). (3.4)
i

The beam search algorithm is not guaranteed to find the optimal solution, but it is a
popular and effective decoding method (Jurafsky & Martin, 2009). Figure 3.4 shows
an example of the beam search decoding with k = 2.

0.4 k=2
0.6 0.2
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X 0.3
It an 4
/ is < lion
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0.6 <
tortoise

0.3 0.8

\ are % 0.1 0.7
< two X 0-9
<
<
0.9 dragon
0.1

Figure 3.4: Visualization of the beam search decoding with k = 2.
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3. Transformers

The decoding algorithms mentioned earlier can be altered by incorporating random
sampling. This technique randomly selects the next word according to its condi-
tional probability distribution. An example is Top-K sampling, where the algorithm
chooses only the top k words. The benefit of sampling is that it introduces random-
ness into the decoding process, which can lead to more diverse output sequences.
However, the random nature of word selection may result in meaningless terms
being generated in certain contexts.

The Transformer architecture introduced by Vaswani et al. (2017) is a variation of
the encoder-decoder models built on the attention mechanism.

The attention mechanism enables the decoder to identify which parts of the in-
put sequence are relevant at each decoding step. In the Transformer, the attention
mechanism is implemented using self-attention and cross-attention.

Self-attention in Transformers (Vaswani et al., 2017), also referred to as scaled
dot-product attention, is used to compute the importance of each word in a sequence
of length N. It is computed as

: QK'

SelfAttention(Q, K, V) = softmax ( N ) V, (3.5)
where Q € RN*% K e RN*% and V € RN*% are the query, key and value
matrices, respectively, and d, is the dimensionality of the query and key vectors. The
keys, queries and values are vectors created by multiplying the input word vectors
(embeddings) by three learned weight matrices. The dot product of the Q and K
matrix determines how each word influences all other words in the sequence. The
result is then scaled by the keys’ dimension and normalized using a softmax function.
The values are then weighted according to the softmax scores and summed up to
produce the final attention output. When used in decoders, self-attention is masked
to prevent the decoder from accessing future words. An example of the self-attention
mechanism with generated attention scores is illustrated in Figure 3.5.

The decoder part of the Transformers also uses a cross-attention. The com-
putation of cross-attention is the same as self-attention. The difference is that the
input of self-attention is a single embedding sequence. The cross-attention, on the
other hand, combines two separate sequences. The queries come from the previous
layers of the decoder, while the keys and values come from the encoder.
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3.3.1. Attention
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Figure 3.5: An illustration of the self-attention mechanism of the Transformer when
encoding the word “it”, where the darker the colour of the square, the larger the
corresponding attention score.

Transformers use multi-head attention layers to capture different types of
relationships between inputs. Individual words in a sentence can be related to each
other in many different ways simultaneously. For instance, various syntactic and se-
mantic relations exist between verbs and their arguments in a sentence. Multi-head
attention layers consist of multiple attention layers, called attention heads, and
project the keys, values and queries multiple times with different linear layers. Out-
puts of all the attention heads are combined and projected by another linear layer.
Figure 3.6 shows the multi-head attention mechanism.

Multi-Head Attention

t

Linear

)

Concat
TTA
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\") K Q

Figure 3.6: Multi-head attention consists of multiple attention layers running in
parallel (adapted from Vaswani et al., 2017).
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3. Transformers

3.3.2 Internal Structure of the Transformer

Figure 3.7 shows the Transformer architecture. First, an embedding layer converts
the input and output tokens to vectors (embeddings). Then, positional encoding is
applied to preserve positional information. The encoder and decoder consist of mul-
tiple blocks with multi-head attention layers and position-wise feed-forward
networks. As mentioned earlier, the decoder has an additional layer that performs
multi-head attention over the encoder output.

The Transformer uses residual connections followed by layer normalization
around each sub-layer. Residual connections (He et al., 2016) improve the model’s
training, while layer normalization (Ba et al., 2016) helps the model train faster.
During input processing, the model can access all previous inputs but not future
ones. One of the advantages of Transformers is that the training can be parallelized
because each word’s computation is performed independently of all other compu-

tations.
Output
Probabilities
A
Softmax
Add & Norm «
Fgr‘f:;r | Decoder
Encoder
Add & Norm
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(-> Add & Norm Multi-Head Nx
Feed Attention
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X |
> Add &INorm Masked
Multi-Head Multi-Head
Attention Attention
A A A A A4
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Encoding

Positional A
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Output
Embedding
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Inputs Outputs
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Figure 3.7: Architecture of the Transformer (adapted from Vaswani et al., 2017).
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3.4, Tokenization

The NLP models often require some form of text preprocessing, and tokenization
is one of the most common methods. Tokenization involves splitting words into
tokens (as shown in Figure 3.8), which are then stored in a vocabulary and represen-
ted as indices. The tokenization process may also remove specific characters from
the text, such as punctuation (Manning et al., 2008). There are several factors to
consider when choosing a tokenization method.

Elephants are the largest land mammals.]

are H the J

Figure 3.8: An example of splitting a sentence into individual tokens (tokenization).

Flephants

IargestJ ’ land ‘ [mammals

The first consideration is the vocabulary size. For instance, a simple tokenization
method that splits the input text by whitespace lead to an extensive vocabulary. The
vocabulary size can be reduced by choosing a minimal frequency of occurrence of
the tokens in the corpus, e.g. 5. However, even with this reduction, the vocabulary
size is often too big. For example, the pre-trained Word2Vec (Mikolov et al., 2013)
embeddings have a vocabulary size of 3 million.

The second consideration is out-of-vocabulary (OOV) tokens, which are not part
of the vocabulary. Examples of OOV tokens include word variations (e.g. taaaasty),
misspellings (e.g. laern), and novel items (e.g. Transformerify). One approach is to
ignore these tokens. The second possible solution is to map them to a single pre-
defined unique token <UNK>. The finite vocabulary assumption is more challenging
for languages with more complex morphology (the structure of words), as longer and
more complex words are less likely to be included in the vocabulary because they
occur less frequently. For instance, Czech words can have many conjugations (pre-
fixes, suffixes). Each conjugation encodes essential information about the sentence
that more words in English might represent. For example, plavu — neplavou in Czech
represents [ swim — They do not swim in English.

This section further describes tokenization methods that can reduce vocabulary
size and solve the OOV problem. The methods, called subwords models, look at
the internal structure of words and learn a vocabulary of parts of words (subword
tokens). Figure 3.9 shows an example of subword tokenization.
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3. Transformers

’ Incomprehensibilities ]

'

’ In ‘ ’ #com ] ’#prehensi] ’ #bil ’ ’ #ities ‘

Figure 3.9: Example of subword tokenization of the word Incomprehensibilities.

Byte-pair encoding (BPE) is a simple and practical strategy for defining a subword
vocabulary (Jurafsky & Martin, 2009). The algorithm starts with a vocabulary con-
taining all individual characters. Next, it finds the most common adjacent characters
in a corpus text, merges these two characters, adds the newly created subword to the
vocabulary and replaces every instance of the character pair in the corpus with the
new subword. This process is repeated until the desired vocabulary size k is reached.
The input for the algorithm is usually pre-tokenized text (e.g. on white spaces), so it
does not merge across word boundaries.

WordPiece (Schuster & Nakajima, 2012) is a similar algorithm to BPE. Like BPE, it
starts by initializing the vocabulary with all the characters. However, it differs in the
merging strategy. Instead of choosing the most frequent character pair, WordPiece
chooses the one that maximizes the likelihood of the training corpus once added to
the vocabulary.

The unigram algorithm (Kudo, 2018) starts with a vast vocabulary and iteratively
reduces it. The algorithm defines a loss over the training corpus of words x1,..., xxN
given a unigram language model and current vocabulary as

N
L:—Zlog Z p(x) |, (3.6)
i=1

x€S(x;)

where S(x;) is a set of all possible tokenizations for a word x;. At each step, the
algorithm removes p (usually 10 or 20) per cent of symbols in the vocabulary. The
symbols to be removed are selected so that their removal results in the smallest loss
increase.
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3.4.4. SentencePiece

3.4.4 SentencePiece

All of the algorithms described so far require pre-tokenized input text. That can lead
to problems when dealing with languages that do not separate words by spaces (e.g.
Chinese and Japanese). SentencePiece (Kudo & Richardson, 2018) mitigates this
problem by using the raw input directly. To construct the vocabulary, it then uses
BPE or the unigram algorithm. The algorithm includes the white space in the initial
vocabulary. Therefore, it can represent multi-word expressions like “Los Angeles”
with a single token.

3.5 Models Based on the Transformer
Architecture

This section describes some selected models based on the Transformer architecture
that are important in the NLP field or related to this thesis.

3.51 GPT

The GPT model (from Generative Pre-trained Transformer) introduced by Radford
et al. (2018) is a neural network model based on the Transformer decoder. The
GPT model utilizes autoregressive language modelling to predict the next word in
a sequence by considering the previous words, as depicted in Figure 3.10.

I went to the shop

t 444

Autoregressive
Transformer
Decoder

>

<s> | went to the

Figure 3.10: Example of autoregressive generation of tokens in GPT. Only left-side
context is used to generate the next word.

The first version of GPT (GPT-1) has 12 layers and 117 million parameters
and uses byte-pair encoding with 40,000 merges. The model is first pre-trained
on a large unlabelled corpus to learn general language representations. Afterwards,
the model is fine-tuned on specific downstream tasks, such as sentiment analysis or
classification, where the model can take advantage of previously acquired knowledge
from the pre-training.
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3. Transformers

A GPT-2 model (Radford et al., 2019) is an improved model with more paramet-
ers, specifically 1.5 billion. It has a decoder with 48 layers. The authors show that
this large model is efficient for zero-shot learning, where no training examples are
provided (therefore, there is no fine-tuning).

A GPT-3 model (Brown et al., 2020) has even more parameters than the previous
(175 billion) and 96 decoder layers. The authors further show that the model is
excellent for zero-shot and few-shot learning. During the few-shot learning, only
a few examples are provided for fine-tuning. All GPT models have achieved new
state-of-the-art results on various tasks at the time of their introduction.

The BERT model (from Bidirectional Encoder Representations from Transformers) in-
troduced by Devlin et al. (2019) is based on the Transformer encoder, unlike the
GPT model, which uses the decoder stack. The improvement over the original en-
coder model is the bidirectional training, which allows left-to-right and right-to-left
processing of the sequence. Bidirectional processing is particularly useful for named
entity recognition, where information from the right context can be helpful. Devlin
et al. (2019) propose two objectives for model pre-training: masked language mod-
elling and next sentence prediction.

During masked language modelling (MLM), 15% of (sub)word tokens are
randomly selected. Of these, 80% are replaced with a [MASK] token, 10% with a
random token from vocabulary, and 10% are left unchanged. The model then tries
to predict the correct token. Figure 3.11 shows an example of masked language

modelling.

went to shop
r 4 0
Bidirectional
Transformer

< Encoder >

N

I rhino to the [M]

7N

[Replaced] [Not replaced] [Masked]

Figure 3.11: Example of masked language modelling with three lost terms for the
sentence. The model uses both left-side and right-side context.

Next sentence prediction (NSP) is a task where the model tries to determine if
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3.5.3. RoBERTa

two sentences are in the correct order. In 50% of the instances, the inputs are pairs in
which the second sentence is the next one in the original text, and in the remaining
50%, the second sentence is randomly selected from the corpus. This way, the model
should learn and understand the relationships between two different pieces of text.

Initially, two BERT models were released. The first was called BERT-base, with
12 layers and 110 million parameters; the second was BERT-large, with 24 layers
and 340 million parameters. Fine-tuning BERT led to new state-of-the-art results
on various tasks (Devlin et al.,, 2019).

The RoBERTa model (from A Robustly Optimized BERT Pre-training Approach)
presented by Y. Liu et al. (2019) is based on the BERT model but has some modifica-
tions.

The first change is that the ROBERTa model uses dynamic masking instead of
static masking in the BERT model. In dynamic masking, different parts of the sen-
tence are masked for different pre-training epochs, making the model more robust.
In static masking, the same part of the sentence is masked in each epoch.

The second change is that the RoBERTa model does not use the NSP task, which
was observed to be not very useful. Therefore, the RoOBERTa model uses only the
MLM task.

The third change is the size of the data used for pre-training the model. The
BERT model is pre-trained on the BooksCorpus (Zhu et al., 2015) (800 million words)
and English Wikipedia (2.5 billion words), with 16 GB of text. In addition to these
datasets, the ROBERTa model is also pre-trained on other datasets, specifically Open-
WebText, CC-News (CommonCrawl News), and Stories (Trinh & Le, 2018). The total
size of these datasets is around 160 GB.

Another change is the size of the batch used. The RoBERTa model uses a batch
size of 8,000 with 31,000 steps. For comparison, the BERT model uses a batch size
of 256 with 1 million steps. This setting increases the performance of the RoBERTa
model (Y. Liu et al., 2019).

Furthermore, the ROBERTa model also uses a larger BPE vocabulary size of
50,000 sub-word units compared to only 30,000 used in the BERT model, resulting
in a larger number of parameters for the ROBERTa model compared to the BERT
model.

The RoBERTa model has two versions: RoOBERTa base with 12 layers and 125

million parameters and RoBERTa-large with 24 layers and 355 million parameters.
The RoBERTa model outperforms the BERT model in many tasks (Y. Liu et al., 2019).
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Clark et al. (2020) introduce the ELECTRA model (from Efficiently Learning an
Encoder that Classifies Token Replacements Accurately), another variant of the BERT
model that is lighter than its predecessor and uses a generator-discriminator struc-
ture.

The ELECTRA model uses replaced token detection (RTD) instead of masked
language modelling. In replaced token detection, instead of masking the token, the
token is replaced by an incorrect token. The model learns to classify whether each
token is original or a replacement. This approach trains two neural networks, a gen-
erator and a discriminator, both based on the encoder stack of the Transformer. The
generator is trained to perform MLM and maximize the likelihood of the randomly
masked-out tokens. The discriminator is trained to distinguish between original
and generator-replaced tokens in the data. Figure 3.12 shows the overview of the
RTD pre-training task.

The discriminative task has the advantage of being more computationally ef-
ficient since the model learns from all input tokens and not just a small subset of
masked tokens. This modification leads to faster training and higher accuracy on
downstream tasks than the BERT model when fully trained (Clark et al., 2020). The
authors also improved the pre-training efficiency by sharing weights between the
discriminator and the generator.

sample

the —» [MASK] —» F-» the  — > original
rhino—» rhino —» rhino  —p > original
charged —» [MASK] —» Generator -->»  ran  — Discriminator > replaced

(typically a o
headlong —» headlong —»| small MLM) headlong —»| (ELECTRA) > original
towards —» towards —» towards — > original
us—» us —> us —> > original

Figure 3.12: An overview of replaced token detection proposed by Clark et al. (2020).

The BART model (Lewis et al., 2020) is a denoising sequence-to-sequence model
based on the original Transformer architecture. It improves the learning process by
combining the strengths of Bidirectional and Auto-Regressive Transformers (hence the
name BART). Similar to BERT, BART uses a bidirectional encoder over corrupted
text. The decoder then generates a sequence of words in an autoregressive manner,
as in GPT, to reconstruct the original uncorrupted sequence.
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356 T5

The authors create a dataset of corrupted text using different transformations
(shown in Figure 3.13), which can be combined arbitrarily:

» Token masking replaces random tokens with [MASK] tokens (same as in
BERT).

. Token deletion deletes random tokens.

« Text infilling adds an extra [MASK] token to a random position or replaces
a span of tokens with a [MASK] token. The span length is sampled from a
Poisson distribution with A = 3.

+ Sentence permutation shuffles sentences (given the full stops) in random
order.

« Document rotation rotates the document around a randomly selected token
so it begins with the selected token.

DE.ABC. C.DE.AB

Token Masking Sentence Permutation Document Rotation

v
ke | e [aae

Token Deletion Text Infilling

Figure 3.13: Transformations used in the BART model to noise the input (adapted
from Lewis et al., 2020).

The T5 model (from Text-To-Text Transfer Transformer) proposed by Raffel et al.
(2020) is a sequence-to-sequence model, similar to BART, that takes text as input
and produces text as output. During pre-training, the T5 model replaces arbitrary
spans of tokens in the input with unique sentinel tokens. The task is to decode
the masked spans. The output sequence consists of the dropped spans of tokens
separated by the sentinel tokens used in the input, plus the final sentinel token that
marks the end of the target sequence, as shown in Figure 3.14. Unlike BART, T5
only predicts tokens replaced by the mask token during pre-training, which differs
from BART’s approach that reconstructs the entire sentence.
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Original text

Hippos often coexist alongside Nile crocodiles.

A

Hippos <X> alongside <Y> crocodiles.

Targets

[<X> often coexist <Y> Nile <Z>]

Figure 3.14: The objective used in the T5 model. The red words represent the tokens
that are randomly chosen for corruption. Unique sentinel tokens replace each con-
secutive span of corrupted tokens. The target sequence contains the dropped spans
of tokens separated by the sentinel tokens used in the input, plus the last sentinel
token that marks the end of the target sequence.

Raffel et al. (2020) also fine-tuned the model on various downstream tasks, in-
cluding text classification, question answering, summarization and machine transla-
tion. The authors also introduce a concept of task-specific prefixes to convert every
considered task into a text-to-text format. By adding the prefix to the original input,
the model chooses which task to perform, as shown in Figure 3.15.

The authors also present a new dataset, Colossal Clean Crawled Corpus (C4),
which contains about 750 GB of English text. They use the corpus to pre-train the
T5 model and experiment with their denoising objective.

T5v1.1 is an improved version of the original T5 model that employs the GE-
GLU activation function (Shazeer, 2020) instead of ReLU (Glorot et al., 2011). It is
pre-trained only on the C4 dataset, excluding any supervised training. Therefore it
is not advantageous to use a task prefix during single-task fine-tuning. ByT5 (Xue
et al,, 2022) is another T5 variant that operates with sequences of characters instead
of tokens corresponding to words or subword units.

All of the models mentioned so far are pre-trained on English data. However, there
are models pre-trained on data from other languages. For instance, RobeCzech
(Straka et al., 2021) and Czert (Sido et al., 2021) are models pre-trained on Czech
data based on the RoBERTa and BERT models, respectively.
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1 | “translate English to German: That is good.”

“Das ist gut.”
“cola sentence: The
course is jumping well.”
“not acceptable”

“stsb sentence1: The rhino grazed
3 | on the grass. sentence2: A rhino

is grazing in a field.” “g gn

“summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught
of severe weather in mississippi...”

“six people hospitalized after
a storm in attala county.”

" machine translation task

2The Corpus of Linguistic Acceptability
3 Semantic Textual Similarity Benchmark

4 summarization task

Figure 3.15: A diagram of the text-to-text framework introduced by Raffel et al.
(2020).

3.5.8 Multilingual Models

In addition, several Transformer-based models have multilingual variants pre-trained
on data from multiple languages. Examples of these models are mBERT (Devlin et

al,, 2019), XLM (Conneau & Lample, 2019), XLM-RoBERTa (Conneau et al., 2020),

mT5 (Xue et al,, 2021) and mBART (Y. Liu et al., 2020; Tang et al., 2020).
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Prompt-Based
Fine-Tuning

This chapter provides an overview of prompt-based fine-tuning (prompting), a rel-
atively new paradigm in NLP (P. Liu et al,, 2023), and compares it to traditional

supervised learning.

4.1 Traditional Supervised Learning

In traditional supervised learning, a model is trained to predict the output y from
the input x as P(y|x; ©). The output y can be, for instance, a label or text. Input-
output pairs are required to learn the model parameters ©. Figure 4.1 shows an
example of inputs and outputs for text classification and machine translation in

traditional supervised learning.

Text Classification Machine Translation

Input x: text Input x: text
Output y: label Output y: text

label y comes from fixed label set )

Exampl Exampl
X = “I love this movie X = “Ich bin hungrig.”
y = ++ e B
V= {4+~ ) Yy ="lam hungry.

Figure 4.1: Examples of inputs and outputs for text classification and machine trans-
lation in traditional supervised learning.

Traditional supervised learning has some disadvantages. The first disadvantage
is that a large amount of labelled data is required for training to achieve satisfying
results. However, retrieving large amounts of labelled data is time-consuming, ex-
pensive and often difficult. The few-show learning is a way to mitigate this problem,
but the results are not always satisfying compared to training on large amounts of
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4. Prompt-Based Fine-Tuning

data. The second problem is that introducing new parameters to an existing model
is often necessary. For example, a binary classification task with a BERT-large model
requires additional 1,024 X 2 parameters. The third problem is that the objectives
differ between the pre-training stage, which often uses masked language modelling
and similar techniques, and the downstream tasks. Prompting tries to eliminate
these problems.

Prompting is a technique that encourages a pre-trained model to make specific
predictions by providing a prompt specifying the task to be done. Prompt-based
learning is based on language models that model the probability P(x; ©) of text x.
To modify the initial input x into a prompt x’, prompting uses a template with two
slots: an input slot [X] for input x and an answer slot [Z] for answer z, then
mapped to output y. An example of a template for machine translation is “Czech:
[X] English: [Z]”. Figure 4.2 compares the traditional and prompting formula-
tion for text classification.

Traditional Formulation Prompt Formulation
[ Input: x = “No reason to watch.” ] [ Input: x = “No reason to watch.” ]
< <
[ Predicting: y = Negative ] [ Template: “| | It was a [7] movie.” ]
<

was a movie.”
expecting the language model to generate &
“terrible” with higher probability than “great”

[ Predicting: x’ = “No reason to watch. It
was a movie.”

<
[ Mapping: => Negative ]

Prompting: x’ = “No reason to watch. It J

Figure 4.2: Comparison of traditional and prompting formulation for text classific-
ation.

The prompt has unfilled slots, meaning the original task can be formulated as a
(masked) language modelling problem. The language model is then used to probabil-
istically fill the blank slots to produce a final string %, from which the final output y
can be inferred. Figure 4.3 compares pre-training, fine-tuning and prompting for
a sentiment classification task with added demonstrations (answered prompts) in
prompt-based fine-tuning, which can help guide the model to correct predictions,
as shown by Gao et al. (2021).
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4.2.1. Answer Search and Mapping

Vocab Vocab V- Label space )
MLM | | .. great MLM | | .. no CLS |, ... label:positive
head terrible v/ head utterly v/ head label:negative v/

[ [CLS] | No reason to watch . [SEP]]

[[CLS] itis a|[MASK] | movie in every regard, and |[MASK] painful to watch . [SEP]

(a) MLM pre-training (b) Fine-tuning

Label mapping M(Y)
MLM | | . (label:positive)
head terrible (label:negative) v/

. [SEP] The drama discloses nothing. It was terrible . [SEP]

([CLS] No reason to watch . It was |[MASK]| . [SEP] A fun ride. It was

———Inpu——— ——Template——] —Demonstration for label:positive— |——————Demonstration for label:negative———————

(c) Example of prompt-based fine-tuning with demonstrations

Figure 4.3: An illustration for (a) masked language model (MLM) pre-training, (b)
traditional fine-tuning and (c) prompt-based fine-tuning with demonstrations for
a sentiment classification task. Underlined text is the task-specific template, and
coloured words are answers for the task (in this case, label words). Demonstrations
for each label can be added to lead the model further to correct predictions (adapted
from Gao et al., 2021).

To create a filled prompt by filling the answer slot in a prompt, the model searches
for the highest-scoring text Z that maximizes the score of the language model as

2= searzchP(fﬁu (x/,2); ©). 4.1)
ze

The search function can be an argmax search, which looks for the output with the
highest score, or sampling, which randomly generates outputs according to the LM
probability distribution (P. Liu et al., 2023). If the model generates text, like T5 or
BART, the search function can also be greedy or beam search.

The answer z comes from a set Z of permissible values. In the case of generative
tasks, such as machine translation, the Z is the whole language. For classification
, “terrible”} to

”»

tasks, Z is a small subset of words in the language (e.g. Z = { great
represent classes in Y = {+,—}).

After the highest-scoring answer Z is found, it is mapped to the highest-scoring
output y. In the case of language generation, the answer itself is the output. For
other tasks, like classification, the mapping is the inverse function used to create Z
from Y.

In some cases, one output can be mapped to multiple answers. For instance,
multiple different words can be used to represent positive sentiment (e.g. “great”,
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4. Prompt-Based Fine-Tuning

“excellent”, “amazing”) to express a single class, in this case, “++”. In such cases, the
possible mapping to multiple answers must be considered when mapping the re-
sponse back to the output.

The answer can also have different shapes (P. Liu et al., 2023), like a single token
from a pre-trained language model’s vocabulary, a short multi-token span, a sentence
or a document.

Selecting a prompt that leads to the most effective performance in a downstream
task is called prompt engineering. When creating the prompt, the prompt shape and
whether the template should be created manually (created intuitively based on hu-
man introspection) or automatically must be considered.

P. Liu et al. (2023) describe two shapes (also called types) of prompts: prefix prompts
and cloze prompts. Prefix prompts have the unfilled slot in the middle of the text (e.g.
“[X] It was a [Z] movie”). In cloze prompts, the input text comes entirely before
the slot for the answer (e.g. “[X] It was [Z]").

Choosing the prompt shape depends on the task and model used. For generation
tasks or tasks solved using autoregressive language models, prefix prompts are often
more favourable because they fit well with the left-right nature of the models. On the
other hand, cloze prompts are well suited for tasks solved using masked language
models because they closely match the form of the pre-training objective. Both
types of prompts can be used with full-text reconstruction models because they are
more versatile. Figure 4.4 compares masked and autoregressive language models
and which prompt shape is more suitable for each model type.

For some tasks involving multiple inputs, such as text pair classification, tem-
plates have to contain several slots for inputs ([X1], [X2],...).

Manually created templates have several issues. First, the creation requires lots of
time and experience, especially for complex tasks such as semantic parsing. Secondly,
finding optimal prompts might be impossible even for experienced prompt creators
(Jiang et al., 2020).

Various methods have been proposed to automate the template design proced-
ure to overcome these problems (P. Liu et al., 2023). The automatically generated
prompts can be divided into discrete prompts and continuous prompts.
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4.2.2.3. Discrete Prompts

4 N )
O O O O O O O O

Qrangutans are [MASK] apes [SEP] / \ [starT] Qrangutans are /

BERT GPT
Might be more suitable for cloze prompts Might be more suitable for prefix prompts
No reason to watch. It was a movie No reason to watch. The movie was

Figure 4.4: Comparison between a masked LM represented by BERT and an autore-
gressive LM represented by GPT, showing which prompt shape is more suitable for
each model type, with examples.

Discrete (hard) prompts use templates described in a discrete space, usually corres-
ponding to actual natural language phrases. Several methods have been proposed
for creating these prompts (P. Liu et al., 2023), some of which are described below.

The mining approach proposed by Jiang et al. (2020) searches a
large text corpus, such as Wikipedia, for strings containing input x and output y and
finds middle words or dependency paths between the input and outputs. Common
middle words or dependency paths can be used in a template (e.g. “[X] It was [Z]”).

Paraphrasing-based approaches, such as those explored by
Jiang et al. (2020), involve paraphrasing an existing prompt (e.g. mined or manually
created) into a set of alternative candidate prompts.

Gao et al. (2021) treat prompt generation as a task of generat-
ing text. As depicted in Figure 4.5, they use the T5 model to generate the templates.
Then they fine-tune a specific model with these generated templates and select
the best template based on the evaluation. The T5 model is suitable for template
generation. As shown in Figure 3.14 in Chapter 3, the T5 model replaces randomly
selected spans of tokens with unique placeholders and then reconstructs the masked
spans. The authors also showed that automatically generated templates often out-
perform manually created templates, the demonstrations can improve the results,
and prompt-based learning achieves better results than traditional fine-tuning when
only a few examples are available (few-shot learning).
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4. Prompt-Based Fine-Tuning

/—Training examples for label: positive\
A fun ride. <X> great <Y> r----------- ---- Decode
A pleasure to watch. <X> great <Y> - - - i G

enerated templates
\ J <S> This is [MASK].
<S> A [MASK] one.

/—Training examples for label: negative

| No reason to watch. <X> terrible <Y> |- ---

|This junk. <X> terrible <Y>|- -------------------- Fine-tune and

L. evaluate
- J Best template
Label mapping M(Y): <S> A [MASK] one. ]
positive: great, negative: terrible

Figure 4.5: Template generation using the T5 model proposed by Gao et al. (2021).

Continuous (soft) prompts differ from discrete prompts because they are described
in the embedding space of the underlying language model rather than using actual
natural language phrases. Continuous prompts remove the constraint that the em-
beddings of template words must correspond to embeddings of natural language
(e.g. English) words. Instead, the template can be prefixed with pseudo tokens that
are not used to construct the answer but are used to guide the model to predict
the output. Continuous prompts allow the template’s parameters to be fine-tuned
based on the training data of downstream tasks, leaving the original parameters
frozen. While this can reduce the training time and make the model easier to use for
different tasks, continuous prompts usually require more training data than discrete
prompts and are less suitable for few-shot learning (P. Liu et al., 2023).

Examples of continuous prompts include those explored by Li and Liang (2021)
and Zhong et al. (2021). An example of the method proposed by Li and Liang (2021)
is shown in Figure 4.6.

Multi-prompt learning methods use multiple prompts to improve the effectiveness
of prompting methods (P. Liu et al., 2023). Figure 4.7 shows different multi-prompt
learning strategies.
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4231 Prompt Ensembling

Prefix Transformer (pre-trained)
(table-to-text)

N Jigiginigipinigigl

species jaguar diet animal flesh

Input (table-to-text) (table-to-text)

Figure 4.6: Prefix-tuning for a table-to-text task proposed by Li and Liang (2021).
New embeddings are added to the pre-trained model. These new parameters (red
prefix blocks) are then fine-tuned while the rest of the model parameters are frozen.

Input | Subject: China; Relation: isCapital Input | Subject: China; Relation: isCapital
PR1 [ China’s capital is [MASK]. } Ans-PR1 [Australia‘s capital is Canberra.]—J
) v
PR2 [ [MASK] is the capital of China. J > Ans-PR2 [ Japan’s capital is Tokyo. ]—J
PR3 [ The capital of China is [MASK]. } C PR[ China’s capital is [MASK].
(a) Prompt Ensembling. (b) Prompt Augmentation.
Input (X) Google became a subsidiary of Alphabet. — Input (X) Mike went to New York yesterday.
g [X] Mike is [MASK] entity type.
Sub-PR1 R [T Efees e PR |:[X] New York is [MASK] entity type.
Sub-PR2| [X] The [MASK] Alphabet.
Sub-PR3 | [X] Google [MASK] Alphabet. Sub-PR1 [X] Mike is [MASK] entity type. —1—>
PR
Sub-PR2 |[X] New York is [MASK] entity type. ——>
[[X] The [MASK] Google [MASK] the [MASK] AIphabet.J—» )
(c) Prompt Composition. (d) Prompt Decomposition.

Figure 4.7: Different multi-prompt learning strategies. The yellow colour represents
input text, blue prompt (“PR”), green sub-prompt (“Sub-PR”), and red answered
prompt (“Ans-PR”) (adapted from P. Liu et al., 2023).

4.2.31 Prompt Ensembling

Prompt ensembling uses multiple unanswered prompts to take advantage of the com-
plementary benefits of different prompts. It can also reduce the cost of prompt
designing and stabilize the performance on downstream tasks (P. Liu et al., 2023).
The predictions from different prompts can be combined, for instance, using uni-
form or weighted averaging. Figure 4.7-(a) shows an example of prompt ensembling.
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4. Prompt-Based Fine-Tuning

4.2.3.2 Prompt Augmentation

Prompt augmentation (Gao et al. (2021) called it demonstration learning) provides a few
additional answered prompts to lead the model to correct predictions. Figure 4.7-(b)
shows an example of prompt augmentation.

4.2.3.3 Prompt Composition

Prompt composition can be used on complex tasks based on more basic subtasks
by combining sub-prompts for each sub-task into one prompt (P. Liu et al., 2023).
Figure 4.7-(c) illustrates this process.

4.2.34 Prompt Decomposition

For tasks where multiple predictions need to be made for a single sample (e.g. se-
quence labelling), defining one prompt concerning the entire input text x can be
challenging. Prompt decomposition solves this problem by breaking one prompt into
several sub-prompts that can be answered separately, as shown in Figure 4.7-(d) for
the named entity recognition task.
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This chapter briefly reviews the literature related to the thesis topic, specifically
aspect-based sentiment analysis, cross-lingual sentiment analysis and cross-lingual
aspect-based sentiment analysis. It is important to note that while some authors
use the same datasets, their results are often not comparable due to differences in
how they define and solve ABSA tasks. Additionally, they may modify the datasets
slightly, such as adding or changing annotations or removing examples.

Zhang, Li et al. (2021) introduce GAS, a generative framework for aspect-based
sentiment analysis. They propose two paradigms to formulate ABSA tasks as text
generation problems: annotation-style modelling and extraction-style modelling.
In the annotation-style modelling paradigm, the authors add annotations to a given
sentence to incorporate label information in the target sentence. In contrast, the
extraction-style modelling paradigm uses the desired natural language label of the
input sentence as the target. The authors evaluate four ABSA tasks (UABSA, AOPE,
TASD and ASTE) using the base T5 model for text generation. They also employ
a prediction normalization strategy to fix misspellings and typos (e.g. “Bbq ribs” to
“BBQ ribs”). The experiments are performed on four SemEval datasets: Laptop 14
(Pontiki et al., 2014), Rest 14 (Pontiki et al., 2014), Rest15 (Pontiki et al., 2015) and
Rest 16 (Pontiki et al., 2016). The authors demonstrate that their proposed approach
for transforming ABSA tasks into text-generation problems is effective, as evidenced
by the results for each task in Table 5.

Task Lap14 Restl4 Restl5 Restl6

AOPE 69.55 75.15 67.93 75.42
UABSA  68.64 77.13 66.78 73.64
ASTE 60.78 72.16 62.10 70.10
TASD - - 61.47 69.42

Table 5.1: Best results of the methods proposed by Zhang, Li et al. (2021) for different
tasks and datasets. F1 scores are reported.
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Zhang, Deng et al. (2021) address aspect-based sentiment analysis by proposing
a new task called aspect sentiment quad prediction (ASQP). The task involves pre-
dicting all (aspect category c, aspect term a, opinion term o, sentiment polarity p)
quads for a given sentence. They treat this as a sequence-to-sequence problem and
employ the T5-base model to solve it. To transform a sentiment quad q = (¢, 4, 0, p)
to a natural sentence, they use the projection function P,(-) for z € {c, a, 0, p} and
map the quad to a sentence of the form “P.(c) is P,(p) because Py(a) is P,(0).”. For
example, a quad (food quality, steak, undercooked, negative) can be transformed into a
sentence “Food quality is bad because steak is undercooked”. If multiple such sentences
exist for a given input, they concatenate them using the [SSEP] token to form the
final target sequence y. Their method, PARAPHRASE, can also solve other ABSA
tasks, such as aspect sentiment triplet extraction (ASTE) and target-aspect-category
detection (TASD). To evaluate their method, the authors create new datasets Rest15
and Rest 16 by augmenting the original Rest 15 and Rest 16 SemEval datasets (Pontiki
et al,, 2015; Pontiki et al.,, 2016) with an opinion term (e.g. “delicious”) for annotated
examples. Each sample in these datasets comprises a review sentence and one or
more sentiment quads. The authors report F1 scores, precision and recall on both
datasets, considering a prediction correct only if all the predicted elements match
the gold labels exactly. Table 5 summarizes the results for different tasks.

Task Restl5 Restl6

ASTE 62.56 71.70
TASD 63.06 71.97
ASQP 46.93 57.93

Table 5.2: F1 scores for different tasks and datasets achieved by the PARAPHRASE
method proposed by Zhang, Deng et al. (2021).

Zhang, He et al. (2021) focus on cross-lingual aspect-based sentiment analysis
and present an alignment-free label projection method. This approach eliminates the
need for word alignment tools to project labels from the source sentence into the
translated target sentence. First, the authors mark each aspect term in a sentence
with a special symbol, such as brackets and braces. They then use the Google Trans-
late API'! to translate the sentence, which preserves more task-specific knowledge.
The aspect terms in the translated sentence can be extracted by special symbols. The
authors also introduce an aspect code-switching (ACS) mechanism, which creates
two bilingual sentences by switching the aspect terms between the source and trans-
lated target sentences. Figure 5.1 illustrates the aspect code-switching mechanism

Thttps://translate.google.com/
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and alignment-free method. The authors fine-tune models, specifically the multilin-

xS: En-en xT: Fr-fr
The [ ]is very fresh and delicious, but «| Translation La[ ] est tres fraiche et délicieuse,
this { } is too small for me. > System mais cet { } est trop petit pour moi
T T Y
ACS ACS

[l: ypositive | e > [I: , positive
{}: , negative {: , negative

xSt En-fr l xTs: Fr-en
The [ ]is very fresh and delicious, La[ ] est trés fraiche et délicieuse, mais
but this { } is too small for me. cet { } est trop petit pour moi.

Figure 5.1: Example of the aspect code-switching technique (lower part) and
alignment-free label projection method (upper part) (adapted from Zhang, He et
al,, 2021).

gual BERT and the base XLM-RoBERTa, on a combination of the code-switched
bilingual sentences and the monolingual sentences of the source/target languages.
The models aim to predict the aspect terms and their corresponding sentiment polar-
ities. The authors evaluate the effectiveness of their methods through experiments
with five languages from the SemEval-2016 dataset (Pontiki et al., 2016) (specifically
the Rest 16 dataset). Table 5 shows the results.

mBERT XLM-R

fr es nl ru fr es nl ru

52.25 6291 53.40 5458 61.00 69.24 63.74 62.02

Table 5.3: Cross-lingual performance of two models proposed by Zhang, He et al.
(2021), fine-tuned on English as the source language, across various target languages.
F1 scores are reported.

Gao et al. (2021) focus on regression and classification tasks, including senti-
ment analysis, using prompt-based fine-tuning. They demonstrate that with a few
training examples, prompt-based fine-tuning outperforms traditional fine-tuning.
Furthermore, they show that adding demonstrations to a prompt is an effective
fine-tuning method, and their automatic prompt search method performs as well
as or better than manual prompts. In their experiments on various datasets, the
authors use the T5 model to automatically generate prompts and the BERT-large
and RoBERTa-large models for fine-tuning. Chapter 4) provides more details on
their method.

Gaoetal. (2022) propose LEGO-ABSA, a unified generative multi-task framework
for solving multiple ABSA tasks simultaneously. Instead of treating the prompt and
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output text as simple strings, they consider them as a combination of multiple ele-
ments to be extracted. The T5 model is used in this approach. The authors introduce
element prompts for aspect, category, opinion and sentiment, which can be concat-
enated to form the final task prompt, where every sentinel token has a unique ID.
For aspect, it has the following form: “aspect: <extra_id_id>", where id is the ID of
the sentinel token. The model can be trained on multiple ABSA tasks simultaneously
using different task prompts (e.g. one sentence with element prompts for aspect and
opinion and a second sentence with element prompts for aspect and sentiment)
and can thus solve multiple tasks simultaneously. The proposed method is tested
on several SemEval datasets (Pontiki et al., 2015; Pontiki et al., 2014; Pontiki et al.,
2016), achieving state-of-the-art results on multiple tasks. Table 5 summarizes the
results obtained for different tasks and datasets.

Task Lap14 Lapl5 Lapl6 Restl4 Restl5 Restl6
AOPE 71.3 - - 78.1 72.9 77.6
E2E-ABSA 72.3 - - 80.6 74.3 78.6
ASTE 62.2 - - 73.7 64.4 71.5
ACSA - 65.0 55.9 - 71.0 76.2
TASD - - - - 62.3 71.8
ASQP - - - - 46.1 57.7

Table 5.4: Best results of the methods proposed by Gao et al. (2022) for different
tasks on different datasets. F1 scores are reported.

Pribén et al. (2022) deal with cross-lingual sentiment analysis in English, Czech
and French. They perform cross-lingual classification without using any labelled
data in the target language (zero-shot) using LSTM and CNN classifiers, along
with five linear transformations. The authors pre-train embeddings from the target
domain and show that these are important for improving the cross-lingual senti-
ment analysis results. Besides comparing individual linear transformations, they also
demonstrate that the transformation-based methods can compete to some extent
with state-of-the-art multilingual models based on the BERT architecture.
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Experiments

This chapter provides a detailed description of the experiments performed in this
thesis. First, the datasets used in the experiments are described. Then the problem,
solution and evaluation methods used in this thesis are explained. Finally, the results
of the experiments are presented and discussed in detail.

6.1 Datasets

We use datasets provided by Pontiki et al. (2016) for the experiments. Datasets com-
prise actual reviews of restaurants written by users in six languages: English (en),
Spanish (es), French (fr), Dutch (nl), Russian (ru) and Turkish (tr). Datasets are already
split into training and testing sets for each language. We keep the original split and
further sample 10% data from the training set as the validation set used for model se-
lection. Each sample sentence is annotated with sentiment triplets (aspect category,
aspect term, sentiment polarity), although some sentences may have no annotations.
Table 6.1 shows the data statistics for each language in datasets.

en es fr nl ru tr

Sentences 2000 2070 1733 1711 3490 1104
Triplets 2507 2720 2530 1860 4022 1535

Sentences 676 881 696 575 1209 144
Triplets 859 1072 954 613 1300 155

Table 6.1: Statistics of the data in each language.

6.1.1 New Czech Dataset

To evaluate our methods on the Czech language, we present a new dataset of res-
taurant reviews in Czech using data from Hercig et al. (2016). The original dataset
does not have the required annotation format for subtask 1 of SemEval 2016 Task
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5 solved in this thesis. Therefore, we keep the original data and add the required
annotations to make the dataset compatible with this task. Two annotators contrib-
uted to the annotation of the new dataset: the author and the supervisor of this
thesis, both native speakers with experience in sentiment analysis.

Following Pontiki et al. (2016), we measure the inter-annotator agreement (IAA)
between the two annotators in terms of micro F1 score for the identification of as-
pect terms, aspect categories, (aspect term, aspect category) tuples, and (aspect term,
aspect category, polarity) triplets. Table 6.2 shows the inter-annotation agreement
results, which we consider high enough for all annotation targets.

Annotation target IAA
Aspect term 93.19
Aspect category 93.00
Aspect term & aspect category 91.06

Aspect term & aspect category & polarity 89.70

Table 6.2: Inter-annotator agreement (IAA) for different annotation targets in the
new Czech dataset, measured in terms of micro F1 score (in %).

We split the dataset into training and test splits in a 75:25 ratio. The data statistics,
including the number of sentences and the number of annotation triplets, are shown
in Table 6.3.

Split  Sentences Triplets

Train 1612 2764
Test 537 907

Table 6.3: Data statistics of the new Czech dataset.

This thesis solves the first subtask (SB1) proposed by Pontiki et al. (2016), which is
the sentence-level ABSA. The goal of this task is to identify all opinion tuples with
the following tuple slots:

1. Aspect category (slot 1): Identifying the category of the aspect that the opinion
refers to (ACD task).

2. Opinion target expression (slot 2): Extracting the specific aspect term or
phrase the opinion refers to (ATE task).
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6.3, Sequence-to-Sequence Models

3. Aspect category and corresponding opinion target expression (slot 1&2): Find-
ing the aspect category and the specific aspect term or phrase to which the
given opinion refers.

4. Sentiment polarity (slot 3): Determining the sentiment of the opinion for a
given (aspect category, aspect term) pair.

Figure 6.1 shows an example of an opinion tuple for a given sentence. More details
are described in Chapter 2.

Task Annotations
category="FOOD#PRICES”

Sentence
The food was very target="food”
expensive

polarity="negative”

Figure 6.1: Example of a sentence with annotations for the task solved in this thesis.

In addition, we solve the target-aspect-sentiment detection (TASD) task, which
involves identifying the aspect category with the corresponding aspect term and
sentiment polarity. Given a sentence x, target-aspect-sentiment detection aims to
predict all aspect level sentiment triplets {(c, a, p) }, where ¢ is aspect category, a
aspect term and p sentiment polarity. The aspect category belongs to the set of
categories V.. The aspect term is usually a text in a sentence. However, it can also
be “NULL” if the target is not explicitly mentioned in a text: a € V,, U {0}, where
V. refers to the set containing all possible continuous ranges of x. The sentiment
polarity belongs to one of the sentiment classes {negative, positive, neutral}. Similarly,
we can define the tasks of identifying slot 1, slot 2 and slot 1&2 tuples, where the
aim is to return all {c}, {a} and {(c, a)} tuples, respectively.

As our solution, we propose a unified sequence-to-sequence method to solve mul-
tiple tasks simultaneously using sequence-to-sequence models. The tasks we address
are ATE (extracting individual aspect terms, slot 2), ACD (extracting individual as-
pect categories, slot 1), extracting pairs of aspect terms and categories (slot 1&2)
and TASD, which involves extracting (aspect term, aspect category, sentiment po-
larity) triplets. This approach can be used with traditional fine-tuning (TR-FT) and
prompt-based fine-tuning (PT-FT).

Initially, we incorporated all training examples, including those without senti-
ment triplets, in our experiments. For such examples, both the input and label were
empty strings. The results of these examples are shown in Appendix B (see Table B.1
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for results on the English dataset, Table B.2 for monolingual results and Table B.3
for cross-lingual results). However, following related work (Gao et al., 2022; Zhang,
Deng et al.,, 2021; Zhang, Li et al., 2021), the final experiments are conducted only
on samples with sentiment triplets to allow better comparison.

Our approach for traditional fine-tuning involves converting sentiment triplets (as-
pect term, aspect category, sentiment polarity) from a given sentence into a natural
language sentence. For example, given the input sentence “Steak was amazing”, we
extract the sentiment triplet (food quality, steak, positive), which we then transform
into a sentence “Food quality is great, given the expression: steak”. We fine-tune a
sequence-to-sequence model, specifically the T5 and BART models and their mul-
tilingual versions (mT5 and mBART), using the input sentence and transformed
triplet. This approach is inspired by Zhang, Deng et al. (2021), where the authors
use a different form of transformed triplets, use only the T5 model, and evaluate it
only on the English dataset.

This section describes the creation of labels from sentiment triplets. We convert each
sentiment triplet t = (¢, a, p) into a natural language sentence using a projection
function P, (-) for each sentiment element z € {c, a, p} as follows:

“P.(c) is Py(p), given the expression: P,(a)”.

The projection function maps sentiment elements into a natural language form.
Since the aspect term a is already in a natural language form, we use P,(a) = a. The
category in the data we use is in E#A format, where E is the entity type, and A is the
attribute type. We split the entity type and attribute type and convert all uppercase
letters into lowercase letters except for the first letter in the entity type. For example,
FOOD#QUALITY becomes “Food quality”. For the sentiment polarity, the projection
function is

great if p is positive,
P,(p) = { ok if p is neutral, (6.1)
bad  if p is negative.

Finally, we concatenate all transformed triplets using “;” to create the final target
sentence y. Figure 6.2 shows how we construct the target sentence from an input
sentence with sentiment triples.
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6.3.2. Prompting Models

Example = Input Annotations
The steak was great, butthe | | (c, a, p): (FOOD#QUALITY, , positive)
service was terrible. (c, a, p): (SERVICE#GENERAL, , hegative)

Output

Food quality is great, given the expression: ;
Service general is bad, given the expression:

Figure 6.2: Example of the target sentence construction for sequence-to-sequence
models from an input sentence with annotated sentiment triplets using traditional
fine-tuning.

We propose a prompt-based method of solving the ABSA task in addition to the
traditional fine-tuning method. The method involves expanding the example sen-
tence x with a template t to create the final input x”: x” = x + | + t. To generate
the template, we use the same method of transforming the sentiment triplets into
natural language sentences as described earlier (“P.(c) is P, (p), given the expression:
P,(a)”). This method is inspired by Gao et al. (2022), who use a different prompt
design. However, their method is limited to the T5 model and was evaluated only
on the English dataset. The number of transformed triplets in the prompt corres-
ponds to the number of triplets provided for one example, giving the prompting
models a possible advantage over the traditionally fine-tuned models that do not
have any information about the number of triplets for an example in advance. Since
the training objective of the (m)T5 and (m)BART models differ, we need to design
the prompt differently for each group of models.

The T5 model aims to reconstruct randomly selected continuous spans of input text
that are masked by sentinel tokens <extra_id_id> during pre-training. Here, id
refers to the ID of the sentinel token, which starts from zero and increments by one.
The model replaces non-masked spans of text with sentinel tokens. In our method,
we replace the aspect category with <extra_id_0>, the sentiment polarity with
<extra_id_1>, and the aspect term with <extra_id_2> to create the final input.
The output of the T5 model consists of the aspect category, sentiment polarity and

49



6. Experiments

aspect term separated by sentinel tokens. Figure 6.3 shows how we construct the
input and output from the original input text with sentiment triplets for the T5

model.
Example Annotations
The steak was great, butthe | (c, a, p): (FOOD#QUALITY, steak, positive)

service was terrible. (c, a, p): (SERVICE#GENERAL, service, negative)

Input

The steak was great, but the service was terrible. | <extra id 0> is
<extra_id_1>, given the expression: <extra id 2> ; <extra id 0> is <extra_id 1>,
given the expression: <extra id 2>

Output

<extra id 0> Food quality <extra id 1> great <extra id 2> steak <extra id 3>;
<extra_id 0> Service general <extra id 1> bad <extra id 2> service <extra id 3>

Figure 6.3: Example of the input and output construction from one example with
sentiment triplets for the T5 model with prompting.

6.3.2.2 BART Model

The objective of the BART model is distinct from that of the T5 model. Unlike
T5, BART aims to reconstruct the entire input text rather than just masked spans.
Furthermore, the BART model utilizes the <mask> token instead of sentinel tokens.
Figure 6.4 illustrates how we construct the input and output from the original input
text with sentiment triplets for the BART model.

6.4 Models for Sentiment Polarity
Classification

This section describes the method we propose for models used for the sentiment
polarity classification given the aspect term and aspect category (slot 3 in Pontiki
et al,, 2016). This method can also be used with traditional and prompt-based fine-
tuning. Our proposed method for sequence-to-sequence models cannot produce
comparable results for this task because the models have no prior information about
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6.4.1. Models for Traditional Fine-Tuning

Example Annotations
The steak was great, butthe | | (c, a, p): (FOOD#QUALITY, steak, positive)
service was terrible. (c, a, p): (SERVICE#GENERAL, service, negative)

Input

The steak was great, but the service was terrible. | <mask> is <mask>, given
the expression: <mask> ; <mask> is <mask>, given the expression: <mask>

Output

The steak was great, but the service was terrible. | Food quality is great, given the
expression: steak ; Service general is bad, given the expression: service

Figure 6.4: Example of the input and output construction from one example with
sentiment triplets for the BART model with prompting.

the aspect term and category and attempt to predict them along with the sentiment.
For comparable results, we would need to change the input, output and prompts
for these models.

6.41 Models for Traditional Fine-Tuning

During traditional fine-tuning, we create a single input in the form of x + |+ P.(c) +a
for each aspect term a and aspect category c in the annotation triplets for a single
example sentence x, where P.(c) is the same projection function for aspect category
that we use in sequence-to-sequence models. Figure 6.5 shows an example of such
input construction with desired outputs. We then feed this input to a model with a
classification head to obtain the sentiment. For this task, we experiment with BERT,
RoBERTa, multilingual BERT, XLM-RoBERTa and ELECTRA models (including
prompting, discussed in the following subsection).

6.4.2 Prompting Models

In our classification model, we experiment with prompting, similar to what we do
with sequence-to-sequence models. For each aspect term a and aspect category ¢ in
annotation triplets for a single example sentence x, we create a single input in the
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Example Annotations
The steak was great, butthe | (c, a, p): (FOOD#QUALITY, steak, positive)
service was terrible. (c, a, p): (SERVICE#GENERAL, service, negative)

Input 1 Input 2

The steak was great, but the service was The steak was great, but the service was
terrible. | Food quality steak terrible. | Service general service

Output 1 Output 2
0 (label: negative) (0 (label: negative)

1 (label: positive) 1 (label: positive)
2 (label: negative) 2 (label: negative)

Figure 6.5: Example of the input construction from one example text with sentiment
triplets and the outputs for the classification model using traditional fine-tuning.

form of x + | +t, where t is the sentiment triplet transformed into a natural language
sentence with one empty slot for the sentiment. We use the same transformation
function as in sequence-to-sequence models (“Pc(c) is P,(p), given the expression:
P,(a)”). Equation 6.1 shows the projection function for the sentiment polarity p.
The polarity is replaced by the [MASK] token in inputs. Figure 6.6 shows an example
of input construction with desired outputs. This method is inspired by Gao et al.
(2021), where the authors use different prompts for different tasks using sentiment
classification models.

The model returns probabilities for each token in its tokenizer vocabulary for
the position of the [MASK] token. We take the token with the highest probability
as the predicted word. During the training, we optimize the cross-entropy loss (the
loss is optimized only for the position of the [MASK] token, not all inputs).

6.5 Evaluation

This section defines some evaluation metrics used in this thesis and describes the
evaluation process of our proposed models.

The simplest and most commonly used metric is accuracy, defined as the num-
ber of correctly predicted samples divided by the total number of samples (see
Equation 6.2). However, this metric is not suitable for training sets that have an
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Example Annotations
The steak was great, butthe | (c, a, p): (FOOD#QUALITY, , positive)
service was terrible. (c, a, p): (SERVICE#GENERAL, , hegative)

Input 1 Input 2

The steak was great, but the service was The steak was great, but the service was
terrible. | Food quality is [MASK], given terrible. | Service general is [MASK], given
the expression: the expression:
Output 1 Output 2
bad: 0.00 bad: 0.62
bat: 0.00 bat: 0.00
good: 0.36 good: 0.01
great: 0.51 great: 0.00
ok: 0.09 ok: 0.15
terrible: 0.00 terrible: 0.55
\ / \ J

Figure 6.6: Example of the input construction from one example text with sentiment
triplets and the outputs for the classification model using prompting.

unbalanced number of classes. For instance, if 90% of the samples in the training set
belong to class 1, the classifier can achieve a 90% success rate by simply classifying
all data as class 1. Furthermore, accuracy is often too strict for multi-label classi-
fication, where each sample can be assigned multiple labels. Therefore, it is more
appropriate to use other metrics in some cases.

correctly classified samples

accuracy = (6.2)

total number of samples

It is necessary to explain the concepts of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) to define other metrics. These results
can be formulated in a confusion matrix (see Table 6.4).

Precision is the fraction of relevant samples among the retrieved samples (see
Equation 6.3). In other words, it measures how many of the samples the model clas-
sified as positive are actually positive. Recall is the fraction of retrieved relevant
samples (see Equation 6.4). In other words, it measures how many actual positive
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True class

Predicted class 1 0

1 TP FP
0 FN TN

Table 6.4: Confusion matrix.

samples the model correctly identified as positive. Finally, the F1 score is the har-
monic mean of precision and recall (see Equation 6.5) (Manning et al., 2008).

. TP 63)
recision = .
P TP + FP
TP
recall = ——— (6.4)
TP + FN
F o= 2. precision - recall 6.5)

precision + recall

The above equations are valid only for binary classification (classification into
two classes). For multi-class (classification into K classes) and multi-label classific-
ation, micro, macro, and weighted averages are used (Manning et al., 2008). Let
B(tp, fn, fp, tn) be a given metric computed based on the number of TP, FN, FP and
TN. Micro-averaged metrics are computed from the sum of TP, TN, FP and FN over
all classes (see Equation 6.6). It holds that the results of all three micro-averaged met-
rics (recall, precision and F1 score) and accuracy are the same for the multi-class
classification. Macro-averaged and weighted-averaged metrics are calculated sep-
arately for each class. Then the arithmetic mean is calculated from these values in
the first case (see Equation 6.7) and the weighted average in the second case (see
Equation 6.8, where f}, is the number of samples belonging to class k divided by the
number of all samples). Table 6.5 shows an example of a confusion matrix for three
classes.

K K K K
Bicro = B Z P, Z fng, Z fpe, Z tng (6.6)
k=1 k=1 k=1 k=1
| &
Bmacro = f Z B(tpk; fng, fpk, tnk) (6.7)
k=1
K
Byeighted = Z fr B(tpy, fg, fpy, tng) (6.8)
k=1
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6.5.1. Evaluation of Proposed Models

True class

Predicted class orca dolphin whale

orca 10 1 3
dolphin 1 7 0
whale 4 0 6

Table 6.5: Example of a confusion matrix for three classes. For example, it can be
seen that out of a total of 15 photos of an orca, the classifier incorrectly identified
the class as a total of five times (four times as a dolphin and once as a whale).

We follow the evaluation process described by Pontiki et al. (2016) to evaluate our
proposed models for the tasks we solve.

For sequence-to-sequence models, we report four numbers. For slot 1 (aspect
category detection), slot 2 (aspect term extraction) and the slot 1&2 tuples, we cal-
culate the micro F1 scores by comparing the returned annotations with the gold
annotations. We ignored duplicate categories to calculate the micro F1 score for slot
1. For slot 2, only distinct targets are considered, and “NULL” targets are discarded.
We also report the micro F1 score for the TASD task.

To avoid any impact on the results, we count the triplets and (aspect term, as-
pect category) tuples generated multiple times as one for the sequence-to-sequence
models.

For the classification models, we report accuracy for slot 3 (sentiment polarity
classification), defined as the number of correctly predicted polarity labels of the
gold aspect categories divided by the total number of the gold aspect categories.

This section provides details on the experiments conducted in this thesis. For the
sequence-to-sequence models, we use the large T5 and large BART models for the
monolingual experiments on the English dataset. For cross-lingual and monolingual
experiments on all languages, we use the large multilingual T5 model (mT5) (Xue
et al., 2021) and the large multilingual BART model (mBART) (Tang et al., 2020).
Regarding the training, we use the batch size of 64 (16, 32 and 128 lead to similar
performances). For all models, we experiment with learning rates of 1e-4, 3e-4, le-5
and 5e-5. We use the AdaFactor optimizer (Shazeer & Stern, 2018) for m(T5) models
and the AdamW optimizer (Loshchilov & Hutter, 2019) for (m)BART models. We
experiment with greedy and beam search decoding with the beam size of 3 and 5
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for generating the output sequence. All lead to similar results. Therefore, we use
greedy search decoding for simplicity. The number of training epochs is 35 for all
experiments. We track the best score on the validation data for the TASD task to
select the best-performing model, including selecting the best number of epochs.
Tracking the score for the TASD task led to slightly better results than tracking the
validation loss.

For the sentiment polarity classification models, we use the large uncased BERT
model (Devlin et al., 2019), large RoOBERTa model (Y. Liu et al., 2019), and large
ELECTRA model (Clark et al., 2020) for the monolingual experiments on the Eng-
lish dataset. For cross-lingual experiments and monolingual experiments on all
languages, we use the uncased multilingual BERT model (mBERT) (Devlin et al.,
2019) and the large XLM-RoBERTa model (XLM-R) (Conneau et al., 2020). We use
the batch size of 64 (16, 32 and 128 lead to similar performances) and 50 training
epochs for all experiments. We use the AdamW optimizer for all models and exper-
iment with learning rates of le-4, 5e-5 and le-5. We choose the best-performing
model based on the slot 3 performance on the validation data, including the number
of epochs.

We utilize the sequence length for all models to prevent truncation of inputs
and labels (if they are sequences). Additionally, we confirm that all samples fit into
the models as none exceed 512 tokens.

The monolingual models are fine-tuned on the training data and evaluated on
the validation data of the same language. After selecting the best model parameters,
such as learning rate and the number of epochs, we fine-tune the model on all the
original training data (our training and validation data combined) and evaluate the
model on the test data.

All of the cross-lingual experiments are done in a zero-shot setting (known
as zero-shot cross-lingual), which involves evaluating a model on data from target
language without using annotated data from that language during training. The
model is trained on data from another language called source language.

The cross-lingual models are fine-tuned on all the original training data of the
source language and evaluated on the validation data of the target language. After-
wards, the best-performing model is evaluated on the test data of the target language.
These models perform similarly to those where source language was used for both
training and validation data.

We run the best-performing models five times with different random seed ini-
tialization and report the 95% confidence interval (CI) for the mean defined as

Cl—xit-\/z, (6.9)
where & is the sample mean, s sample standard deviation, n sample size (in our case,
5) and t t-value for the confidence level.
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6.6.1. Number of Parameters

6.6.1 Number of Parameters

Table 6.6 shows the number of parameters of models used in this thesis when using
traditional and prompt-based fine-tuning.

Model TR-FT PT-FT

Sequence-to-sequence models

BART 406 M 406M
T5 738M 738M
mBART 611M 611M
mT5 1.2B 1.2B

Models for polarity classification

BERT 335M 335M
ELECTRA  335M 51M
RoBERTa 355M 355M
mBERT 167M 167M
XLM-R 560M 560M

Table 6.6: Number of parameters for models used in this thesis when using tradi-
tional fine-tuning (TR-FT) and prompt-based fine-tuning (PT-FT).

6./ Implementation

The program developed for this thesis is implemented in Python 3.10.7, an inter-
preted language often used in data science projects. The program uses various librar-
ies, such as PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon & The PyTorch
Lightning team, 2019), TorchMetrics (Detlefsen et al., 2022), WandB (Biewald, 2020),
and Hugging Face’s transformers (Wolf et al., 2020). PyTorch and PyTorch Lightning
are used to build and train deep learning models, while TorchMetrics provides useful
metrics for evaluating their performance. WandB is used for logging and tracking
experiments, and the transformers library provides state-of-the-art pre-trained lan-
guage models that can be fine-tuned for specific tasks.

6.8 Results

This section provides an overview and evaluation of the results achieved from the
experiments conducted in this thesis. It consists of three subsections. The first sub-
section discusses the results obtained from the sequence-to-sequence models, while
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the second deals with the models used for sentiment polarity classification. Each sub-
section presents the cross-lingual and monolingual results of models with (prompt-
based fine-tuning) and without (traditional fine-tuning) prompting. Additionally,
each of these two sections compares the monolingual results of each dataset with
the state-of-the-art results. Furthermore, they also compare the cross-lingual res-
ults with the monolingual results for a given target language. The last subsection
evaluates the results overall.

This subsection presents the results obtained with our sequence-to-sequence method
that solves the slot 1, slot 2, and slot 1&2 problems in the first subtask of the task
proposed by Pontiki et al. (2016), as well as the TASD task.

Table 6.7 shows the results of our method with different models on the English data-
set and compares them with the state-of-the-art results. Our proposed approach
outperforms the previous state-of-the-art results (all previous state-of-the-art res-
ults have been obtained with base models, but we use large versions).

We observed that prompt-based fine-tuning outperforms traditional fine-tuning
in all reported models except for the BART model. The reason might be that the
models with prompting have dedicated slots for every annotation triplet in the
prompt, which may give them an advantage over the traditional fine-tuned models
that have no prior knowledge about the correct number of triplets for each sample.
Additionally, it is possible that prompt-based fine-tuning is better suited for these
models than the traditional approach. However, we noticed that the BART model
struggles the most with generating the output in the correct format, and it is even
worse when using prompting. Generating the output in the correct format is crucial
because the evaluation process requires output in the given format.

Furthermore, the mBART model performs better than the BART model, even
though the latter is pre-trained only on English data while the former is pre-trained
on data from 50 languages. On the other hand, the T5 model performs better than the
mT5 model. The performance of the mT5 model significantly drops when compared
to the T5 model when using traditional fine-tuning. Upon examining the outputs
produced by the mT5 model, we noticed that the model often generates repetitive
outputs and produces the same (aspect category, aspect term) tuple with different
polarity more often than other models (e.g. the model produces only “Food quality
is great, given the expression: steak”, but multiple times, or for the (FOOD#QUALITY,
steak) pair, it produces both neutral and positive sentiment).
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6.8.1.1. Result on the English Dataset

Model Slot 1 Slot2 Slot 1&2 TASD
Traditional fine-tuning
T5 86.57094 8460082  77.80*06> 7333+040
mT5 77.04%185  6920%217  59.81%232 533824
BART 78.65%091  71,55%070 6656078 6241090
mBART 80.64%168  80.82%0%4 70.15%1°1  62.82%1:%
 Prompt-based fine-tuning
T5 88.57+124  87,98+061 g0 77+197 76 15041
mT5 87.20%060  86.85*076  79,12%057 73 59047
BART 78.89%041 59 91#0.79  5g 37027 53 g4*0.14
mBART 84.56T074  84.88*1'15 7534098 g gp+l121

State-of-the-art

LEGO-ABSA (Gao et al., 2022) - - - 71.80
PARAPHRASE (Zhang, Deng et al., 2021) - - - 71.97
GAS (Zhang, Li et al., 2021) - - - 69.42
NLANG (Pontiki et al., 2016) 73.03 72.34 52.61 -

Table 6.7: Micro F1 scores (in %) achieved by the sequence-to-sequence models
on the English dataset with traditional and prompt-based fine-tuning compared to
the state-of-the-art results. Each task’s best result (or results in case of overlapping
confidence intervals) is highlighted in bold.

On the other hand, when using prompting, the mT5 model is only slightly worse
than the T5 model. Overall, the T5 model is the best-performing model, both with
and without prompting. The mT5 model has the most parameters and is the worst
without prompting but second-best with prompting. Conversely, the BART model
has the smallest number of parameters and is the worst-performing model with
prompting, while the mBART model is third-best with prompting and second-best
without prompting.

The results for aspect category detection (slot 1) are the best, which is expected
because aspect categories come from a fixed set of words. The aspect term extraction
task (slot 2) is more challenging than the ACD task because aspect terms can be
composed of varying numbers of words. Slot 1&2 is even more difficult as the models
must simultaneously predict both the aspect term and category. The worst results are
achieved for the TASD task because the models must correctly predict the polarity
in addition to the aspect term and category.
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Table 6.8 presents the monolingual results of the multilingual sequence-to-sequence
models on datasets from various languages.

Model

mT5 mBART

Lang Slot 1 Slot2  Slot 1&2 TASD Slot 1 Slot2  Slot 1&2 TASD
7 a“;a&i;i;nialiﬁnie:n;niir;g 7777777777777777777777777777777777777777777777777
cs  75.48%17% 6649246 56432099 47.98%099 78 66%1-56  78.91%131 67155140 57 4g+171
en  77.04%185  6920*217 5981%232 5338%24 g0,64*198 80.82%0% 70.15*1°1 62.82%195
es  77.27%20%  7310%20° 62.14*186 5617241 79 08191 7664116 64.90%103 59 91%19°
fr 7227%251  66.87F342  52.79%363  4526%438  72.59%223 7312193 5753239 49 12¥252
nl  71.72%290  6590%313 53 57¥264  46,68%222 7601157 7396275 61.41%222  54.25%273
ru  82.17¥291  72.82%453  5.92%469  57.95%541 g3 99#190 75 642094 g8 41189 () g6+202
tr 6827%230  4628%335  32.91%455  26.85%411 75501209 6232%328 49 g1+43l 39 634468
Prompt-based fine-tuning
cs  85.45%123  84.80%1°8  74.99%195  67.30%170 8325071 83.38%062 71,93%160 6170070
en  87.20%06¢ 86.85*076 79,12%057 7359%047 g456%074 g488+115 75342098 g9 gr+l2l
es  85.53%075  80.66%117 72.38*162 68.03*151 82.46*0°0 80.247084 9172081 g3 78044
fr 80.77*0%  80.38%1°%  67.70%0%° 60.56*0°1 72.69%1°0 7460%187 5777%329  4938+323
nl  81.43%12% 81.16*'82 70.33*110 64.17¥0°1 78.03*122 7531232 335%147 55 46*1.62
ru  86.79*0>%  81.88*94  7500%071 68.61*02° 85.11*0% 80.13*03% 72.02%110 6376050

tr 83.31%17° 71.95%08  60.92*077 54.40*1°% 76.16**% 62.09%° 49.80*34  39.17+320
State-of-the-art (Pontiki et al., 2016; Zhang, Deng et al., 2021)

en 73.03 72.34 52.61 71.97 73.03 72.34 52.61 71.97
es 70.59 68.52 41.22 - 70.59 68.52 41.22 -
fr 61.21 66.67 47.72 - 61.21 66.67 47.72 -
nl 60.15 56.99 45.17 - 60.15 56.99 45.17 -
ru 6483 49.31 39.44 - 64.83 49.31 39.44 -
tr 61.03 41.86 28.15 - 61.03 41.86 28.15 -

Table 6.8: Monolingual micro F1 scores (in %) of the mT5 and mBART models on
different languages with prompt-based and traditional fine-tuning compared to
state-of-the-art results if available. The best result (or results in case of overlapping
confidence intervals) for each task and language is highlighted in bold.

The results indicate that prompt-based fine-tuning generally produces better
results than traditional fine-tuning, with the mT5 model performing particularly
well with prompting. While some results with the mBART model are better without
prompting, most are improved with prompting. On the other hand, the mT5 model,
without prompting, suffers from the same issues described earlier in the context of
the English dataset. The worst results were obtained on the Turkish dataset, possibly
due to its small size. All models outperformed the previous best results on all datasets
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6.8.1.3. Cross-lingual Results

for the tasks described in (Pontiki et al., 2016) (slot 1, slot 2 and slot 1&2), which
were achieved with simpler models. A literature review found no results for the
TASD task other than English, which our method outperforms. Nevertheless, the
best results are usually achieved on the English dataset, possibly because the models
are pre-trained on more English data than data from other languages, leading to a
better understanding of it.

Table 6.9 shows the zero-shot cross-lingual results (the models do not have annot-
ated data from the target language available during fine-tuning) of multilingual
models on different combinations of source and target languages.

As before, prompting performs better than traditional fine-tuning in most cases,
especially with the mT5 model, which achieves the best results overall with prompt-
ing. The mT5 model with prompting performs best for every language combination
and task, with the mBERT model with prompting achieving comparable results on
a few tasks and language combinations. However, with traditional fine-tuning, the
mBERT model outperforms the mT5 model in most cases.

Interestingly, when we compare the results of different language pairs, we find
that results are usually better when the target language is English than when the
source language is English. The reason may be that the pre-training data used for the
models contained more English data than other languages, giving the models a better
understanding of English. Therefore, fine-tuning specific tasks is more effective
when other languages are used as source languages rather than target languages.
The standard deviation and the confidence interval are larger for cross-results than
for the monolingual results.

In terms of performance, the models achieve better results for the aspect cat-
egory detection task (slot 1) than the aspect term extraction task (slot 2). This dif-
ference in performance could be attributed to the fact that aspect categories come
from a fixed set of words, whereas aspect terms can have different words and lengths.
Although the models can often identify individual words of the aspect term, they
cannot always match the annotations exactly, leading to incorrect predictions. The
difficulty of transferring knowledge from the source language to the target language
for the aspect term detection task highlights that even the same phrase can vary
considerably (e.g. in length) across languages. In monolingual experiments, the dif-
ference between slot 1 and slot 2 is significantly smaller, confirming the previous
assumption. The results achieved with the mT5 model with prompting are often
within 5% of the monolingual results for the aspect category detection task.

The models are selected based on their performance on the TASD task, so the
results on the other tasks could be better. Although the models predicted all senti-
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Model

mT5 mBART

SL TL Slot 1 Slot2  Slot 1&2 TASD Slo1 Slot2  Slot 1&2 TASD

Traditional fine-tuning

en cs 7036213 3506%1094  32.74%763  2775%717 6300400 5283*1287 3978945 37 35%7.19
en es 68.50%307 3364484 3 68%360 28554258 53 36731 50941076 3576392 Hg 91+2.56
en fr 68.32%1°1  4349%570  349p*383 98 6p%354 65058355 62.71%182  46,05%234  3584*198
en nl 59.47%1°1  31.84*173 27617067 2350%0%0 6693*257  53.88%198 44 13*L11 37 1p%116
en ru 7036317 21.53%1245  2462%775  21.11%081  71.22%494  48.97%73  39.39%695 33 gg*588
en tr 5822%44  1987*19% 1203177 10.21%070 60.53*44°  37.16%330 2450%314 2043383
cs en 5824441 3400%104 3154121 27792079 69 28+363 5990676  50.43%521 43 96+>01
es en 61.95%147  31.94%400 37303060 p71%317  7460%160 6477354 55(7%404 49 17396
fr  en 6825%231 408934 38.12%333 32728321 7620142 70.79%138 5899*138 51 gg*207
nl en 63.85%342  3908*460 3195¥214  2706%151 74004266 58 15%488 5016+490  43.12%518
ru en 57.60%410  2676*458  31.85%455  26.42%523  66.74*320 59594668 51 11¥470 46 %386
tr  en 415324 1563297  15.89%2%0  1331%24  6450%268  4409%247 3595%225  3(074*14
Prompt-based fine-tuning
en «cs 80.21%08  69.20%25° 59,32%196 5257%121  6483+505 53 87811 38 0gE>49 g 9353
en es 78.607103  71.95%197 60,6570 5661103 66.81F408  65.13%265 4915%242 43 3624
en fr 78.19%084  74.44*136  61,52¥097 5321%0% 66.61*17°  61.93%240 4455+208 34 38+228
en nl 78.37%101  64.94%250 59,13*107 5470%121 ¢842*157  5490*316  4569+358 38 3p*273
en ru 83268  66.98*10 61.16*0%4 5522%15% 75718*230  62,18%477 50.95%391 43 .88*37!
en tr 82.15%18  5750%377 46.38%2%° 42.86%24° 5899836  3505%330 1 69*424 17432399
cs en 79.46%082  7380%123 63.34*1:02 5822%099 7542%200 7079246 58 37%212 49 4g+101
es en 80.767082  7250%180 62,70*110 58,60%120 7536*170 6698352 5548+228 48 gg*2.00
fr  en 84.73*062  77.70¥087  70,02%101 4.95%054 7854*114 75 41*160 ) 48047 55 13+041
nl en 79.67F1%2  67.14*200 5928*145 5386%183 7884*108  541%138 5744*104 503093
ru en 81.00%0%%  76.40%4% 67.10%>18 62.50%285 7692%034 78734084 5 32+083 59 04+047
tr  en 77.33%130  64.46*4%° 52.87%27% 48.02%2%° 7360190  64.82%283 51.29%216 44,39%1%3

Table 6.9: Cross-lingual micro F1 scores (in %) of the mT5 and mBART models with
traditional and prompt-based fine-tuning with different combinations of source and
target languages (SL and TL, respectively). The best result (or results in case of over-

lapping confidence intervals) for each task and language combination is highlighted
in bold.

ment triplets, for slot 1 and slot 2, only one part is extracted, and for slot 1&2, only
two parts are extracted. We believe the results of these tasks could be improved if
the model explicitly focused on them.

Another challenge the used models face is that they must produce the output
exactly in our given format. If the models make a mistake, we cannot correctly parse
the output, leading to a drop in performance. For instance, if the model generates the
sentence “Food quality was great, given the expression: steak” but uses “was” instead of

is”, the entire sentence is discarded, despite correctly predicting the aspect category,
sentiment polarity, and aspect term. Moreover, the annotation process for datasets
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6.8.2. Sentiment Polarity Classification Results

may vary slightly for each language, which could be another potential issue. Lastly, all
outputs are in English because the annotations are in English, which might explain
why the results are better with English as the target language. Combining multiple
languages could also cause difficulties for the models.

Table 6.10 compares the cross-lingual and monolingual results on the TASD
task. The comparison on this task is presented because the sequence-to-sequence
models are primarily fine-tuned on the TASD task. The mT5 model with tradi-
tional fine-tuning generally achieves the worst cross-lingual results compared to
the monolingual results, with the most significant difference being 40%. The results
achieved with both fine-tuning styles for the mBART model and prompting for the
mT5 model are usually about 10 to 20% worse than the monolingual results. Since
these models did not see any target language data during fine-tuning, some results
can be considered good.

This subsection presents the results of the models for sentiment polarity classifica-
tion that solve slot 3 in the task described in (Pontiki et al., 2016) task, i.e. classify
the polarity of a given aspect term and aspect category pair.

Table 6.11 shows the results of five models on the English dataset.

Traditional fine-tuning and prompt-based fine-tuning show no significant differ-
ence in most cases. However, the ELECTRA model performs better with traditional
fine-tuning by over 3%, possibly due to the discriminator part being used for tra-
ditional fine-tuning. For prompting, only the generator part is trained for masked
language modelling. Additionally, the ELECTRA model used with prompting has
more than six times fewer parameters than the model used without prompting. In
most cases, the ROBERTa, XLM-R and ELECTRA models outperform the BERT
and mBERT models. These models have modified BERT architecture, which should
improve their performance. On the other hand, the mBERT model has fewer para-
meters and an older architecture, which may account for its poorer performance.
Furthermore, mBERT is the only model not significantly surpassing the previous
state-of-the-art result achieved with a simpler model.

Table 6.12 shows the monolingual results achieved with sentiment polarity classi-
fication models and compares them to state-of-the-art results.
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6. Experiments

mT5 mBART
Source Target TR-FT PT-FT TR-FT PT-FT
en cs  27.75%17 5257121 31355719 38 90+333
cs (mono) 47.98%099  67.30%170 57 48*171  1.70%070
en es  28.55%238  5661*107  28.91*2%¢ 423624
es (mono) 56.17%241  68.03*1°1  59.91*199 g3 7g+044
en fr = 28.62%3% 5321*09% 3584198 34 38+228
fr (mono) 4526438 60.56991  49.12%252 49 38+323
en nl 2350500 5470%121  37712*l16  3g832*273
nl (mono) 46.68%222  64.17+091  5425%273 55 46+1:62
en ru  21.11%081 552154 33 8g+588 43 gg+3.71
ru (mono) 57.95%41  68.61%02% 60.86%292 3.76+0-0
en tr 10212070 4 861245  20.43%383 {7 43399
tr(mono)  26.85%*!1  54.40%1°2 39,63*468  3917+320
s en  27.79%07° 582209 4396*301 49.48*101
es en  27.21F%17 5860%126  4917%39 48 .88+200
fr en 3272021 64.95%0°%  5188*207 5513041
nl en 27.06%151 53 86%183 43 12%518 50 34093
ru en 26.42%523 2. 50%285  46.02%386 59 (4%047
tr en  1331%2% 480228 3074*147  4439%193
en(mono)  53.38%24% 73.59%047 63 gp*l9> 69 g2*!2l

Table 6.10: Cross-lingual micro F1 scores (in %) of the mT5 and mBART models
with traditional and prompt-based fine-tuning compared to monolingual results on
the TASD task.

Once again, the comparison shows that, in most cases, there is generally no
significant difference between traditional and prompt-based fine-tuning. However,
using prompting gives both models some advantage on the Dutch dataset. Across
all languages, the XLM-R model consistently outperforms the mBERT model, likely
due to its higher number of parameters and more advanced pre-training approach.
Notably, the XLM-R model significantly outperforms the previous state-of-the-art
models, in some cases by more than 10%. The mBERT model also surpasses the
previous SOTA models but to a lesser extent. It is worth noting that the previous
state-of-the-art results were obtained with simpler models with fewer parameters.
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6.8.2.3. Cross-lingual Results

Model TR-FT PT-FT SOTA

BERT 93.91%034 92 55+088
ELECTRA 95.04%1%° 91.48*070
RoBERTa  95.30%026  9542+054 8813
mBERT 87.39%0-58  88,47+0-3
XLM-R 95.01%047  94,77+0.34

Table 6.11: Accuracy scores (in %) for the English dataset and different sentiment
polarity classification models with prompt-based fine-tuning (PT-FT) and tradi-
tional fine-tuning (TR-FT), along with the state-of-the-art results (SOTA) described
in (Pontiki et al., 2016). Results in bold indicate significantly better performance
between the two fine-tuning styles for a given model.

mBERT XLM-R SOTA

Lang TR-FT PT-FT TR-FT PT-FT

cs  77.42%171  80.31*197 88.59%1:02  gg 40*148

en  87.39%0°8 88 47%035 9501047 9477%034 8813
es  88.80%060 87.97%035 93 77+058 94 29+058 g3 5g
fr  81.82*100 81.89%04 9031085 9031030 7883
nl  78.43%261 83.36%080 889309 9155056 77381
ru  84.43*042 8295135 91 30%087 9070%0*  77.92
tr  85.35%184  7899%225 9378089 93 33*L18 g4 08

Table 6.12: Monolingual accuracy scores (in %) for mBERT and XLM-R models with
traditional fine-tuning (TR-FT) and prompt-based fine-tuning (PT-FT), along with
the state-of-the-art results (SOTA) for a given language described in (Pontiki et al.,
2016). Results in bold indicate significantly better performance between the two
fine-tuning styles for a given model.

Table 6.13 shows the results of cross-lingual experiments and compares them with
monolingual results.

Similar to the monolingual results, prompt-based and traditional fine-tuning
show similar performance in most cases. The XLM-R model consistently outper-
forms the mBERT model by 5 to 20%, usually around 10%. Additionally, the results
achieved by the XLM-R model are closer to monolingual results. In some cases, the
difference is less than 1%, which is an excellent result given that the model did not

65



6. Experiments

mBERT XLM-R
Source Target TR-FT PT-FT TR-FT PT-FT
en cs  71.99%286 7420067 89 99059 g9 0046
cs(mono)  77.42*171 80.31*107  88.59*102 g8 40*!4
en es 82.06t902 82,1109  92.52%0:26 93 o*034
es(mono)  88.80*0%0 87.97%035  9373*038 94 29*058
en fr  67.66T%%  69.92%177  86.6700 84.72+088
fr (mono) 81.82%190  81.89*04%  90.31*08> 90,3100
en nl  72.27%08% 7321%08% 9032066 91 32+0>4
nl (mono) 78.43%261 8336080 8893094 g1 55%0.56
en ru  77.31%F183 7507084 90.44*066 g9 95+0:23
ru(mono)  84.43*042 8295%135 91 30*087  90.70*0
en tr 7771197 73.08%140  93.43%17> 93 08*08
tr (mono) 85.35%1:84  78.99*225 93 7g+089 93 33*1.18
e en 727327 7769%207 91.06*1%3 90.29*04
es en  78.82%158 79 53l14 9308015 92 0g+0-34
fr en  77.65%11%  7595%167 9391091 91 59045
nl en  80.23%1:68  80.00%107 92.77%04% 9 36+0.30
ru en  79.28%047  7949*049 93 60020 92 99+0-52
tr en  79.28%047  77.69*1°  92.30*0%7  90.62*0°7
en (mono) 87.39058 8847035 9501047 9477034

Table 6.13: Cross-lingual accuracy scores (in %) for mBERT and XLM-R models
with traditional fine-tuning (TR-FT) and prompt-based fine-tuning (PT-FT), along
with their respective monolingual results for comparison. Results in bold indic-
ate significantly better performance between the two fine-tuning styles for a given
model and language combination.

have access to data in the target language during fine-tuning and is fine-tuned only
on data from the source language.

The XLM-R model shows the most significant difference of 6% with prompt-
ing, with English as the source language and French as the target language, when
comparing the cross-lingual results with monolingual results on the target language.
However, when traditional fine-tuning is used, the XLM-R model performs better
with English as the source language and Dutch or Czech as the target language
than monolingual results in the corresponding target language. On the other hand,
cross-lingual results achieved by the mBERT model are worse than the monolingual
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6.8.3. Evaluation of Results

results by around 8% in most cases, with the largest difference being 14% and the
smallest 5%. As with the XLM-R model, the most significant difference is observed
when the source language is English and the target language is French. This dif-
ference may indicate that the French test dataset is most dissimilar to the English
training data.

Our proposed sequence-to-sequence method is an efficient solution for aspect-based
sentiment analysis in different languages, achieving several new state-of-the-art res-
ults on the used datasets. In most cases, using prompting with sequence-to-sequence
models outperforms traditional fine-tuning. The mT5 model benefits the most from
using prompting. It may be because the model has some prior information about the
number of sentiment triplets it should generate, which the traditional fine-tuned
model does not have. Another reason might be that the prompting is better for the
sequence-to-sequence models because it closely matches their pre-training object-
ives.

The target-aspect-sentiment detection (TASD) task is the most challenging task
solved in this thesis because the model must simultaneously predict all the aspect
categories, aspect terms and sentiment polarities. The aspect category detection
task is the least difficult, especially in cross-lingual settings where the models have
difficulty identifying aspect terms correctly for the aspect term extraction task.

In the case of cross-lingual aspect-based sentiment analysis, the task is difficult
when used in a zero-shot cross-lingual setting, i.e. the model is not fine-tuned on
any data of the target language. The models perform well on the aspect category
detection task, where the results are often within 5% of the monolingual results.
The aspect term extraction task is more complex than the aspect category detection
task because the models often predict only part of the aspect term and not the exact
term, possibly because of language differences. The TASD task is the most difficult,
and the results are often worse by more than 10% compared to monolingual results.

In the case of sentiment polarity classification, there is no significant difference
between prompt-based and traditional fine-tuning in most cases. The proposed
solution achieves state-of-the-art results on the used datasets. Cross-lingual experi-
ments often yield results within a few per cent of the monolingual results. In some
cases, the cross-lingual results even outperform the monolingual results.

Overall, the zero-shot cross-lingual aspect-based sentiment analysis proves to
be a difficult task, and better results are often achieved with models with more
parameters.
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6. Experiments

We experimented with various settings to improve the performance of our models
and combined them in different ways.

We attempted to improve the performance by modifying the mapping function
for all our models. One such modification was adding a special <null> token to the
tokenizer vocabulary and using it when the aspect term was “NULL’. However, this
did not significantly change the results, so we decided to use the original formulation
without modifying the tokenizer vocabulary. We also tried closing the attribute type
in parentheses (e.g. “(quality)” instead of “quality”), but this had no significant impact
on the results. We decided to omit the parentheses to reduce the size of the text.

For the sequence-to-sequence models (both with and without prompting), we
tried using the <sep> token instead of “” to concatenated transformed triplets.
For the T5 and mT5 models, we had to add the special token into the tokenizer
vocabulary. The BART and mBART models already have the separation token in the
tokenizer vocabulary, but it is the same as the token used to denote the end of the
sequence. As a result, these models only returned up to one transformed triplet. We
tried redefining the token to solve this issue, but it yielded worse results than using
“”. Therefore, we decided to stick with the semicolon. We also experimented with en-
tirely different outputs in the form of “aspect: <aspect>, category: <category>, polarity:
<polarity>", again without any significant changes in the results. Last, we tried using
a special <empty> token for the original experiments, including examples without
triplets. However, the results were not better than those using an empty string.

For the models for sentiment polarity classification using prompting, we experi-
mented with two variants of optimizing the cross-entropy loss during training. The
first variant calculated the loss over all tokens from the tokenizer vocabulary. The
other variant calculated the loss only over the tokens (words) used for the mapping
of sentiment polarity (specifically “great”, “ok”, and “bad”). In most cases, the first
variant outperformed the second variant by more than 10%, so we decided to use
the first option. We also conducted a few experiments where we calculated the loss
and only made predictions for the words used for mapping sentiment polarity. In
this case, we considered only the most probable mapping words. However, we found
no improvement over the original approach of computing the loss and making pre-
dictions over all words in the vocabulary. Therefore, we decided to stick with the
original version.
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Conclusion

This thesis focuses on cross-lingual aspect-based sentiment analysis and explores
different tasks in ABSA and possible solutions using Transformer-based models.

This thesis proposes a sequence-to-sequence method for solving various ABSA
tasks simultaneously, including aspect term extraction and target-aspect-sentiment
detection. Models using this method are evaluated on benchmark datasets in mul-
tiple languages. It establishes the baseline results for the new Czech dataset created
for this thesis and achieves new state-of-the-art results on datasets from other lan-
guages. The method can be used with both prompt-based and traditional fine-tuning.
Prompting is particularly effective, especially with the T5 model and its multilingual
version, which achieve the best overall result with this method. The reason might
be that prompting matches these models’ pre-training objectives closely.

The method is also evaluated on zero-shot cross-lingual ABSA with different
language combinations, where the model is not fine-tuned on any annotated data
from the target language. It shows promising results, with the best models achiev-
ing micro F1 score within 5 to 15% of the monolingual results for some language
combinations. The mT5 model with prompting is the best-performing model.

Additionally, the thesis proposes a method for classifying the sentiment polarity
of aspect terms and categories with traditional and prompt-based fine-tuning. It
achieves new state-of-the-art results in various languages and sets a new baseline
for the Czech dataset. The cross-lingual results are also promising, often within 2%
of the monolingual results, in some cases even better. In this case, there is usually
no significant difference between prompt-based and traditional fine-tuning.

All the previous points correspond to the objectives of this thesis. Future work
may focus on different combinations of source and target languages, examining the
impact of adding different language sources to the training set and exploring prompt
design and sentiment mapping. Furthermore, it is possible to perform a few-shot
cross-lingual aspect-based sentiment analysis to determine the smallest number of
examples required to achieve comparable results to monolingual experiments.

All experiments were performed on the MetaCentrum distributed computing
infrastructure, involving more than 7500 experiments.
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List of Abbreviations

ABSA aspect-based sentiment analysis

ACD aspect category detection

ACSA aspect category sentiment analysis

ACSD aspect-category-sentiment detection

ASQP aspect sentiment quad prediction

AOCE aspect opinion co-extraction

AOPE aspect-opinion pair extraction

ASC aspect sentiment classification

ASTE aspect sentiment triplet extraction

ATE aspect term extraction

BART Bidirectional and Auto-Regressive Transformers
BERT Bidirectional Encoder Representations from Transformers
BPE byte-pair encoding

CI confidence interval

CNN convolutional neural network

E2E-ABSA end-to-end aspect-based sentiment analysis

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements

Accurately
FN false negative
FP false positive
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List of Abbreviations

GPT Generative Pre-trained Transformer

GRU gated recurrent unit

TAA inter-annotator agreement

LM language model, language modelling

LSTM long short-term memory

MLM masked language model, masked language modelling
NLP natural language processing

NSP next sentence prediction

oov out-of-vocabulary

OTE opinion terms extraction

PT-FT prompt-based fine-tuning
RNN recurrent neural network

RoBERTa A Robustly Optimized BERT Pre-training Approach

RTD replaced token detection
SA sentiment analysis
SB1 first subtask in (Pontiki et al., 2016)

Seq2Seq  sequence-to-sequence

SL source language

SOTA state-of-the-art

T5 Text-To-Text Transfer Transformer

TABSA targeted aspect-based sentiment analysis

TASD target-aspect-sentiment detection

TL target language

TN true negatives

TOWE target-oriented opinion word extraction
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TP

TR-FT

UABSA

XM

XLM-R

true positives

traditional-based fine-tuning

unified aspect-based sentiment analysis
cross-lingual language models

XLM-RoBERTa

List of Abbreviations
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User Documentation

The attached ZIP file contains this thesis’s source code, data and files.

A1 Contents of the Attached ZIP

The attached ZIP contains the following folders and files:

+ Text_thesis — Folder containing the text of this master’s thesis, source BIEX
files and images.

- latex - Folder containing all the necessary files to create the text of the
thesis, e.g. BIEX source files (individual chapters are in the chapters
subfolder) and images (in the img subfolder).

— DP_Jakub_Smid.pdf — Thesis in PDF format.
+ Poster - Folder containing the poster created for presenting this master’s
thesis.
— Smid_Jakub_2023.pdf — Poster in PDF format.
- Smid_Jakub_2023.pub - Source file of the poster.

+ Application_and_libraries - Folder containing the source code of the
application.

— data - Folder to which the data from the Input_data folder must be
copied to run the application.
- src - Folder containing the source code of the application.

- tests - Folder containing the test data and source code for testing the
application.

- main.py — Main file of the application.

— README.md — User manual for the application with a few examples of
running the experiments.
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A. User Documentation

- requirements.txt — File with the list of required libraries.

+ Input_data - Folder containing subfolders with all data needed to run the ap-

plication. Each subfolder contains train.xml with training data and test.xml
with test data. To run the application, the content of this folder must be
copied to the data folder in the root of the application (in the Applica-
tion_and_libraries folder).

cs — Folder containing the Czech data.
- en - Folder containing the English data.
- es — Folder containing the Spanish data.
- fr - Folder containing the French data.
- nl - Folder containing the Dutch data.
- ru - Folder containing the Russian data.

- tr - Folder containing the Turkish data.

+ Results - Folder containing the results of the conducted experiments.

- results.xlsx - File with the results of the best experiments performed,
which are presented in the thesis text.

- results_wandb.csv - File with the results of all conducted experiments
exported from WandB.

« Readme. txt — File with the structure of the ZIP folder.

This section describes the usage of the application.
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1.

2.

Make sure to have Python 3.10 and pip installed.
Navigate to the Application_and_libraries folder.
To install requirements, run pip install -r requirements.txt.

Create a data folder and copy all the contents of the Input_data folder from
the root folder of the ZIP file into it.

. Run python main.py with the optional parameters listed below. A few ex-

amples for running the experiments are in the README .md file in the Applic-
ation_and_libraries folder and in the results.x1lsx file in the Results
folder.



A.2. User Manual

The program takes several optional parameters:
« --model - Name or path to pre-trained model (default is “t5-base”).

+ --batch_size - Batch size. The default value is 64. Note that this is the
global batch size for multi-GPU training, not the per-GPU batch size (the
number provided will be divided by the number of GPUs used).

+ —--max_seq_length - Maximum sequence length. The default value is 256.

« --max_seq_length_label - Maximum sequence length for labels. The
default value is 512.

+ —--1r - Learning rate. The default value is 0.0001.
« —-epochs - Number of training epochs. The default value is 10.

« --test_language - Language of test dataset (target language). The default
value is “en”. Options:

- ¢s — Czech.
- en - English.
- es — Spanish.
- fr — French.
- nl - Dutch.

— ru — Russian.

— tr — Turkish.

+ —--train_language - Language of the training dataset (source language).
The default value is “en”. Options:

- ¢s — Czech.
- en - English.
- es — Spanish.
- fr - French.
- nl - Dutch.

— ru — Russian.

- tr - Turkish.
« —-optimizer - Optimizer for training. Options:

— adafactor — AdaFactor. Default value.

85



A. User Documentation

- AdamW - AdamW.
+ —-mode - Mode of the training. The default value is “dev”. Options:

— dev - Splits the training data into training and validation sets. The val-
idation set is used for selecting the best model, which is then evaluated
on the test set of the target language. In the case of different source and
target languages, the validation set is taken from the training data of the
target language and the whole training data is used for training.

- test — Uses whole training dataset from the source language for training
and test dataset from the target language for evaluation.

« —-checkpoint_monitor — Metric based on which the best model will be
stored according to the performance on validation data in “dev” mode. The

default value is val_loss. Options:

val_loss - Validation loss.

— slot1_2_f1 - F1 score on Slot 1&2.

— slot1_f1 - F1 score on Slot 1.

- slot2_f2 — F1 score on Slot 2.

- slot3_acc - Accuracy score on Slot 3.

— tasd_f1 - F1 score on TASD task.

+ —-—accumulate_grad_batches - Accumulates gradient batches. The de-
fault value is 1. It is used when there is insufficient memory for training for

the required effective batch size.
+ --beam_size — Beam size for beam search decoding. The default value is 1.
+ —-prompting - Use prompting.

« —--classification — Use classification.

This subsection provides some restrictions and details to the application and its

usage.

+ —--classification cannot be used for sequence-to-sequence models (e.g.
T5).

« When selecting a model for sentiment polarity classification (e.g. BERT), either
--classification or --prompting has to be used.
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A.2.1. Restrictions and Details

The --prompting and --classification options cannot be selected to-
gether.

The user is responsible for selecting the correct --checkpoint_monitor
(e.g. slot3_accuracy is not measured when using sequence-to-sequence
models).

The --model argument containing the substring “t5” or “bart” indicates the
use of a sequence-to-sequence model.

The program automatically detects whether it is possible to use GPU for
training and the number of available GPUs.

The program tries to use WandB for logging the metrics. It uses logging into
the CSV file if it is unavailable or not possible (e.g. the user is not logged in or
does not have permission to access the project).
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Additional Selected
Results of
Experiments

This appendix shows the results of the sequence-to-sequence models when the
examples without any annotation sentiment triplets were not filtered for the training
and evaluation. For these examples, the models are supposed to return an empty
string. Table B.1 shows the results achieved on the English dataset. Table B.2 shows
the monolingual results achieved with multilingual models on different languages.
Table B.3 shows the cross-lingual results achieved with multilingual models on
different combinations of source and target languages.

Model Slot 1 Slot2 Slot 1&2 TASD

Traditional fine-tuning

T5 83.06*07%  82.86*0%  7552%037 71 .77+032
mT5 7215204 63.01*49%  54.40%37¢  48.62*40%
BART 74.80%027 69,0514 63.96¥045  0.51%077
mBART  76.95%121  76.88%181 g 87%1.93 g0 3+201

Prompt-based fine-tuning

T5 87.71¥0>3  87.31%122 7983038 74 82047
mT5 86.46%090  84.79%076 7 7gx062 71 c7+0.57
BART  79.03*%7° 59860%% 58.26%082 53,8504
mBART  84.62*047 8569073  7582%102 69 75107

Table B.1: Micro F1 scores (in %) of the sequence-to-sequence models on the English
dataset with traditional and prompt-based fine-tuning where the examples without
any annotation triplets were not filtered from the dataset.
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Model
mT5 mBART

Lang Slot 1 Slot2  Slot 1&2 TASD Slot 1 Slot 2 Slot 1&2 TASD
Traditional fine-tuning

en  7215*20% 6301401 5440537 48.62%408  76.95*121  76.88*181  66.87517F  60.63*20!
es 7461140 71,64*091  60.83%180  5605%175  7538%1L10 7491061 63175137 58 49+143
fr 69.15*190 6627287 51.85%247  44.56**°1 67.58*2% 701330 5328+ 4573%281
nl 6543533 62.44*528  49.70*357  4332%384 7310%144 72.41%2%  59.85*220 53 12*1%0
ru 76475172 6927+238 6161237 538673 76.96*17 7307190 64.03*1%  56.82%177
tr 6387277 4304777 30.86*>7° 2537%3%° 7109**1 589644 47755461 38.68*03
Prompt-based fine-tuning

en 8646090 8479%076 7678062 7167%057 8462*047  8569*073 7582102 69755107
es 8347724 78.43*220 69.31*3% 6430%%7 8197117 78.75%08¢  6800*0%0  61.98+0%
fr 79.76i0458 80.0511'73 66.7511,15 60.05t1434 68.6518,49 69.82i11'52 52.68111439 43.70110415
nl 815808 79.19%138 69 23*124 62 24%153 7703187 7358*088 63 142070 53 63%117
ru  86.85%0%¢ 8223*0%7  7494*081 67.40%1%7  84.09*0%  79.88*088 7086077 6235707
tr 83.14%228 7104207 5954834 53278427 7261%657 6113557 46.94*42°  36.06*

Table B.2: Monolingual micro F1 scores (in %) of the mT5 and mBART models
on different languages with prompt-based and traditional fine-tuning where the
examples without any annotation triplets were not filtered from the datasets.
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Model

mT5 mBART
SL TL

Slot 1 Slot 2 Slot 1&2 TASD Slot 1 Slot2  Slot 1&2 TASD

Traditional fine-tuning
en es 60.86%4%  30.65%457  2006%2%0 2548243 43 68%103  4470%836  2955%552 24 87+508
en fr 64.68%2%  41.88%7%7  3331%94  2790%574  60.02%283  58.41%427 4154264 334p*138
en nl 5355%338 3114213 2536%258  22.16*190  6327%197  51.28%23% 41.68%22% 36,011
en ru 54.4118.02 5.4114.38 11_54i3.15 9.7112.73 65.65i4'00 39.94115.58 34.0219.85 29.68t8'65
en tr 53.66%%%  16.45%174  10.88*118  9gg*l34  5p 65%467 31 26%761 0 90*03 1837480
es en 56.16%333 26902 26.44%230  22.84*211  7009%047  61.93%361 5389268 47 96*258
fren 6427285 3923*418  3613%292  31.20%284  71.01%217 6440t 53.84%231 46274418
nl  en 57.17%2%  3045%891  2504*488  2739¥433 70 78%150  5629%161 48 60235 41.84%243
ru en 529284 26231248 728%1077  2465%1090  61.39%593  52.34%1031 43544863 37 53955
tr en 3525%2% 1325834 11078340 953%330 5565045 37 65897 30 154981 94 612946

Prompt-based fine-tuning

en es 77.89%08  7168%334  021%23*  5629*2%  66.64T311  5850%026 4569%397 39g1*218
en fr 77.83F101  7319%063 0 73+083  5p 53087 g6 07228 57 p3+446 41 68%352 32 09257
en nl 77.74%113  6357%109 57 16*186  5p 33183 67 8(0*269  52.95+190 44 53%140 37 482075
en ru 83.54%050  285%309 5858213 53 g*166 74 68%292 58364805 48 13%588 41 pp*468
en tr 81.63T213  5250%356  4135%¥272  3872*L77  5737%551 37 g3#416 g q*211 16 61298
es en 78.02%305  6399%707  5530%702 5118717 7448%221  6.39%328 5514%266 47 94*1.66
fr en 84.91%%80  7611*177  68.68*1%5  64.43%14  78.94%097 7366062 61.89%078 557112079
nl en 7880%1%7  66.32%4%%  5800%42*  5280%433  77.65%2%  66.55%201 5698341 50 77+340
ru en 81.18%120 7381%300 6484219 60 68%200  7627%186 78 63*073  g533%L18 59 0g*070
tr  en 7695260  64.19%232  5278%257  4766*157  7302%1°0  3.23%240  50.19%176 42 29*1.53

Table B.3: Cross-lingual micro F1 scores (in %) of the mT5 and mBART models with
traditional and prompt-based fine-tuning with different combinations of source
and target languages (SL and TL, respectively) where the examples without any
annotation triplets were not filtered from the datasets.
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