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Abstract: We are concerned with the problem of fast and accurate tracking of currents in the general
synchronous drive. The problem becomes complicated with decreasing available voltage, which is
common in high-speed and field weakening regimes. The existing time-optimal controllers rely
on a simplified model, ignoring stator resistance and differences in inductances. We derive a
solution for the general model considering all parameters and show how the parameters affect
the current trajectory. One simplifying assumption had to be made, but we show in simulation that
it has a negligible impact on accuracy. The simplification allowed for the design of a feed-forward
controller that has a low computational cost and can be easily implemented in realtime. We provide
experimental validation of the controller on the developed IPMSM drive prototype of the rated power
of 4.5 kW using conventional industrial DSP. The controller is compared to conventional PI and
deadbeat solutions, demonstrating that the time-optimal controller can reach the required setpoint
four times faster than the competitors at the field weakening regime of the drive. The proposed
feed-forward control can be seen as a universal building block that can be combined with existing
feedback controllers and observers and thus incorporated into existing control solutions.

Keywords: interior permanent magnet synchronous motor (IPMSM); maximum torque per ampere
(MTPA); maximum torque per current (MTPC); dead beat control, predictive control

1. Introduction

Control of synchronous motor drives is traditionally decomposed into nested loops
where the current loop is the fastest of them. A prominent example is the conventional field-
oriented control of using a cascade of PID controllers [1]. Since the time constants of the
current loops are relatively short, the optimal operating points of the drive are usually given
as inputs to the current control loop [2]. The optimal current setpoints are computed for
steady-state operations, using well-known results such as the maximum torque per ampere
MTPA curve [3]. Even in the calculation of the MTPA, the stator resistance of the drive
is often neglected to achieve simpler solutions. This restriction has been recently relaxed
by designing optimal steady-state references for the full electric model of a synchronous
motor drive [4].

Optimization of the steady state operation is typically considered for permanent
operation of the drive, with application to pumps or ventilation, hence the most common
concern of optimization is efficiency [4,5]. However, this optimization is incomplete for
highly dynamic operations such as robotic actuators or manipulators, where high precision
of set-point tracking is required. In such applications, the set-point trajectory is often
known in advance, allowing optimization of the feed-forward part of the controller. In
this paper, we focus on feed-forward optimization of the current loop. All other aspects of
the control, such as set-point design [4], feed-back part of the control [6], and disturbance
rejection [7,8] will be briefly commented at the end of the paper.

Computation of the optimal feed-forward trajectories for transients can be achieved
numerically, using model predictive control [9]. However, even many predictive control
solutions often use steady-state solutions [10,11] or decomposition into speed and current
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loop [12,13]. While MPC can also be utilized on a higher level with beneficial results [14,15],
its application to demanding current control transients is not successful. The reason is the
hard constraint on the input voltage. Due to this constraint, a very long prediction horizon
is required to obtain the optimal current trajectory with a completely different trajectory for
shorter horizons [16]. The results of long-horizon optimization are counter-intuitive, since
the optimal current profile is increasing the tracking error at the beginning of the transient.
The reason is that it will reach the set-point in a shorter time than if it tried to decrease the
error. This solution can be obtained numerically with very high computational cost. While
it is possible to transform the numerical solution to explicit model predictive control [12,17],
any change in motor parameters requires recomputing of the expensive solution.

In this paper, we address this problem using time-optimal control (TOC) methods [18].
Minimizing the time to convergence can be treated using general-purpose methods [19];
however, some problems allow for an analytical solution. Specifically, we will be formalizing
the current control problem in continuous time, where it can be addressed using Pontryagin’s
principle of maxima. This technique has been applied to the current control of PMSM
drive problem, which has been studied in [20,21] using highly simplifying assumptions,
such as neglected resistance. The solution of the full model problem is conceptually
known [22,23]; however, its evaluation for the full model is non-trivial. It can be found,
e.g., by dynamic programming [24], which is computationally demanding. An extension
considering resistance has been presented in [25]; however, without considering different
inductances in the direct and quadrature axis. In essence, the TOC serves to generate
current setpoints for low level controllers such as deadbeat [2,26].

The contributions of our paper are as follows:

1. We review existing time-optimal current control methods.
2. We derive the explicit formula for the general case of a synchronous motor drive

model, including stator resistance and different d- and q-axis inductances.
3. We provide simplification of the exact formula that allows real-time evaluation of the

solution without a significant increase in computational complexity in comparison to
previous approaches.

4. We demonstrate the advantage of the new proposed general formula over the previous
solutions in torque-controlled IPMSM drive in simulations with various parameters.

5. The solution was implemented in real-time digital signal processor and experimentally
validated on a drive prototype of the rated power of 4.5 kW.

The paper is organized as follows. The review of previous approaches is summarized
in Section 2. The general formula of time-optimal control is derived in Section 3. A
sensitivity study of the proposed control to parameters of the drive is performed in Section 4
using simulation. The experimental comparison with a deadbeat controller and the PI
controller is reported in Section 5.

2. Review of Existing Approaches
2.1. Mathematical Model of Synchronous Motor Drive

Mathematical model of a synchronous motor drive in the dq reference frame linked to
a rotor flux linkage vector is generally described by stator flux dynamics [4]

ψ̇s(t) = −Rsis(t)−ω(t)Jψs(t) + us(t), (1)

where ψs denotes the vector of stator flux in the dq reference frame, ω(t) is the electrical
rotor speed, Rs is the stator winding resistance, J is the rotation matrix J = [0,−1; 1, 0] and
us(t) is the stator voltage vector in the dq reference frame. We will assume that the flux can
be (at least locally) approximated by linear formula

ψs(t) = Lsis(t) + ψpm, (2)
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where we assume a diagonal matrix of inductances Ls = [Ls,d, 0; 0, Ls,q] and flux excited by
the permanent magnets on the rotor ψpm = [ψpm,d; ψpm,q]. In this work, we consider ψpm
to be a general constant vector, which can be specialized for particular drives by setting its
elements to zero [4]. For example, ψpm,q = 0 for PMSM and PM-enhanced RSM, ψpm,d = 0
for PM-assisted RSM, and ψpm = [0; 0] for RSM drive. We will derive all equations for the
general synchronous motor model.

Since we are concerned with drives that have a much faster current response than
mechanical dynamics, we will consider the rotor speed ω to be constant during the transient.
The state variable is thus the vector of fluxes x = ψ = [ψs,d; ψs,q], with the control variable
u = us and with dynamics

ẋ(t) = Ax(t) + u(t) + q, (3)

where

A = −RsL−1
s −ωJ, q = RsL−1

s ψpm.

The trajectory of the system is thus

x(t) = etA
(

x(0) +
∫ t

0
e−sA(u(s) + q)ds

)
. (4)

2.2. Time-Optimal Control (TOC)

Time-optimal control is a special case of optimal control where the aim is to reach
the desired state xdes from the original state x0 in the minimum possible time τ. The well-
known Pontryagin principle of maxima [18] states necessary conditions for the optimal
trajectory x∗ and optimal control u∗ via two dynamic equations

ẋ∗(t) =
∂H
∂p

(t) = Ax∗(t) + u∗(t) + q(t),

ṗ(t) = −∂H
∂x

(t) = −AT p(t),

and two boundary conditions x(0) = x0 and x(τ) = xdes. Here, H(p(t), x(t), u(t)) =
1+ p(t)T(Ax(t) + u(t) + q) is the Hamiltonian of the system, and p is known as the costate
(adjoint) variable satisfying

p(t) = e−tAT
p0. (5)

The optimal control u(t) has to satisfy for almost every t ∈ [0, τ] the maximum principle

H(p(t), x∗(t), u∗(t)) =max(H(p(t), x∗(t), u(t)))

s.t. ||u(t)|| ≤ U. (6)

Under the circular voltage constraint (6), the optimal control has the form

u(t) = U
p(t)
||p(t)|| . (7)

Substituting (7) into (4), we obtain

x(t) = etA

x0 +
∫ t

0

U
e−sAe−sAT

p0√
p0e−sAe−sAT p0

+ e−sAq

ds

. (8)

Solving (8) together with constraint x(τ) = xdes for τ and p0 yields the required
solution. Note that we may normalize the costate by setting ||p0|| = 1. The complexity of
the solution depends highly on the model matrix A.



Actuators 2023, 12, 15 4 of 17

2.3. TOC with Neglected Stator Resistance

To our best knowledge, all previous approaches such as [20,21,24], were designed with
neglected stator resistance Rs ≈ 0. It is understandable because this assumption is very
convenient and allows us to greatly simplify the problem, since A = −ωJ and q = 0. Then,

etA =

[
cos ωt sin ωt
− sin ωt cos ωt

]
, e−sAe−sAT

= I,

Using assumption ||p0|| = 1, Equation (8) becomes

x(t) = etA(x0 + Up0t
)
. (9)

Substituting t = τ and using the terminal condition x(τ) = xdes in (9) yields
p0 = 1

Uτ

(
e−τAxdes − x0

)
. Since p0 has to satisfy the normalization condition ||p0|| = 1, we

obtain an implicit equation:

||e−τAxdes − x0||2 = (Uτ)2, (10)

where the only free variable is τ. Finding the solution of (10) can be done using, e.g., the
bisection method.

3. Time-Optimal Flux Control Considering Stator Resistance

Since the assumption of negligible resistance is not valid in many cases, we now use
the study solution of the time-optimal control (7) for more general cases. First, we will
analyze the case of equal inductances Ls,d ≈ Ls,q, which is a reasonable assumption for
surface mounted PMSM. The more general case is studied subsequently.

3.1. TOC with Equal Stator Inductances

Under the assumption of equal stator inductances in the d and q axes, Ls = Ls,d = Ls,q
the system (3) has the form

A = −ρI −ωJ, q = ρψpm,

where ρ = Rs/Ls, yielding

etA = e−ρt
[

cos ωt − sin ωt
sin ωt cos ωt

]
, e−sAe−sAT

= e2ρt I, (11)

then, Equation (8) becomes

x(t) = etA
(

x0 +
∫ t

0

[
eρsUp0 + e−sAq

]
ds
)

(12)

= etA
(

x0 + A−1(I − e−tA)q +
U
ρ
(eρt − 1)p0

)
. (13)

This yields an explicit form for the initial condition

p0 =
ρ

U(eρt − 1)

(
e−tAx(t)− x0 − A−1(I − e−tA)q

)
(14)

which once again has to be normalized and together with x(τ) = xdes yield

||e−tAxdes − x0 − A−1(I − e−At)q||2 =

(
U
ρ
(eρt − 1)

)2

. (15)
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When multiplying this formula by e−ρτ , the vector on the left-hand side can be
simplified and the whole formula results in

0 =

(
U
ρ
(1− e−ρτ)

)2

−
(
−α1 cos ωτ + α2 sin ωτ + β1e−ρτ

)2

−
(
−α2 cos ωτ − α1 sin ωτ + β2e−ρτ

)2. (16)

where

α1 = ψdes,d −
ρψpm,d + ωψpm,q

ρ2 + ω2 ρ, β1 = ψ0,d −
ωψpm,q + ρψpm,d

ρ2 + ω2 ρ,

α2 = ψdes,q +
ωψpm,d − ρψpm,q

ρ2 + ω2 ρ, β2 = ψ0,q +
ωψpm,d − ρψpm,q

ρ2 + ω2 ρ. (17)

This is one equation in the time variable and thus of complexity comparable to that of
(10). The only increase is due to the need to evaluate the exponential function. However,
accurate approximations for its evaluation are available [27].

3.2. Different d, q Inductances

The assumption of the previous section is no longer valid in drives that have significantly
different inductances. Since we use flux as the main variable, different inductances influence
only the stator resistance dependent terms of Equation (3) via RsL−1

s,d and RsL−1
s,q . For

analytical convenience, we denote ρ = 1
2 Rs(L−1

s,d + L−1
s,q ) and δ = 1

2 Rs(L−1
s,d − L−1

s,q ). Then, (3)
has the form

A = −
[

ρ + δ 0
0 ρ− δ

]
−ωJ. (18)

The form of the system trajectory via the matrix exponential (4) then depends on
the relation between δ and ω. Specifically, if ω > δ, the trajectory is periodic in the base
of sin and cos functions just like (11), but with a different frequency

√
ω2 − δ2. When

δ > ω, the trajectory becomes aperiodic with parameter
√

δ2 −ω2. When ω = δ, the
trajectory becomes a straight line. To achieve compact notation for all cases, we introduce
auxiliary variables:

c1 =
√
|ω2 − δ2|,

c2 = δ2 −ω2 − ρ2,

and auxiliary functions σ(t) and µ(t), defined as:

σ(t) =
sin(c1t)

c1

µ(t) = cos(c1t) for |δ| < |ω|,

σ(t) =
sinh(c1t)

c1

µ(t) = cosh(c1t) for |δ| > |ω|,

σ(t) =t µ(t) =1 for |δ| = |ω|.

(19)

Note that the last equation is a limit of both former cases for c1 → 0.
Using auxiliary functions (19), the system dynamics can be written as

etA = e−ρt
[

µ(t)− δσ(t) ωσ(t)
−ωσ(t) µ(t) + δσ(t)

]
. (20)
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In this case, the norm of the costate, ||p0||, required in (7) is rather complex and
analytical expression of (5) becomes intractable. Therefore, we will proceed with the same
normalization as in the case of PMSM, which is now an approximation:

e−sAe−sAT ≈ e2ρt, (21)

validity of this approximation will be tested in simulation.
Under this approximation, the solution of the costate equation becomes formally equal

to (14), giving an implicit equation very similar to (16):

0 =

(
U
ρ
(1− e−ρτ)c2

)2

−
(
α1µ(τ) + α2σ(τ) + β1e−ρτ

)2

−
(
α3µ(τ) + α4σ(τ) + β2e−ρτ

)2. (22)

where the only difference is in different constants

α1 = c2ψdes,d − δq1 + ωq2 + q1ρ,

α2 = q1ω2 − q1δ2 + δc2ψdes,d + δq1ρ−ωc2ψdes,q −ωq2ρ,

α3 = c2ψdes,q + δq2 −ωq1 + q2ρ,

α4 = q2ω2 − q2δ2 − δc2ψdes,q − δq2ρ + ωc2ψdes,d + ωq1ρ, (23)

β1 = −ωq2 − c2ψ0,d + δq1 − q1ρ,

β2 = −δq2 − c2ψ0,q + ωq1 − q2ρ.

Note that since these constants are independent of the time, they can be computed
only once before the bisection method.

When the time of the transient τ is known, it is substituted to (14) to obtain p0, which
is then substituted to (7) to obtain u∗(0):

u∗d =
ρ

(1− e−ρτ)c2

(
α1µ(τ) + α2σ(τ) + β1e−ρτ

)
, (24)

u∗q =
ρ

(1− e−ρτ)c2

(
α3µ(τ) + α4σ(τ) + β2e−ρτ

)
. (25)

3.3. Implementation Details
3.3.1. Time Discretization

The proposed controller is designed in continuous time; however, its implementation
will be done in discrete time. Let us denote the time instant at which we will apply the
controller by time index ut. The time required to compute the solution prevents the use of
the measurement at the same time. Hence, we assume that we have only one-step delayed
measurement, it−1. Therefore, we have to perform delay compensation, i.e., the initial state
x0 is calculated using one-step ahead prediction (2). This value and the requested state
xreq are substituted into the implicit Equation (16). The solution of this equation using the
bisection method is a scalar value τ∗, which is substituted into (24) and (25), which is the
time-optimal control law.

3.3.2. Multiple Extremes in Bisection

To use the bisection method, we need to define the minimum and maximum of the
search interval such that the function in these points have opposite signs. A suitable
choice of the lower bound is zero, where the implicit function (22) is always positive.
The upper bound is more problematic. One possible choice is setting the upper limit to
the maximum expected time of a transient (e.g., 512 sampling periods, ∆t). This setting
becomes problematic at a very high speed regime in the field weakening operation. At this
region, the current trajectory starts circulating and may cross the requested value multiple
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times in a short window. The implicit function then has multiple roots, see Figure 1, and we
need to select the one closest to zero. An optimal solution would be to derive an analytic
upper bound on it. However, in the experimental evaluation, we use a simple heuristic
solution. Specifically, we choose tmax = 256∆t, but the first evaluation is not made in the
middle of the interval but at point 10∆t. All subsequent evaluations are done using the
standard bisection algorithm. We found that 20 steps of the bisection algorithm for solving
Equation (22) are sufficient.

0 0.002 0.004 0.006 0.008 0.01
t

-0.2

-0.1

0

0.1

0.2

im
pl

ic
it 

eq
ua

tio
n

Figure 1. An example of multiple roots in the implicit Equation (22).

3.3.3. Small Step Solution

Another problem arises when the trajectory becomes too close to the requested value
and τ < ∆t. In such a case, we compute the reference value for the PWM using the
conventional deadbeat solution, which arises from the discrete-time version of model (3)

xt+1 − xt

∆t
= Axt + ut + q,

where it is assumed that the requested value x∗ can be reached in one step, yielding

uDB
t =

x∗ − xt

∆t
− Axt − q. (26)

When the state xt is close to the requested value, the deadbeat solution is within the
voltage limit. However, it becomes suboptimal when the amplitude of the solution |uDB

t | is
higher than U. This motivates the proposed algorithm for evaluation of the current control
uopt

t , Algorithm 1.

Algorithm 1 Time-optimal current control algorithm.
Input: measured current vector it−1, requested current ides

1. transform measured current to flux xt−1 = ψt−1, and xdes = ψdes using (2),
2. evaluate delay compensation xt using Euler approximation of (3),
3. compute the deadbeat solution uDB

t using (26),
4. if |uDB

t | < U,
assign uopt

t = uDB
t

else
find τ bisecting (16),
evaluate uopt

t using (24) and (25),
5. compute modulation signal from uopt

t .
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The deadbeat solution alone is often used for current control [2]. However, in such a
case, it has to be truncated to the voltage limit. Typical solution is

uDBt
t =

{
uDB

t if |uDB
t | < U,

U
|uDB

t |
uDB

t otherwise.
(27)

which we will use for comparison with the proposed TOC. The key difference between DB
and TOC is the situation when the available voltage cannot satisfy the requirement in one
step (i.e., the “else” part of step 4 in Algorithm 1).

Note that both algorithms are feed-forward controllers, relying on model correctness.
Potentially this may lead to a small steady-state error, which can be compensated by an
additional feedback controller. However, we have not experienced any steady state error in
our experiments.

4. Simulations

In this section, we study the difference between the proposed solution and previous
solutions that neglect stator resistances and different inductances on the time-optimal
trajectory. First, we use the parameters of our experimental rig and then we study the
sensitivity of the solution to parameter variations. All simulations were done in Matlab,
without the use of any toolbox, since the simulation is fully determined by elementary
arithmetic operations.

4.1. Nominal Parameters

Our experimental rig has the parameters

Rs = 1.8 Ω, ψpm,d = 0.438 Wb,

Ls,d = 14.0 mH, ∆t = 100 µs, (28)

Ls,q = 19.3 mH, Udc = 450 V.

We compare three different methods for time-optimal flux control: (i) control with
neglected resistance [20,23], (ii) solution with equal inductances, where the inductance
is set to mean value of the true machine parameters, Ls = 0.5(Ls,d + Ls,q), and (iii) the
proposed method with full model parameters. The methods are compared on a step change
of the requested stator current from zero to i∗d = −3A, i∗q = 14A. The current trajectories of
different control strategies are displayed in Figure 2.

In two modes, open-loop (left) and closed-loop (right). The open loop trajectory
applies the control strategy designed at the origin. In the closed loop, the strategy is
recomputed at every sampling period. For comparison, the deadbeat control (27) is also
computed and displayed in the right column of Figure 2. Note that all time-optimal control
strategies are relatively close to each other. This indicates that the effect of resistance on
the trajectory is low. In contrast, the deadbeat controller (27) takes a different path. The
difference is in the time to reach the setpoints. While for ω = 10 rad/s all controllers reach
the setpoint in 16 sampling periods, for ω = 400 rad/s, all time-optimal controllers reach
the setpoint in 46 sampling periods (46∆t), but the deadbeat reaches the setpoint in 131∆t.

4.2. Sensitivity Study

The difference between all versions of the time-optimal control becomes more obvious
when the ratio ρ between the resistance and inductance is higher. This is simulated by
setting smaller values of the inductances, with Ls,d > Ls,q, namely Ls,d = 5 mH, Ls,q = 3 mH.
The resulting current trajectories for all tested algorithms and step change of the requested
stator current from zero to [5, 30]A are displayed in Figure 3.
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Figure 2. Comparison of studied versions of time-optimal control and deadbeat control on stator
current reference step change from zero to [−3, 14]A for ω = 10 rad/s (top row), ω = 120 rad/s
(middle row), and ω = 400 rad/s (bottom row). The difference of the solutions in the origin is visible
in the open-loop strategy (left), its impact on the receding horizon reevaluation in each sampling
period (right), sampling times are denoted by dots on the full lines.
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Figure 3. Comparison of studied versions of time-optimal control and deadbeat control on current
reference step change from zero to [5, 30]A for modified parameters of the system with lower
inductance at ω = 10 rad/s (top row), and ω = 250 rad/s (bottom row). The difference of the
solutions in the origin is visible in open-loop strategy (left), its impact on the receding horizon
reevaluation in each sampling period (right), sampling times are denoted by dots on the full lines.

In this case, simplifications of the time-optimal trajectory differ from the proposed
solution. This is most obvious on the open-loop results, where only the proposed solution
reaches the requested value, but the strategy with neglected resistance goes far to the left
(negative id) and the one with averaged inductances far to the right (positive id). This
tendency is corrected in the closed-loop due to recalculations of the trajectory in each time
step. However, even with a correctly reached target, the strategy with neglected resistance
generates a trajectory with very low id currents, and consequently reaches the setpoint
in the longest time (15∆t). The strategy with averaged inductances takes a path with
positive id currents and reaches the setpoint in 15∆t. The proposed strategy is at low speed
almost equivalent to the deadbeat controller, and reaches the setpoint in 14∆t equally with
the deadbeat.

An important conclusion is that even for these parameters, the open-loop trajectory
of the proposed control reaches the target setpoint. This implies that the approximation
proposed in (21) is sufficiently accurate, in contrast to the simplified solutions.

4.3. Discussion of Results

The results of the controllers significantly differ for different parameters. When the
stator resistance is low, it can be neglected in the time-optimal controllers, and the resulting
controller yields in high speeds significantly faster transients than the deadbeat controller.
However, when the effect of the resistance is higher, the TOC with neglected resistance
provides a poor solution that is actually slower than the deadbeat solution and yields higher
Joule losses. In such a case, the proposed TOC with resistance yields a better solution. The
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only computationally slow operation is the sinh function, which needs to be computed for
ω < δ. If computational cost is a concern, it is safe to use the deadbeat controller in this
operating regime and switch to TOC only for higher speeds.

5. Experimental Results for IPMSM

A laboratory prototype of the IPMSM drive with the same parameters as in the
simulation (28) was used to verify the approach experimentally. The test rig is displayed in
Figure 4.

Tested 
machine

Loading
machine

Torque 
sensor

Converter

Control board
with DSP

Current sensors

Figure 4. Photo of the test rig with the controlled IPMSM and loading induction machine (left), and
the controlled converter, current sensors and the control board (right).

The rated power of the IPMSM drive is 4.5 kW, rated voltage 400 V, rated current
12.47 A rms, and rated speed 1500 rpm. The IPMSM drive is equipped with 12 bit absolute
angular position encoder LARM ARC 405, torque sensor Burster 8661, voltage transducer
LEM LV 25-P for converter dc-link voltage measurement, and current transducers LA 55-P
for measurement of the stator phase currents. The switching frequency of the voltage-source
converter supplying IPMSM is 10 kHz.

The current control strategies will be used to follow setpoint designed by optimal
steady-state solution that respects stator resistance and different inductances as described
in [4]. The full block diagram is displayed in Figure 5.

Figure 5. Block diagram of the tested closed loop controller.

This follows the conventional cascade structure, where the speed of the drive is
controlled by a PI controller (or any other controller) yielding the requested torque, T∗e .
The requested stator current vector in the dq reference frame with elements i∗d and i∗q is
calculated from the requested torque by an optimization scheme that minimizes Joule losses
in the steady-state [4]. Specifically, the optimal setpoint is calculated as the intersection of
the torque curve with the MTPA curve or with the field weakening (FW) curve. The method
presented in [4] extends previous approaches (e.g., [2]) by explicit consideration of stator
resistance. The effect of the stator resistance on the FW curve is visualized in Figure 6.
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Figure 6. Visualization of optimal setpoints for rotor speed ω = 400 rad/s. The optimal setpoint lies
on the intersection of the FW curve with the iso-torque curve (T = 38.6 Nm). FW curve with correct
resistance (Rs = 1.8 Ω) is compared to curve with neglected resistance (Rs = 0 Ω).

Note that the FW curve that does not consider that the resistance is symmetric around
the x-axis, while the curve that considers that it is not. This means that the id current in the
real drive has to be lower than predicted using the simplified FW curve. This mismatch
has been achieved by using “safety” coefficient ζ, [2], U = ζUdc/2 where Udc is the dc-
link voltage. In real experiments, the safety coefficient for the simplified approach has
to be set to ζ = 0.7 to achieve good performance. The improved solution of [4] allows
us to use higher safety coefficient, ζ = 0.9 was found to be sufficient in our case. This
improvement is achieved at a higher computational cost due to the need to solve roots of
fourth-order polynomials.

In the experiments, the current control loop is either the proposed time-optimal
controller (TOC), the standard truncated deadbeat controller (DB) from (27), or the FOC
using the conventional PI controllers

u∗d,t = kped,t + ki ∑
i=1

et−i, ed,t = (id,t − i∗d,t),

and analogously for the q axis. Both the TOC and the deadbeat controllers are tuning
free, but the performance of the PI controller depends on the choice of coefficients kp and
ki (tuning). We have tuned the PI controller to yield the best overall performance. It is
possible to re-tune the controller to obtain better results at one operating point, however,
at the cost of deteriorating performance at another. However, the behavior of the control
remains very similar for different tuning due to the fact that it is a pure feedback controller.
The computational times of the control loop building-blocks are given in Table 1.

Table 1. Computational times of the control algorithm on DSP TMS320F28377S.

Computational Time µs

data acquisition + KF 6.8
setpoint optimization 41.2

delay compensation + DB 1.5
TOC coefficient evaluation 1.5
TOC bisection for sin/sinh 18/28

modulation signals 5.8

total 74.8/84.8
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The execution time of the TOC depends on the rotor speed. For lower speeds, the base
functions are the hyperbolic functions (sinh,cosh), which are more expensive, while for
higher speeds, the base functions are the sin and cos functions, which are cheaper.

Since the TOC controller is based on the assumption of the perfect state knowledge,
we use the Kalman filter (block KF in Figure 5) to reconstruct the speed, position, and stator
currents from the position and current measurements.

The performance of the controller is tested on a testing profile displayed in Figure 7.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-450

-300

-150

0

150

300

450

600

el
 [r

ad
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*

el
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b

c
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Figure 7. Speed profile of the experimental evaluation. Speed request is displayed in a dashed blue
line, the actual speed in a red full line. Letters a, b, c and d indicate moments that are analyzed in
detail in Figure 8.

Which is composed of multiple step changes of the requested rotor speed. Since the
step change is high, the PI controller of the speed generates a request for the maximum
possible torque. The optimization routine provides current setpoints corresponding to
the best option at the given operating point. For low-speed operations, it selects points
on the maximum torque per ampere curve. In the field weakening regime, it computes
optimal currents for field weakening. References on the torque and currents remain almost
constant for many sampling periods since the time-constant of the speed is much longer
than that of the currents. To visualize the differences between the proposed controllers, we
provide details of the current transient at the time of the step change at multiple operating
points. These points are at different speeds ω = 0, 280, 400, 480 for acceleration request and
ω = 600 rad/s for speed reversal request, see Figure 7 for illustration.

The resulting torque and current trajectories at selected operating points are displayed
in Figure 8 in two modes: (i) time trajectories visualize the temporal convergence of the
trajectories to setpoints displayed by dashed lines in the right subplots, and (ii) current
d-q plane trajectories to the setpoints displayed by crosses in the left subplots. Note that
at zero speed, the current trajectories of all controllers are very similar and equally fast.
This is understandable since the TOC trajectory is almost a straight line at very low speeds.
It starts deviating from a straight line with a higher speed, as can be noted for case (b) in
Figure 8.
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Figure 8. Details of torque and current trajectories at selected moments—(a–d)—of the experimental
testing profile. For each transient, we plot the resulting trajectories for TOC controller (top row), PI
controller (middle row), and deadbeat controller (bottom row). Trajectories of the currents in the d-q
coordinates are displayed in the left subfigures with the requested current values denoted by crosses.
Trajectories in the time domain are displayed in the right subfigures. The requested values of the
torque and current are marked by dashed lines.

At ω = 280 rad/s, the field weakening limit crosses the MTPA line, and the reference
of the d current moves to negative values. At this moment, the TOC controller is able to
reach the requested torque in 2.5 ms and remain stable at this value. The PI controller
reaches the requested torque around the same time, but only due to the fact that it reaches
the torque curve at different current values than requested. In an attempt to reach the
requested currents, the torque request overshot, and it takes a while to settle it. The DB
controller reaches the requested torque later, around 3 ms, but it is also able to remain stable
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at this value. Even more obvious is the difference at ω = 400 rad/s and ω = 480 rad/s,
where the TOC controller is able to reach the requested torque in 4 ms, contrary to the other
controllers, that are not able to reach it in twice that time. Note that the TOC controller
starts the transient with decreasing id current at the cost of decreasing the iq current. This
strategy yields a decrease of the torque for a very short time. However, this short time
decrease allows a much faster increase of the torque in the second part of the transient.
This demonstrates the ability of the TOC controller to optimize on a very long horizon.
Performance of all controllers at the speed reversal moment at ω = 600 rad/s is again
comparable.

A summary of the settling times for all transients is provided in Table 2. The settling
time was measured as the time after which the measured current is within 5% of the
requested value.

Table 2. Comparison of settling time of different controllers for the transients in Figure 8. All times
are given in milliseconds.

id iq

Step at Speed TOC PI DB TOC PI DB

ω = 0 rad/s 1.8 1.8 1.8 1.3 4.7 1.3
ω = 280 rad/s 2.8 10.0 3.1 2.7 9.5 3.0
ω = 400 rad/s 4.5 11.2 8.1 4.1 17.6 8.6
ω = 480 rad/s 4.0 22.5 16.0 4.3 18.6 17.5

As expected, the TOC has the most visible benefits at high speeds. While minimization
of the speed of the transient is its primary objective, we would like to point out that the
current trajectories of the TOC controller also exhibit lower oscillations. This is propagated
into the torque trajectory, which is followed by TOC with lower oscillations than those
provided by the PI and deadbeat controllers.

6. Conclusions

We have proposed a time-optimal control strategy for current control of the general
synchronous motor drive, that considers also stator resistance and differences in stator
inductances in the direct and quadrature axis. We have shown that the base functions of the
optimal trajectory differ from those of the previous simplified solutions. We have derived
a bisection-based optimization algorithm for the evaluation of the more accurate control
strategy, which has only a minor increase in computational demands compared to previous
simplified solutions.

The proposed strategy was able to reach the requested current in the minimum
possible time. The difference to conventional PI or DB controllers is negligible at lower
speeds; however, it provides significantly faster transients at higher speeds. On the testing
prototype, TOC achieved a four times faster settling time than the PI and DB controllers at
rotor speed of 480 rad/s. This is caused by the fact that TOC is a feed-forward controller
increasing the tracking error at the beginning of the transient, which is not natural for a
feedback controller.

While the controller is designed to minimize the time of the transient, we have found
that it also provides more stable tracking of the required torque. The use of this control
may thus benefit applications that require fast and accurate torque tracking such as high
dynamic servo drives for robotics or manipulators.

Note that the proposed feed-forward strategy can be combined with any feed-back
strategy, even with the conventional PI cascade. We believe that the proposed controller
can be used as a universal building block complementing existing solutions. Exploring all
potential benefits of the approach in combinations with different feedback solutions and
different observers is left for future study.
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