
Západočeská univerzita v Plzni

Fakulta aplikovaných věd

Disertačn ı́ práce

k źıskáńı akademického titulu doktor

v oboru Kybernetika

Využit ı́ prostoro-časové struktury
př ı́znakových vektorů pro adaptaci

neuronových s ı́t ı́

Ing. Jan Trmal

Školitel: Doc. Ing. Müller Luděk, Ph.D.
Katedra kybernetiky

Plzeň, 2011

University of West Bohemia

Faculty of Applied Sciences

Doctoral thesis

submitted in partial fulfillment of the requirements
for the degree Doctor of Philosophy

in the field of

Cybernetics

Spatio-temporal structure of feature
vectors in neural network adaptation

Ing. Jan Trmal

Advisor: Doc. Ing. Müller Luděk, Ph.D.
Department of Cybernetics

Pilsen, 2011

Abstract

This doctoral thesis aims at research in the field of neural networks adaptation and in
the field of speaker adaptive training, with special attention to the application of both in
the field of automatic speech recognition.

Both these technologies, i.e. adaptation and speaker adaptive training are often used in
the area of speech recognition in the context of GMM/HMM modeling framework. In that
context, they pose one possible approach to improving recognition accuracy, often at a
cost of an insignificant increase of computational complexity. The crucial assumptions of
both these techniques, i.e. of the speaker adaptation and of the speaker adaptive training,
are realistic and can be ensured relatively easily. Therefore, it is desirable to have similar
techniques developed even for hybrid (i.e. non-GMM/HMM) speech recognition systems.

The goal of this thesis was to develop such a method and to experimentally evaluate
its influence on the accuracy of the speech recognition system.

Keywords: acoustic modeling, neural networks, adaptation, speech recognition, speaker
adaptive training

iii

Abstrakt

Tato práce se zabývá metodikou adaptace neuronových śıt́ı a na řečńıku adaptivńım
trénováńım neuronových śıt́ı pro systémy automatického rozpoznáváńı řeči.

Obě tyto technologie, tedy jak adaptace, tak na řečńıku adaptivńı trénováńı jsou v
oboru rozpoznáváńı řeči často využ́ıvány v rámci GMM/HMM modelovaćıho frameworku.
Zde představuj́ı jednu z daľśıch př́ıstup̊u k zlepšováńı přesnosti rozpoznáváńı, často za
cenu pouze zanedbatelného navýšeńı výpočetńıch nárok̊u. Zásadńı předpoklad těchto dvou
technik, tedy znalost identity řečńıka jak během trénováńı, tak i během rozpoznáváńı je
poměrně realistický a poměrně snadno zajistitelný. Je tedy žádoućı, aby byly vyvinuty
ekvivalentńı techniky i pro hybridńı systémy rozpoznáváńı řeči.

Ćılem této práce je vyvinout a otestovat metodu adaptace a metodu na řečńıku
adaptivńıho tréningu a experimentálně ohodnotit jej́ı vliv na přesnost rozpoznávače.

Kĺıčová slova: akustické modelováńı, neuronové śıtě, adaptace, rozpoznáváńı řeči, na
řečńıku adaptivńı trénováńı

iv

Prohlášeńı

Prohlašuji, že jsem tuto disertačńı práci vypracoval samostatně, s použit́ım odborné
literatury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

V Plzni dne Jan Trmal

v

Acknowledgements

First of all, I wish to express my thanks to my advisor, Doc. Ing. Müller Luděk, Ph.D., for
all the support, patience and consultations he gave me and to the head of my supervisory
department, Prof. Ing. Josef Psutka CSc., for tolerance and for alleviating me from my
other duties during the time I was working on this thesis.

It is appropriate that I record my heartfelt thanks to my friends who have, at all times,
encouraged me to carry this project through to a successful conclusion. Thank you one
and all.

The financial assistance of the Ministry of Education, Youth and Sport of the Czech
Republic under the projects LC536 (Integrated Center for Natural Language Processing)
and project 2C06020 (Elimination of the Language Barriers Faced by the Handicapped
Watchers of the Czech Television) is fully acknowledged. Moreover, the access to the
MetaCentrum computing facilities provided under the project LM2010005 (Projects of
Large Infrastructure for Research, Development, and Innovations) funded by the Ministry
of Education, Youth, and Sports of the Czech Republic is appreciated.

vi

Contents

List of Figures xii

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

2 Scope and Goals of the Thesis 3
2.1 Goals of the Thesis . 3

3 Continuous Speech Recognition 5
3.1 Speech Signal Analysis . 5

3.1.1 Mel-frequency Cepstral Coefficients 6
3.1.2 Delta and Acceleration Coefficients 7
3.1.3 Temporal Patterns (TRAPS) . 8
3.1.4 Long Temporal Spectral Patterns (LTSP) 9
3.1.5 Hidden Activation TRAPS (HATS) 10
3.1.6 Bottleneck Features (BNKS) . 10

3.2 Acoustic Modeling . 11
3.2.1 Gaussian Mixture Model (GMM) 13
3.2.2 Neural Network Densities Functions 13

3.3 Language Modeling . 14
3.3.1 Language Models Based on N-grams 15
3.3.2 Training of the N-gram Language Models 16
3.3.3 Neural Network Based Language Models 16

3.4 Speech Decoding Techniques . 17
3.5 Speech Recognition Accuracy Evaluation 18

3.5.1 Absolute and Relative Improvement 18
3.5.2 Statistical Significance Tests . 19
3.5.3 Confidence Intervals . 20

3.6 Conclusion . 21

4 Artificial Neural Networks 22
4.1 Biological Neural Networks . 22
4.2 Perceptron Unit . 23
4.3 Feedforward Multi-layer Perceptron . 23

vii

Contents

4.4 Recurrent Multi-layer Perceptron . 25
4.5 Activation Functions . 26
4.6 Training of Multi-layer Perceptron Networks 28

4.6.1 The Most Frequent Error Functions 28
4.6.2 Backpropagation of an Error in the Multi-layer Perceptron 29
4.6.3 Speeding Up the Training Process 34
4.6.4 Natural Pairing of an Error Function and Transfer Functions . . . 35
4.6.5 Incremental, Batch and Bunch Mode Training 38
4.6.6 Probabilistic Interpretation of Network Outputs 40

4.7 Conclusion . 41

5 Training of the Speech Recognition Systems 42
5.1 Speaker Normalization . 42

5.1.1 Cepstral Mean Normalization (CMN) 42
5.1.2 Statistical Moments Normalization 43
5.1.3 Vocal Tract Normalization (VTN) 44

5.2 Acoustic Model Adaptation . 45
5.3 Speaker Adaptive Training . 47
5.4 Conclusion . 49

6 Current Approaches to Adaptation of a Neural Network 50
6.1 Retraining of the Network . 50

6.1.1 Catastrophical Forgetting . 50
6.1.2 Rehearsal and Pseudo-rehearsal Techniques 51
6.1.3 Conservative Training . 52
6.1.4 Partial Retraining . 52

6.2 One Step Hessian Manipulation . 53
6.3 Topology Manipulation . 54

6.3.1 Parallel Hidden Layer . 54
6.3.2 Linear Adaptation Layer . 54
6.3.3 Weights Interpolation . 56

6.4 Eigenvoices Adaptation . 57
6.5 Special and Hybrid Paradigms . 59

6.5.1 Speaker Morphing . 59
6.5.2 Special Architectures . 59
6.5.3 Compensation of Trends during Training 61

6.6 Conclusion . 61

7 Proposed Approach to Adaptation of a Neural Network 63
7.1 Description of the Experimental Systems 63

7.1.1 Feature Extraction . 63
7.1.2 Bottleneck Features Extractor . 65
7.1.3 Posteriori Probabilities Estimator 66

viii

Contents

7.2 Adaptation of Long Temporal Spectral Features 66
7.2.1 Linear Adaptation of the Weight Matrix 66
7.2.2 Minimum Error Linear Transform 68
7.2.3 Choice of the Error Function . 72

7.3 Using the MELT Normalization . 73
7.3.1 Selection of the Number of Free Variables 73
7.3.2 Selection of the Normalization Locus 74
7.3.3 The Adaptation Algorithm . 74

7.4 Conclusion . 75

8 Speech Corpora Used In This Work 76
8.1 The Czech SpeechDat(E) . 76

8.1.1 Phoneme Level Language Model 77
8.2 The DARPA TIMIT Acoustic-phonetic Continuous Speech Corpus 77

8.2.1 Phoneme Level Language Model 78
8.3 WSJCAM0 Cambridge Read News . 78

8.3.1 Phoneme Level Language Model 79
8.3.2 Word Level Language Model . 79

8.4 Conclusion . 80

9 Experiments and Results 81
9.1 Preliminary Experiments . 81

9.1.1 Objectives of the Preliminary Experiments 81
9.1.2 Experiments Performed on the SpeechDat(E) Corpus 82
9.1.3 Experiments Performed on the TIMIT Corpus 84
9.1.4 Conclusion and Findings of the Preliminary Experiments 85

9.2 WSJCAM0 – The Main Experimental Corpus 86
9.2.1 Experiment Flowchart . 86

9.3 WSJCAM0 – The Reference System . 87
9.3.1 Comparison of the Reference System 87

9.4 WSJCAM0 – Results for the Baseline (Unadapted) System 88
9.4.1 Phoneme Recognition . 88
9.4.2 Hybrid LVCSR Word Recognition 90
9.4.3 Bottleneck LVCSR Word Recognition 91

9.5 WSJCAM0 – Speaker Adaptive Training 92
9.5.1 Training Process Description . 92
9.5.2 Results . 93
9.5.3 Conclusion . 94

9.6 WSJCAM0 – Semi-supported Speaker Adaptive Training for the Hybrid
Paradigm . 94
9.6.1 Description of the Semi-Supported SAT 94
9.6.2 Results . 96
9.6.3 Conclusion . 97

ix

Contents

9.7 WSJCAM0 – Unsupervised Speaker Adaptive Training for the Hybrid
Paradigm . 98
9.7.1 Description of the Two-pass Unsupervised SAT 98
9.7.2 Results . 98
9.7.3 Conclusion . 100

9.8 WSJCAM0 – The Unsupervised Speaker Adaptive Training for the Bot-
tleneck Paradigm . 100
9.8.1 Description of the Task . 100
9.8.2 Results . 101
9.8.3 Conclusion . 102

9.9 Conclusion . 102

10 Conclusion and Future Work 103
10.1 Future Work . 104

Bibliography 105

Authored or Co-authored Works 117

x

List of Figures

3.1 A block diagram of the statistical approach to speech recognition. 5

3.2 An example of placement of mel-filters in frequency 7

3.3 Comparison between the conventional (left) and the TRAP (right) ap-
proach, redrawn from [104]. 8

3.4 TRAP classification process, redrawn from [104]. 9

3.5 LTSP classification process, redrawn from [99]. 10

3.6 An example of a 5-state HMM of a word 12

3.7 An example of linking of two triphones. 12

4.1 Perceptron: A computational model of a neuron. 23

4.2 A Feedforward Multilayer Perceptron (MLP Network) 24

4.3 An example of two different architectures of an ANN 25

4.4 A scheme of an Elman network. 26

4.5 A scheme of backpropagation computation process of σi. 31

4.6 The shape of the derivative of the combination MSE and cross-entropy . 37

4.7 An example of search in companion space, adopted from [32] 38

5.1 An example of non-linear warping functions: Piecewise linear (left) and
Bilinear (right) . 44

5.2 A diagram of a single SAT epoch . 48

5.3 Unsupervised (twopass) Speaker Adaptive Recognition scheme 49

6.1 Parallel Hidden Network Adaptation . 55

6.2 Linear Layer Network Adaptation . 56

6.3 A Speaker Sensitive Network topology 60

7.1 Scheme of a LTSP vector construction 64

7.2 A scheme of two forward modes of a bottleneck neural network 65

7.3 The shift of location of the q-th filter as a result of mel-filterbank outputs
interpolation. 69

9.1 WSJCAM0 Experiments flowchart . 86

9.2 Reference system – Recognition accuracy histogram on si dt (left) and
si et (right) sets . 88

9.3 Monopohone posteriors – Recognition accuracy histogram on si dt (left)
and si et (right) sets . 91

xi

List of Figures

9.4 Hybrid LVCSR – recognition accuracy histogram on si dt (left) and si et

(right) sets . 92
9.5 The word recognition accuracy as a function of number of the SAT cycles. 93
9.6 The phoneme and the word recognition score as a functions of the MELT

factor . 94
9.7 The word recognition accuracy on the evaluation set (si et) as a function

of the percentual number and the absolute number of filters used for
interpolation, respectively. 95

9.8 The phone recognition Acc (left) and the word recognition Acc (right) as
a function of the MELT factor . 97

9.9 The word recognition accuracy on si dt after unsupervised adaptation . 99
9.10 The word recognition accuracy on the si dt set after the unsupervised

adaptation of the Bottleneck LVCSR system 101

xii

List of Tables

8.1 SpeechDat(E) corpus phoneme coverage 77
8.2 TIMIT speech material, from [38] . 77
8.3 TIMIT corpus phoneme coverage . 78
8.4 WSJCAM0 Phone-level order n-gram counts for lm-small language

model . 79
8.5 WSJCAM0 Word-level order n-gram counts for lm-small language

model . 80
8.6 WSJCAM0 Word-level order n-gram counts for lm-big language model 80

9.1 Comparison of the MELT and the VTLN performance (Acc) when the
reference transcript is unknown . 84

9.2 SpeechDat(E): Recognizer accuracy (Acc) given the adaptation scheme
and the regularization coefficient κ . 84

9.3 TIMIT: Recognizer accuracy (Acc) given the adaptation scheme and the
regularization coefficient κ . 85

9.4 WSJCAM0: The recognition score of the reference (a GMM/HMM) system 87
9.5 WSJCAM0:Phoneme Recognition Acc of the baseline (unadapted) system 89
9.6 WSJCAM0: Influence of the rescoring setting on the phoneme recognition

accuracy . 89
9.7 WSJCAM0: Influence of pruning setting on phoneme recognition accuracy 90
9.8 WSJCAM0: Word recognition Acc of a hybrid, posteriori estimates based

speech recognition system . 90
9.9 WSJCAM0: Performance of a hybrid, bottleneck features based speech

recognition system . 91
9.10 WSJCAM0: Performance of a hybrid, bottleneck features based speech

recognition system, after SAT with MELT=23 94
9.11 The word recognition accuracy on the semi-supported SAT task 97
9.12 The word recognition Acc on the unsupervised SAT task 99
9.13 Word recognition Acc on the unsupervised SAT task, when no confidence

factors are considered . 100
9.14 The word recognition Acc on the unsupervised SAT task for a Bottleneck

LVCSRs system . 101

xiii

List of Abbreviations

1CTX Single Context Neural Network, 83

ANN Artificial Neural Network, 22

BNKS Bottleneck Features, 10

BPTT Backpropagation through time, 26

BUT Brno University of Technology, 83

CMLLR Constrained Maximum Likelihood Linear Regression, 47

CMN Cepstral Mean Normalization, 42

CSR Continuous Speech Recognition System, 78

CVN Cepstral Variance Normalization, 42

DARPA Defense Advanced Research Projects Agency, 77

DCT Discrete Cosine Transform, 7

FMLLR Feature-level MLLR, 47

GMM Gaussian Mixture Model, 13

GPU Graphic Processing Unit, 3

HATS Hidden Activations TRAPS, 10

HMM Hidden Markov Models, 5

HPC High Performance Computing, 3

ICA Independent Component Analysis, 58

IIR Infinite Impulse Response, 42

iRPROP Improved Resilient Propagation, 35

IVR Interactive Voice Response, 76

LCRC Left Context – Right Context, 83

xiv

List of Tables

LDA Linear Discriminant Analysis, 58

LSTM Long short term memory, 26

LTSP Long Temporal Spectral Patterns, 9

LVCSR Large Vocabulary Continuous Speech Recognition, 5

MFC Mel-frequency Coefficients, 7

MFCC Mel-frequency Cepstral Coefficients, 6

ML Maximum Likelihood, 51

MLP Multi-layer Perceptron, 22

MSE Mean Square Error, 35

OSHM One Step Hessian Manipulation, 53

PCA Principal Component Analysis, 11

PCA Principal Component Analysis, 58

PCM Pulse-code modulation, 77

PHN Parallel Hidden Network, 54

RPROP Resilient Propagation, 35

SD Speaker Dependent, 42

SI Speaker Independent, 42

SRILM The SRI Language Modeling Toolkit, 77

SVD Singular Value Decomposition, 58

TRAPS Temporal Patterns, 8

UWB University of West Bohemia, 83

XENT Cross Entropy, 35

xv

1 Introduction

Adaptation is a profound process. It means

you figure out how to thrive in the world.

Charlie Kaufman – Adaptation

The most prevalent approach to speech recognition (and especially to the large vocab-
ulary speech recognition) is via the Hidden Markov Models (HMM) framework. The
HMM framework allows its user to capture the underlying temporal structure of speech
in a conceptually simple way.

The use of HMMs dates back to late 60’s and early 70’s of the 20th century([59]).
The use of HMMs is tied to Gaussian Mixture Models (GMM). Nowadays, these two
approaches form a virtual pair so firmly that these terms are used almost interchangeable.

Despite our knowledge about speech, speech production process, human physiology,
etc., the ASR is still regarded as an opened (unsolved) problem. The deficiency of the
current paradigm manifests acridly especially when comparing the performance of the
ASR systems to the performance of human beings. The crucial question is, what the
root cause of this deficiency is. One of the commonly held opinions says that the cause
lies in the inability of the current paradigm to exploit fully the complete information
available in the training data, mainly because of the fundamental assumptions about
the speech recognition problem being implicitly made when employing the HMM/GMM
approach. Therefore, new methods and algorithms should be worked on, which will relax
the inherent limitations of the current approach.

Because of the modularity and the statistical foundations of ASR, the interaction
between the individual components of the ASR system is done by means of providing
probabilities of “interesting” phenomena. The consequence is that it is relatively easy to
substitute the possibly suboptimal subsystem by an improved subsystem. An improvement
can be achieved either by better engineering work or by using a different paradigm for
modeling and computing the probabilities of the phenomena of interest. One of the
promising approaches is to use the Artificial Neural Networks (ANNs) in the module of
acoustic modeling. This is referred to as a hybrid approach or as a connectionist approach.
Historically, neural networks have been successfully used in dealing with many complicated
problems. The advantage of the neural networks is that only a limited knowledge about
the problem structure is required, an awareness of the problem difficulty is sufficient. As
with other data-driven approaches, the structure is determined automatically during the
training process.

During the 50 years of the use of the HMM/GMM speech recognition paradigm, a
tremendous scientific and engineering effort has been put into development, extending,

1

1 Introduction

improvement and polishing of both the theory and the systems of speech recognition, based
on these approaches. It is interesting not only from the scientific perspective but also from
the economical perspective to research how many of the advanced techniques developed
primarily for the HMM/GMM framework can be applied in the hybrid approach.

One of the interesting and certainly beneficial aspects that has not been paid sufficient
attention to yet, is the possibility of adaptation of neural networks. In the broadest sense,
adaptation means an adjustment of the coefficients (i.e. behavior) of the neural network
in such way that improves the performance when the operating conditions change. In
the context of speech recognition, adaptation is usually used to improve the performance
of the ASR system, when some additional information is obtained. It can be information
about the speaker, the environment, the recording channel and so on. The aim of this
work is to develop an adaptation technique usable for these situations.

2

2 Scope and Goals of the Thesis

As has been said in the introduction, the adaptation is an advanced technique that
helps to bridge the performance drop between speaker specific and speaker independent
acoustic models. The adaptation process is relatively easy in the context of HMM/GMM
framework, because models (or more precisely models’ parameters) of the individual
word units (triphones) are largely decoupled. Because of this decoupling, i.e. relative
independence, only a limited portion of parameters is manipulated, when a single speech
unit is being adapted. In the context of ANNs, the parameters of the individual units
are not isolated. Instead, the knowledge about the units and their relationship is coded
deep into the structure and the weights of the neural network. Therefore, a large portion
of the weights must be adjusted even if only one speech unit is to be adapted. This is a
serious issue when the amount of data is not sufficient (which is often the case in the
field of ASR).

The approach this work adopts is to exploit the inner frequency-temporal structure of
the input feature vectors to devise an adaptation method. Because of the underlying
structure, the number of free variables can be reduced significantly during the adaptation
process.

2.1 Goals of the Thesis

1. To develop a baseline hybrid ASR system to allow further research in the area.

2. To develop and optimize an MLP-ANN training software suitable for use in the
environment of grid-computing. The software should use existing HPC libraries
optimized by hardware vendor and make use of GPU devices, when available.

3. Using the available literature to describe the current approaches to ANN adaptation,
identify the strong and weak points of the individual methods.

4. To develop a supervised MLP-ANN adaptation technique suitable for use on large
and very large networks. Current approaches exhibit poor behavior or do not work
at all.

5. To verify the proposed adaptation technique on publicly available speech corpora
of sufficient sizes. At least one of the used speech corpora should be in the English
language to allow an objective comparison with the state-of-the-art systems.

3

2 Scope and Goals of the Thesis

6. To develop a two-pass unsupervised adaptation technique suitable for use on large
and very large neural networks and to verify the proposed adaptation technique on
publicly available speech corpora.

4

3 Continuous Speech Recognition

The modern LVCSR systems are based on statistical approach almost exclusively. The
approach most systems use is based on Hidden Markov Models (HMM). The block
diagram of such system is depicted on the Fig. 3.1.

Speech
analysis

Acoustic
modeling

Language
modeling

Decoding algorithm

arg max
W

p(O|W)P (W)

O

W

speech

p(O|W) P (W)

Figure 3.1: A block diagram of the statistical approach to speech recognition.

The block diagram contains several modules. In the module of Speech analysis, the
speech signal is transformed into a series of observations O = o0,o1, The observation
is usually represented by a feature vector. The assumption is that the observation sequence
carries as much information needed for recognizing the speech as possible. The module
of Acoustic modeling converts the series of observation into p(O|W), i.e. into likelihoods
of the sequence of the observation given the word sequence W . The module of Language
modeling evaluates the a priori probability P (W) of the given word sequence W . The
task of the Decoding algorithm is then to find the most probable word sequence W ? given
the p(O|W) and P (W).

More detailed description of the individual modules follows.

3.1 Speech Signal Analysis

The human speech contains an immense amount of information about the speaker, his/her
emotional state, the environment the speaker is in, etc. It is impractical to use all the
information for speech recognition. The task of speech signal analysis is to convert
the acoustic signal (sampled at sampling frequency f , usually 8 kHz ≤ f ≤ 44.1 kHz)
into a series of observation vectors containing as much information about the utterance
as possible while reducing the amount of the information unimportant for the speech
recognition task.

5

3 Continuous Speech Recognition

Because the speech signal is non-stationary (i.e. the parameters of the system (vocal
tract) generating the speech change through time), short-time analysis is usually applied.
The assumption is that the parameters of vocal tract change only slowly and therefore
the speech can be treated as a stationary signal for small time spans. Usually the time
span in which the signal is treated as stationary is about 15 to 40 ms. To ensure sufficient
resolution in time, these signal segments are gathered every 10 to 15 ms and therefore
the segments overlay each other. The process of conversion the speech signal into a series
of observation vectors O is called the feature extraction.

Feature extraction cannot create any new information; it just removes information not
required for the given task. It is quite obvious that different information is needed for
speech recognition tasks and different for the other tasks (such as speaker verification).
There are three basic objectives:

• reduction of the feature vector dimensionality

• concentration and filtering of information

• coding of information

In an ideal case, all the three objectives are accomplished. However, in the real world,
the reduction of dimensionality results necessarily in loss of information; it is impossible to
filter out the unnecessary information without losing the useful information. Sometimes,
the encoding of information even increases the dimensionality, and in most cases, it
is impossible to know what the optimal representation of information is for the given
classifier. So rather than striving for a complete fulfillment of these objectives, the goal
is to find their optimal trade-off.

In the last few years, the features obtained using short-time frequency analysis have
started to be complemented by features using longer temporal contexts to enable the
classifier not only to work in the frequency domain but also take the temporal structure of
the feature series into account. This new paradigm has brought additional computational,
storage and data demands. Sadly, these demands could not have been fulfilled earlier,
as the computation performance and storage capacities of the computers had not been
sufficient.

Moreover, besides the usual model-driven approach, where during the feature extraction
the parameters of a given model are to be determined (thus the name parametrization
process), there is a tendency to use advanced machine learning methods to determine both
the model structure and its parameters during the training process from the data (data-
driven approach). The resulting model is then used to generate features having specific
properties (probabilistic features, discriminative features, etc.). This is obviously much
more computationally demanding. However, it relaxes the sometimes strong assumptions
about the signal made commonly when using the model-driven approach.

3.1.1 Mel-frequency Cepstral Coefficients

Mel-frequency Cepstral Coefficients (MFCC) parametrization method is one of the most
commonly used methods today. This method respects the laws of critical bands of hearing

6

3 Continuous Speech Recognition

f [Hz]1000 2000 3000 4000 6000 8000

Figure 3.2: An example of placement of mel-filters in frequency

and the masking phenomenon. The relationship between subjectively perceived pitch
(measured in units called mels) and (objective) frequency is described by means of the
mel-scale using the following transform

fmel = 2595 log10

(
1 +

fHz

700

)
. (3.1)

The MFCC parametrization approach uses the transform from the Eq. (3.1) to place
triangle-shape bandpass filters equidistantly in the mel-scale (and therefore non-linearly
in the frequency). See the Fig. 3.2 for an example.

The log-energies of M these bandpass filters are called Mel-frequency Coefficients and
are either used without any further processing or are decorelated using the discrete cosine
transform (DCT) to obtain the cepstral coefficients.

The DCT transform is described as follows:

c(j) =
∑
i=1

M log10 [y(i)] cos

[
πj

M
(i− 0.5)

]
, for j = 0, 1, . . . , N, (3.2)

where N is the number of target cepstral coefficients to compute. Usually, it holds
N < M .

The cepstral coefficients paradigm is motivated by its favorable properties in relation
to the recording channel influence. In the time domain, the channel influence is described
as a convolution of the original signal and the impulse response of the channel. In
frequency domain, the same effect can be modeled by multiplication of the spectrum of
the signal and the spectrum of the impulse response of the channel. When using the
cepstral coefficients, the channel influence is represented only as addition of the cepstrum
of the channel to the cepstrum of the original signal. The cepstrum concept expresses
only the approach to isolating the channel influence and its application is not limited to
mel-frequencies filter banks.

3.1.2 Delta and Acceleration Coefficients

In general, the delta and the acceleration coefficients1 capture the change of the individual
features in feature vector through time. These changes (or trajectories) have a direct
relation to the temporal structure of speech. In principle, the delta coefficients are

1The delta and the acceleration coefficients are often referred to as dynamical coefficients.

7

3 Continuous Speech Recognition

classifier

phoneme

10 – 50 ms

time

fr
eq

u
en

cy

phoneme

1000 ms

time

fr
eq

u
en

cy classifier fi

Figure 3.3: Comparison between the conventional (left) and the TRAP (right) approach,
redrawn from [104].

computed using a numerical differentiation. Usually, the following formula (M -point
secant method, M = 2K + 1) is used([124])

∆t =

∑K
k=1 k(xt+k − xt−k)

2
∑K

k=1 k
2

, (3.3)

where ∆t is the delta feature computed at time t from the corresponding static features
{xt−k, . . . , xt+k}, k is the number of points from which the estimate is computed. Usually,
2 ≤ K ≤ 4.

The acceleration coefficients are computed using the same equation, i.e. Eq. (3.3),
however instead of the original static coefficients, the delta coefficients are used in place
of the input features {xt−k, . . . , xt+k}.

Since computation of ∆t using the Eq. (3.3) relies on up to K points both in the past
and the future, some care must be paid at the beginning and at the end of the input
stream of features. Usually, the first or last feature vector is replicated as needed to fill
the analysis window.

The resulting delta and acceleration coefficients are merged with the original feature
vectors, increasing the original number of features twice or three times.

3.1.3 Temporal Patterns (TRAPS)

The Temporal Patterns (TRAPS) were introduced in [104]. The key motivation was the
fact that the contemporary methods often perform speech signal analysis over a short
time window owing to the non-stationary characteristics of the speech. Therefore, albeit
these short-term parametrization techniques successfully capture frequency characteristics
of the speech segments, they mostly fail to capture the temporal characteristics. The
fact that the temporal characteristics carry a complementary information beneficial for
speech recognition is strongly hinted by the positive influence of dynamic coefficients,
mean and variance normalization techniques or RASTA([48]) on recognizer accuracy.
Without going into specific details, all these methods modify or augment the original
feature vectors using statistics computed on a larger time span.

8

3 Continuous Speech Recognition

Speech Decoder
C

ri
ti

ca
l

b
a
n

d
a
n

a
ly

si
s

F
u

si
o
n

(M
L

P
)

TRAPS classifier for
frequency band #1

TRAPS classifier for
frequency band #15

Vectors of
critical-band
log energies

Vectors of
similarity scores

class posterior
probabilities

Recognized word
sequences

Figure 3.4: TRAP classification process, redrawn from [104].

The original TRAPS technique is based on short term mel-frequency critical bands
analysis. However, compared to the conventional parametrization techniques, where the
feature vectors are formed from the log-energies of all the critical bands at one time, the
TRAPS parametrization technique is more elaborate. First of all, for each critical band,
an auxiliary feature vector is created. The auxiliary feature vector of the i-th critical
band captures the temporal trajectory of the log-energy values of the given critical band.
The captured trajectory is relatively long and represents up to 1 second time span. See
the Fig. 3.3. Then, a local (i.e. frequency band specific) phoneme classifier fi is used to
obtain a vector of target phone similarity scores. The phone similarity score vectors for
all the critical bands are then fused together using a previously trained neural network.
See the Fig. 3.4 for the complete scheme of the decision process.

The same work ([104]) experimented with different choices of the phoneme classifier
used for production of the similarity scores. First, a simple correlation analysis is used
to compare the trajectory with template phone trajectories. The correlation coefficients
are then used as similarity scores. This technique is called Mean TRAPS, because of the
way the phone templates are obtained. The templates are obtained by computing the
mean of all possible phone realizations found in the training data. The other approach,
called Neural TRAPS uses a neural network in the place of a probability estimator. The
outputs of the neural network are estimates of the posterior probability of the individual
phone classes.

3.1.4 Long Temporal Spectral Patterns (LTSP)

Although the TRAPS often bring a substantial improvement, the spread of the technique
was hampered by a relatively high complexity of the approach. For example, in a situation
where a mel-filterbank with 23 critical bands is used, the Neural TRAPS require 24
neural networks to be trained, which is a time consuming process. Moreover, as has been
noted in [19], the multi-stage approach fails to model the spectral correlations between

9

3 Continuous Speech Recognition

Speech

C
ri

ti
ca

l
b

a
n

d
a
n

a
ly

si
s

F
u

si
o
n

M
L

P

Hamming window, 2×DCT
Frequency band #1

Hamming window, 2×DCT
Frequency band #15

d
im

=
3
3
0

Vectors of critical-band
log energies

31 features per
frequency band

2× 11 features per
frequency band

word posteriori
probabilities

Figure 3.5: LTSP classification process, redrawn from [99].

the individual bands.

The author of [99] simplified the process significantly. With the process being only
one-stage, the previously mentioned drawbacks have been alleviated. After performing
the log-energy mel filterbank analysis, the auxiliary feature vector elements representing
trajectories of the associated critical band are extracted in the same way as during the
TRAPS analysis. These vectors/trajectories are then individually weighted using the
Hamming window and then the number of coefficients in each trajectory is reduced using
the DCT. Moreover, the author explicitly separates the “past” and “future” halves,
using the current value of the critical band in both contexts. Then, all the individual
sub-vectors obtained in the previous step are joined together and processed as one (long)
feature vector. See the Fig. 3.5 for illustration of the process.

3.1.5 Hidden Activation TRAPS (HATS)

The concept of HATS builds on the Neural TRAPS technique. After performing a series
of experiments the authors of the paper [19] concluded that the merger ANN should be
trained on the activation values of the hidden layer instead of on the activation values of
the output layer. Hence the name Hidden Activations TRAPS. The experimental system
using the HATS and devised by the authors of the paper outperformed systematically
the system using the original TRAPS setup.

3.1.6 Bottleneck Features (BNKS)

As the experiments with HATS suggested, the activation values from the hidden layer
might be more suitable for further processing in the LVCSR. However, the HATS feature
vector has a quite large dimension to use it directly in the conventional LVCSR system.
Therefore, a dimensionality reduction method must be applied. The authors of [42, 44,
43] realized that these two stages can actually be performed together, using a neural

10

3 Continuous Speech Recognition

network of a special structure. They used a four layer MLP-ANN trained to give the
estimates of phoneme posterior probabilities. Moreover, the second hidden layer had a
really small number of neurons.

This setup is beneficial for several reasons. First, the hidden layer activation values
can be used as they are, without any explicit dimensionality reduction transform. During
the process of the training of the MLP-ANN, the MLP-ANN itself has learned the
dimensionality reduction transform that minimizes the training criterion value. Second,
because the training criterion led to inherently discriminative training, the hidden
activation values (named bottleneck features by the authors) have a remarkable property
of being discriminative, i.e. they are bearers of the information needed for discriminating
between the target classes. This can be contrasted to the DCT or PCA methods, where
the dimensionality reduction criterion guarantees only a minimal reconstruction error.

Moreover, according to the findings of the authors, the bottleneck features are comple-
mentary to the commonly used cepstral features and the fusion or combination of both
types of features often leads to a significant improvement of the recognition accuracy.

3.2 Acoustic Modeling

The task of the Acoustic Modeling module is to provide an estimation of the likelihood
p(W |O) for an arbitrary sequence of observation O and an arbitrary sequence of words W.
For this task, the HMMs are used almost exclusively.

The HMM is a model of a stochastic process (or stochastic automaton) ([87]) that in
discrete time instances generates two tied time-aligned sequences of random variables.
The first sequence is the sequence of observation O = o1,o2, . . ., the second sequence
is the sequence of states of the Markov model between which the process transitioned
generating the sequence O. The sequence of the states corresponds directly to the
recognized utterance. The speech recognition using HMM can be formalized as a task
to determine the most probable sequence of states, between which the automaton
transitioned, given the fact that the observation sequence was O.

For the task of the speech modeling, the left-to-right hidden Markov models are used
prevalently. This class of models is suitable for modeling of stochastic processes, the
hidden state of which evolves through time. As the observation vectors arrive, the
automaton starts in the first state and either makes a transition gradually from states
with lower index into states with higher index or stays in the same state. The automaton
ends in the last state when the last observation vector arrives.

The actual HMM topology depends on the intended use. In the cases of small vocabulary
isolated words recognition, one model can be created for each word. The number of
states can differ from model to model([6]). However, a fixed number of states was also
used([88]), with almost negligible loss of accuracy.

In the field of the LVCSR (thousands and more words), however, the previous approach
is unfeasible. Instead, sub-word units are used. Such units can be syllables, phonemes
or even smaller units. The most common choice is a special case of context-dependent
phoneme units called triphone units (or triphones). The triphone units are able to model

11

3 Continuous Speech Recognition

s1

a11

s2
a12

a22

s3

a33

a13

a23 s4

a44

a24

a14

a34 s5

a55

a35

a45

a45

ψ1(·) ψ2(·) ψ3(·) ψ4(·) ψ5(·)

Figure 3.6: An example of a 5-state HMM of a word

s1

a11

s2
a12

a22

s3

a33

a13

a23 a34
s′1

a′11

s′2
a′12

a′22

s′3

a′33

a′13

a′23 a′34

s1

a11

s2
a12

a22

s3

a33

a13

a23
s′1

a′34

a′11

s′2
a′12

a′22

s′3

a′33

a′13

a′23 a′34

Figure 3.7: An example of linking of two triphones.

the inter-word and intra-word coarticulation context.

When using subword units, the word models are created by linking the subword units.
Each subword unit has several emitting states and two non-emitting states. The non-
emitting states are then used to link the subword-units together. An example of such
process is depicted on the Fig. 3.7.

There are two classes of parameters in HMM. The first set is called transition probabil-
ities. Its elements aij define the probability of transition from state i to state j. The
transition probabilities are often represented as a (possibly sparse) matrix A, A = |a|ij.
The second class of parameters is referred to as observation probability functions. Nowa-
days, the observation probability function associated with state i is usually represented
as a continuous probability density function ψi(o|λ), where o is the observation vector
and λ is the vector of parameters of the function. The parameters of the function are
determined during the training phase; the structure of the function is usually chosen
a priori. There are two common choices of the architecture – Gaussian Mixture Models
and Neural Network Densities Functions.

12

3 Continuous Speech Recognition

3.2.1 Gaussian Mixture Model (GMM)

In GMMs, the structure of the function ψ is given as

ψ(o|λ) =
M∑
i=1

γipi(o|λi), (3.4)

where pi(·), i = 1, . . . ,M are density functions of individual mixtures, λi is the portion
of λ that parametrizes pi(·) and γi is the weight of the i-th mixture. Each mixture is
then modeled as an N -dimensional normal probability distribution

pi(o) =
1

(2π)
N
2

√
detCi

exp

[
−1

2
(o− µi)TC−1

i (o− µi)
]
, (3.5)

where Ci is the N ×N covariance matrix, µi is an N -dimensional vector of mean values
and o is the observation vector. For the weights γi, i = 1, . . . ,M holds

M∑
i=1

γi = 1. (3.6)

The parameters of individual mixture are λi = (Ci,µi, γi) and the set of parameters λ is
then λ = (λ1, . . . ,λN).

It can be proved that the GMMs are universal approximators (see [72]). The optimal
number of mixtures, however, must be determined experimentally. Usually, for technical
reasons, several assumptions is being made when using the GMMs. First, the matrices
Ci are usually assumed to be diagonal and, second, the number of mixtures is often
chosen to be a power of two.

3.2.2 Neural Network Densities Functions

Instead of training the GMM (which is prevalent nowadays), a neural network can be
trained [113, 14]). The neural networks are universal approximators as well ([52, 24]).
Unfortunately, this fact is not helpful in determining the optimal topology of the neural
network.

The neural network can be trained in a way, which guarantees that asymptotically,
the outputs of the network will be approximations of p(w|o) with o being the input
observation andw being the vector of probabilities of all admissible (known to the system)
elementary word or subword units (syllables, demi-syllables, phonemes, alophones, . . .).

Using the Bayessian formula,

p(w|o) =
p(o|w)P (w)

P (o)
(3.7)

the likelihoods p(o|w) can be computed as

p(w|o)P (o)

P (w)
= p(o|w), (3.8)

13

3 Continuous Speech Recognition

where the quantities P (w) can be computed from the training data (one should be aware
that P (w) is different from the language model probabilities P (W), because w is the set
of the basic units, not necessarily the words from vocabulary) and P (o) is a constant
term that can be neglected.

3.3 Language Modeling

The module of Language Modeling contains a list of all words (or more generally units,
since the recognizer can recognize not just words but also other units, e.g. phonemes) that
are “known” to the speech recognition system together with the associated pronunciation.
The pronunciation is represented as a sequence of the elementary (basic) units that have
to be linked together to form the respective word. Each word has one or possibly more
pronunciation alternatives.

Moreover, some words share the same pronunciation. Given the pronunciation, the
decoding process must be able to select the correct word. The decision is based on the
fact that different words have different probabilities in different contexts. The task of
language modeling module is for any given sequence of words (phonemes) to provide the
estimate of P (W) for the decoding algorithm.

In practice, the volume of training data is always limited. There are four corner cases
that can occur under this circumstance:

1. Not all words have been seen in the training data.

2. Some words haven’t been seen enough times to compute the statistics reliably.

3. Not all word sequences have been seen in the training data.

4. Some word sequences haven’t been seen enough times to compute the statistics
reliably.

The language modeling module (called usually simply the language model) should be
able to handle all these cases gracefully. While the cases 2 – 4 can be alleviated by
approximating the probability of the problematic word or word sequence, the case 1 is
more complex. A word that has not been seen during preparation of a language model
is referred to as an Out-of-Vocabulary (OOV) word. There certainly are methods of
language modeling that allow approximation of the probability of an unseen word and
to detect the fact that a previously unseen word has been encountered during speech
recognition. However, the problem lies in the process of conversion of the acoustic
observations to the phonetic form of the word and the conversion of the phonetic form
into the orthographic (i.e. written) form.

The usual approach to the OOV problem is to ignore the problem. In such a case,
the decoder simply chooses some other — most fitting — word during the recognition
process. If the vocabulary coverage is sufficient for the given task, the impact on the
recognition accuracy is negligible. Fortunately, this is usually the case, especially when
the recognition is limited to some specific domain.

14

3 Continuous Speech Recognition

The quality of a language model is usually measured by means of perplexity. The
perplexity measure is defined as

PPL = 2H{P} = 2−
∑N

i=1
1
N

log2(P (wi)), (3.9)

where H {P} is the entropy of language model P evaluated on the text W of length N ,
W = w1, w2, . . . , wN . The perplexity measure can be interpreted as the average number
of words between which it has to be decided in the given time instance. The perplexity
measure has problems with OOV words and unseen sequences in general, because of the
log2(·) computation. There are two possible approaches of how to deal with it. The first
approach is to add the OOV words from the testing data directly into the dictionary.
The second approach is to ignore such event, which might be completely legitimate when
different modeling methods are compared on the same data. In the latter case, it is,
however, a good practice to publish the number of OOV words together with the achieved
perplexity.

3.3.1 Language Models Based on N-grams

In general, the language model should be able to give the probability of a sequence of
words for any length of the sequence. This is a very difficult task not only from the
statistical point of view (with increased length of sequence, the number of observation
drops to one), but also from the technical point of view (memory and computational
requirements). The n-gram language models simplify this task significantly by imposing
a limit on the length of the sequence to n words at most. The direct consequence is that
word sequences identical in the first n− 1 words will be treated as the same sequence.

The prominent n-gram models are as follows.

• Zerogram language models (n = 0), in which all the units have the same probability.
This language model is often used for testing the acoustics models to remove the
“bias” of the language.

• Unigram language models (n = 1), in which the probability of the unit is independent
of the context and only the a-priori probability of the word is taken into account.

• Bigram language models (n = 2), in which the probability of the unit depends only
on the previous word.

• Trigram language models (n = 3), in which the probability of the unit depends on
a sequence of the two previous words. Trigram language models are commonly used
for English.

For language modeling on words, n = 2 or n = 3 is usually used. Higher order language
models on words do not usually bring significant improvement. In general, it is beneficial
to use the more complex n-gram models in some specific cases, where the amount of units
is relatively small. One such case is for example phoneme recognition, where 8-gram and
even higher order language models are not an exception([86]).

15

3 Continuous Speech Recognition

3.3.2 Training of the N-gram Language Models

The probability of a seen n-gram (w−n+1, . . . , w−1, w0) is easily determinable from the
training text data using the following formula

P (w0|w−n+1, . . . , w−1) ≈ N(w−n+1, . . . , w−1, w0)

N(w−n+1, . . . , w−1)
, (3.10)

where N(w−n+1, . . . , w−1, w0) is the occurrences count of the sequence w−n+1, . . . , w−1, w0

and N(w−n+1, . . . , w−1) is the number of occurrences of the sequence w−n+1, . . . , w−1).
In case of a unigram language model (n = 1), the formula is

P (w0) ≈ N(w0)

N
, (3.11)

where N is the total length of the training text (number of tokens). The hitch of the
straightforward application of the Eq. (3.10) or the Eq. (3.11) is that when any of the
four corner cases discussed on the page 14 occurs, the obtained probability estimate
can be highly biased. The solution to this problem is to apply smoothing. Smoothing
assigns a non-zero probability to unseen n-grams (that would receive zero probability
which would effectively prohibit recognition of the word sequence) and — to keep the
equality

∑
w P (w|w−n+1, . . . , w−1) = 1 valid — the probability of the seen n-grams is

lowered accordingly. One of the most common approaches is referred to as the back-off
smoothing, where the probability of an unseen n-gram is computed as

P (w0|w−n+1, . . . , w−1) ≈ P (w0|w−n+2, . . . , w−1)B(w−n+1, . . . , w−1), (3.12)

where the choice of function B(·) depends on the used backing-off technique([115]).

3.3.3 Neural Network Based Language Models

In recent years, the methods based on the statistical approach have been being comple-
mented by the methods based on neural networks.

The training of the neural network has two phases ([8]).

1. Learning a mapping of the dictionary word wi to a continuous-values vector rep-
resentation C(wi) for all words in the dictionary V . This is usually done in the
following way. The word wi is represented by its dictionary index q. Then, the
input feature vectors are created from the word indices by so called called 1-of-N
mapping, i.e. the input vector representing a word wi is obtained by setting the
q-th element of the input vector to 1 and all other elements are set to 0.

Then, a two layer neural network is trained. The topology of the neural network
is |V | ×H × |V |, where |V | represents the size of the dictionary and H, H � |V |,
represents the dimension of the hidden layer. The neural network input is the
feature vector representing the (i− 1)-th word in the training corpus (coded using
the previously mentioned scheme) and the neural network target output is the i-th

16

3 Continuous Speech Recognition

word in the training corpus. During the process of training, the neural network
learns to estimate the posteriori probability P (r|wj), which is the probability of
the r-th dictionary word, given the preceding word wj, for every valid r. In other
words, upon convergence, the neural network represents a bigram language model.

The continuous mapping C(wi) is then obtained simply by considering the hidden
layer outputs instead of the output layer outputs[74].

2. The continuous-values vector representation C(wi) is then used in the second stage to
train the n-gram language model of the chosen complexity by joining the activation
values vectors C(wi−n+1), . . . , C(wi−1) of the individual words wi−n+1, . . . , wi−1 into
one large vector and training another network to provide the probabilities estimates
as the outputs.

The drawback of this approach is the high computational complexity both during the
training phase and during the recognition phase that scales quadratically with the size of
dictionary. While for weakly inflected languages(such as English), a dictionary with 100k
words is sufficient even for a general purpose LVCSR, for highly inflective languages the
dictionary with the same OOV rate must be 5× – 10× larger.

The question if the neural network representation of the language model is superior
to the common n-gram representation is still open, since the experiments are usually
performed on small-to-medium size text corpora (because of the computational complexity
of the training process). One notable exception is the work [101], where a sampling
approach was used to train language models on a very large text corpus (600M of tokens).
The authors report significant improvement in the cross-entropy measure as well as when
the language model was used in the state-of-the art speech recognition system.

3.4 Speech Decoding Techniques

The model of speech decoder finds the most probable sequence of words W ?

W ? = arg max
W

p(O|W)P (W), (3.13)

where the values of p(O|W) are provided by the Acoustic model module and the values
of P (W) are provided by the Language model module.

Direct (exhaustive) optimization of the formula Eq. (3.13) is impossible, because of the
prohibitive number of all hypotheses on the sequence W . In reality, only a very limited
fraction of hypotheses can be evaluated. Therefore only the most promising hypotheses
are evaluated. The problem of an identification of the most promising hypotheses is
one of the fundamental problems in the field of LVCSR, especially under the real-time
constraints.

In the real world application, it is necessary to modify the criterion Eq. (3.13), because
the probability densities provided by the language and the acoustic model are not

17

3 Continuous Speech Recognition

necessarily commensurable. The solution is to modify the search criterion to

W ? = arg max
W

p(O|W)P (W)βγL

= arg max
W

log p(O|W) + β logP (W) + L log γ,
(3.14)

where the value β is called the language model weight(LMW), γ is called the word
insertion penalty(WIP) and L is the number of words in the actual hypothesis W .

The values of γ and β are determined experimentally during the development of the
speech recognition system. The language model weight β constitutes a factor balancing
the influences of the language model and the acoustic model, the word insertion penalty
β is used for tuning of the ratio between the insertion and the deletion errors (see the
next chapter).

3.5 Speech Recognition Accuracy Evaluation

For quantitative evaluation of a speech recognition system, the Levenshtein (or edit)
distance[69] is used predominantly. The Levenshtein distance between two texts is defined
as a minimum number of edit operations necessary to transform the recognized text W
into the reference text Wref . Three types of edit operations are allowed – an insertion,
a deletion and a substitution. The number of insertions I, the number of deletions D
and the number of substitutions S is then used to compute the Correctness(Corr) of the
recognized text using the following formula

Corr =
N −D − S

N
· 100%, (3.15)

where N is the length of Wref and the Accuracy(Acc) of the recognized text defined as

Acc =
N −D − S − I

N
· 100%. (3.16)

Sometimes, instead of the Acc measure, the Word Error Rate(WER) 2 is given. The
WER measure is defined as

WER = 100− Acc =
D + S + I

N
· 100%. (3.17)

3.5.1 Absolute and Relative Improvement

Sometimes, when evaluating a new method or a new method implementation, the obtained
Acc and Corr measures are compared against the baseline performance Accref and Corrref

2or Phone Error Rate (PER) or Character Error Rate (CER), the interpretation differs, the formula is
the same

18

3 Continuous Speech Recognition

and the absolute and relative improvements are computed. The absolute improvement of
WER, ∆WER is computed as

∆WER = WERref −WER [%] . (3.18)

and similarly for the Corr and Acc measures. It can be seen by substituting the Eq. (3.17)
into the Eq. (3.18) that actually ∆Acc = ∆WER.

The relative accuracy improvement ΛWER is computed as

ΛWER =
∆WER

WERref

=
WERref −WER

WERref

[%] (3.19)

and similarly for the Corr and Acc measures. Customarily, the relative improvement is
reported relatively to the WER reduction, though.

3.5.2 Statistical Significance Tests

The above mentioned measures are often used to indicate an improvement above the
baseline; however this is not a completely correct approach. To ensure validity of the
result and to support the claim about the achieved improvement, the significance of
the result should be performed to show how likely it is that the discussed results had
occurred by chance.

The significance tests are usually performed by means of testing a null hypothesis H0

against the alternative hypothesis. Based on the evidence (data), the null hypothesis
either must be rejected or cannot be rejected. The important point is that the null
hypothesis can never be proven.

The significance level α is the probability of rejecting the null hypothesis when the
hypothesis actually holds. In other words, the significance level α corresponds to the
type-I error. Popular choices of the α value are α = 0.05 (5% chance) or α = 0.001 (1%
chance).

For the field of speech recognition analysis, the paired version of the Wilcoxon signed
rank test ([105]) is suitable. It is a non-parametrical two-sided test for assessing whether
the differences between the paired samples of observations come from a distribution
having median equal zero. Moreover, it is assumed that the distribution of the differences
is continuous and symmetrical about the median.

The testing process computes the differences between the matched values, discards
zeroes and ranks the differences in an ascending order according the the absolute size
of the difference. Then it computes the value S = min(κ+, κ−), where κ+ is the sum of
ranks of the differences higher than 0 and κ− is the sum of ranks of the differences lower
than 0. Then, the value of S is compared to the critical value to determine whether H0

can be rejected or not. For small sample sizes, the critical value is tabulated according to
the sample size and the needed confidence level; for higher sample sizes, the distribution
of S tends to normal distribution and therefore a normal approximation is usually used.

Nowadays, instead of comparing the value of S against critical values of the chosen
significance level, a different approach is usually used. This approach is based on

19

3 Continuous Speech Recognition

computing the probability of obtaining the value of S at least as extreme as the one that
was observed, assuming H0 holds. This probability is called the p-value of the test. The
hypothesis H0 can be rejected, when p-value is less than the significance level α.

There are important philosophical and methodological differences between p-values
and α-values, as the first comes from the Fisherian statistical significance testing and the
second from the Neyman-Pearson frequentist views on hypothesis testing ([56]).

3.5.3 Confidence Intervals

Let’s consider the situation when evaluating the Acc measure on testing data. The
obtained score certainly is important, however the hitch is in the fact that it does not tell
much about the stability of the performance. One might be for example interested in an
interval of accuracy which the recognizer will provide in 95 % of the time. Or, because
the accuracy of the recognizer depends on the speaker, in what interval the Acc will be
for 95 % of speakers.

The confidence intervals (CI) in statistics are used to provide the answers to these
questions. Similarly to the significance tests, the CI are tied to a probability value, in
this case called the confidence level. The confidence interval with the given confidence
level α is used to give an estimate of how probable it is, given the procedure used for
getting the sample set, that the observed value will fall in the given confidence interval.

There are a wide variety of methods used for estimation of confidence intervals, differing
in the assumption of the data distribution and/or computational complexity. Sometimes,
instead of computing the CI values, the variance (or standard deviation) is used to
describe the variability of the results. Assume that the result set have normal distribution
N (µ, σ2). Then about 68 % of the result set lies in the interval (µ − σ, µ + σ), about
95 % within the interval (µ− 2σ, µ+ 2σ) and 99.7 % within the interval (µ− 3σ, µ+ 3σ).
The well known three sigma rule, used as a rule-of-thumb for outlier detection, stems
from this observation.

This approach is however not suitable for the analysis of the recognizer accuracy. The
distribution of the accuracy measure is highly non-gaussian, leptokurtic and skewed to
the right. In such a situation, i.e. where the the distribution of the random variable is
complicated or even unknown; the bootstrapping method is often used instead.

Bootstrapping is a computer-based method for measuring the accuracy of a statistical
point estimate ([9]). The procedure is based on random sampling of the data-set with
replacement. The data set is divided into K independent samples and sampled randomly
R-times. From each of these samples, the point estimate is computed. In the end the
sampling procedure ends with a set of R point estimates. Then it is trivial to determine
the value P−0.05 which is the 2.5 percentile and the value P+0.05, which is the 97.5
percentile. These percentiles then constitute the 95% confidence interval (P−0.05, P+0.05).
Generally, to determine α% confidence intervals, the α

2
and 100− α

2
percentiles must be

evaluated.
The mentioned percentile method, despite the simplicity, works surprisingly well in most

cases. It assumes that the distribution of the bootstrap point-estimate is symmetrical
and centered around the observed point-estimate. In cases, when these assumptions are

20

3 Continuous Speech Recognition

not guaranteed, the Accelerated Boostrap (BCa) [28] method is usually suggested. The
BCa method adjusts for bias (i.e centers the distribution on the observed point-estimate)
and for skewness (i.e. symmetrizes bootstrap point-estimate distribution). A wide variety
of alternative methods exists, which can be used in specific circumstances, where the
previously described methods are not sufficient ([17]).

3.6 Conclusion

In this chapter, the basic introduction into the task of speech recognition has been
given. The description is given from the probabilistic point of view. This approach,
in combination with GMM/HMM modeling is the most prevalent nowadays. In this
approach, the speech recognition task can be broken down into three distinctive tasks –
language modeling, acoustic modeling and decoding techniques. Despite the fact that
this decomposition leads to a significant reduction of the complexity of this task, the
construction of a speech recognition engine is a formidable task.

Special attention has been paid to possibilities of use of the neural networks. Because
of the relative versatility of neural networks, they can be used in acoustic modeling for
discriminative features extraction or as posteriori probabilities estimators and in language
modeling as n-gram probability estimators. Of course, the application of the neural
network is not limited to these three tasks – these three task represent the main points
of scientific and research interest.

21

4 Artificial Neural Networks

4.1 Biological Neural Networks

A neuron (or a neuron cell) is a cell that plays a key role in the processing of information
in all living organisms. The simplified function of a neuron cell is as follows. By its
dendrites, through so called synapses, the neuron receives stimuli (either inhibitory or
excitatory) from other neurons. These stimuli are then combined (summed) together. Of
course, stimuli received through different dendrites have different importance. When the
combined potential of these stimuli reaches a certain threshold, the neuron itself sends a
signal (action potential spike) through its axon (with other neurons’ synapses connected
to that axon) to the connected neurons. This process is called the neuron firing.

Of course the description of this process is highly simplified and does not cover all
the possible information flows in the human brain, however it helps to emphasize the
very important fact that has become the ground paradigm of the anns. The brain
power is not specifically rooted in low amount of some finely tuned highly complex unit.
On the contrary, the brain power emerges as a result of an extreme amount of “simple”
computational units by virtue of their massive interconnection. The human brain contains
approximately 1011 neurons and about 1014 connections[102].

A generally accepted fact is that the number of neurons decreases as the organism
grows old. The latest findings suggest, however, that new neurons can actually be born
during the lifetime of an organism1. Nevertheless, the ability to learn and to absorb
new knowledge does not lean on the number of neurons specifically. Instead, during
the process of learning, i.e. adoption of a new ability or storing a new knowledge into
long-term memory, new connections (dendrite spines) between neurons are created and
the weights of these interconnections are set accordingly.

A notable feature of biological neurons is that the action potentials are created on an
all-or-nothing principle. The output action potential spike parameters do not depend on
the intensity of the stimulus. Instead, the intensity of the stimulus is coded as a faster or
a slower firing of the neuron.

1This is a subject to an intensive discussion. The evidence suggests that although the neurogenesis is
possible and in no way rare in many evolutionary older parts of brain, the neurogenesis in neocortex,
i.e. the part of mammal brain involved in higher cognitive functions — sensory perception, motor
commands generation, spatial orientation, social and emotional processing, etc. — does not occur.

22

4 Artificial Neural Networks

∑
g(a)

a =

K∑
i=1

xiwi + b y = g

(
K∑
i=1

xiwi + b

)

+1

b

x1
w1

xK wK

Figure 4.1: Perceptron: A computational model of a neuron.

4.2 Perceptron Unit

A single perceptron is an idealized computational unit inspired by the biological neuron.
The perceptron unit activation potential a is defined as

a =
K∑
k=1

wk · xk + b (4.1)

eventually, using an vector dot-product, the Eq. (4.1) can be written as

a = wT · x+ b,

where xk is the k-th input potential (input) of the neuron, wk is the importance factor
(weight) of the k-th input and b is the activation threshold (bias) of the perceptron.
Moreover, the previous equation can be written as

a = ŵT · x̂, (4.2)

where ŵ is an augmented version of w, ŵ = [w1, w2, . . . , wK , b]
T and x̂ is an augmented

version of x, x̂ = [x1, x2, . . . , xK , 1]T. In other words, the bias can be represented as an
additional weight ŵK+1 connected to a virtual input whose value is fixed to +1. For
clarity, the second notation will be preferred when possible. The action potential y is
defined as

y = g (a) , (4.3)

where the function g is generally a non-linear function of the activation potential a
representing the action potential signal propagation through the axon (transfer function).

4.3 Feedforward Multi-layer Perceptron

Perceptron units are usually combined together to form much more complicated structures.
One class of these structures is called the Multi-layer Perceptron (MLP-ANN). A notable

23

4 Artificial Neural Networks

i(n)

j(n−1) (j + 1)(n−1)(j − 1)(n−1)

(i− 1)(n)

w
(n)
ji

a
(n)
i =

∑
k w

(n)
ki x

(n)
k

=
∑

k w
(n)
ki y

(n−1)
k

a
(n−1)
i

y
(n−1)
i

y
(n)
i = gni (an)y

(n)
i−1 = gni−1 (an)

Figure 4.2: A Feedforward Multilayer Perceptron (MLP Network)

feature of the MLP-ANN is that the structure is strictly layered; works in a time discrete
fashion and the signal is propagated only forwards, i.e. the outputs from one layer are
fed as inputs to the consecutive layer.

An n-th layer of an L-layer MLP-ANN, n ∈ {1, . . . , L} contains Kn neurons. The scalar
outputs ynk, 1 ≤ k ≤ Kn, of individual perceptrons are combined to form a vector yn,

yn =
[
y

(n)
1 , y

(n)
2 , . . . , y

(n)
Kn

]T
2. For an MLP-ANN with more layers it holds that xn ≡ yn−1,

where xn denotes inputs to layer n and yn−1 denotes the output of the (n− 1)-th layer.
Moreover, the y0 ≡ x1 is the input feature vector and yL is the output of the MLP-ANN.
The layers associated with yn other than y0 or yL are called hidden layers.

A matrix notation can be used to write the n-th layer of MLP-ANN as

an = yT
n−1 ·Wn + bn (4.4)

yn = gn (an) , (4.5)

where the Kn−1 ×Kn matrix Wn whose i-th column is constituted by the weight vector
wi associated to the i-th neuron in the n-th layer is called the weight matrix, the vector bn,

bn =
[
b

(n)
1 , . . . , b

(n)
Kn

]T

is called the bias vector, the vector an, an =
[
a

(n)
1 , a

(n)
2 , . . . , a

(n)
Kn

]T

is the vector of activation potentials, and the vector function gn : <Kl → <Kl is called
the transfer function.

The transfer function is sometimes called an activation function. The function gl (·)
from Eq. (4.5) is in practical applications usually represented as a vector of scalar function
of vector argument

gn(an) = [gn1 (an) , gn2 (an) , . . . , gnKn (an)]T (4.6)

and, furthermore, it usually holds gni (·) ≡ gnj (·) for every i, j ∈ {1, . . . , Kn}. In that
case, for the sake of legibility, gni(an) will be written as gn(an). The Fig. 4.2 demonstrates

2Please note that the superscript (n) does not mean exponentiation nor differentiation, it is only used
to signify the associated layer of the neural network

24

4 Artificial Neural Networks

h1 h2h3 h4

y1 y2 y3

Hidden
layer

Output
layer

Input

(a) A feedforward neural network, a multi-
layer perceptron

h1 h2h3 h4

y1 y2 y3

Hidden
layer

Output
layer

Input

(b) A recurrent neural network, a recursive mul-
tilayer perceptron

Figure 4.3: An example of two different architectures of an ANN

the computation of the activation potentials of the n-th layer given the weights and
activation potentials of the (n− 1)-th layer.

There exists a slight confusion regarding the description of the topology of a MLP-ANN.
The topology of any generally fully connected MLP-ANN can be given by means of a set
D, D = {K0, K1, . . . , KL} and a set G, G = {g1(·), . . . , gL(·)}, where K0 is the dimension
of y0 (dimension of the input vector) and |D| = L+ 1 and |G| = L. The same network
with L = 2 is sometimes referred to as a three-layer network (because |D| = 3) and
sometimes (possibly more correctly) as a two-layer network (because L = 2). Sometimes,
to prevent misunderstanding, the network is referred to as a two-layer network with one
hidden layer.

4.4 Recurrent Multi-layer Perceptron

Recurrent multi-layer perceptron (RMLP, RNN) relaxes the strictly feed-forward layer
ordering as found in the feed-forward MLP architecture. When the assumption of ordering
is relaxed, an internal memory can be realized by virtue of directed cycles in the network
– see the Fig. 4.3(b). This memory can be used for storing of an internal state of the
network. The immediate consequence is that this class of networks can analyze and
model temporal dependencies.

The topologies can vary. The basic architecture is called a fully recurrent network.
The neurons in this network are fully connected, i.e. each neuron is connected to every
other neuron. Some of the neurons receive the input signal in addition to the signal from
the other neurons and the RNN output is again obtained from a part of the non-input
neurons. The non-input and non-output neurons are referred to as hidden neurons.

To train the weights of the fully connected topology, however, is a quite complicated
task. Moreover, the network is usually highly sensitive to the input and can often
behave chaotically. Usually, simplified architectures are used, such as the Elman([29])
or the Jordan networks. Both these architectures build up on the original feed-forward
architecture. The internal state is represented by the activation values in the hidden layer.

25

4 Artificial Neural Networks

z−1h1 z−1h2 z−1h3 z−1h4

y1 y2 y3

Hidden
layer

Output
layer

Input

Figure 4.4: A scheme of an Elman network.

The activation values from the previous time instance are kept in a set of fixed-weight
units. At the successive time instance, the input is propagated in the feed-forward fashion,
the previous activation values are added to the activation potential a and the action
potential is evaluated. The activation values are then stored to be used in the next time
instance.

The training of the architectures mentioned above is done either through global
optimization methods, notably genetic algorithms or through a modification of the
steepest gradient descent modification called Backpropagation through time (BPTT).
The drawback of the global optimization methods is their heuristic nature and slow
convergence rate. The problem with the BPTT training is that it usually fails to discover
long temporal dependencies. The root cause is because of the effect of vanishing gradients.
An detailed analysis of this phenomenon was performed in [49, 50].

The Long short term memory (LSTM) [51] architecture was developed to alleviate the
previously mentioned drawbacks. An LSTM network contains a special kind of nodes
called the LSTM nodes. The speciality of LSTM nodes lies in their ability to remember
the given value for an arbitrary length of time. Each LSTM node consists of two or
three gates – an input gate, an output gate and an optional forgetting gate. The input
gate decides, if the input value is significant enough to be remembered, the output gate
decides, if the remembered value should be presented at the output of the LSTM node
and the forgetting gate controls the forgetting of the remembered value. The training of
an LSTM network is done via the BPTT.

4.5 Activation Functions

The transfer functions are non-linear. Let’s consider case, when gl is linear, i.e. yl = al.
Using Eq. (4.4) and substituting yl into the l + 1-th layer leads to

al+1 =
(
yT
l−1 ·Wl + bl

)T ·Wl+1 + bl+1 (4.7)

yl+1 = gl+1(al+1) (4.8)

26

4 Artificial Neural Networks

and then Eq. (4.7) can be easily converted to

ai+1 = yT
l−1WlWl+1︸ ︷︷ ︸

W ′
l+1

+ bT
l ·Wl+1 + bl+1︸ ︷︷ ︸

b′l+1

. (4.9)

Therefore, for any MLP-ANN with Q consecutive linear layers, an equivalent MLP-ANN
with L−Q+ 1 layers exists.

A wide variety of functions exists that can be used in place of gli(al). The activation
function used in the original work by Minsky and Papert [75] is called the hard-step
function

gli(al) =

{
0 when ali < 0

1 when ali ≥ 0
. (4.10)

The drawback in using the hard-step function is that its derivative is not continuous,
which poses a problem for gradient training methods.

The two following functions are used instead of the hard-step function.

gli(al) =
1

1 + exp(−ali)
(4.11)

gli(al) =
exp(ali)− exp(−ali)
exp(ali) + exp(−ali)

(4.12)

They both belong to the family of sigmoidal functions, the latter is called the hyperbolic
tangent and the former is usually denoted as the logistic sigmoid function. Sometimes,
when no confusion is possible, the logistic sigmoid function is denoted simply as the sigmoid
function. The tanh(·) function has the same shape as the logistic sigmoid function, they
differ only in their range (co-domain). The relationship between these two functions can
be formalized as

1

2
· tanh

(ali
2

)
+

1

2
≡ 1

1 + exp(−ali)
. (4.13)

Thus, an MLP-ANN with the hidden layer(s) employing the tanh(·) function is equivalent
to an MLP-ANN with logistic sigmoid activation function with weights and biases adapted
appropriately. The empirical evidence suggests, however, that using the tanh(·) function
leads to faster convergence during training.

The last function introduced here, in Eq. (4.14), is called the softmax function.

gli(al) =
exp(ali)∑Kl

k=1 exp(alk)
(4.14)

The name originates from the fact that the softmax function represents a differentiable
version of the max(·) operator, where the largest element of the input vector al will
receive a value close to 1 and the other elements will receive values close to 0. Moreover,
it holds that

∑Kl

i=1 gli(al) = 1. The softmax function can be thought of as a generalization
of the logistic sigmoid function. Moreover, it has some remarkable properties in the
sense of interpreting the outputs as posterior probabilities. Because of these properties,
it is often used as the activation function of the output layer. These properties will be
discussed later in more detail.

27

4 Artificial Neural Networks

4.6 Training of Multi-layer Perceptron Networks

As it has already been mentioned, the architecture of an MLP-ANN is defined by pair
(D,G). However, the domain knowledge of the MLP-ANN is encoded as a parameter

set W =
{
Ŵ1, . . . , ŴL, b1, . . . , bL

}
=
{
Ŵ1, . . . , ŴL

}
, i.e. as a set of all weights,

represented either as a set of weight matrices and the associated bias vectors or as a set
of the augmented weight matrices.

In the scope of this work, the training process is supervised. It means that for
each presented input x ≡ y0 and the associated network-computed response (output)
o ≡ yL (x), the teacher information vector t exists. The vector t carries the meaning of
the expected (correct) output.

Therefore, for a set of T training pairs Ψ = {(x0, t0) , . . . , (xT−1, tT−1)}, the task is to
find W ?, i.e. to find such a set W that minimizes an a priori chosen compound loss
function E (Ψ|W).

W ? = arg min
W

E(Ψ|W) (4.15)

Usually, the function E(Ψ|W) has the form

E(Ψ|W) =
T−1∑
q=0

Eq, (4.16)

where T is the number of training samples and Eq is the error contribution of the q-th
training pattern.

4.6.1 The Most Frequent Error Functions

Two common forms of function Eq are the mean square error function

Eq =
1

2
||o (xq)− tq||2, (4.17)

and the cross-entropy error function

Eq = −
∑
k

tqk ln ok (xq) , (4.18)

where tqk denotes k-th element of vector tq, analogously ok (xq) denotes k-th element of
vector o (xq). The minimum of this function occurs when ok (xq) = tqk and its value is
Eq = −

∑
k tqk ln tqk, which is a non-zero value in a general case. This minimal value

can be subtracted from the error function to guarantee that the minimum error will be
always zero. The normalized cross-entropy function is defined as

Eq = −

(∑
k

tqk ln ok (xq)−
∑
k

tqk ln tqk

)
= −

∑
k

tqk ln
ok (xq)

tqk
. (4.19)

28

4 Artificial Neural Networks

It is worth noticing that the function defined by the Eq. (4.19) is actually the Kull-
back–Leibler divergence between the probability distributions from which the samples tqk
and ok (xq), for all admissible values of k, are drawn. In reality however, the Eq. (4.19)
is often referred to as the cross-entropy function. Additionally, some other criterions
based on cross-entropy error function exist[107].

4.6.2 Backpropagation of an Error in the Multi-layer Perceptron

When functions gi(·) are differentiable, iterative gradient descent optimization methods
can be used to determine the value W ?. This class of methods solves the following set of
equations

∂E(Ψ|W)

∂W
= 0, (4.20)

and each iteration t can be divided into four consecutive stages

1. compute the gradient ∇W (t), ∇W (t) = ∂E(Ψ|W)
∂W (t)

2. compute the weight update ∆t, ∆t ≈ ∇W (t)

3. compute the new weights W (t+ 1) = W (t) + ∆t

4. evaluate the stopping criterion and either finish the optimization or continue again
with the stage 1.

Evaluating the Gradient ∇W (t) The algorithm for evaluating the gradient ∇W (t) is
called the backpropagation. It has been discovered, forgotten and discovered again several
times, however it finally gained wide recognition after 1974, when it was published in
[122].

Suppose the augmented formulation of a neural network as given by the Eq. (4.2).

Now consider evaluation of the derivative Eq with respect to some weight w
(n)
ji between

the node i in the n-th layer and the node j in the (n− 1)-th layer. Since the Eq depends

on w
(n)
ji only through the value of a

(n)
i (activation value of the i-th neuron), the chain

rule can be applied, which leads to

∂Eq

∂w
(n)
ji

=
∂Eq

∂a
(n)
i

∂a
(n)
i

∂w
(n)
ji

. (4.21)

Using the Eq. (4.1) it can be seen instantly that the derivative
∂a

(n)
i

∂w
(n)
ji

is

∂a
(n)
i

∂w
(n)
ji

= x
(n)
j = y

(n−1)
j . (4.22)

Usually, an additional substitution

σ
(n)
i ≡

∂Eq

∂a
(n)
i

(4.23)

29

4 Artificial Neural Networks

is used and the quantities σ
(n)
i are referred to as errors. Substituting both the Eq. (4.22)

and the Eq. (4.23) into the Eq. (4.21) leads to

∂Eq

∂w
(n)
ji

= σ
(n)
i y

(n−1)
j , (4.24)

which tells us that the required derivative can be simply obtained by multiplication of
the value of σ

(n)
i by the value y

(n−1)
j . The values of y

(n−1)
j are known from the forward

propagation, i.e. from calculation of the output of the neural network. Thus, in order
to evaluate the complete set of derivatives, only the quantities σ

(n)
i for every (hidden or

output) neuron in the network has to be evaluated and then the Eq. (4.21) has to be
applied.

For the output units (n = L), where yi does depend only on the ai, the formula

describing evaluation of σ
(n)
i is

σ
(n)
i =

∂Eq

∂a
(n)
i

=
∂Eq

∂y
(n)
i

∂y
(n)
i

∂a
(n)
i

=
∂Eq

∂y
(n)
i

∂

∂a
(n)
i

gni (an)︸ ︷︷ ︸
g′ni

(
a
(n)
i

)
(4.25)

by using the chain rule on the Eq. (4.23). In cases, where yi does depend also on some
other ak, k 6= i, (as in the case of the softmax transfer function), the correct formula is

σ
(n)
i =

∂Eq

∂a
(n)
i

=
∑
k

∂Eq

∂y
(n)
k

∂y
(n)
k

∂a
(n)
i

=
∑
k

∂Eq

∂y
(n)
k

∂

∂a
(n)
i

gnk (an)︸ ︷︷ ︸
g′nk

(
a
(n)
i

)
(4.26)

The symbol g′ni

(
a

(n)
i

)
denotes the first derivative of the transfer functions gni (an)

with respect to a
(n)
i and, similarly, the symbol g′nk

(
a

(n)
i

)
denotes the first derivative of

the transfer function function gnk (an) with respect to a
(n)
i . The Fig. 4.5(a) depicts the

calculation scheme.
For the hidden layer units, using the chain rule leads to

σ
(n)
i =

∑
h

∂Eq

∂a
(n+1)
h

∂a
(n+1)
h

∂a
(n)
i

=
∑
h

∂Eq

∂a
(n+1)
h

∂a
(n+1)
h

∂y
(n)
i

∂y
(n)
i

∂a
(n)
i

,

(4.27)

where the sum runs over all units h to which the unit i is connected. The units h can
belong into another hidden layer or they can belong into the output layer. Applying the

identity Eq. (4.23) on ∂Eq

∂a
(n+1)
h

and evaluating the gradient
∂a

(n+1)
h

∂y
(n)
i

using the Eq. (4.1), the

30

4 Artificial Neural Networks

i(n)(i− 1)(n)

j(n−1) (j + 1)(n−1)(j − 1)(n−1)

w
(n)
ji

σ
(n)
i

∂gni(an)

∂a
(n)
i

gni
(
a(n)

)
∂Eq

∂y
(n)
i

∂gni−1(an)

∂a
(n)
i

gni−1

(
a(n)

)
∂Eq

∂y
(n)
i−1

(a) Output layer neurons

i(n)

h(n+1) (h + 1)(n+1)(h− 1)(n+1)

∂gni

(
a(n)

)
∂a

(n)
i

w
(n+1)
ih

∂gni

(
a(n)

)
∂a

(n)
i

σ
(n+1)
h

σ
(n+1)
h−1 σ

(n+1)
h+1

σ
(n)
i

∂gni

(
a(n)

)
∂a

(n)
i

(b) Hidden layer neurons

Figure 4.5: A scheme of backpropagation computation process of σi.

following recursive formula is obtained

σ
(n)
i =

∂

∂a
(n)
i

gni (an)︸ ︷︷ ︸
g′ni

(
a
(n)
i

)
∑
h

w
(n+1)
ih σ

(n+1)
h . (4.28)

The calculation scheme is depicted in the Fig. 4.5(b).

The recursive application of this formula is the key for computing the derivatives of
the neural network parameters. For computation of all the quantities σ

(n)
i , it is necessary

to determine the values ∂

∂a
(n)
i

gni (an) in the Eq. (4.25) and in the Eq. (4.28) and also the

values ∂Eq

∂y
(L)
i

in the Eq. (4.25). The quantities ∂Eq

∂w
(n)
ji

can be obtained by virtue of using

the formula Eq. (4.24).

The derivative of the total error E with respect to the given weight wij is simply
obtained by virtue of evaluating the error Eq for every training sample and summing the

31

4 Artificial Neural Networks

individual contributions as
∂E

∂w
(n)
ji

=
∑
q

∂Eq

∂w
(n)
ji

. (4.29)

A Case of a Two-layer Network In the field of speech recognition, two-layer networks
with sigmoidal activation functions defined by the Eq. (4.11) in the hidden layer and
the softmax activation function defined by the Eq. (4.14) in the output layer are used
predominantly. This network is then trained using the cross-entropy criterion given by
the Eq. (4.19). The derivative g′ni(an) of the sigmoidal function can be obtained using
the quotient rule as

g′ni(an) =
1(

1 + exp
(
−a(n)

i

))2 exp
(
−a(n)

i

)
, (4.30)

which can be transformed using the Eq. (4.11) into

g′ni(an) = gni(an)(1− gni(an)) = y
(n)
i

(
1− y(n)

i

)
. (4.31)

The formula given by the Eq. (4.31) provides a way how to compute the derivative using
only elementary algebraic operations (one multiplication and one subtraction) from the
original activation function value, which is a very useful feature used in many software
implementations.

Let’s evaluate the quantities σi in the output layer. Because of the softmax transfer
function, there exists a dependence between ai and yj even for i 6= j. The quantities σi
can be obtained by virtue of the Eq. (4.26).

σ
(n)
i =

∑
j

∂Eq

∂gnj(an)

∂gnj(an)

∂a
(n)
i

. (4.32)

Using the definition Eq. (4.14), the derivative
∂glj(al)

∂a
(n)
i

function is

∂gnj(an)

∂a
(n)
i

=

exp
(
a
(n)
i

)
∑Kn

j=1 exp
(
a
(n)
j

) − exp
(

2a
(n)
i

)
(∑Kn

j=1 exp
(
a
(n)
j

))2 if i = j,

−
exp
(
a
(n)
i +a

(n)
j

)
(∑Kn

j=1 exp
(
a
(n)
j

))2 else,

(4.33)

which can be written as

∂gnj(an)

∂a
(n)
i

= (gnj(an)δij − gni(an)gnj(an)) =
(
y

(n)
j δij − y(n)

i y
(n)
j

)
, (4.34)

where the symbol δij denotes the Dirac delta. The partial derivative ∂Eq

∂gnj(an)
, given the

fact that the cross-entropy criterion, which is used, is given by the Eq. (4.19) is defined
by the formula

∂Eq

∂gnj(an)
= − tqj

gnj(an)
= − tqj

y
(n)
j

. (4.35)

32

4 Artificial Neural Networks

Substituting the equations Eq. (4.34) and Eq. (4.35) into the formula Eq. (4.25) will
result in the following formula

σ
(n)
i =

∑
j

− tqj

y
(n)
j

(
y

(n)
j δij − y(n)

i y
(n)
j

)
=
∑
j

−tqjδij +
∑
j

tqjy
(n)
i

= −tqi +
∑
j

tqjy
(n)
i .

(4.36)

Considering that
∑

j tqj = 1, the previous formula can be transformed to

σ
(n)
i = y

(n)
i − tqi. (4.37)

For the hidden layer, substituting the expression Eq. (4.31) into the Eq. (4.28) will give
us

σ
(n)
i =

(
y

(n)
i

(
1− y(n)

i

))∑
h

σ
(n+1)
h w

(n+1)
ih . (4.38)

For the real world applications however, when performance is of the essence, it is
usually more practical to use the matrix-vector formulation of the computation. The
formulae for the output layer are

σL = t− yL, (4.39)

∇ŴL = σT
LyL−1, (4.40)

and for the hidden layers

σL−i = yL−i ⊗ (1− yL−i)⊗ (σL−i+1ŴL−i+1) (4.41)

∇ŴL−i = σT
L−iyL−i−1 (4.42)

where operation ⊗ denotes element-wise multiplication and for ∇W intuitively holds

∇W =
{
∇Ŵ1, . . . ,∇ŴL

}
Computing the Weight Update ∆t+1 For the simplest gradient descent algorithm,
the update is computed as

∆t+1 = −λ∇W (4.43)

Unfortunately, because of the simplicity of this algorithm, the convergence is often slow
and sometimes even stops altogether, because the gradients further away from the output
layer are zero or almost-zero. This occurs quite often when training an MLP-ANN with
three or more layers with increasing occurrence as the number of layers of the MLP-ANN
increases. This phenomenon is called effect of vanishing gradients. It is usually a difficult
issue in connection with training of recurrent neural networks by means of so-called
backpropagation through time, but it can be lethal even for training the MLP-ANN [7].

33

4 Artificial Neural Networks

Computing the New Weights W (t + 1) After the proper weight update ∆t+1 is
computed, the new weights are commonly determined as

W (t+ 1) = W (t) + ∆t+1. (4.44)

The new weights are then used subsequently in the next iteration of training. The
stopping criterions are varied. Usually, one or a combination of some of the following is
used.

• The maximum number of iteration has been reached.

• The gradient is close to zero.

• The error value E do not improve significantly anymore.

4.6.3 Speeding Up the Training Process

A lot of attention has been paid to speeding up the convergence of the training process[103].
One possible approach is to preprocess the training data. The preprocessing usually
includes normalization of the input variables to have the mean close to zero and a
constant variance. Usually, not only the variance normalization, but also the decorelation
is performed. Other accelerating heuristics include the careful initialization of the
weights[65], choosing the learning rate (or adaptation scheme of the learning rate)
properly and choosing the proper target class mapping[67].

Another class of faster algorithms uses the Hessian matrix information. Employing
the Hessian matrix often leads to a significantly faster convergence. However, besides
the obvious requirement of twice continuously differentiable activation functions, these
methods become impractical as the number of trained weights increases, because the
storage requirements depends quadratically on the number of parameters of the neural
network being trained. The memory demands can be relaxed and the computational
complexity reduced furthermore, when the Hessian matrix is of blocked shape[21].

Newton Method Because of the problems associated with usage of the simple gradient
descent algorithm, it is beneficial to consider the curvature of the optimized function in
the optimization algorithm. The curvature information allows for choosing of a more
direct step towards the minimum. The Newton method constructs a local quadratic
approximation of the error function and then performs a direct step into the point of
expected minimum of the approximation. For the local quadratic approximation, not only
the gradient but also the Hessian must be evaluated, which can be both time consuming
and memory demanding. Especially the memory is a concern for neural networks with
more than a few thousand weights, because the Hessian matrix storage need depends
quadratically on the number of parameters.

34

4 Artificial Neural Networks

Levenberg-Marquardt (L-M) Method This algorithm is designed specifically for the
mean square error function from the Eq. (4.17). Under this assumption, the Hessian
matrix can be approximated using only the gradient ∇W (t + 1). L-M method is an
example of model trust region approach in which a model of the original function is
constructed; however the trust in this model is limited only to a limited neighborhood of
the original point. The size of the neighborhood is governed by an automatically tuned
parameter λ. For small values of λ, the L-M behaves almost like real Newton method
(with quadratic convergence rate) and for large values of λ, the algorithm falls back to
the standard gradient descent algorithm.

BFGS Method The BFGS belongs into the class of quasi-Newton methods. Instead of
computing the whole Hessian matrix, only an approximation is computed and updated
iteratively as the algorithm progresses. This alleviates the computational demands of
the Newton method, however it has the same asymptotic memory requirement. Because
of the storage demands, the next method is usually preferred.

Limited Memory BFGS (L-BFGS) Unlike the original “full” BFGS method, the L-
BFGS method does not store n × n (where n is the number of parameters) elements
of the Hessian matrix but only a few (let’s say m) vectors of dimension n. This set of
vectors represents the approximation implicitly. In most of applications, 4 ≤ m ≤ 10,
which leads to significantly reduced memory demands, since m� n.

Resilient Propagation (RPROP) and Improved Resilient Propagation (iRPROP)
The RPROP method seeks to improve the convergence rate in cases where the phenomenon
of vanishing gradient occurs. Instead of using the size of the gradient to compute the
step size, the algorithm uses merely the sign of the gradient to determine the direction
towards the minimum. The step size is determined adaptively. The original approach
([91]) has been somewhat modified in [58], using the total previous error value to improve
the overall convergence rate.

Quickprop The Quickprop method ([30]) assumes the error surface is locally quadratic
and computes the step size leading directly into the minimum of the assumed parabola.
The problem with this method is tied to the inherent assumption of the local shape of
the error function. For some error surfaces, this can lead to a wild behavior and slow
convergence or no convergence at all. These problems have been alleviated in [118], where
a globally convergent modification of the Quickprop algorithm has been devised including
proofs of the global convergence.

4.6.4 Natural Pairing of an Error Function and Transfer Functions

As has been noted in some publications ([26, 15]), a special pairing between some types
of the output layer activation functions gLk(aL), 1 ≤ k ≤ KL, and the error functions

35

4 Artificial Neural Networks

Eq exists. The distinctive property of such pairs is the interaction between the error
function and the transfer function during training.

Consider a neural network with the softmax transfer function from the Eq. (4.14) in
the output layer and the cross-entropy error function given by the Eq. (4.19) used for

training. Recall that the error quantity σ
(n)
i ≡ ∂En

∂a
(n)
i

for the output layer (n) is

∂Eq

∂a
(n)
i

=
∑
j

∂En

∂y
(n)
j

∂y
(n)
j

∂a
(n)
i

. (4.45)

The combination of softmax transfer function and the cross-entropy error function can
be simplified to

∂Eq

∂a
(n)
i

=
(
y

(n)
i − tqi

)
. (4.46)

For complete derivation of this formula refer to the page 32. As has been noted (see
[12]), this is the same result as if the combination of the linear transfer function and
the Mean Square Error criterion defined in the Eq. (4.17) was used. The important
observation is that the error signal is not attenuated just right in the beginning of the
training process. When using the sigmoid transfer function in combination with the
mean-square error function, the formula is

∂Eq

∂a
(n)
i

= y
(n)
i

(
1− y(n)

i

)(
y

(n)
i − tqi

)
. (4.47)

Taking the fact that 0 ≤ yi ≤ 1 and 0 ≤ ti ≤ 1 into account, it is easy to see that the
error signal is attenuated, which can have a negative impact on the convergence speed [12].
Indeed, suppose the expected (wanted) classification decision ti = 0 and the obtained
(real) classification yi = ε. Substituting into the Eq. (4.47) yields ∂Eq

∂a
(n)
i

= ε2(1− ε). Now,

suppose the opposite case, i.e. yi = 1− ε and ti = 1. Substituting into the Eq. (4.47)
yields ∂Eq

∂a
(n)
i

= −ε2(1− ε). It is easy to see that solving the problem ∂Eq

∂a
(n)
i

= 0 is equivalent

to finding such an ε for which the equality

∣∣ε2(1− ε)
∣∣ = 0 (4.48)

holds true. The equality has two solutions, see the Fig. 4.6. The first, ε = 0, is the
expected solution of the optimization problem. However, the second valid solution ε = 1
does not coincide with finding the optimal weights. This property may lead not only to
a slow convergence, but the optimization process may fail completely – especially in a
case, where only a simple first-order optimization method (i.e. gradient descent) is used.

36

4 Artificial Neural Networks

∂
E

q

∂
a
(n

)
i

0.00

0.05

0.10

0.15

ε
0 0.2 0.4 0.6 0.8 1

|ε(1− ε)2|

Figure 4.6: The shape of the derivative of the combination MSE and cross-entropy

The combination of softmax error function and the MSE criterion yields

∂Eq

∂a
(n)
i

=
∑
j

∂En

∂y
(n)
j

∂y
(n)
j

∂a
(n)
i

=
∑
j

(
y

(n)
j − tj

)(
y

(n)
i δij − y(n)

i y
(n)
j

)
=
∑
j

y
(n)
i δij

(
y

(n)
j − tj

)
−
∑
j

y
(n)
i y

(n)
j

(
y

(n)
j − tj

)
= y

(n)
i

(
y

(n)
i − ti

)
+ y

(n)
i

∑
j

y
(n)
j

(
y

(n)
j − tj

)
,

(4.49)

and finally, the combination of sigmoid transfer function and the cross-entropy criterion,
when used on a two class problem, yields

∂Eq

∂a
(n)
i

=
∑
j

∂En

∂y
(n)
j

∂y
(n)
j

∂a
(n)
i

=
∑
j

tj

y
(n)
j

y
(n)
j

(
1− y(n)

j

)
= ti

(
1− y(n)

i

)
+ y

(n)
i (1− ti) = y

(n)
i − ti,

(4.50)

which is the same result as for the combination of linear transfer function and the MSE
criterion or softmax transfer function and the cross-entropy criterion. The choice of the
sigmoid transfer function in combination with the cross-entropy criterion is not sensible
for problems with more than two classes, though. The minimum of the error surface can
be reached easily, irrespective of the value of tj, by simply setting the output y

(n)
j = 1.

This means that a neural network producing constantly y
(n)
j = 1 without any respect to

the input vector poses a mathematically correct solution that is, however, completely
useless for real applications.

37

4 Artificial Neural Networks

f(w)
x a original

criterion

y

t

g,H

f(w)
x a original

criterion

y

t

MSE
g

H

Figure 4.7: An example of search in companion space, adopted from [32]

As has been shown, there exist a special pairing between the type of the last layer
transfer function and the error function. Choosing one of these pairs leads to faster
converging optimization process with low chance of converging to a degenerate solution.

Moreover, it has been proven theoretically as well as practically that this pairing
property can be used for a development of novel efficient training algorithms [32]. In
these algorithms, the optimization is performed on so called companion error surface
that is implicitly described using the original criterion gradient g and using the Hessian
matrix H obtained using a different criterion, exploiting the aforementioned pairing
property. The shape of the hybrid error function then allows for much faster convergence
of the optimization process or the optimization process is computationally less expensive,
see Fig. 4.7 for an illustration of such process.

4.6.5 Incremental, Batch and Bunch Mode Training

As has already been mentioned, the total gradient for all training samples is gathered
from a complete set of training samples, i.e.

∂E

∂wij
=
∑
q

∂Eq

∂wij
(4.51)

and the weights are then updated using this gradient. This approach is called the offline
training or batch mode training. There are, however, different strategies, which differ in
the amount of the training samples that are processed to accumulate the gradient that is
used consequently for the weights update [109].

• Batch mode training – the process gathers gradient using all the training samples.
The batch mode training is sometimes referred to as the epoch learning.

The training process can be done as follows.

while the network is not trained sufficiently do
Using the actual set of weights, compute the gradient ∂E

∂wij
=
∑

q
∂Eq

∂wij
,

Using ∂E
∂wij

, compute the weight update ∆W

Using ∆W , compute the new weights
Update the weights

end while

38

4 Artificial Neural Networks

• Incremental mode training – the training process performs weight update after
evaluation of each training sample. The training process converges faster, however
it is computationally more expensive and the parallelization of the computation is
problematic.

The training process can be done as follows.

while the network is not trained sufficiently do
Randomize the training set
for each training vector q from the training set do

Using the current set of weights, compute the gradient ∂Eq

∂wij
;

Using ∂Eq

∂wij
, compute the weight update ∆W

Using ∆W , compute the new weights W
Update the weights

end for
end while

• Bunch mode training – a compromise between the batch and the incremental
approaches. The training set is split (usually randomly) into a set of B bunches
(sets) such that

∑B
b=1 qb = Q, where Q is the total number of training samples,

qb is the number of training samples of the b-th bunch (hundreds or thousands of
samples), and the gradient is gathered only for samples in the current bunch. Then,
the weight update is performed and the gradient computation is started on the next
bunch.

The training process can be done as follows.

while the network is not trained sufficiently do
Partition the training vectors randomly into B sets (bunches)
for each bunch b from the set of B bunches do

Using the current set of weights, compute the gradient ∂Eb

∂wij
=
∑

qb
∂Eq

∂wij
;

Using ∂Eb

∂wij
, compute the weight update ∆W

Using ∆W , compute the new weights W
Update the weights

end for
end while

The training methods using the conventional numerical optimization approaches usually
require the batch mode gradient evaluation. The reason for this is that the classical
optimization methods accelerate the convergence by exploiting gradients from several
consecutive steps together with the dynamics of the gradient changes. If the gradients
are computed from different data, this information is no longer useful nor valid.

For the incremental mode training, the stochastic methods are usually used. The
gradient computed using only a limited portion of samples can be conceptualized as a
gradient that was noise-corrupted. The only assumption is that the intensity of the noise
is sufficiently small and therefore the noise-corrupted gradient points approximately the

39

4 Artificial Neural Networks

correct direction3. In general, the stochastic methods do not converge to minimum. This
has two consequences. First, the stopping criterion must be based on different metrics
than the value of the error function. Second, to allow the training process to slowly set
to a local minimum it is necessary to slowly reduce the influence of the newly computed
gradients. Usually, some kind of gradual decrease of the learning rate is practiced. This
approach is similar to simulated annealing. Moreover, because of the intrinsic training
with noise, the chance of overtraining phenomenon is limited[13].

4.6.6 Probabilistic Interpretation of Network Outputs

Since the introduction of neural networks, a lot of attention ([78, 46, 15, 23, 90]) has
been paid to conditions on possibility of interpretation of the outputs as probabilities
or likelihoods. This is a challenging task because of the interaction between the output
layer units and the training algorithm.

Membership Problem, Independent Classes Consider a task of assigning several
probabilities of a different Boolean event (have, doesn’t have) to a input vector. In other
words, the output vector z is expected to be

z = [P (c1|x), . . . , P (cN |x)] (4.52)

Since the elements of the vector z are independent, we can concentrate on a single output
unit without the loss of generality. Using Bayes’ theorem, the posterior probability
P (c1|x) can be written as

P (c1|x) =
P (x|c1)P (c1)

P (x|c1)P (c1) + (1− P (x|c1)) (1− P (c1))
, (4.53)

which can be written as

P (c1|x) =
1

1 + exp(−a)
, (4.54)

where the substitution

a = ln
P (x|c1)P (c1)

(1− P (x|c1)) (P (c1))
(4.55)

was used, in which a is the input into the output layer. It can be shown ([12]) that if a
follows a distribution from the family of exponential distributions parametrized by ϕ
and φ

a ∼ exp
{
A(ϕ) +B(q,φ) +ϕT

k z
}
, (4.56)

then the vector z can be interpreted as a posterior probability.

3The definitions of “sufficiently small” and “approximately correct” depend on the chosen method.

40

4 Artificial Neural Networks

Membership Problem, Tied Classes In situations, where the output

z = [P (c1|x), . . . , P (cN |x)] , (4.57)

must fulfill an additional condition

N∑
n=1

P (cn|x) = 1, (4.58)

the previous approach is unusable, because the sigmoid activation function guarantees
only 0 ≤ g(a) ≤ 1 but not the unity sum. Given a set of unconstrained values aj, both
conditions (limitation and unity) can be ensured using the softmax activation function.
Moreover, if the cross-entropy is used for training, the neural network can be interpreted
as the Maximum Likelihood estimator of the probabilities[90].

4.7 Conclusion

In this chapter, the neural networks were introduced. A special attention has been paid
to neural networks applied in speech recognition tasks. In this field, the recurrent and
feedforward topologies are used prevalently.

Moreover, the most common training algorithm based on the backpropagation of the
error was derived. Because the straightforward use of the steepest descent optimization
algorithm often leads to slow convergence, alternative optimization algorithms, usually
yielding much better convergence, were briefly introduced.

41

5 Training of the Speech Recognition
Systems

The current speech recognition systems are usually constructed to be speaker independent
(SI). The notion of speaker independence in the context of speech recognition systems is
used to emphasize the fact that the recognition accuracy does not depend on knowledge
of speaker’s individual voice characteristics. In lesser degree, it represents the insensitivity
to changes in the acoustical environment.

The speaker independence is usually achieved by means of estimating the parameters
on huge amount of acoustic data collected from a wide variety of speakers. The currently
used speech corpora contain hundreds or thousands of hours ([20]) of acoustic data and
hundreds of speakers. Using such amount of data is beneficial for several reasons. Even
if the amount of per-speaker data is small, the overall amount of data is sufficient to
estimate the statistics robustly. However, it is a known fact that for a given speaker, the
performance of a SI system is inferior to the speaker dependent (SD) model.

5.1 Speaker Normalization

The goal of speaker normalization techniques is to obtain a sequence of observation
vectors with the speaker-dependent information removed. Usually, the methods are
applied during the signal parametrization phase and are based on our understanding of
human physiology.

5.1.1 Cepstral Mean Normalization (CMN)

The Cepstral Mean Normalization (or Cepstral Mean Substraction) is a common normal-
ization technique. The original motivation was to rectify the convolutional distortion
by means of removing the constant (time-invariant) influence of the recording channel.
However, it can can be used for the speaker normalization as well. Together with the
normalization of the recording channel transfer function, it also removes the constant
(time-invariant) portion of the individual’s vocal tract transfer function.

The algorithm of the CMN computes a long-term mean of the observation vectors. The
observation vectors mean is then used to zero-mean normalize the observation vectors.
The computation is usually performed in a per-sentence or a per-segment fashion. For
the application of the CMN in real-time systems, the mean value is usually computed
on-the-fly using an IIR (Infinite Impulse Response) filter providing a running average of
the cepstral coefficients. The time constant (i.e. the forgetting factor) of the IIR filter

42

5 Training of the Speech Recognition Systems

must be tuned a-priori to allow for accommodation of changes of speaker/environment
and yet to be able to provide sufficiently robust statistics.

Additionally, the Cepstral Variance Normalization (CVN) is often used in robust speech
recognizers. The interpretation of the CVN is not as straightforward as the interpretation
of the CMN. From the statistical point of view, the variance normalization reduces the
sample variability and improves the coherence amongst the distribution functions of
features extracted from individual speaker-specific data sets.

While the CMN application mostly brings satisfactory improvements, the situation
about the CVN is not as simple. When the operating conditions are not very diverse,
the CVN application usually results in a slight decrease of the recognition accuracy.

5.1.2 Statistical Moments Normalization

The motivation for statistical moments normalization follows the statistical reasoning
that reduction of the mismatches between statistical properties (moments) gathered on
the speaker-specific data correlates with the reduction of the amount of the speaker-
dependent information. Besides the mean and the variance normalization, higher moments
normalization has been experimented with. It is necessary to differentiate between the
odd and the even moments. The N-th moment is computed as

E
[
ON
]
,

1

T

∑
k

[ok]
N (5.1)

and the purpose of the normalization is to obtain a new sequence of observation vectors
Õ[N], for which

E
[
ÕN

[N]

]
= 0, (5.2)

if N is odd, and

E
[
ÕN

[N]

]
= MN , (5.3)

when N is even. In the previous equation, the value MN is the N -th moment of the
Gaussian distribution N (0, 1). The N -th even moment for the Gaussian distribution is
defined as

MN =
(N − 1)!

k!2k
, with k =

N − 1

2
. (5.4)

Experiments published in [112] suggest that with dropping signal-to-noise ratio (SNR),
even the N = 3 and N = 5 moments improve the robustness of the recognition system.
For the moments higher than N = 5, no evidence of positive influence has been found. On
the other hand, the authors of [53] performed similar experiments with the higher degree
statistical moments normalization on the AURORA system and they report consistent
improvements across all SNR ranges and for all tested types of noise.

43

5 Training of the Speech Recognition Systems

w
a
rp

ed
fr

eq
u

en
cy

(r
a
d
−
1
)

0

1

2

3

frequency (rad−1)

0 1 2 3

w
a
rp

ed
fr

eq
u

en
cy

(r
a
d
−
1
)

0

1

2

3

frequency (rad−1)

0 1 2 3

α > 1
α < 1
α = 0

α > 1
α < 1
α = 0

Figure 5.1: An example of non-linear warping functions: Piecewise linear (left) and
Bilinear (right)

5.1.3 Vocal Tract Normalization (VTN)

As has been said, the sources of speaker variability are diverse. The general agreement
is that one of the significant sources of the variability is the variability in the length of
speakers’ vocal tract. The length of the vocal tract varies significantly amongst speakers
(from 13 cm in case of adult women to more than 18 cm in case of adult men). The
length affects the resonance frequencies of the vocal tract, i.e. the locations of formant
frequencies. The formant frequencies are crucial for distinguishing between vowels.

Therefore, a lot of attention has been paid to the development of techniques suitable
for the vocal tract normalization (VTN) or the vocal tract length normalization (VTLN).

According to [119], the relationship between the vocal tract length LVT and the i-th
formant frequency Fi is approximately

LVT ≈
(2i− 1)c

4Fi
, (5.5)

where c is the speed of sound. Therefore, by means of manipulation with frequency
spectra, the inter-speaker discrepancies caused by different lengths of the vocal tract
can be reduced. The transform function να(ω) is required to have specific properties.
When shifting the spectra, the domain and co-domain are required to retain the complete
information available in the original spectrum and not to change the frequency range. In
other words, the domain and co-domain of the function να(ω) must have the same range,
να(ω) : (0, ωmez) → (0, ωmez). Moreover, the function is usually assumed to be strictly
monotonic and continuous. Such a function is referred to as a warping function. Most
often, one of the following warping functions is used.

44

5 Training of the Speech Recognition Systems

Piecewise Linear Warping Function The Piecewise Linear Warping Function is defined
as

να(ω) =

{
αω for 0 ≤ ω ≤ ω0

αω + π−αω0

π−ω0
(ω − ω0) for ω0 < ω ≤ ωmez,

(5.6)

where ω0 is the “break point” frequency, where the steepness of the function changes.
Usually, ω0 is chosen so that for the third format frequency wF3 holds wF3 < w0 for the
majority of the population. The warping coefficient α is determined during the process
of speaker normalization. Usually, 0.88 ≤ α ≤ 1.12.

Bilinear Warping Function The Bilinear Warping Function[2] is a smooth version of
the piecewise linear warping function. It is defined as

να(ω) = ω + 2 arctan

(
(1− α) sinω

1− (1− α) cos(ω)

)
, (5.7)

where α is again the warping factor and usually is of the same range as in the case of
the piecewise linear warping function.

The warping factor is then used during the signal analysis. Sometimes, when possible,
instead of transforming the frequency spectrum of the signal, the filterbank filters
coefficients are transformed. This approach is of significantly lower computational
complexity, since the coefficients of the filters are transformed only once, during the
initialization of the filterbanks.

The estimation of warping factors is usually done in the maximum likelihood fashion.
Either the likelihood of the recognized utterance is maximized repeatedly to find out the
value of the factor α maximizing the utterance’s likelihood (which can be time consuming
task) or a special simplified approach is used. In the simplified approach, instead of the
acoustic model used for recognition, a relatively simple GMM model used solely for the
task of warping factor computation is used. In both these approaches, because of high
computational complexity, usually only a relatively small number of predefined values of
α are evaluated and the resulting α is chosen from this set.

5.2 Acoustic Model Adaptation

While the task of the speaker normalization is to remove the speaker-dependent infor-
mation from the observation vectors, the task of model space adaptation is somewhat
different. The process of adaptation modifies the parameters of the model to improve the
fit(match) of the model on the given speaker. In other words, the adaptation converts
the speaker independent model into a speaker dependent model. As has been said, the
speaker dependent model usually performs significantly better than the speaker indepen-
dent models. The most common approach to adaptation in the context of GMM/HMM
framework is the maximum a posteriori(MAP) adaptation or maximum likelihood linear
regression (MLLR) adaptation.

45

5 Training of the Speech Recognition Systems

Maximum A-Posteriori (MAP) Adaptation The MAP approach to adaptation strives
to maximize the posterior probability of an utterance. This approach assumes that an
informative prior exists. In the case of a GMM/HMM system adaptation, the role of the
informative prior is played by the speaker-independent model. Let’s consider the case,
when the prior is not informative (or is not informative enough). In the case when the
prior is not informative, the MAP approach degenerates to ML approach. This is not a
problem when the amount of data is huge, but one of the premises of adaptation is the
small amount of adaptation data.

Maximum Likelihood Linear Regression (MLLR) Adaptation The MLLR approach
tries to circumvent the main problem of the MAP adaptation – requirements of a
relatively large amount of data. Since the amount of the data available for the speaker
adaptation is usually limited, a considerable amount of research effort has been invested
into development of less data-hungry adaptation methods.

The key observation behind this method is that the most important parameters of
the GMM/HMM system are the parameters of GMM components – the vectors of mean
values and the covariance matrices. The MLLR method tries to find a linear transform,
which maximizes the likelihood that the adaptation data are generated by the given
acoustic model.

Moreover, the MLLR method uses pooling (clustering) to limit the amount of free
parameters. The transformation parameters are then shared amongst all the members of
the given cluster as opposed to the MAP approach, where the parameters are determined
for every mixture component individually.

For mixtures in one pool (cluster), a parameters set (A,Q, b) is computed and all the
mixtures in the given pool are then transformed using the following formulae

µ̃ = Aµ− b
Σ̃ = QΣQT,

(5.8)

where µ and µ̃ are the original (unadapted) and adapted mean vector respectively,
similarly Σ and Σ̃ are the original and adapted covariance matrix respectively. From the
engineering point of view the adaptation of covariance matrix is not of great importance,
because the reported improvement is usually reported to be less than 2 % relatively ([54]).

The use of the hierarchical clustering approach referred to as a regression tree can be
advantageous for the grouping of the mixtures components. Leafs of the regression tree
represent the elementary classes, i.e. mixture components. The topmost root of the tree
represents the global class of all possible components of all mixtures. Each inner node in
the tree represents a class that results from merging the child nodes/groups together.

During the adaptation, the tree is walked in the direction from the root to leafs and
for node the amount of data available for the given node is evaluated. The node is split,
if the amount of the data is sufficient and all the resulting child nodes have a sufficient
amount of data. If the node is a leaf or if the split would produce a child node with
insufficient amount of data the node is marked as closed and the traversal is finished
there. In the end, the adaptation parameters are computed on the obtained groups.

46

5 Training of the Speech Recognition Systems

The benefit is in the guarantee of a sufficient amount of data for the clusters obtained
during the process. Moreover, during the on-line adaptation, the transforms can be
refined when enough data is gathered to allow further splitting of clusters.

Constrained Maximum Likelihood Linear Regression (CMLLR) is (as the name
suggests) a special case of the MLLR. However, the CMLLR has very special properties
that deserve to be discussed in more detail. The special feature of the CMLLR ([25]) is
that the same matrix is used for adaptation of both means and covariances, i.e. for one
mixture component the adapted parameters are

µ̃ = Aµ− b
Σ̃ = AΣAT,

(5.9)

where µ and µ̃ are the original (unadapted) and the adapted mean vector respectively,
and similarly Σ and Σ̃ are the original and the adapted covariance matrix respectively
and the adaptation matrix A and the adaptation vector b are to be determined during
the adaptation process.

The interesting property of the CMLLR is that in the case where only one set of matrices
has been computed (i.e. the parameters were computed for the root of the regression
tree), the transform can be applied either on the model parameters (as described) or at
the feature level as

õi = A−1oi +A−1b, (5.10)

where oi is the i-th observation vector. In that case the CMLLR can be referred to as
the FMLLR (feature-level MLLR).

The possibility of transforming the features instead of the model means that FMLLR
can be seen as a speaker normalization procedure or as an acoustic model adaptation
procedure. Moreover, the paper [85] proved that in the case of using cepstral features,
the FMLLR is equivalent to VTLN. The equivalence between these two approaches holds
generally; it does not depend on the warping function choice or the type of the cepstral
representation.

5.3 Speaker Adaptive Training

As has been said, a significant performance gap between the speaker-specific (speaker-
dependent) acoustic models and speaker-independent acoustic models exists. The reason
is that the SI model must account for the inter-speaker variances during training. Adding
more parameters (increasing the model size) helps to lower the difference, but only to
a limited extent. Because of higher variability in the statistical properties of features,
the clusters of features belonging to different speech units overlap more, resulting in the
impossibility to discriminate correctly between the overlapped clusters.

Both the speaker adaptation and the acoustic model adaptation approaches aim to
improve the coherence between the SI model and the speaker. The important thing is

47

5 Training of the Speech Recognition Systems

SPK
adaptation

SPK(t) AM
training

AM(t+ 1)

AM(t)

SPK(t+ 1)
PT

PT

Figure 5.2: A diagram of a single SAT epoch

that this remedy is done only before or during the recognition phase, the training phase
produces a common SI model.

In [4], an alternative approach, called speaker adaptive training (SAT) was proposed.
The SAT approach introduces the removal of the speaker-induced discrepancies during
the training phase. The assumption is that, if the inter-speaker variability is reduced and
the homogenized data are used during training instead of the original data, the resulting
acoustic model will perform better. The model obtained using the SAT approach is called
the SAT model or the canonical model to help differentiate it from SI or SD models.

The process of SAT is iterative. Each iteration/epoch has two consecutive stages.

1. Use the present model AM(t) (obtained in the previous iteration) to estimate the
speaker-dependent normalization parameters SPK(t+ 1).

2. Use the speaker-dependent normalization parameters SPK(t+ 1) estimated in the
previous step to reduce the inter-speaker mismatch and train a new acoustic model
AM(t+ 1).

Usually, the SI model is trained first of all. Then several epochs of SAT are performed.
The SI model is used as the starting model in the first iteration of SAT. It has been
observed ([73]) that 3–6 epochs of SAT are sufficient. The diagram of one training
iteration is depicted in the Fig. 5.2. In the figure, the symbol T denotes the referential
text and P denotes the training feature vectors.

The recognition phase in the SAT recognition system closely follows the recognition
phase of a speech recognition system employing speaker adaptation. The only exception
is that instead the SI trained acoustic model, the SAT trained acoustic model is used for
speaker adaptation. The enrollment (i.e. introduction of a new speaker) can be either
supervised or unsupervised.

Supervised Enrollment In this case, the speaker’s utterances are available together
with the correct transcript. The reference transcript T is used to calculate the speaker
adaptation parameters.

Unsupervised Enrollment In this case, the speaker’s utterance is available, however
the reference transcription is not. Usually, the SI model is used to recognize the utterance
and the resulting recognized text is then used in place of the reference text. Since no

48

5 Training of the Speech Recognition Systems

T
recognition

T(t+ 1)SPK
adaptation

SPK(t) AM
training

AM(t+ 1)

AM(t)

SPK(t+ 1)
P

T(t)

PT(t) P

Figure 5.3: Unsupervised (twopass) Speaker Adaptive Recognition scheme

recognizer works with 100% accuracy, some words may be recognized incorrectly. Luckily,
in cases when sufficient amount of data is available, this poses no serious problem, because
the bias of the incorrectly recognized words will be compensated by the amount of the
correctly recognized words. What amount of data is sufficient depends on the accuracy
of SI recognizer and the number of parameters to be estimated during the speaker
normalization phase. The diagram of one training iteration is depicted in the Fig. 5.3.
In the figure, the symbol T (t) denotes the recognized text transcript obtained using the
acoustic model AM(t) and P denotes the training feature vectors.

Another approach is to evaluate a confidence factor (CF) for each of the recognized
words and then use these factors to eliminate the words identified to be recognized
incorrectly (e.g. [3], [41] and many others). The possible hitch of this approach is that
the confidence factors are essentially computed by means of evaluating the fit of the
recognized word on the underlaying acoustic observation. The incorrectly recognized
words will fit less than the correctly words and therefore will receive lower CF. However,
a low CF ranking can be assigned to some correctly recognized words as well. In the
context of speaker adaptation, the more profound speaker-specific information the acoustic
observations bear, the smaller will be the match between the recognized word and the
observation sequence. Therefore, by removing the words with low CF ranking, the words
bearing the speaker-specific information will be removed as well. In an extreme case, the
speaker adaptation mechanism may be rendered completely inoperative.

5.4 Conclusion

This chapter discussed the problems arising during training of speech recognition systems,
especially the problems connected with inter-speaker variability.

The natural variations between speakers increase inner variability of the data, which
usually results in a more complex model (a portion of the model parameters is necessary
to compensate for the speaker-induced data variability) and/or possibly worse recognition
accuracy, because the inner variability lowers the separability of the classes (phonemes,
context dependent phones).

The techniques of speaker adaptation and speaker normalization (in combination with
SAT) aim to reduce this variability and thus to produce a less complex, yet often a better
performing acoustic model.

49

6 Current Approaches to Adaptation
of a Neural Network

In this chapter, the current approaches to speaker adaptation or speaker normalization
are described and discussed. Not all methods presented here were developed specifically
for the speaker normalization or adaptation. The methods will be discussed from the
point of suitability for speaker normalization or adaptation.

6.1 Retraining of the Network

The most popular and very simple approach is to retrain the SI neural network on the
speaker specific data. During the process of the training, all parameters of the SI NN are
adapted. Because of the large number of parameters being adapted and a relatively small
amount of data, attention must be paid to avoid overtraining. This is usually done by
early-stopping, where a portion of the adaptation data is used only for cross-validation of
the training criterion ([77]). It is vital not to use the cross-validation portion of the data
for training directly, thus the total amount of speaker-specific data available to train on,
is reduced furthermore.

Another disadvantage of this approach is that no speaker-specific information is isolated.
The result of the training is a new standalone speaker-adapted network [16].

Moreover, the retraining approach has another disadvantage. This disadvantage is tied
to the stability/plasticity dilemma and is usually referred to as catastrophical forgetting.

6.1.1 Catastrophical Forgetting

Ideally, the ANN’s internal representation of the problem should be plastic enough to
allow for adaptation in the presence of an additional knowledge (training vectors) and,
at the same time, stable enough to retain the important bits of the original knowledge,
even during the adaptation. Quite obviously, these demands are in contradiction. This
problem is of high importance in the field of speaker adaptation, because during the
adaptation, only a limited amount of data is available and, furthermore, the original
training data is usually not present.

It should be noted that this problem is not specific to neural networks, but it exhibits
here more noticeably, because of the discriminative nature of the training. The direct
consequence of the restricted data amount is that some target classes presented originally
in the training data are not present in the adaptation data. The associated nodes are
then forced to have zero value for all training pairs, which leads to a corresponding

50

6 Current Approaches to Adaptation of a Neural Network

change of the associated weights. The change is directed towards producing zero output
no matter what input is presented and therefore, the original knowledge is lost (forgotten)
during the adaptation.

This can be contrasted to a case when GMM models trained in the ML-sense are
adapted. In that case, the units with little or no associated data are either usually simply
left unadapted or a more general transform is determined for a cluster of acoustically
similar units by virtue of considering the units as a one (more general) unit. The size of
the cluster is chosen in such way that provides enough training material for computation
of the adaptation transform.

6.1.2 Rehearsal and Pseudo-rehearsal Techniques

A significant amount of attention has been paid to development of approaches enabling
alleviation of the above mentioned problem. One group of the proposed techniques is
referred to as rehearsal techniques [89]. Although the rehearsal training techniques were
developed more specifically for inclusion of new knowledge into neural networks, they
can be used directly for adaptation as well. These techniques rely on the presence of a
substantial amount of the training data being present even during the adaptation phase.
The adaptation is then performed sequentially. In each step, a training pair is chosen and
used for the so-called rehearsal training and when the network is trained (i.e. produces
correct output for this training pair), the training pair is included into the training
set. The rehearsal training itself is based on the well-known backpropagation technique.
During the training phase, the single pair from the adaptation set is complemented with
a small subset of training pairs drawn from the training set. The way the training pairs
are drawn from the training set is the main differentiating feature between the methods
belonging to the group of rehearsal training.

Although the rehearsal techniques make possible to learn new knowledge while retaining
the old, the fact that access to the training data must be kept even during the adapta-
tion is inconvenient and in many cases this necessity renders the rehearsal techniques
unapplicable. A similar technique, called pseudo-rehearsal, has been devised[93] that
mitigates the need for access to the training data.

Pseudo-rehearsal avoids the use of the training data by constructing a population of
pseudo-training data (called pseudo-items) dynamically. Pseudo-items are generated as
follows. First, an input feature vector xk is generated randomly. Then, the input feature
vector is forwarded through the neural network and an output vector ok is obtained as

ok = ANN(xk), (6.1)

where the symbol ANN(·) is used to denote the forward pass of the vector xk through the
neural network. The resulting pair (xk,ok) is then used as a real “training” pair (xk, tk).

In [94], both rehearsal and pseudo-rehearsal techniques are analyzed from the point
of view of function approximation. The process of learning the neural network can be
formalized as a process of fitting a function to the training data. The rehearsal mechanism
during adaptation then leads to incorporation of the new data points into the set instead

51

6 Current Approaches to Adaptation of a Neural Network

of finding a new fitting function. The pseudo-rehearsal mechanism can be interpreted in
the same way, with the exception that the constraints are enforced by means of sampling
randomly the original function instead of sampling randomly the training data.

6.1.3 Conservative Training

The conservative training[39, 40] is an alternative approach to rehearsal and pseudo-
rehearsal techniques. Instead of keeping the access to the training data or generating
random vectors, it tries to alleviate the forgetting phenomenon by avoidance to enforcing
the zero value with the unseen target classes. The idea is very straightforward. Let Fp
be the set of units present as targets in the training set and let Fm be the set of units not
present as targets in the training set. First, for the k-th vector xk from the adaptation
set, the output value ok is generated as

ok = ANN(xk). (6.2)

Then, the vector t̂k is computed using the output ok and the correct output tk as

t̂kj =

okj if j ∈ Fm,
1−

∑
l∈Fm

okl if correct(j, tk),

0 else,

(6.3)

where okj and t̂kj are the j-the elements of the vectors ok and t̂k respectively, and
correct(j, tk) is a predicate that holds only when j refers to the correct classification of
the vector xk.

6.1.4 Partial Retraining

Despite the aforementioned drawbacks, the retraining approach is very attractive and it
brings significant improvements when performed correctly[77]. Another possible approach
to facilitation of the use of the retraining approach is introduced in [108]. The key idea
is to adapt only a subset of weights.

The authors argue that the weights that will benefit most from adaptation can be
identified by the activity of the corresponding hidden layer units. Moreover, they propose
that the activity can be measured by the variance of the hidden layer outputs. Two
possible approaches to the choice of the units for adaptation exist. Either only a predefined
number of units with the highest variance is chosen or all the units whose output variance
will reach over a certain threshold are chosen.

In this approach, the measure of suitability is of critical importance and should be
explored more thoroughly. One possible extension is to identify the important weights
directly. For this approach, the saliency measures used for network pruning can be
used[66, 47]. The network pruning is a family of techniques used to reduce computational
complexity and to improve the generalization of the network by means of selective deletion
of low-importance weights. For partial network retraining, the saliency measure could be
used to select the most important weights instead of the least important weights.

52

6 Current Approaches to Adaptation of a Neural Network

6.2 One Step Hessian Manipulation

The One Step Hessian Manipulation (OSHM) approach was introduced in [10] as a way
how to adapt a neural network in one step. Given the fact that the SI-network weights
are already minimizing the criterion function, the OSHM method uses the inverse of the
Hessian matrix to compute the optimal weights of the speaker-specific network.

Suppose the network has been trained to minimize the error E on the training set
Ψ = {(x0, t0), . . . , (xT−1, tT−1)}, where T is the number of training pairs. The task of
the OSHM is to find a new set of weights W̃ that minimizes the error Ẽ corresponding
to the adaptation set Ψ̃ =

{
(x̃0, t̃0), . . . , (x̃T−1, t̃T−1)

}
, where the k-th training pair is

given as

x̃nk = xnk + ∆xnk 0 ≤ n < K0 (6.4)

t̃mk = tmk + ∆tmk 0 ≤ m < KL−1, (6.5)

where ∆xnk and ∆tmk are small known shifts in the input and in the output respectively
for the k-th training vector and K0 and KL−1 are dimensions of the input and of the

output layer respectively. Suppose that the change of a weight w
(r)
ij , i.e. a weight between

the neurons i and j located in the r-th layer can be written as

w̃
(r)
ij = w

(r)
ij + ∆w

(r)
ij . (6.6)

Then the set of adapted weights W̃ can be determined by means of determining ∆w
(r)
ij

for every valid combination of r, i and j. With some bookkeeping (e.g. properly chosen
numbering of neurons), the r index can be omitted.

First, the error function for the q-th pair Eq is Taylor expanded in ∆xnk, ∆tmk and
∆wij. Using this approach, the weight change ∆wij is obtained by means of solving an
nonhomogeneous set of K linear equations, K being the total number of weights (and
biases) in the neural network, ∑

ij

Aij,kl∆wij = −∆Tkl, (6.7)

where Aij,kl is an element of the Hessian matrix A defined as

Aij,kl ≡
∑
q

∂2Eq

∂wij∂wkl
, (6.8)

and ∆Tkl is a substitution term evaluated as

∆Tkl ≡
∑
q

∑
n

∂2Eq

∂xnq∂wkl
∆xnq +

∑
q

∑
m

∂2Eq

∂wkl∂tmq
∆tmp. (6.9)

The Hessian matrix (or its inverse) can be evaluated using an algorithm similar to the
backpropagation algorithm[11].

53

6 Current Approaches to Adaptation of a Neural Network

There are two main obstacles preventing the OSHM method to be used for adaptation
in the field of speech recognition.

First, the Hessian scales with O(K2), K being the number of the ANN parameters.
Since the networks used in the field of ASR have hundreds of thousands or millions of
parameters, this approach is unfeasible. Moreover, to obtain a sufficiently robust estimate
of the Hessian, a large amount of data is necessary. The complexity of the task can be
reduced by exploiting the fact that the Hessian matrix is highly blocked when using the
cross-entropy criterion[21].

Second, the fundamental assumption of the known pairing (i.e. the ability to compute
the shift ∆xnk in the Eq. (6.4) and the shift ∆tmk in the Eq. (6.5) between the training
and adaptation data is not easily fulfilled in the area of speech recognition.

6.3 Topology Manipulation

Some approaches took the inspiration in the Cascade correlation learning algorithm[31]
and modify the internal structure of the network. The most common modifications
include adding a new layer (either linear or a non-linear) and adding new units into the
hidden layer of the network.

The positive aspect of these approaches is that the complexity of the adaptation task
can be finely tuned taking the amount of the available adaptation data into account.
The negative aspect is that the adaptation process usually changes the topology of the
network being adapted, which can result in an increased computational complexity or
may pose technical problems when incorporating these techniques into real-world software
solutions.

6.3.1 Parallel Hidden Layer

In this approach, additional units are added into the hidden layer of the SI network. This
process is conceptually equivalent to adding a new hidden layer ĥ into the network to
work in parallel with the original hidden layer h. In [77], this process was named Parallel
Hidden Network (PHN), because a parallel hidden network sharing the input and the
output layer is created. See the Fig. 6.1 for demonstration of this concept.

The weights of connections between the input x and ĥ and the weights between ĥ and
the output layer o are to be determined by a common ANN training algorithm. During
the adaptation process, the weights of the original SI ANN are held fixed and only the
parameters of the PHN are modified. That means that the PHN is trained to compensate
for the differences between the original SI system and the new speaker-specific system.

6.3.2 Linear Adaptation Layer

This technique modifies the topology of an HMM by inserting an additional linear layer
either before the output layer[27, 97, 1] or before the hidden layer[39, 40]. The linear
layer is then trained using any common neural network training algorithm.

54

6 Current Approaches to Adaptation of a Neural Network

x0 x1 xK0

h1 h2 hK1 ĥKĥ
ĥ1

o1 o2 oK2

h ĥ

Figure 6.1: Parallel Hidden Network Adaptation

The reason, why a linear adaptation layer is used prevalently, is that when the weight
matrix W̃ is determined, the linear layer can be merged with the consecutive (non-linear)
layer using the Eq. (4.9). Therefore, the computational and memory requirements stay
constant, which is a favorable property.

In the field of hybrid speech recognition, the input to ANN usually consists of several
adjacent frames of short-term low dimensional features[70, 81]. These adjacent frames
form together an input vector of length n, n = d× k, where d is the dimensionality of
the short-term feature vector and k is the number of consecutive features. The input
adaptation layer then captures the intra-frames dependencies as well as the inter-frames
dependencies. Sometimes, as a way to mitigate the adaptation data sparsity problem,
only the intra-frames dependencies are estimated. Instead of estimation of an n × n
adaptation matrix W̃A,

W̃A =

w̃11 · · · w̃1n
...

. . .
...

w̃n1 · · · w̃nn

 , (6.10)

which requires n2 coefficients to be estimated, the matrix W̃A is estimated as a block-
diagonal matrix

W̃A =

W̃1 · · · 0
...

. . .
...

0 · · · W̃k

 , (6.11)

where the d× d matrices W̃1, . . . , W̃k model the intra-frames dependencies in the indi-
vidual short-term feature vectors. In this case, only d2k coefficients has to be estimated.

55

6 Current Approaches to Adaptation of a Neural Network

h1

h2

hK1

ĥ1

ĥj

ĥK0

x0

xk

xK0

w̃kj

W̃A = |w̃|kj

o1

oK2

Figure 6.2: Linear Layer Network Adaptation

The number of coefficients to be estimated can be reduced further by assuming that the
intra-frames dependencies do not vary through the time and the context. In that case,
the matrices W̃1, . . . , W̃k are the same and equal to an d×d matrix W̃a. The adaptation
matrix W̃A can be expressed as

W̃A =

W̃a · · · 0
...

. . .
...

0 · · · W̃a

 , (6.12)

which means that only d2 coefficients has to be estimated. In the last case, the short-term
features can be transformed instead of modifying the weights of the SI network, which is
a situation similar to the CMLLR/FMLLR dualism[36].

The CMLLR parameters estimated for adaptation of an GMM/HMM or a hybrid
HMM system could be directly applied to the observed short-term feature vectors and
used in the same context as the matrix W̃a. Experimental results have shown[70] that
even if the CMLLR transforms are not estimated directly for the neural network, they
actually have the speaker-normalizing effect.

6.3.3 Weights Interpolation

In [97], an alternative technique inspired by the MAP criterion used commonly for adap-
tation of GMM/HMM systems was introduced. The Weights Interpolation adaptation
approach tries to mitigate the problems of the insufficient amount of data by exploiting
the informative prior, for example the SI network.

In some situations, there is enough data to estimate a new channel/environment
normalization matrix robustly, but the amount of speaker specific data is not sufficient

56

6 Current Approaches to Adaptation of a Neural Network

to estimate the speaker specific normalization matrix. Such a situation can occur, for
example, in cases where there is a rather large set of speakers sharing the same environment
and the same audio channel; however the amount of the per-speaker recordings is small.

Let’s denote the weights of an SI network as W SI , the weights of the environment
adapted network as W EA and the weights of the speaker adapted network as W SA. The
W EA and W SA weights were obtained as

W EA = W SI + ∆W EA (6.13)

and

W SA = W SI + ∆W SA (6.14)

respectively, where the matrices ∆W EA and ∆W SA are the channel/environment char-
acterization and the speaker characterization coefficients respectively. Because the
coefficients of the W SA matrix can be estimated unreliably and the network with weights
W EA performance is (supposedly) suboptimal, a new weight-interpolated weights W AD

are obtained as

W AD = W SI + (1− κ)∆W EA + κ∆W SA, (6.15)

which can be rewritten using the Eq. (6.13) and the Eq. (6.14) as

W AD = (1− κ)W EA + κW SA. (6.16)

The mixing parameter κ must be determined beforehand and depends on the amount of
the speaker-specific adaptation data (i.e. on the reliability of the matrices W SA). In
general, the cross-validation can be used to choose from a set of several predefined values
of κ[97, 70].

6.4 Eigenvoices Adaptation

The eigenvoice paradigm was inspired by the progress in the field of digital image
processing, especially in the field of face recognition. The eigenfaces paradigm is based on
the observation that the dimensionality of the problem of face recognition is much smaller
than the dimensionality of the 2D images containing the image[60, 114]. As a useful
approximation, it can be assumed that every individual face is a linear combination of a
certain small amount of face components called eigenfaces. During the training phase,
the individual primitive components are determined. During the recognition phase, the
weighting factors associated with the individual components are determined. Because
the number of the eigenfaces is small, the number of the corresponding weighting factors
is low. Therefore, even a very low amount of adaptation data is sufficient.

The process of isolation of the eigenvoices (similarly to isolation of the eigenfaces) is
started with a set of SD models, let the number of SD models be T . The coefficients of

57

6 Current Approaches to Adaptation of a Neural Network

each SD model are written as a single long vector1. These long vectors are often referred
to as supervectors.

A set of T supervectors is then processed by a dimensionality reduction technique,
PCA or ICA or SVD is among the most used. Because of large dimensionality of the
supervectors, it is usually used a method that allows to isolate only the first K most
important components. Usually, first 10–50 components is sufficient[64, 63].

Each new SD model W̃ can be estimated as[27]

W̃ = W̄ + Φ× Γ, (6.17)

where Φ = [φ1, . . . ,φK] is the eigenvectors matrix consisting of K retained components
(eigenvoices), Γ = [γ1, . . . , γK]T is the vector of mixing coefficient describing the individual
speaker and W̄ is the per-speaker mean of the adaptation parameters. The previous
formula can be written alternatively to emphasize the relations for a single element of
W̃ as

w̃k = w̄k +
∑
s

φksγs, (6.18)

where w̃k and w̄k are the k-th elements of supervectors W̃ and W̄ respectively and φks
is the k-th element of the vector φs.

The task of adaptation process is then to determine the K-dimensional vector Γ. In the
case of ANN parameters, gradient descent can be used. The gradients can be calculated
using an approach similar to backpropagation. Using the augmented form from the
Eq. (4.2), the activation potential of an MLP-ANN can be written as

a = ŵT · x̂ =
∑
r

ŵrx̂r, (6.19)

where x̂r and ŵr are the r-th elements of x̂ and ŵ respectively. Substituting the Eq. (6.18)
into the Eq. (4.2) yields

a =
∑
r

(
w̄r +

∑
s

φrsγs

)
x̂r (6.20)

= w̄T · x̂+
∑
r

∑
s

φrsγsx̂r (6.21)

= w̄T · x̂+
∑
s

γs

(∑
r

φrsx̂r

)
. (6.22)

The gradient ∂E
∂γk

can be evaluated using

∂E

∂γk
=
∑
j

∂E

∂aj

∂aj
∂γk

, (6.23)

1The ordering of the coefficients is arbitrary, however the order must be kept the same for all the SD
models

58

6 Current Approaches to Adaptation of a Neural Network

where ∂E
∂aj

can be determined by the usual error backpropagation and
∂aj
∂γk

can be evaluated

using the Eq. (6.22) as
∂aj
∂γk

=
∑
r

φrkx̂r (6.24)

Because the weights of the new speakers SD network are obtained as a linear combination
of the eigenvoices vectors, the vectors can be considered as a basis vector for the eigenvoice
space. Knowing that, it is easy to realize that the starting set of T SD vectors should be
big enough to generate sufficient covering of all speaker variations.

6.5 Special and Hybrid Paradigms

6.5.1 Speaker Morphing

In [55], an alternative to the common model transform approach was explored. Let

X (a) = x
(a)
0 ,x

(a)
1 , . . . ,x

(a)
t−1 be a sequence of acoustic observations of a speaker a. The

goal of speaker morphing is to find a transformation function Fa(·) such that Fa
(
X (a)

)
will approximate the observation sequence X (r) produced by an reference speaker. In
mathematical terms,

F?a (·) = arg min
F(·)

∑
i

E
(
F
(
x

(a)
i

)
,x

(r)
i

)
, (6.25)

where E(·, ·) is an pair-wise error function. In [55], the MSE function was used and the
approximating function F?a (·) was a feed-forward neural network of a fixed topology. The
search for the optimal mapping function was done via the optimization of the weights of
the neural network through backpropagation.

The drawback of this approach is its assumption on existence of paired training data.
This means not only a parallel corpus must be developed, but also an unique mapping
between the individual feature vectors must be found, which is task of the same complexity
as the task of searching for the function F?a (·).

6.5.2 Special Architectures

Another approach to dealing with speaker normalization or speaker adaptation task is to
extend the topology of the network in such way that will either speaker-normalize the
data implicitly or will allow for more sophisticated (and possibly more powerful) speaker
normalization.

Superstructures and Mixtures of Experts

The Meta-Pi Network[45] is a modular classifier that allows for a fusion of heterogeneous
sources of information via a “combinational superstructure”. As authors proved exper-
imentally, the network can be trained in such way to perform speaker normalization
implicitly.

59

6 Current Approaches to Adaptation of a Neural Network

Acoustic Features

Input Units

···
Spea

ke
r U

nits

Phone Activation
Output Units

Hidden
Units

Spea
ke

r Spac
e

U
nits

Figure 6.3: A Speaker Sensitive Network topology

Second Order Units

In [121], second order units were used in the network. Second order units activation
potential is computed as

a
(n)
k =

∑
i,j

ŵijky
(n−1)
i y

(n−1)
j +

∑
m

ŵmky
(n−1)
m , (6.26)

where y
(n−1)
i , y

(n−1)
j and y

(n−1)
m are outputs of i-th, j-th and m-th neuron from the previous

layer of the network and ŵijk and ŵmk are the associated augmented mixing weights.
A layer with second order units can be conceptualized as a layer consisting from

first-order units whose weights can be changed dynamically even during the recognition
phase. The authors argue that this allows for estimation of a canonical form of the input
vectors. A properly trained network is therefore able to perform the speaker normalization
implicitly, without the necessity to supply the speaker information.

Speaker Sensitive Network

An approach targeted directly at hybrid speech recognition systems was introduced
in [111]. The basic idea is to train a speaker sensitive network, which is an SI recurrent
network, in which the speaker variations are decoupled by design from the rest of the
network (see the Fig. 6.3).

The speaker variation modeling is achieved by adding speaker-space units and speaker
units. One speaker unit per speaker is added during the training phase. The activity
of the speaker unit is +1, when the current training pair belongs to the speaker and 0
otherwise. Because of this, the activation values of the speaker-space units are functions
of the weights associated to the connection between the given speaker-space unit and the
active speaker unit. Therefore, every (even unknown) speaker can be described using
a vector of speaker sensitive factors λ containing the activation values of the Speaker
Space Units.

60

6 Current Approaches to Adaptation of a Neural Network

During the recognition phase, the speaker sensitive factors λ can be determined
dynamically by a joint maximization of likelihood of the current recognition lattice,

W ? = arg max
W

{
P (W)

∫
Λ

p(o|W,λ)p(λ)dλ

}
, (6.27)

where Λ is the space of possible speaker parameters λ, o is the sequence of observations and
W and W ? is the possible word sequence and the recognized word sequence respectively.
This search can be optimized in such way that it’s speed is comparable to a normal
decoding technique.

6.5.3 Compensation of Trends during Training

During the training of an MLP-ANN, an implicit assumption of stationarity of the
training data is made. However, in many cases, the training data can be product of an
underlying slowly varying non-stationary process. Of course, one cause of this fact in the
speech recognition field of study is that the process actually is inherently non-stationary.
Nonetheless, the non-stationarity can be brought in by the environment the speaker is
in or by the recording channel. During the training, this problem can be coped with to
some extent by virtue of using sufficient amount of data. With a sufficient amount of
data and enough free variables, the network will be able to discover the inner variability
and to learn to account for it to some extent. The impacts therefore may be limited.

In the adaptation phase, however, this can pose a problem, because the sole necessity
for the compensation of non-stationarities increases the need for data. Several algorithms
were proposed to cope with the non-stationarity of the data [80, 82] that can reduce (to
some extent) the inner variability of the data, which, in turn, leads to higher homogeneity
of the training and adaptation set. The higher homogeneity in turn results in a lower
amount of data being needed for robust estimation of parameters (either weights or
adaptation parameters) of the network.

6.6 Conclusion

In this chapter, several techniques for adaptation of a neural network were presented
and discussed. Some of them are applicable for various types of neural networks, such
as multilayer perceptron network or recurrent networks, the applicability of others is
limited to some particular topology or an additional assumption (for example on data
stationarity) must be made.

In the field of hybrid speech recognition, the main issue that should be addressed by
a successful speaker adaptation technique is the ability to control the number of free
variables on basis of amount of the adaptation data available. Moreover, a successful
adaptation technique should allow for some kind of incremental adaptation.

By the term incremental adaptation it is meant a situation, where a speaker adaptation
was already performed, however more additional data was obtained thereafter. In that
case, it should be possible to use the newly obtained data to “tune” or tweak the

61

6 Current Approaches to Adaptation of a Neural Network

adaptation parameters only on the basis of the new adaptation data without the access
to the previous adaptation data.

In the next chapter, a novel adaptation method inspired by several of the techniques
introduced and published in the peer-reviewed papers will be introduced.

62

7 Proposed Approach to Adaptation of
a Neural Network

In this chapter, the proposed adaptation method will be introduced and analyzed. Because
the adaptation method was developed to reflect the real experimental and production
systems’ needs, the main design features of the used Czech and English speech recognition
systems will be presented in this chapter as well.

During the development of the method as well as during the work on this thesis,
recognition systems for two languages were developed. The system for the Czech speech
recognition was trained on a telephone-quality speech corpora SpeechDat(E)[18] (8 kHz,
16 bits per sample), the system for the English speech recognition was trained on desk-
microphone quality corpora TIMIT [38] and WSJCAM0[96]. Both these corpora were
recorded at 16 kHz, 16 bits per sample.

7.1 Description of the Experimental Systems

7.1.1 Feature Extraction

The acoustical features extraction system was adopted from [99]. The LTSP features
(described in this thesis on the page 9) are the final product of this stage. The LTSP
features extraction starts with the mel-filterbank analysis.

Let x(τ), x(τ) = [x1(τ), . . . , xQ(τ),]T be a vector of mel-filterbank band energies
extracted at the time instance τ . Usually, Q = 15 for an 8kHz signal or Q = 23 for a
16kHz signal. These coefficients are computed from 25 ms signal window with shift of
10 ms, which means that every 10 ms a new mel-filterbank log-energies vector is produced.

To capture the long-term temporal trajectories, a sliding window of S = 2N + 1
mel-filterbank outputs is processed to form a single LTSP feature vector each time. A
common choice of S is S = 31, therefore N = 15.

A window of the S consecutive mel-filterbank outputs is split into two parts, the
first one, referred to as the “left” half, includes the mel-filterbank outputs with indices
1, . . . , N+1 and the second part, referred to as “right” includes the mel-filterbank outputs
with indices N + 1, . . . , S. The mel-filterbank output with the index N + 1 in the middle
of the window is used in both parts and represents the time reference, i.e. the actual
position in the signal. That said, the vectors from the left part and vectors from the right
part can be conceptualized as vectors from the past and from the future respectively. To
emphasize this temporality, the sequence of the vectors in the window will be written as
x(t−N), . . . ,x(t), . . . ,x(t+N). Please note that the timing information here is relative

63

7 Proposed Approach to Adaptation of a Neural Network

x1(t+ 1)x1(t)x1(t− 1) x1(t+N)x1(t−N)

xq(t+ 1)xq(t)xq(t− 1) xq(t+N)xq(t−N)

xQ(t+ 1)xQ(t)xQ(t− 1) xQ(t+N)xQ(t−N)

x(t)

xt+q
xt−q

Figure 7.1: Scheme of a LTSP vector construction

to the given window.
The individual trajectories of each frequency band are then processed separately. The

left and the right trajectory of the q-th frequency band xt−q and xt+q respectively can be
formalized as

xt−q = [xq(t−N), . . . , xq (t)]T (7.1)

xt+q = [xq(t), . . . , xq (t+N)]T (7.2)

where xq(t−k) denotes the q-th element of the feature vector x(t−k), i.e. the log-energy
output of q-th mel filter. Both the vectors xt−q and xt+q are then weighted by the respective
half of the hamming window w(n) defined as

w(n) = 0.54− 0.46 cos

(
2πn

2N

)
, n = 0, 1, . . . , 2N, (7.3)

where for the left trajectory, the index n runs from 0 to N and for the right trajectory,
the index n runs from N to 2N . The hamming-weighted vectors are then processed using
DCT1 and the first D, D = 11, coefficients are retained. Because of the linearity of both
the DCT and the windowing preprocessing, both these operation can be written as

dt−q = DCT
w(n)

[
xt−q
]

(7.4)

dt+q = DCT
w(n)

[
xt+q
]
, (7.5)

1To be precise, it is actually the DCT-II normalized(orthonormal) transform.

64

7 Proposed Approach to Adaptation of a Neural Network

posteriori estimates

BNK features

dim = L

dim = H

dim = HB

dim = H

dim = P

Figure 7.2: A scheme of two forward modes of a bottleneck neural network

where the operator DCTw(n) denotes the DCT with windowing using the respective half
of the window w(n), dt−q and dt+q are vectors, each of length D, containing the DCT
coefficients of the trajectory of the q-th frequency band.

The resulting coefficients vectors dt−1 , . . . ,dt−Q and dt+1 , . . . ,dt+Q are then concatenated
together to form one LTSP vector χ(t)

χ(t) =
[
dt−1 , . . . ,dt−Q ,d

t+
1 , . . . ,dt+Q

]T
. (7.6)

The length M of the vector χ(t) is M = 2QD. In the case of the 8kHz signal, in which
case K = 15, this yields M = 330. In the case of the 16kHz signal with K = 23, the
LTSP feature vectors are of length M = 506.

The LTSP features are then used for training a neural network. In the context of speech
recognition, the neural network can be used either as a bottleneck features extractor or
as a posteriori probabilities estimator.

7.1.2 Bottleneck Features Extractor

The neural network used as bottleneck features extractor has three hidden layers, each
with the sigmoidal activation functions. The general topology is M ×H ×HB ×H × P ,
where M is the dimension of the LTSP feature vector, H is the dimension of hidden
layer (in the experimental systems in this work, H = 1500), HB is the dimension of the
bottleneck feature vector (for historical reasons, HB = 36 in the scope of this work) and
P is the dimension of the output layer, which depends on the phonetic alphabet used
during training. The network is trained to work as a posteriori probabilities estimator.
For the production of the bottleneck features, the last two layers are removed, so that
the HB layer becomes the output layer.

65

7 Proposed Approach to Adaptation of a Neural Network

7.1.3 Posteriori Probabilities Estimator

Two distinctive topologies of the networks used as posteriori probability estimators were
tested. The first kind of network is of topology M ×H × P , where M is the dimension
of the LTSP feature vector, H is the dimension of the hidden layer (in the experimental
systems in this work, H = 1500) and P is the dimension of output layer, which depends
on the phonetic alphabet used during training.

However, training two separate networks — one for the bottleneck features extraction
and the second one for the posteriori probabilities estimation – can quickly become
a significant computational burden if not unfeasible completely. Because of that, the
bottleneck topology was used even for posteriori probabilities estimation purposes. See
the Fig. 7.2 for a demonstration of these two modes of operation.

7.2 Adaptation of Long Temporal Spectral Features

Given the feature extraction subsystem, the linear adaptation approach was adopted.
Specifically, the method developed and presented in this work belongs to the group of
methods adapting the first (input) layer of the network. The positive aspect of the linear
adaptation methods is that they can be applied either on the weight matrix or, in cases
when the weight matrix is fixed, on the input features. This duality resembles the duality
of the FMLLR/CMLLR methods.

7.2.1 Linear Adaptation of the Weight Matrix

Suppose a neural network is defined as described in the section 4.3. The n-th layer of the
network is a subject to a linear layer adaptation using a Kn ×Kn matrix Γ. A matrix
notation can be used to write the n-th layer of the MLP-ANN as

an = yT
n−1 · Γ · Ŵn (7.7)

yn = gn (an) , (7.8)

where Ŵn is the augmented form of the weight matrix containing the original weight
matrix Wn as well as the bias vector bT

n . As can be seen, only the Eq. (7.7) describing
the activation potential differs, the Eq. (7.8) defining the unit activation is unaffected by
the adaptation process.

Written in the scalar form, for an k-th element a
(n)
k of the vector an it holds

a
(n)
k =

∑
p

y(n−1)
p w̃

(n)
pk , (7.9)

where w̃
(n)
pk is the (p, k)-th element of the matrix W̃n = Γ · Ŵn, W̃n =

[
w̃(n)

]
pk

and can

be obtained as
w̃

(n)
pk =

∑
j

Γpjŵ
(n)
jk , (7.10)

66

7 Proposed Approach to Adaptation of a Neural Network

where Γpj is the (p, j)-th element of the matrix Γ and ŵ
(n)
jk is the (j, k)-th element of the

matrix Ŵ .

The matrix Γ can be determined using the approach that is used during training of the
neural network. Suppose an error function is defined that is to be minimized by a proper
choice of the adaptation parameters. On other words, the matrix Γ can be obtained by
solving the following equation

∂E

∂Γ
= 0, (7.11)

where E is the error function to be minimized, which can be equivalently written as a
set of D2

n equations

∂E

∂Γij
= 0, for all admissible pairs i, j, (7.12)

where Γij is the (i, j)-th element of the matrix Γ.

Using the chain rule, the quantity ∂E
∂Γij

can be rewritten as

∂E

∂Γij
=
∑
k

∂E

∂a
(n)
k

∂a
(n)
k

∂Γij
, (7.13)

where the quantities ∂E

∂a
(n)
k

= σ
(n)
k can be easily obtained using the formulae described on

the page 29.

Using the formulae Eq. (7.9) and Eq. (7.10), the activation potential a
(n)
k can be written

as

a
(n)
k =

∑
p

y(n−1)
p

∑
q

Γpqŵ
(n)
qk , (7.14)

so the quantity
∂a

(n)
k

∂Γij
can be written as

∂a
(n)
k

∂Γij
= y

(n−1)
i ŵ

(n)
jk . (7.15)

Substituting the Eq. (7.15) back into the Eq. (7.13) leads to

∂E

∂Γij
= y

(n−1)
i

∑
k

ŵ
(n)
jk σ

(n)
k , (7.16)

Using the equations Eq. (7.16) and Eq. (4.25) and Eq. (4.28), all the elements ∂E
∂Γij

can be evaluated. Any iterative gradient algorithm for minimizing the set of equations
defined by the Eq. (7.12) can be used. Usually, for practical reasons, the same method
used for neural network training is used for the adaptation as well.

67

7 Proposed Approach to Adaptation of a Neural Network

7.2.2 Minimum Error Linear Transform

The matrix Γ could be used for adaptation of the neural networks used in the experimental
systems, however given the length M of the LTSP vector, which is either 330 or 506 in
the case of the 8 kHz signal or 16 kHz signal respectively, the number of free variables is
330× 330 ≈ 217 or 506× 506 ≈ 218 in case of the 8kHz signal or 16kHz signal respectively.
Estimation of such number of variables robustly needs a significant amount of data, which
is, as has been already said, not the case in most adaptation scenarios.

It is possible, however, to assume that the matrix Γ has an inner structure, in other
words that Γ is a function of a G-dimensional vector variable γ ′, γ ′ = [γ′1, . . . γ

′
G] such

that
Γ = Γ (γ ′) , (7.17)

where presumably G�M . Assuming this, instead of optimizing the Eq. (7.12), the set
of equations

∂E

∂γ′i
= 0 for 1 ≤ i ≤ G (7.18)

must be solved. Moreover, because the error function is of the form

E(Ψ|γ ′) =
∑
q

Eq, (7.19)

the formula Eq. (7.18) can be rewritten as

T−1∑
q=0

∂Eq

∂γ′i
= 0 for 1 ≤ i ≤ G, (7.20)

where T is the number of adaptation samples. Using the chain rule, the expression ∂Eq

∂γ′i
can be expanded to

∂Eq

∂γ′i
=
∑
k

∂Eq

∂a
(n)
k

∂a
(n)
k

∂γ′i
(7.21)

=
∑
k

∂Eq

∂a
(n)
k

∑
lm

∂a
(n)
k

∂Γlm

∂Γlm
∂γ′i

, (7.22)

where the quantities ∂E

∂a
(n)
k

= σ
(n)
k and

∂a
(n)
k

∂Γlm
can be determined using the equations

Eq. (7.15) and Eq. (4.25).
The quantities ∂Γlm

∂γ′i
can be evaluated using the knowledge about the function Γ(γ ′),

that is about the structure of the matrix Γ. Unfortunately, there is no general way or
method that could be used. The problem of choice of the matrix structure involves a
significant insight into the problem.

In the case of the LTSP parametrization, one of the possibilities is to relate the linear
transform of the LTSP vector with the linear transform of the mel-filterbank outputs.

68

7 Proposed Approach to Adaptation of a Neural Network

f [Hz]1000 2000 3000 4000 6000 8000

q

f [Hz]1000 2000 3000 4000 6000 8000

q

Figure 7.3: The shift of location of the q-th filter as a result of mel-filterbank outputs
interpolation.

As has been already mentioned, the VTLN technique can be represented as a linear
transform. Therefore, a general linear transform of mel-filterbank outputs can be used as
a speaker normalization technique. Moreover, because of larger number of free variables,
it is possibly more powerful then VTLN, where the shape of the matrix is controlled by
only one free variable (the VTLN factor). See the Fig. 7.3 for a graphic illustration of
this process.

Given the vector of the mel-filterbank output x(t) = [x1(t), . . . , xQ(t),]T, the trans-
formed (speaker normalized) vector x̃(t) can be obtained as

x̃(t) = γx(t), (7.23)

where γ is a normalization matrix. The duality the matrix γ in the Eq. (7.23) vs. the vec-
tor γ ′ in the Eq. (7.17) can be resolved without any loss of generality by assuming that the
vector γ consists of elements of the matrix γ, i.e. γ = [γ11, . . . , γ1Q, γ21, . . . , γkl, . . . , γQQ]T,
where the element γkl is the (k, l)-th element of the matrix γ.

In the scalar form, the transform of a single element x̃i(t), which is the i-th element of
the vector x̃(t) can be written as

x̃i(t) =

Q∑
j=1

γijxj(t) = γix(t), (7.24)

where xj(t) is the j-th element of the original (unadapted) vector x(t) and γi is the i-th
row of the matrix γ.

69

7 Proposed Approach to Adaptation of a Neural Network

The adapted left trajectories of the i-th band is then

x̃t−i =

[
Q∑
j=1

γijxj(t−N) , . . . ,

Q∑
j=1

γijxj(t)

]T

=

Q∑
j=1

γij [xj(t−N) , . . . , xj(t)]
T

=

Q∑
j=1

γijx
t−
j ,

(7.25)

that is, the normalized trajectory of the i-th filter output can be obtained as a weighted
sum of the non-normalized trajectories. A similar result holds for the right trajectories.
In that case,

x̃t+i =

Q∑
j=1

γijx
t+
j . (7.26)

The next step in the normalized LTSP feature vector construction is the DCT. Because
of the linearity of the DCT, the DCT of a normalized vector is

d̃t−i = DCT
w(n)

[
x̃t−i
]

= DCT
w(n)

[
Q∑
j=1

γijx
t−
j

]

=

Q∑
j=1

γij

[
DCT
w(n)

xt−j

]

=

Q∑
j=1

γijd
t−
j

(7.27)

that is, the normalized vector d̃t−i can be obtained as a weighted sum of the non-normalized
vectors dt−j . Similarly for the vector d̃t+i .

The normalized LTSP vector χ̃(t) consists of the normalized vectors d̃t−(i) and d̃t+(i)
concatenated, i.e.

χ̃(t) =
[
d̃t−(1), . . . , d̃t−(Q), d̃t+(1), . . . , d̃t+(Q)

]T

=

[
Q∑
j=1

γ1jd
t−
j , . . . ,

Q∑
j=1

γQjd
t−
j ,

Q∑
j=1

γ1jd
t+
j , . . . ,

Q∑
j=1

γQjd
t+
j

]T

= Γχ(t),

(7.28)

70

7 Proposed Approach to Adaptation of a Neural Network

where the matrix Γ has the following shape

Γ =

γ11 . . . γ1Q 0 . . . 0
...

. . .
...

...
. . .

...
γQ1 . . . γQQ 0 . . . 0
0 . . . 0 γ11 . . . γ1Q
...

. . .
...

...
. . .

...
0 . . . 0 γQ1 . . . γQQ

, (7.29)

whose block elements γij are diagonal D ×D matrices

γij = γij

1 . . . 0
...

. . .
...

0 . . . 1

 . (7.30)

The partial derivative ∂Γlm

∂γ′k
= ∂Γlm

∂γij
is then

∂Γlm
∂γij

=

1 if bl − 1/Dc = i− 1

and bm− 1/Dc = j − 1

and m mod D = l mod D

1 if bl − 1/Dc = DQ+ i− 1

and bm− 1/Dc = DQ+ j − 1

and m mod D = l mod D

0 else

, (7.31)

which, in turn can be used[83] for simplification of the Eq. (7.22)

∂Eq

∂γij
=
∑
k

∂Eq

∂a
(l)
k

∑
lm

∂a
(l)
k

∂Γlm

∂Γlm
∂γij

(7.32)

=
∑
k

∂Eq

∂a
(l)
k

Tr

[∂a(l)
k

∂Γ

]T
∂Γ

∂γij

 , (7.33)

where

∂a
(l)
k

∂Γ
=

∂a

(l)
k

∂Γ11
. . .

∂a
(l)
k

∂Γ1M
...

. . .
...

∂a
(l)
k

∂ΓM1
. . .

∂a
(l)
k

∂ΓMM

 (7.34)

and

∂Γ

∂γij
=

∂Γ11

∂γij
. . . ∂Γ1M

∂γij
...

. . .
...

∂ΓM1

∂γij
. . . ∂ΓMM

∂γij

 (7.35)

71

7 Proposed Approach to Adaptation of a Neural Network

7.2.3 Choice of the Error Function

The choice of the error function E(·) (eventually Eq(·)) affects the statistical properties
of the γ estimate. Usually, the same error function that was used for the SI network
training is used during the adaptation phase. In the case, when the cross-entropy error
function from the Eq. (4.19) is used, possibly in combination with the softmax activation
function from the Eq. (4.14) in the output layer, the resulting estimator of γ has some
attractive properties.

Suppose, a set of adaptation data Ψ is given and the cross-entropy error function is
used for the speaker adaptation.

Let the training data be created by virtue of force-aligning a single utterance ξ
represented by a sequence of the LTSP vectors χ(0), . . . ,χ(T − 1) and a reference
transcript W . The force-alignment procedure determines a sequence s, s = s0, . . . , sT−1,
which is the most probable sequence of states the vocal tract went through while producing
the utterance ξ given the reference transcript W .

The sequence s is then used to create the teacher information (or target) sequence
t0, . . . , tT−1 where each vector was constructed as follows. Given the “correct” state sq
in the time instance q, a hard-label2 vector tq, tq = [tq1, . . . , tqP]T is created. For every
element tqi, 1 ≤ i ≤ P , of the vector tq holds

tqi =

{
1 if i = sq

0 else.
(7.36)

Assume now that the neural network is trained sufficiently, so that it can be assumed
that the elements oqi of the output vector oq = [oq1, . . . , oqi, . . . , oqP]T approximate the
posteriori probability p(i|χ(q)), i.e. oqi = p̃(i|χ(q)).

The error contribution Eq of the q-th observation vector χ(q) will be

Eq = −
∑
r

lim
t→tqr

t ln
oqr
t

= − ln p̃(sq|χ(q)), (7.37)

where p̃ (sq|χ(q)) is the estimate of probability of the state sq (i.e. the “correct” state)
given the observation χ(q) and the fact that the identity

lim
t→0+

t ln
oqr
t

= 0 (7.38)

was used. The complete error E is then

E =
∑
q

Eq = −
∑
q

ln p̃ (sq|χ(q)) , (7.39)

which is the log-likelihood function. Minimizing E with respect to γ, i.e.

γ? = arg min
γ

E(Ψ,γ) = arg max
γ

∑
q

ln p̃(sq|χ(q),γ), (7.40)

2A hard-label is a technical term used to emphasize the fact that the vectors are created by 1-of-n
coding and the position of the 1 value represents the most probable state.

72

7 Proposed Approach to Adaptation of a Neural Network

means that in this case, the normalization parameters γ are estimated in such way that
maximizes the likelihood of the seen utterance.

Maximum likelihoods estimator have several positive asymptotic properties, including
consistency, asymptotic normality and efficiency[84].

7.3 Using the MELT Normalization

7.3.1 Selection of the Number of Free Variables

The structure of the mel-filterbank normalization matrix can be tweaked to choose lower
or higher number of free variables. This is a very attractive property, when dealing
with limited amount of data. Moreover, the number of free variables can be chosen on
per-speaker basis.

As has been said, the multiplication of the mel-filterbank by a matrix γ can be
interpreted as interpolation of the mel-filterbank.

Conceptually, the interpolation can be seen as shifting the triangle-shaped filter either
to the left or to the right (which is exactly what is happening during the VTLN) and
changing the gain (the “amplification”) of the filters.

The control of the number of free variables is done through the number of diagonals of
the matrix γ. In the context of this work, the following convention will be used.

The number of diagonals is controlled via the MELT factor. Suppose the MELT factor
is k, 0 ≤ k ≤ Q, which will be written more conveniently as MELT = k, then the number
of diagonals is equal to 1 + 2(k − 1) if k ≥ 1. The case when k = 0 will be discussed
separately.

Now let’s consider the case, when MELT = 1, i.e. when the Q×Q matrix γ is only a
single diagonal matrix γ,

γ =

γ11 · · · 0
...

. . .
...

0 · · · γQQ

 . (7.41)

In that case, only the gain of the individual filters is controlled, no shift of the filter in
the frequency range is done.

With increasing number of diagonals the number of free variables increases as well as
the interpolation capability. For example, when MELT = 2, a tridiagonal matrix γ,

γ =

γ11 γ12

γ21 γ22 γ23

.

γQ−1 Q−2 γQ−1 Q−1 γQ−1 Q

γQ Q−1 γQQ

 , (7.42)

is used for interpolation, the left and the right neighbors are used to determine the shift.
Now, let’s consider the aforementioned boundary situation, when MELT = 0. In

the context of the MELT framework, this situation may be, albeit somewhat forcefully,

73

7 Proposed Approach to Adaptation of a Neural Network

defined as a transformation using a transformation matrix γ of the shape

γ =

1 · · · 0
...

. . .
...

0 · · · 1

 . (7.43)

This is a very useful convention, albeit mainly from formal reasons. This allows us to
include the situation, when no adaptation is actually performed, i.e. x′(k) = x(k), in
the MELT framework.

An incremental adaptation can be performed as well – additional diagonals can be
added to an already existing matrix, when new speaker-specific data is acquired. The
new data can be used to determine the coefficients of the newly added diagonals. Of
course, this approach can be inferior to the approach when all the speaker-specific data
are used to determine all needed coefficients, but sometimes, the previous data are not
available.

7.3.2 Selection of the Normalization Locus

The MELT normalization technique establishes a link between the mel-filterbank trans-
form and the input layer adaptation.

The speaker adapted system can be obtained in three fashions.

1. An speaker-adapted neural network can be obtained by replacing the original
augmented input layer Ŵ1 by the adapted layer W̃1 obtained as W̃1 = Ŵ1Γ. This
results in virtually zero increase of the computational demands (only one matrix
multiplication is needed during the SA recognition system startup)

2. Instead of the original mel-filterbank output x(t), the normalized filterbank output
x̃(t) obtained as x̃(t) = γx(t) can be used for LTSP feature vectors construction.
This approach has moderate computational demands increase.

3. Instead of the original LTSP vector χ(t), the normalized LTSP vector χ̃(t) obtained
as χ̃(t) = Γχ(t) can be fed into the SI neural network. This approach has significant
computational overhead and the previous two methods should be favored. In some
real world applications, however, this can be the only way how to employ the speaker
normalization.

7.3.3 The Adaptation Algorithm

The adaptation process is quite straightforward and the algorithm is close to the algorithm
of the backpropagation used during the training of the ANN weights.

1. First, the MELT factor is chosen and the matrix γ is initialized. A suitable
initialization is γ = I, I being the unity matrix.

2. The error function E is chosen.

74

7 Proposed Approach to Adaptation of a Neural Network

3. The set of equations Eq. (7.18) or Eq. (7.20) is solved. For solving it, an iterative
method is to be used.

a) The speaker-specific feature vectors are propagated through the adapted ANN
– see the previous subsection for info on possible ways how to perform the
adaptation.

b) For computation of quantities ∂Eq

∂γij
= ∂Eq

∂γ′k
, the Eq. (7.33) is used.

i. In the Eq. (7.33), the elements
∂a

(n)
k

∂Γij
of the matrix

∂a
(l)
k

∂Γ
can be evaluated

using the Eq. (7.15)

ii. In the Eq. (7.33), the elements ∂Γlm

∂γij
of the matrix ∂Γ

∂γij
can be evaluated

using the Eq. (7.31).

iii. In the Eq. (7.33), the quantities ∂Eq

∂a
(l)
k

, can be evaluated using the backprop-

agation algorithm (see the Eq. (4.28)).

c) Use the gradients accumulated in the previous step to perform an update of
the matrix γ. Evaluate the stopping criterion. If the criterion is not met, go
back to a).

7.4 Conclusion

In this chapter, a novel adaptation technique called MELT (Minimum Error Linear
Transform) was introduced. The MELT adaptation technique was developed for an
hybrid speech recognition system using the LTSP features during acoustic modeling.

The positive aspects of the MELT method are as follows

1. Variable number of free variables.

2. The method is computationally efficient during adaptation phase.

3. Ties together mel-filterbank interpolation normalization and LTSP normalization.

4. Flexible, it can be applied either on the mel-filterbank outputs or on the LTSP
vector or on the weight matrix of the input layer.

5. Based on application, it is possible to achieve zero computational overhead during
the recognition phase.

6. Under circumstances relatively common in the field of the hybrid speech recognition,
it can be proven that the normalization parameters are estimated in a maximum-
likelihood fashion.

75

8 Speech Corpora Used In This Work

8.1 The Czech SpeechDat(E)

The Czech SpeechDat(E) is a Czech portion of the SpeechDat(E) speech corpus. The
SpeechDat(E) is a telephone speech corpus targeted primarily at a construction of
telephone IVR systems. The design of the corpora is detailed in [18]. The content of the
database consists of several types of utterances: isolated digits, number strings, natural
numbers, money amounts, yes/no questions, dates, times, application keywords/command
phrases and phonetically rich words and sentences.

The Czech portion contains recordings from 1052 speakers (526 males and 526 females).
Due to the date of creation of the database, the recordings cover only the land-line
telephone network.

For purposes of this work, only the set of 12 phonetically rich sentences was used for
training, since the incorporation of other types of utterances could result in phonetically
unbalanced (thus unrepresentative) training data. Using only the mentioned corpora
portion, about 50 seconds of speech was available for each of the speakers.

For evaluation purposes, the sentences defined in testing portion of database1 (200
speakers) were used. The training portion of database2 (852 speakers) was split to the
training (700 speakers) and the development set (152 speakers).

The audio is sampled at 8 kHz and stored as 8-bit A-law.

To speedup the training, instead of flat-alignment, a phone-level alignment was used
that was obtained by means of force-aligning the reference transcript by an existing
proprietary HMM/GMM speech recognition system. The SAMPA phonetic alphabet
(44 phonemes) was reduced. Specifically, the long (/a:/, /e:/, /i:/, /o:/, /u:/) and the
corresponding short vowels (/a/, /e/, /i/, /o/, /u/) were merged into one phoneme. The
reasoning was as follows. Since the short and the corresponding long vowel variants differ
only in duration, their spectral envelope stays the same. The duration should be modeled
in the later stages of recognition process (i.e. in HMM) and not in the neural network.

The LTSP coefficients were obtained using these parameters: analysis window 25 ms,
10 ms shift, 15 log-mel coefficients, DCT-len 11. The resulting LTSP vector was 330
elements long.

1A3TSTCS.SES
2A3TRNCS.SES

76

8 Speech Corpora Used In This Work

8.1.1 Phoneme Level Language Model

For the phoneme language model, the training data of the SpeechDat(E) database were
used. For the estimation of probabilities of unseen n-grams the SRI Language Modeling
Toolkit(SRILM) implementation of Ristad’s natural discounting law ([92]) was used.
During the n-gram modeling, two additional n-grams were added to allow for modeling
the start and the stop of an utterance. The n-gram coverage can be found in the Table 8.1.

n-gram order 1 2 3 4 5 6 7 8
counts 40 1315 18742 136084 459970 824924 1004876 1002513

Table 8.1: SpeechDat(E) corpus phoneme coverage

8.2 The DARPA TIMIT Acoustic-phonetic Continuous
Speech Corpus

The TIMIT Corpus[34] is a corpus of English read speech designed to provide data for
automatic speech recognition system. Because of its age, it is relatively small in size
(compared to the speech corpora sizes nowadays).

The corpus contains recordings of 630 speakers, grouped into 8 groups according
to the speaker’s dialect. The speaker set was selected to provide a sufficient covering
of 7 distinctive dialect regions. Additionally, an eighth group called “Army Brat” is
introduced that covers the speakers who frequently moved during their childhood.

Every speaker recorded 10 sentences, thus the corpora contains 6300 sentences in total
(5.4 hours). From the total of 10 sentences, 2 sentences are referred to as dialectal type
sentences, 5 sentences as phonetically compact and 3 sentences as phonetically diverse.
The dialectal sentences were designed with the intention of exposing the dialectal varieties
and thus, all speakers uttered the same two text prompts. The phonetically compact
sentences were designed to provide as diverse coverage of phone pairs as possible. Special
care was paid to introduce the occurrences thought to be either difficult or of particular
interest. The phonetically diverse sentences were selected from existing text corpora.
The selection process was based on maximization of the variety of allophonic contexts
found in the texts.

Sentence Type #Sentences #Speakers Total #Sentences/Speaker

Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3
Total 2342 6300 10

Table 8.2: TIMIT speech material, from [38]

The recordings are sampled at 16 kHz and stored as 16-bit linear PCM (compressed
using the lossless shorten compression algorithm[95]). The TIMIT corpus includes

77

8 Speech Corpora Used In This Work

time-aligned orthographic, phonetic and word transcriptions. Moreover, the testing and
training sets are defined thoroughly. The training set contains 4620 utterances, however
usually the dialect sentences are omitted, which results in 3696 sentences (≈ 3.5 hours of
speech) and the test set (again, with dialect sentences omitted) consists of 1344 sentences
(≈ 1 hour of speech).

The fact that detailed orthographic and phonetic alignments are provided makes this
corpus a suitable corpus for basic experiments. Because its size is generally considered
large enough to provide an unbiased view on the methods’ performance while small
enough to provide a fast turnaround time for experiments, it is generally considered as a
standard database for speech recognition[71]. Due to its limited size, the applicability of
the obtained acoustic models in the real-world is somewhat limited.

The phonetic alphabet used in the corpora was inspired by ARPABET. For automatic
speech recognition purposes, the original alphabet (61 phones) is usually compacted into
a 39 phones alphabet[68].

The LTSP coefficients were obtained using these parameters: analysis window 25 ms,
10 ms shift, 23 log-mel coefficients, DCT-len 11. The resulting LTSP vector is 506 elements
long.

8.2.1 Phoneme Level Language Model

For the phoneme language model, the training data of the TIMIT database were used.
For the estimation of probabilities of unseen n-grams, the SRILM implementation of
Ristad’s natural discounting law ([92]) was used. During the n-gram modeling, two
additional n-grams were added to allow for modeling the start and the stop of an utterance.
The Table 8.3 shows the n-gram coverage.

n-gram order 1 2 3 4 5 6 7 8
counts 41 1294 9775 17086 15543 13438 121146 11127

Table 8.3: TIMIT corpus phoneme coverage

8.3 WSJCAM0 Cambridge Read News

The Cambridge Read News corpus is a corpus complementing the original DARPA
Continuous Speech Recognition Corpus (CSR-I) WSJ0. However, the original CSR-I (or
WSJ0) corpus contains recordings of American English speakers, the WSJCAM0 contains
recordings of native British English speakers.

The corpus is comprised of recordings of 140 speakers. The training part of the corpus
consists of 92 speakers (39 females and 53 males). The development test set consists of 20
speakers and each of the two evaluation test sets consists of 14 speakers. Approximately
90 sentences and an additional common set of 18 adaptation sentences has been recorded
for each speaker. The adaptation sentences were selected from the set of 40 adaptation
sentences in the WSJ0 corpus[37].

78

8 Speech Corpora Used In This Work

The sentence sets prepared for the speakers participating in the recording of the
evaluation test set and the development test set were selected specifically in such a
manner that the first 40 sentences contained only words from a fixed 5000 word vocabulary
(denoted as 5k-closed) and the other 40 sentences contained words from a fixed 64000
word vocabulary (denoted as 20k-open).

Recordings were made from two microphones: a far-field desk microphone and a
head-mounted close-talking microphone. For the experiments, only the far-field desk
microphone recordings were used. The recordings are sampled at 16 kHz and stored as
16-bit linear PCM (compressed using the lossless shorten compression algorithm[95]). The
total amount of audio data available for training is approximately 18 hours, accompanied
by 2 hours of development audio and 3 hours of evaluation (test) audio.

The WSJCAM0 alphabet was modified in a way similar to [68]. Moreover, for historical
reasons3, the phonemes /aa/ and /ao/, /ah/ and /ax/, /sh/ and /zh/ were merged. The
resulting alphabet consists of 44 phonemes. Besides the three new phonemes covering
British English (/oh/ for the vowel in “pot”, /ia/ in “peer”, /ea/ in “pair” and /ua/ in
“poor”), the alphabet is identical to the alphabet used during the TIMIT experiments.

The LTSP coefficients were obtained using these parameters: analysis window 25 ms,
10 ms shift, 23 log-mel coefficients, DCT-len 11. The resulting LTSP vector is 506 elements
long.

8.3.1 Phoneme Level Language Model

For the phoneme language model, only the training data of the WSJCAM0 corpus was
used. For the estimation of probabilities of unseen n-grams, the SRILM implementation
of Ristad’s natural discounting law ([92]) was used. During the n-gram modeling, two
additional n-grams were added to allow for modeling of start and the stop of an utterance.
The Table 8.4 shows the n-gram coverage.

n-gram order 1 2 3 4 5 6 7 8
counts 44 1391 14707 50449 83152 96420 98617 97351

Table 8.4: WSJCAM0 Phone-level order n-gram counts for lm-small language model

8.3.2 Word Level Language Model

For experiments with a word-level LVCSR, three different language models were used.
For simplicity, they will be referred to as lm-zero, lm-small and lm-big.

• The language model lm-zero is a zerogram language model. There are 1576
words in the recognition network.

• The language model lm-small is a bigram language model that was trained on
the training and the development portions of the transcripts from the WSJCAM0

3to retain a compatibility with the American English alphabet used in our department

79

8 Speech Corpora Used In This Work

corpus. The modified Knesser-Ney smoothing for interpolation with no bigram
cutoff was used. Owing to the fact that both the training and the development
data were used, there are no OOV words during the training and the tuning phase.
The Table 8.5 shows the n-gram coverage.

n-gram order 1 2
counts 12075 74388

Table 8.5: WSJCAM0 Word-level order n-gram counts for lm-small language model

• The language model lm-big is a trigram language model that was trained from the
English Gigaword Corpus (1200M of tokens) using the English Gigaword language
model training recipe4. For the interpolation, the modified Knesser-Ney smoothing
method was used (as implemented in the SRILM toolkit). For cutoffs, bigram
cutoff 3 and trigram cutoff 5 were used. The dictionary size was limited to the
most frequent 64000 words. Because other than WSJCAM0 corpus data were used
for the language modeling, there are OOV words even during the training phase.
The Table 8.6 shows the n-gram coverage.

n-gram order 1 2 3
counts 64000 6501697 12151781

Table 8.6: WSJCAM0 Word-level order n-gram counts for lm-big language model

8.4 Conclusion

In this chapter, the speech corpora used in this thesis were introduced and described. The
speech corpora were chosen specifically to cover a wide range of possible variations. The
size of speech corpora varies from small (TIMIT) to medium (SpeechDat(E), WSJCAM0).
Moreover, the corpora cover two languages (or three, if the American English and the
British English are seen as different languages) and different recording conditions – either
telephone bandwidth or desc microphone bandwidth.

4http://www.keithv.com/software/giga/

80

http://www.keithv.com/software/giga/

9 Experiments and Results

9.1 Preliminary Experiments

The first battery of experiments was run on the two smaller databases – the TIMIT
and the SpeechDat(E). Its purpose was, for one thing, to verify the implementation
of neural network training software and, for another, to verify the functionality of the
proposed adaptation method and the method’s implementation and to evaluate the
possible improvements of the recognition accuracy. Moreover, the experiments were used
to formulate the adaptation strategy.

9.1.1 Objectives of the Preliminary Experiments

The first objective of the preliminary experiments was to validate the software developed
in a partial fulfillment of the scope of this work. To accomplish this, the SpeechDat(E)
and the TIMIT corpora were chosen. The reason, why the SpeechDat(E) was chosen
is that the Czech speech recognition is of major interest in the author’s supervisory
department. The reason, why the TIMIT was chosen is that using this de-facto standard
English speech corpus will enable evaluation of the performance of the training system
and the resulting phone recognition system in the scope of world-wide research.

Different neural network topologies, mainly with the 1CTX (single context network)
topology and the LCRC (left context, right context network) topology were experimented
with. Moreover, the influence of a different number of neurons in the hidden layer on the
recognition accuracy was evaluated.

The second objective was to evaluate a suitable adaptation strategy. Before thorough
testing of any proposed adaptation method, it is beneficial to answer basic questions
about adaptation procedures. Some of these elementary questions include whether to
include the frames containing silence into the speaker-specific data and how much of the
adaptation data is actually needed to see any recognition accuracy improvements, when
using the speaker-adapted model. It is always beneficial to cross-check the findings on
multiple speech corpora.

Several experiments were performed to evaluate the sensitivity of the recognition
accuracy on choices of the adaptation matrix structure and/or different choices of phoneme
classes that the adaptation should be performed on.

The shape of the matrix γ was either “diag” representing a diagonal matrix or “band”
representing a tridiagonal matrix. The class of phonemes the adaptation was performed
on is denoted by either “all”, representing adaptation on all phoneme classes or “nosil”
representing adaptation on all phonemes except silence and non-speech event classes and,

81

9 Experiments and Results

finally “vowel” representing adaptation only on vowel phonemes.

Regularization Influence

In some cases, when not enough data is available, regularization approach can be used
as a remedy of this problem. Intuitively, the regularization increases “stiffness” of the
adaptation task, i.e. prevents the values of γ from diverting too much from some other,
a-priori chosen, valid solution.

To compute the regularization cost, the Frobenius norm in the form of

Er = ‖γ − I‖F (9.1)

was used, where I denotes the unity matrix. In this case, the solutions that are too
far (in the sense of the Frobenius norm) from the unity matrix, are penalized. Since
the optimal ratio between the training error and the regularization error is unknown,
the Eq. (7.19) is modified to include the term Er in the following way

E(Ψ|γ) =
∑
q

Eq + κEr(γ), (9.2)

where the constant κ is called the regularization coefficient and is usually determined by
choosing its value from a predefined set of weights. The error criterion Eq. (9.2) is then
optimized instead of the original criterion given by the Eq. (7.19). The gradient of the
modified (regularized) error function is then

∂E(Ψ|γ ′)
∂γi

=
∑
q

∂Eq

∂γ′i
+ 2κγ′i for 1 ≤ i ≤ G, (9.3)

where T is the number of adaptation samples. It is worth noticing that if κ = 0, the
criterion Eq. (9.2) turns back into the original criterion Eq. (7.19).

9.1.2 Experiments Performed on the SpeechDat(E) Corpus

Baseline System

The baseline SI network was trained on the complete training part of the corpus. Two
test sets were defined. The first test set was identical to the official SpeechDat(E) test set.
It was used to compare the performance of the SI system to other research labs’ results.
Unfortunately, the SpeechDat(E) does not specify an adaptation test set. Therefore,
the other test set, intended for the adaptation evaluation, had to be prepared using the
procedure described below.

From the official testing set, the 97 speakers that were represented by all 12 sentences
were selected. For each speaker, the appropriate set of 12 utterances was split randomly
into a set of 10 utterances and a set of the 2 remaining utterances. The sets of 10
sentences were used as the adaptation data and the sets of 2 sentences as the test data.

82

9 Experiments and Results

The audio recordings are about 6–8 seconds long; however the utterances themselves
are just about 2–5 seconds long. Taking only the actual speech into account, there was
approximately 40 seconds of speech data available to adapt the neural network on.

The baseline scores are as follows.

• Baseline: UWB, Acc = 77.35 %

– UWB phon. alphabet

– 1CTX-1500, ≈ 660k parms

• Comparison: BUT1, Acc = 75.76 %

– Sampa phon. alphabet

– LCRC-1500, ≈ 1.6M parameters

• Adaptation test set, before adaptation Acc = 75.63 %

– Adaptation on approx. 40 seconds of speech

Please note that the phonetic alphabets used in the UWB recognizer and in the BUT
recognizer differ from each other. To allow a fair comparison, a third alphabet, called
“merged” alphabet, was designed and the texts subjected to comparison were translated
into it. The alphabet was created by means of merging the ambiguous phones into a
single phonetic table entry.

The proposed merging approach dealt primarily with ambiguities originating mainly
from voiced and devoiced variations of the same phoneme and from different pronunciation
variants. When both the recognized phonemic sequences were translated into the merged
alphabet, accuracy of them both was evaluated individually. According to the scores, no
system performed statistically significantly better than the other.

Comparison Against the VTLN

First, preliminary experiments to verify the performance gain (or loss) against the bilinear
VTLN were performed. Using the SI ANN, the testing data set was recognized. The
recognized output was then used as a reference phone alignment and the computation of
normalization factors was performed on the recognition result instead of on the reference
phonetic transcript. Please note that these results originate from a different development
stage of the MELT system, thus even the baseline results differ. The important message
here is, however, that MELT performs better than VTLN. The overall results can be
found in the Table 9.1. The symbols ANN-1500 and ANN-2500 denote that neural
networks with 1500 and 2500 neurons in the hidden layer were used.

1Brno University of Technology: Phoneme Recognizer based on Long Temporal Context, http://
speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context

83

http://speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context
http://speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context

9 Experiments and Results

base VTLN MELT=2

ANN-1500 76.64 80.16 80.20

ANN-2500 79.25 81.20 81.51

Table 9.1: Comparison of the MELT and the VTLN performance (Acc) when the reference
transcript is unknown

Adaptation Performance

The experimental results are shown in the Table 9.2. Using the MELT method with a
tri-diagonal matrix (MELT = 2), in the table denoted as band nosil, the adaptation
process improved the recognition score of about 1 %.

κ = 0 κ = 10 κ = 100 κ = 500 κ = 1000
band all 75.30 75.30 75.54 75.92 75.87
band nosil 76.54p=0.003 76.45 76.30 76.11 75.63
diag all 74.92 75.06 74.92 76.02 75.73
diag nosil 75.87 76.07 75.92 75.49 75.49
diag vocal 75.87 75.87 75.83 76.26 76.07

Table 9.2: SpeechDat(E): Recognizer accuracy (Acc) given the adaptation scheme and
the regularization coefficient κ

For the best combination of the regularization constant and the adaptation matrix γ
shape, the Wilcoxon signed rank test under the null hypothesis that median of the differ-
ence between the unadapted and adapted networks is zero was performed. The p-value
was p = 0.003, which is sufficient to reject the null hypothesis at the level α = 0.003.

As already has been said, the experiments on the SpeechDat(E) were supposed to
provide an insight into the correctness of the neural network training software. As can
be seen from the comparison of the baseline to the BUT system, the baseline performs
on par with the BUT system, yet with only 40 % of parameters (660k vs. 1.6M).

9.1.3 Experiments Performed on the TIMIT Corpus

Baseline System

The basically same set of experiments was performed on theTIMIT corpus as well. The
official TIMIT test set was used for the evaluation of the SI system performance. For the
evaluation of the adaptation performance, a modified test set was created as follows. The
speaker dialect region sentences (2 sentences per speaker) were used as the adaptation
data and the rest of sentences (8 sentences per speaker) were used for the evaluation of
the adaptation performance.

• Baseline : UWB, Acc = 76.65 %

84

9 Experiments and Results

– CMU phon. alphabet

– LCRC-300, ≈ 330k parameters

• Comparison: BUT2, Acc = 75.76 %

– CMU phon. alphabet

– LCRC-500, ≈ 550k parameters

• Unadapted subset Acc = 78.04 %

– Adaptation on approx. 12 seconds of speech

Both the baseline and the reference system (BUT[100]) were using the same phonetic
alphabet, so a direct comparison was possible. From the comparison it is clear that the
system trained using the software developed in partial fulfillment of this thesis goals
performs better, while it uses only 60 % of the BUT system parameters.

Adaptation Performance

κ = 0 κ = 10 κ = 100 κ = 500 κ = 1000
band all 75.30 75.30 75.54 75.92 75.87
band nosil 78.12 78.30 78.34 78.58 78.75p=0.017

diag all 74.92 75.06 74.92 76.02 75.73
diag nosil 78.38 78.34 78.36 78.60 78.72
diag vocal 75.87 75.87 75.83 76.26 76.07

Table 9.3: TIMIT: Recognizer accuracy (Acc) given the adaptation scheme and the
regularization coefficient κ

Because the number of adaptation data was quite small (12 seconds per speaker), the
regularization turned up as beneficial. The improvement of about 0.7 % might seem
small, but it is statistically significant nonetheless. The statistical significance test was
performed using the Wilcoxon signed rank test.

9.1.4 Conclusion and Findings of the Preliminary Experiments

The preliminary experiments suggest that the software and the procedure used for SI
neural network training is fully functional. Moreover, the resulting phoneme recognition
system performs at least the same as the reference system, while keeping the number of
parameters significantly lower (40 % – 60 % of the number of parameters of the reference
system). The most probable cause is the training algorithm. Instead of a gradient descent
algorithm, the L-BFGS and the iRPROP (for reference, please refer to the subsection 4.6.3

2Brno University of Technology: Phoneme Recognizer based on Long Temporal Context, http://
speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context

85

http://speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context
http://speech.fit.vutbr.cz/en/software/phoneme-recognizer-based-long-temporal-context

9 Experiments and Results

of this work) algorithms were implemented and used for the neural network training.
When compared to a steepest gradient descent optimization, these two algorithms provide
faster convergence and are possibly less prone to stopping in local minima.

As for the adaptation algorithm, the preliminary experiments suggest that the algorithm
as well as the implementation are functional. Moreover, the experiments suggest that
possibly more than 20–30 seconds of speech is necessary. The adaptation should be
performed only on clean speech, the non-speech events and silent parts of adaptation
utterances shall be removed.

Finally, it can be concluded that the method is sensitive to the number of free variables
(cf. comparison between diag and band) and a more thorough evaluation of this sensitivity
should be provided.

9.2 WSJCAM0 – The Main Experimental Corpus

9.2.1 Experiment Flowchart

Three sets of experiments were designed. The first two sets are based on the recogni-
tion of phonemes and words using the posterior probabilities estimates. The posterior
probabilities estimates are computed using a fully trained neural network, converted to
likelihoods (using the a-priori probabilities of individual states) and recognized using an
HMM decoder.

The third set of experiments is somewhat different. Instead of using the outputs of the
neural network, the bottleneck features can be extracted (see the subsection 7.1.2 for
reference). These features are then used instead of the commonly used MFCC features
to train a GMM/HMM system.

Hybrid LVCSR
Word Recognizer

MLP-ANN Phoneme Recognizer

Bottleneck LVCSR
Word Recognizer

posteriors

posteriors

bottlenecks

Figure 9.1: WSJCAM0 Experiments flowchart

For all these experiments, the same neural network was used. First, a SI network
suitable both for bottleneck features production and posterior probabilities estimates was
trained. Using this network, the bottleneck features on the training and the development
sets were extracted and the Bottleneck LVCSR system was trained.

86

9 Experiments and Results

During the SAT, the reference phonetic transcript was used and the teacher information
vectors were generated by means of force aligning the phonetic transcript using the
likelihoods obtained using the posterior probabilities estimates. After the SAT was
finished, the adapted bottleneck features were extracted and the SAT Bottleneck LVCSR
system was trained.

9.3 WSJCAM0 – The Reference System

The reference recognition system is a common MFCC based GMM/HMM system. The
parametrization process was performed as follows. The mel-filter bank coefficients were
extracted from signal window 25 ms long at the frame rate of 10 ms. The coefficient were
transformed to 13 cepstral coefficients using the DCT and the mean normalization was
performed. The ∆ and ∆∆ (or acceleration) coefficients were computed from the raw
MFCC coefficients and the feature vector was augmented using these. Therefore, the
total number of features is 39.

The Table 9.4 contains performance metrics of the reference system. The notation
is as follows. The overall recognizer accuracy per sentence is denoted as Acc, the 2.5%
(CIAcc−(%)) and the 97.5% (CIAcc+(%)) confidence percentiles (representing the 95%
confidence interval) of the accuracy per speaker were determined using the percentile
corrected bootstrap method and the value denoted as σ is the standard deviation of the
per-speaker recognition accuracy.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_tr 92.28 91.84 92.64 1.9
si_dt 85.26 82.34 87.17 5.5
si_et 83.64 81.13 85.41 5.8

Table 9.4: WSJCAM0: The recognition score of the reference (a GMM/HMM) system

9.3.1 Comparison of the Reference System

To verify the performance of the reference system and, consequently, to establish the
credibility of the baseline system performance, the reference system was compared against
other systems that use the WSJCAM0 test corpus. Because the papers usually report
scores on different subsets, the previously mentioned scores are not directly usable.
Therefore, the scores were computed using the procedures and subsets mentioned in the
compared papers. Moreover, if the WER measure was used instead of the Acc measure,
it was transformed to the Acc measure.

In the very new paper [120], the used GMM/HMM system is reported to achieve
88.12 % and 86.93 % on the subsets dt5a and dt5b respectively. This compares favorably
to our numbers on the same datasets: 88.62 % and 88.08 %.

The authors of the corpus published a technical report [96] comparing their recognition
accuracy (88.6 % on si dt5 and 82.1 % on si dt20) with the previously published

87

9 Experiments and Results

N
u

m
b

er
o
f

sp
ea

k
er

s

0

1

2

3

4

5

6

7

8

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
−

2
σ

=
7
2
.0

%

µ
−
σ

=
8
2
.4

%

µ
=

8
5
.7

%

N
u

m
b

er
o
f

sp
ea

k
er

s

0

1

2

3

4

5

6

7

8

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
−

2
σ

=
7
4
.3

%

µ
−
σ

=
7
9
.8

%

µ
=

8
5
.3

%

Figure 9.2: Reference system – Recognition accuracy histogram on si dt (left) and si et

(right) sets

WSJ0 corpus to prove the correctness and consistency of the WSJCAM0 corpus. The
Abbot recognition engine was used to obtain these numbers. At the time of writing
the paper, the Abbot was regarded as a state-of-the-art recognition system and used
up-to-date techniques including the ANNs and a fusion of four frontends. The standard
November 1993 WSJ0 language model[37] was used. Performance numbers on these
subsets of the reference system are: 88.3 % and 82.4 %. The authors of paper [123] report
87.2 % Acc on si dt5b (the reference system has 88.3%).

Two other authors used the HTK and report very similar scores. In paper [5], the
bigram language model from the original WSJ0 corpus[37] was used. Using this setup,
the authors report 68.6 % Acc. Likewise the authors [57] achieved a similar Acc of 69.1 %.

Moreover, a Ph.D. thesis [22] discussing the possibility of inclusion of the eye move-
ment modality into a LVCSR system reports performance on the WSJCAM0 corpus.
Specifically, the work publishes performance scores on three different sets: 21.0% on the
si dta set and 20.81% on the si dtb set and 20.91% on the combined si dta+si dtb

set. These scores are obtained using a bigram backoff language model trained on the
WSJCAM0 training and evaluation data.

9.4 WSJCAM0 – Results for the Baseline (Unadapted)
System

9.4.1 Phoneme Recognition

The feature vectors have a quite long temporal span. It can be argued that even though
the neural network models use only monophones (or more precisely, it uses three-state

88

9 Experiments and Results

monophone units), the long temporal windows enable the neural network to “see” the
last one or more states of the previous and the first one or more states of the following
monophone unit and to take advantage of it. In other words this means that the neural
network itself would construct a language model. Assuming this hypothesis to be valid,
it would not be possible to achieve a significant performance gain employing language
models of lower orders during recognition. What means “lower order”? Because the
architecture, that was employed, has no internal state nor memory and the input feature
vectors span approximately three consecutive phonemes3, the highest order language
model approximated internally would probably be close to 3-gram LM.

LM order 1 2 3 4 5 6 7 8
si_tr Acc(%) 85.07 85.15 87.14 90.34 91.89 92.99 93.01 93.43
si_dt Acc(%) 75.26 76.28 79.14 80.98 81.93 82.19 82.27 82.16
si_et Acc(%) 77.09 77.09 80.04 81.82 82.66 83.00 82.85 82.92

Table 9.5: WSJCAM0:Phoneme Recognition Acc of the baseline (unadapted) system

As can be seen from the table, there is basically no difference in the recognition accuracy
between unigram and bigram language models, there is however a significant increase of
accuracy when language models of higher orders are employed. This leads us to conclusion
that the language model constituted by the neural network is an approximation of a
bigram LM.

Experiments with multi-pass phoneme recognition procedures were performed as well.
In the first pass, the phoneme lattice was generated using a pseudo n1-gram language
model and pruned to contain only the Q best hypotheses in each node. This language
model will be referred to as a pseudo n1-gram, because the n1-gram language probabilities
were used, however the recognition lattice was only a bigram lattice. In the second pass,
the pruned lattice was re-scored using a full n2-gram language model. In the Table 9.6,
the influence of n1 and n2 constants on recognition accuracy is presented.

HH
HHHHn2

n1 4 5 6 7 8

0 81.82 82.66 83.00 82.85 82.92
5 83.89 84.26 84.40 84.51 84.48
6 84.11 84.47 84.63 84.63 84.59
7 83.86 84.51 84.51 84.64 84.59
8 83.93 84.45 84.64 84.62 84.58

Table 9.6: WSJCAM0: Influence of the rescoring setting on the phoneme recognition
accuracy

As can be seen, the re-scoring is a beneficial approach. The pruning constant Q has
an influence on the recognition accuracy as well, however this is quite a marginal effect.

3The rate of speech in English is usually reported to vary between 12-16 phonemes per second[116, 76].

89

9 Experiments and Results

The limiting factor is most probably the quality of the phoneme language model. It has
a significant influence on the recognition speed, though. In the Table 9.7, the influence
of the pruning coefficient Q on the recognition accuracy is presented.

PPPPPPPPPQ
n1/n2 5/5 5/6 5/7 5/8

2 84.26 84.47 84.51 84.45
3 84.80 85.10 85.12 85.04
4 85.01 85.33 85.39 85.32

Table 9.7: WSJCAM0: Influence of pruning setting on phoneme recognition accuracy

For the all next experiments with phoneme recognition system, the values n1 = 5,
n2 = 6 and Q = 2 were chosen. The performance difference between this setup and
the best performing setup is about 1% absolutely, however this is on the account of
significantly increased recognition times (the RT factor for the chosen configuration is
1/467, the RT factor for the best config is 2).

9.4.2 Hybrid LVCSR Word Recognition

The estimates of the posterior probabilities of individual states were converted to likeli-
hoods using the a-priori probabilities obtained during the training phase. These likelihoods
were then used in the LVCSR system in the same way as the usual likelihoods obtained
from the gaussian mixture models. The Table 9.8 shows the performance of the system
for all the three data sets.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_tr 89.85 89.24 90.38 2.8
si_dt 84.35 80.67 86.43 6.5
si_et 85.06 82.59 86.83 5.8

Table 9.8: WSJCAM0: Word recognition Acc of a hybrid, posteriori estimates based
speech recognition system

For experiments, the lm-small was used to determine the optimal values of the
language model weight (LWM) and word insertion penalty (WIP). The optimal values
were determined experimentally, using a gradient descent algorithm with gradient approx-
imation. The recognition itself was run using these constants and the lm-big language
model. This allowed us to perform the tuning phase much faster, after verification that
the values determined using the lm-small are (almost) optimal for lm-big as well.

From the Fig. 9.3, it can be seen that the average recognition score for the si dt

dataset is highly biased because of one speaker performing significantly worse than others.
The recognition accuracy is even lower than µ− 3× σ, the rule-of-thumb for detection of
outliers. The ID of the speaker is c42. According to the information from the speech

90

9 Experiments and Results

N
u

m
b

er
o
f

sp
ea

k
er

s

0

1

2

3

4

5

6

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
=

8
5
.9

7
%

µ
−
σ

=
7
9
.8

9
%

µ
−

2
σ

=
7
3
.8

0
%

N
u

m
b

er
o
f

sp
ea

k
er

s

0

2

4

6

8

10

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
=

8
6
.9

3
%

µ
−
σ

=
8
1
.9

0
%

µ
−

2
σ

=
7
6
.8

5
%

Figure 9.3: Monopohone posteriors – Recognition accuracy histogram on si dt (left)
and si et (right) sets

corpus, the speaker is female, 18 years old. From the subjective point of view, the speaker
does not feature any particular speech impediment or dialect, only the speech tempo is
somewhat increased.

To compare this recognizer to the reference recognizer, the p-value of the Wilcoxon
signed rank test was computed. For the si dt set p = 0.08 and for the si et set, the
p-value is p = 0.01. This indicates that the recognizer performs better than the reference
one.

9.4.3 Bottleneck LVCSR Word Recognition

In these experiments, the bottleneck features were extracted instead of the posterior
estimates. The bottleneck features were then used to train a common GMM/HMM
recognition system. The Table 9.9 shows the performance for all three datasets. The
confidence intervals were determined using the bias corrected and percentile accelerated
bootstrap method.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_tr 90.77 90.17 91.22 2.5
si_dt 85.42 82.14 87.42 6.0
si_et 84.85 82.53 86.49 5.4

Table 9.9: WSJCAM0: Performance of a hybrid, bottleneck features based speech recog-
nition system

As can be seen from the results, the performance is on the par with the results obtained
using the monophone posteriors method. The p-values of the Wilcoxon rank sum test are

91

9 Experiments and Results

N
u

m
b

er
o
f

sp
ea

k
er

s

0

1

2

3

4

5

6

7

8

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
−

2
σ

=
7
3
.2

%

µ
−
σ

=
7
9
.2

%

µ
=

8
5
.3

%

N
u

m
b

er
o
f

sp
ea

k
er

s

0

1

2

3

4

5

6

7

8

Recognition accuracy (%)

65 70 75 80 85 90 95 100

µ
−

2
σ

=
7
4
.0

%

µ
−
σ

=
7
9
.4

%

µ
=

8
4
.8

%

Figure 9.4: Hybrid LVCSR – recognition accuracy histogram on si dt (left) and si et

(right) sets

p = 0.64 and p = 0.99 for the si dt set and the si et set, respectively. Possibly more
interesting comparison is with the reference MFCC-based GMM/HMM recognizer, the
p-values of the Wilcoxon rank sum test are p = 0.77 and p = 0.01 for the si dt set and
the si et set, respectively.

9.5 WSJCAM0 – Speaker Adaptive Training

9.5.1 Training Process Description

The SAT training process was initialized using the data from the SI network training
process. As the cANN(0), the final SI neural network was used and the MELT matrices
(SPK(0)) were initialized to the unity matrix. The target vectors (representing the
teacher information) in the k-th step were obtained by means of force aligning the
reference phonetic transcript using the likelihoods produced using the cANN(k).

The number of SAT cycles was limited to 4. As can be seen from the Fig. 9.5, the scores
did not increase significantly after the third SAT cycle anyway. Please note that the
correct transcript was used even for the development and evaluation sets. The evaluation
process was the same as for the SI network. The WIP and the LMW constants were
determined using the si dt set and then used during the recognition of the si et set.

While this setup can be seen unpractical or even misleading, it allows monitoring the
influence of the MELT level on the capacity or possibility of improvement with other
factors omitted. Later, when discussing the unsupervised SAT, the values obtained here
will be used as “oracle” values, i.e. the best values possible to obtain.

The following experiments were performed.

92

9 Experiments and Results

s
i
d
t
,

W
o
rd

A
cc

(%
)

84.00

85.00

86.00

87.00

88.00

Iteration

0 1 2 3 4

MELT=1

MELT=2

MELT=3

MELT=7

MELT=23

(a) Performance on the si dt set
s
i
e
t
,

W
o
rd

A
cc

(%
)

85.00

86.00

87.00

88.00

89.00

Iteration

0 1 2 3 4

MELT=1

MELT=2

MELT=3

MELT=7

MELT=23

(b) Performance on the si et set

Figure 9.5: The word recognition accuracy as a function of number of the SAT cycles.

1. The phoneme recognition, the 5/6 language model was used

2. The LVCSR using posteriors estimates. The lm-big language model was used.

9.5.2 Results

As can be seen on the Fig. 9.6, increasing the number of free variables improves the
overall performance of the classifier. Moreover, it suggests that the performance is largely
a linear function of the percentage of the total number of adapted coefficients. To confirm
the assumption of linear dependence of score on the total number of free variables, linear
fitting experiments were performed and the goodness of fit was evaluated. The first result
(obtained for the strictly diagonal matrix) and the last result (obtained for full matrix
adaptation) were not used for fitting.

On the Fig. 9.7(a), the recognition score relatively to the percentage of all adaptation
matrix coefficients is depicted. The coefficient of determination R2[110], R2 = 0.95
suggests that the linear approximation fits the data well. On the Fig. 9.7(b), the
recognition score vs. the absolute number of mel-filterbank outputs used for interpolation
is depicted. The linear fit is, however, worse (the coefficient of determination is R2 = 0.89)
than in the previous case.

93

9 Experiments and Results

R
ec

o
g
n

it
io

n
A

cc
(%

)

83.00

84.00

85.00

86.00

87.00

88.00

89.00

MELT factor

0 5 10 15 20 25

si et, Phone Acc
si dt, Phone Acc

R
ec

o
g
n

it
io

n
A

cc
(%

)

83.00

84.00

85.00

86.00

87.00

88.00

89.00

MELT factor

0 5 10 15 20 25

si et, Word Acc
si dt, Word Acc

Figure 9.6: The phoneme and the word recognition score as a functions of the MELT
factor

9.5.3 Conclusion

The performed experiments suggest that the MELT approach is beneficial in the speaker
adaptive training. The same transformation/normalization matrix can be used for the
phoneme recognizer as well as for the word recognizer adaptation.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_dt 87.96 84.57 89.93 5.8
si_et 88.63 86.99 89.81 4.0

Table 9.10: WSJCAM0: Performance of a hybrid, bottleneck features based speech
recognition system, after SAT with MELT=23

By the comparison between the Table 9.10 and the Table 9.9, it can be concluded that
the application of the SAT paradigm leads to an improvement of about 3.5 % in absolute
numbers, which can be interpreted as approximately ΛWER = 23 % reduction of WER.

9.6 WSJCAM0 – Semi-supported Speaker Adaptive
Training for the Hybrid Paradigm

9.6.1 Description of the Semi-Supported SAT

As has been already mentioned, the experiments performed in the previous section are
useful from a theoretical point of view. The applicability of the method is, however,

94

9 Experiments and Results

s
i
e
t
,

W
o
rd

A
cc

(%
)

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

Percentage of the interpolating filters (%)

20 40 60 80 100

Recognition Accuracy
Linear Fit
Lower 0.95 Prediction Limit
Upper 0.95 Prediction Limit

χ2/doF = 1.2014e-02
R2 = 0.9504
RMSE (Root Mean Squared Error) = 0.1096
RSS (Residual Sum of Squares) = 0.0841

(a) Recognition accuracy vs. percentage of interpolating filters

s
i
e
t
,

W
o
rd

A
cc

(%
)

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

Absolute number of interpolating filters

3 6 9 12 15 18 21 24

Recognition Accuracy
Linear Fit
Lower 0.95 Prediction Limit
Upper 0.95 Prediction Limit

χ2/doF = 2.7393e-02
R2 = 0.8869
RMSE (Root Mean Squared Error) = 0.1655
RSS (Residual Sum of Squares) = 0.1917

(b) Recognition accuracy vs. abs. number of interpolating filters

Figure 9.7: The word recognition accuracy on the evaluation set (si et) as a function of
the percentual number and the absolute number of filters used for interpolation,
respectively.

95

9 Experiments and Results

severely limited in real life applications. The semi-supported SAT is a viable option in
many real-life tasks.

The semi-supported SAT assumes that there exist a (quite often a relatively small) set of
complete adaptation data, i.e. utterances together with the associated correct transcripts.
This assumption can be fulfilled relatively easily. Usually, during the adaptation the
user is presented with a known text (either specifically prepared for the adaptation or
the speaker is given the choice to supply the text on his/her own) and the user reads
the presented text. Then, the forced alignment procedure is executed to determine
the correct pronunciation variants and word boundaries. Optionally, the likelihood of
the forced-aligned utterance can be used to determine the sentences unsuitable for the
adaptation and the user is asked to re-read them.

In the context of the work on the WSJCAM0 corpus, the 17 adaptation sentences
supplied within the WSJCAM0 speech corpus were used. These 17 sentences stand for
approximately 40 seconds of adaptation data.

The SAT process was performed as follows. First, the SI network was used in the
combination with the adaptation data to determine the speaker normalization matrices.
Using the speaker normalization matrices, the WIP and LMW constant for the speech
recognition task and the phone insertion penalty and the weight of the phoneme language
model were determined on the si dt set. Word and phoneme recognition task were then
performed on the si et set using the aforementioned matrices and the experimentally
determined penalties and constants (i.e. the WIP and the LMW for the word recognition
task and the phone insertion penalty and the phoneme language model weight for the
phoneme recognition task).

The following experiments were performed.

1. The phoneme recognition using the posterior estimates converted to likelihoods, the
5/6 language model was used

2. The hybrid LVCSR using posteriors estimates converted to likelihoods. The lm-
big language model was used.

9.6.2 Results

The experiments were performed with a wide variety of MELT factors. The factors were
chosen specifically so that each consecutive MELT factor represents approximately a
10 % increase of non-zero elements of the normalization matrix.

From the Fig. 9.8 it can be concluded that the aforementioned 40 seconds of acoustic
data is sufficient for the MELT normalization of degree of about 7. In the Table 9.11,
the word recognition Acc performance of the system normalized using the MELT factor
7 is shown.

96

9 Experiments and Results

R
ec

o
g
n

it
io

n
A

cc
(%

)

84.00

84.50

85.00

85.50

86.00

86.50

87.00

MELT factor

0 5 10 15 20 25

si dt, Word Acc
si et, Word Acc

R
ec

o
g
n

it
io

n
A

cc
(%

)

83.50

84.00

84.50

85.00

85.50

86.00

86.50

MELT factor

0 5 10 15 20 25

si dt, Phone Acc
si et, Phone Acc

Figure 9.8: The phone recognition Acc (left) and the word recognition Acc (right) as a
function of the MELT factor

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_dt 86.40 82.78 88.45 6.1
si_et 86.76 84.99 88.23 4.5

Table 9.11: The word recognition accuracy on the semi-supported SAT task

9.6.3 Conclusion

As has been demonstrated, the MELT SAT can be used in a semi-supported fashion. For
this application, the typical amount of data is quite small. The experiments suggest that
given the amount of adaptation data, the MELT factor and the recognition constants
(WIP, LMW) can be determined beforehand, during the development of the speech
recognition system.

For the WSJCAM0 corpora setup, the optimal MELT factor was experimentally
determined to be approximately 7. Using this factor, the overall improvement over the
baseline (Table 9.8) was approx. 1.8 % in absolute numbers, which gives approximately
12 % reduction of the WER.

Compared to the oracle values (previous chapter), the semi-supported SAT on the 40
seconds of speech reached approx. 57 % of the possible improvement (oracle value for
MELT=7 is 88.21 %).

97

9 Experiments and Results

9.7 WSJCAM0 – Unsupervised Speaker Adaptive
Training for the Hybrid Paradigm

9.7.1 Description of the Two-pass Unsupervised SAT

In many practical situations, even the semi-supported SAT approach is not feasible or
practical. In these situations, the completely unsupervised approach is usually used.

In this approach, the speaker utterances are recognized twice. In the first run (or first
pass), the utterances are recognized using the SI recognizer. The recognized text is then
taken as the referential transcript and is used to determine the speaker normalization
matrices. Using the speaker normalization matrices, the utterances are recognized again
(second pass).

Therefore, this approach relaxes the assumption of the availability of the reference
transcript – the referential transcript is generated automatically. However, this method
has some potential drawbacks. First, because of its two-pass nature, it is significantly
more computationally demanding. Second, since the SI recognizer has a non-zero error
rate (which is quite obviously the reason why an adaptation is performed), the adaptation
is performed on a partially incorrect transcript.

When using a system providing the confidence factors for each of the recognized words,
an additional threshold CF must be determined. The threshold CF specifies the minimal
confidence the word has to have to be used for the adaptation. All the recognized words
having the associated confidence lower than the predefined threshold CF are omitted
during the adaptation.

The determination of the optimal factor CF is not always a straightforward task,
because with an increasing value of CF, the amount of available adaptation data decreases.
Therefore, a trade-off between the quality of the adaptation data and its amount must
be determined. This is usually done experimentally, by virtue of testing the performance
for several possible values of the CF threshold and choosing the one that performs best.

The SAT process was as follows. First, the SI network was used to recognize the
si dt set. The recognized text (and the associated confidence factor values) was used to
determine the speaker normalization matrices. Using the speaker normalization matrices,
the WIP and the LMW constants for the speech recognition task were determined on
the si dt set. The word recognition task was then executed on the si et set using the
aforementioned matrices and the experimentally determined penalties and weights. The
following experiments were performed.

1. The hybrid LVCSR using posteriors estimates converted to likelihoods. The lm-
big language model was used.

9.7.2 Results

As has been said, the solution of the problem of choosing the right threshold CF is not
always the straightforward one. This is due to the tight coupling between the amount of
data and the credibility of the data. The experiments were targeted at the exploration

98

9 Experiments and Results

R
ec

o
g
n

it
io

n
A

cc
(%

)

84.90

85.00

86.00

86.25

86.50

86.75

87.00

MELT factor

0 5 10 15 20 25

CF-0.00 si dt, Word Acc
CF-0.50 si dt, Word Acc
CF-0.70 si dt, Word Acc
CF-0.90 si dt, Word Acc
CF-0.95 si dt, Word Acc

Figure 9.9: The word recognition accuracy on si dt after unsupervised adaptation

of the influence of the choice of the threshold CF on the performance of the adapted
system.

The experiments suggest (see the Fig. 9.9 for reference) that the confidence factor
pruning is a beneficial technique in most cases. The system adapted using all the data
(CF = 0.0) performs worst in most cases (all cases except one).

The optimal combination of MELT factor and the CF threshold is, for the WSJCAM0
setup, MELT = 11 and CF = 0.95. This combination yields the system performing best
on the development data. Usage of the combination of these values during the adaptation
leads to a speech recognition system, whose performance is depicted in more detail in
the Table 9.12.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_dt 86.95 83.25 88.86 6.0
si_et 87.38 85.40 88.81 4.6

Table 9.12: The word recognition Acc on the unsupervised SAT task

The values for CF = 0.0 can be interpreted as the case where no system providing
the confidence factors is available. In this case the optimal choice of the MELT factor
is MELT = 23. The performance of the system constructed using MELT = 23 and
CF = 0.00 is depicted in the Table 9.13.

99

9 Experiments and Results

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_dt 86.69 82.75 88.60 6.3
si_et 87.23 85.19 88.73 4.8

Table 9.13: Word recognition Acc on the unsupervised SAT task, when no confidence
factors are considered

9.7.3 Conclusion

As has been experimentally demonstrated, the MELT approach can be used relatively
easily in the combination with the two-pass unsupervised speaker normalization scheme.

The drawbacks of this approach include an increased computational complexity during
the development phase (as an additional threshold must be determined experimentally)
and an increased computational complexity during the speaker adaptation, as the speaker
utterances must be recognized twice.

A speech recognition engine providing the confidence factors is not a must. However,
when available, it is beneficial to use it. The system obtained using the confidence factors
uses a lower MELT factor (therefore it is supposed to be more robust) and performs
better.

The overall improvement over the baseline (see the Table 9.8) is approx. 2.3 % in
absolute numbers, which gives approx. 15.4 % reduction of WER. Compared to the
oracle values, the unsupported SAT reached approx. 70 % of the possible improvement
(oracle value for MELT = 11 is 88.39 %).

It should be noted that the optimal values determined experimentally are optimal
only when the real-world conditions are sufficiently close to the conditions that were
active during the determination of these values. It is especially true for the amount of
adaptation data (approx. 3 – 4 minutes of speech) and the unadapted system performance.
Should one or both these conditions change, there might exist a setup yielding a better
performing system.

9.8 WSJCAM0 – The Unsupervised Speaker Adaptive
Training for the Bottleneck Paradigm

9.8.1 Description of the Task

In the field of Bottleneck LVCSR systems, a bottleneck neural network is used as a
feature extractor. In these systems, the ML or MAP adaptation of the GMM mixtures
coefficients is usually used.

In the scope of this thesis, a different approach was explored. First, the SAT neural
network was trained as described in the subsection 9.5.1. The trained SAT neural network
was used to produce adapted bottleneck features on the si tr and the si dt datasets.
The bottleneck system was trained using these adapted bottleneck features.

100

9 Experiments and Results

R
ec

og
n

it
io

n
A

cc
(%

)

86.40

86.60

86.80

87.00

87.20

87.40

MELT factor

0 5 10 15 20 25

si dt, Word Acc

Figure 9.10: The word recognition accuracy on the si dt set after the unsupervised
adaptation of the Bottleneck LVCSR system

During the recognition phase, both the si et and the si dt data sets were recognized.
The recognized text, together with the associated confidence factors was used to determine
the optimal MELT matrices. Using the MELT matrices, the si dt was used to determine
the WIP and the LMW values. These values, together with the associated MELT matrices
were used to recognize the si et data set.

A single experiment on unsupervised adaptation using the MELT = 23 and the cutoff
threshold CF = 0.95 was performed to verify that the MELT approach is viable even in
such systems.

9.8.2 Results

First, the performance on the si dt set was evaluated for several values of the MELT
factor. See the Fig. 9.10 for the performance graph. Then, the best performing MELT
factor (that is MELT = 16) was used and the si et set was adapted using the mentioned
MELT factor and recognized using the WIP and LMW values determined beforehand on
the si dt set. See the Table 9.14 for the complete performance metrics.

Acc(%) CIAcc−(%) CIAcc+(%) σ
si_dt 87.34 83.88 89.06 5.5
si_et 87.43 85.49 88.83 4.5

Table 9.14: The word recognition Acc on the unsupervised SAT task for a Bottleneck
LVCSRs system

101

9 Experiments and Results

9.8.3 Conclusion

The experiments performed in this section suggest that MELT normalization can be used
even for tasks when the neural network is used as a feature extractor. The speaker adapted
system performs about 2.5 % better than the original Bottleneck LVCSR system, which
represents approx 16 % reduction of WER. Moreover, the ML or the MAP adaptation of
the GMM mixtures could be performed to increase the recognition accuracy furthermore.

9.9 Conclusion

In this chapter, the proposed method for the SAT and the speaker normalization was
studied experimentally. The experiments were designed specifically to support the claims
of the universality of the proposed method.

The MELT method can be used in the phoneme recognition task as well as in the
LVCSR task. The method can be applied in hybrid speech recognition systems, where the
neural network is used for posteriori probabilities estimation or in Bottleneck GMM/HMM
LVCSR systems where the neural network is used as a features extractor. It is possible
to use it in cases where only a limited amount of the speaker-specific data is available
(as little as 15 seconds) or in cases, where only speaker utterances without the reference
transcript are available.

A wide variety of speech corpora was used. The corpora differ in language, in the
amount of data per speaker, number of speakers and in complete overall size of the corpus.
The speech recognition systems used as baselines in the scope of this work perform the
same or even better than the common (unadapted) systems reported in scientific papers.

This is especially true in the case of phoneme recognizers – the neural networks used
for the task of phoneme recognition have a smaller number of parameters and achieve
recognition accuracy that is higher than the accuracies reported so far in scientific papers.
The reason behind this is presumably the modified algorithm of the neural networks
training.

102

10 Conclusion and Future Work

In this work, a novel adaptation method called MELT (Minimum Error Linear Transform)
was introduced. This method can be used as a speaker-normalization method in the field
of speaker adaptation and in the field of the speaker adaptive training. The method is
based on exploiting the frequency and time dependencies in the LTSP feature vectors
fed into the neural network being adapted.

The presented approach establishes a link between the linear transform of the LTSP
feature network and the linear transform of the source mel-filter bank log-energies output;
however this is not the only possible or the only sensible approach.

To allow for robust functioning, the presented approach provides for a relatively
simple way of tweaking the number of free variables to be estimated during the speaker
normalization process. The number of free variables can be different for different speakers
when the amount of data for each speaker differs significantly.

Additionally, all the original thesis goals were fulfilled.

1. A high-performance software for neural network training in the environment of grid-
computing was developed. During the course of the work, systems based on similar
principles were developed and introduced by other teams[117, 106, 98], however the
training engine developed to fulfill the goals of the work has been tuned specifically
for the grid-environment and HW equipment used in the author’s department.
When the GPU is used, the software is capable of achieving approximately 40×
speedup compared to the single threaded CPU functioning of the commonly used
QuickNet software[33]. The unique feature of the software is the ability to use all
GPU devices found in the given computer. Thus, speedups over factor of 100 are
achievable relatively easily.

Moreover, the system uses a different training approach. Instead of stochastic
descent, the software package allows the user to choose between the L-BFGS
optimization or the iRPROP optimization. Both these methods converge very
quickly. The iRPROP method is especially suitable for the training of neural
networks with the bottleneck topology.

2. Hybrid speech recognition systems for Czech and English were built. These systems,
used as baselines in this work, achieve the same or better recognition accuracy than
the systems presented in peer-reviewed research papers. Moreover, both phoneme
recognition systems and word recognition systems were developed.

3. Both semi-supported and completely unsupervised speaker adaptation paradigms
were evaluated and tested. The proposed method is applicable in both cases.

103

10 Conclusion and Future Work

4. The proposed method was evaluated on speech corpora of different languages,
different sizes, different recording channels and different corpora designs. The
method achieves approximately a 12% reduction of the word error rate even for
40 seconds of annotated speech and approximately a 15.4% reduction of the WER
when used in a completely unsupervised manner on circa 4 minutes of speech. For
higher amounts of speaker-specific data, the improvements could be even larger.
The important fact is that the improvements are reported on a real-world system
with a strong language model.

5. The L-BFGS method is used for an estimation of the speaker-normalization param-
eters. These methods converge very fast and thus, the method can be used even for
a very large amount of speaker specific data or a very large amount of speakers.

10.1 Future Work

The method and the experiments presented in this work pose a good starting point
for further development of the methods, the training system and the hybrid speech
recognition systems. The possible research can be done in three interesting directions.

1. Enhance the support for very fast training or training on very large speech cor-
pora (thousands of hours). To achieve this goal, a grid-computing environment
is necessary. To achieve acceptable training times, the training software must be
distributed – support for training on multiple computers is a must. When using
multiple computers, sometimes the scalability of the approach plays a significant
role and industrial standards with documented behavior should be prioritized over
ad-hoc solutions[62]. The industry standard for inter-computer communication is
OpenMPI[35]. The OpenMPI standard and the available software implementations
allow for effective scaling of the task. Moreover, the optimization algorithm should
be revisited and optimized for this task.

2. Allowing for an automatic discovery of the frequency-time dependencies. The
described method is an effective one and has the interesting property of establishing
a link between the mel-filterbank outputs and the LTSP feature vectors, however
in many cases it would be favorable to allow for an automatic deduction of these
dependencies. A method called Soft weight-sharing [79, 61] could be used as a
suitable starting point for a further study in this area.

3. The actual creation of a system trained on thousands of hours of speech data.
From a theoretical point of view, there is no significant difference between training
a system on tens or hundreds of hours of speech data and training a system on
thousands of hours of speech data (except for increasing the time needed for training
the system). From the practical point of view, however, training a system on such an
amount of data posses a significant challenge even when the standard GMM/HMM
approach is used.

104

Bibliography

[1] Victor Abrash et al. “Connectionist Speaker Normalization And Adaptation”. In:
Proceedings of the Fourth European Conference on Speech Communication and
Technology, Eurospeech-1995. International Speech Communication Association.
Sept. 1995, pp. 2183–2186 (cit. on p. 54).

[2] Alejandro Acero. “Acoustical And Environmental Robustness In Automatic
Speech Recognition”. PhD Thesis. Pittsburgh, Pennsylvania 15213: Carnegie
Mellon University Department of Electrical and Computer Engineering, Sept. 1990
(cit. on p. 45).

[3] Tasos Anastasakos and Sreeram V. Balakrishnan. “The Use of Confidence Measures
in Unsupervised Adaptation of Speech Recognizers”. In: Proc. Int. Conf. on
Spoken Language Processing ICSLP98. Sydney, Australia, Dec. 1998, pp. 2303
–2306 (cit. on p. 49).

[4] Tesam Anastasakos et al. “A compact model for speaker-adaptive training”.
In: Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International
Conference on. Vol. 2. Oct. 1996, 1137 –1140 vol.2. isbn: 0-7803-3555-4. doi:
10.1109/ICSLP.1996.607807 (cit. on p. 48).

[5] Christophe Van Bael and Simon King. “The Keyword Lexicon - An accent-
independent lexicon for automatic speech recognition”. In: Proc. Int. Congress
of Phonetic Sciences. 2003, pp. 1165–1168 (cit. on p. 88).

[6] Raimo Bakis. “Continuous speech recognition via centisecond acoustic states”. In:
The Journal of the Acoustical Society of America 59.S1 (1976), S97–S97. issn:
00014966. doi: 10.1121/1.2003011 (cit. on p. 11).

[7] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term depen-
dencies with gradient descent is difficult”. In: Neural Networks, IEEE Transactions
on 5.2 (Mar. 1994), pp. 157 –166. issn: 1045-9227. doi: 10.1109/72.279181
(cit. on p. 33).

[8] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: Journal of
Machine Learning Research 3 (Feb. 2003), pp. 1137–1155 (cit. on p. 16).

[9] Maximilian Bisani and Hermann Ney. “Bootstrap estimates for confidence intervals
in ASR performance evaluation”. In: Acoustics, Speech, and Signal Processing,
2004. Proceedings. (ICASSP ’04). IEEE International Conference on. Vol. 1.
May 2004, doi: 10.1109/ICASSP.2004.1326009 (cit. on p. 20).

[10] Christopher M. Bishop. “A fast procedure for retraining the multilayer perceptron”.
In: International Journal of Neural Systems 2.3 (1991), pp. 229–236 (cit. on p. 53).

105

http://dx.doi.org/10.1109/ICSLP.1996.607807
http://dx.doi.org/10.1121/1.2003011
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/ICASSP.2004.1326009

Bibliography

[11] Christopher M. Bishop. “Exact calculation of the Hessian matrix for the multilayer
perceptron”. In: Neural Computa 4 (4 July 1992), pp. 494–501. issn: 0899-7667.
doi: 10.1162/neco.1992.4.4.494. url: http://dl.acm.org/citation.

cfm?id=148167.148171 (cit. on p. 53).

[12] Christopher M. Bishop. Neural Networks for Pattern Recognition. 1st ed. Oxford
University Press, USA, Jan. 18, 1996. isbn: 9780198538646. url: http://www.
worldcat.org/isbn/0198538642 (cit. on pp. 36, 40).

[13] Christopher M. Bishop. “Training with noise is equivalent to Tikhonov regulariza-
tion”. In: Neural Comput. 7 (1 Jan. 1995), pp. 108–116. issn: 0899-7667. doi:
10.1162/neco.1995.7.1.108. url: http://dl.acm.org/citation.cfm?id=

211171.211185 (cit. on p. 40).

[14] Herve Bourlard and Nelson Morgan. “Continuous speech recognition by connec-
tionist statistical methods”. In: Neural Networks, IEEE Transactions on 4.6 (Nov.
1993), pp. 893 –909. issn: 1045-9227. doi: 10.1109/72.286885 (cit. on p. 13).

[15] John S. Bridle. “Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimation of parameters”. In: Advances
in neural information processing systems 2. Ed. by David S. Touretzky. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. Chap. Training
stochastic model recognition algorithms as networks can lead to maximum mutual
information estimation of parameters, pp. 211–217. isbn: 1-55860-100-7. url:
http://dl.acm.org/citation.cfm?id=109230.109256 (cit. on pp. 35, 40).

[16] Daniel Clark Burnett. “Rapid Speaker Adaptation for Neural Network Speech
Recognizers”. PhD Thesis. 20000 NW Walker Road Beaverton, OR 97006: Oregon
Graduate Institute of Science and Technology, Apr. 1997 (cit. on p. 50).

[17] James Carpenter and John Bithell. “Bootstrap confidence intervals: when, which,
what? A practical guide for medical statisticians”. In: Statistics in Medicine
19.9 (2000), pp. 1141–1164. issn: 1097-0258. doi: 10.1002/(SICI)1097-

0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F. url: http://dx.doi.

org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;

2-F (cit. on p. 21).

[18] Jan Černocký et al. “Recording of Czech and Slovak Telephone Databases within
SpeechDat-E.” In: TSD. Ed. by Václav Matoušek et al. Vol. 1692. Lecture Notes
in Computer Science. Springer, 1999, pp. 388–391. isbn: 3-540-66494-7. url:
http://dblp.uni-trier.de/db/conf/tsd/tsd1999.html#CernockyPRHT99

(cit. on pp. 63, 76).

[19] Barry Chen, Qifeng Zhu, and Nelson Morgan. “Learning long-term temporal
features in LVCSR using neural networks.” In: Proceedings of ICSLP 2004. Jeju
Island, Korea, Oct. 2004 (cit. on pp. 9, 10).

[20] Christopher Cieri et al. Fisher English Training Speech, Parts 1 and 2. Linguistic
Data Consortium. Philadelphia, 2004 and 2005. isbn: 1-58563-313-5 (cit. on
p. 42).

106

http://dx.doi.org/10.1162/neco.1992.4.4.494
http://dl.acm.org/citation.cfm?id=148167.148171
http://dl.acm.org/citation.cfm?id=148167.148171
http://www.worldcat.org/isbn/0198538642
http://www.worldcat.org/isbn/0198538642
http://dx.doi.org/10.1162/neco.1995.7.1.108
http://dl.acm.org/citation.cfm?id=211171.211185
http://dl.acm.org/citation.cfm?id=211171.211185
http://dx.doi.org/10.1109/72.286885
http://dl.acm.org/citation.cfm?id=109230.109256
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dblp.uni-trier.de/db/conf/tsd/tsd1999.html#CernockyPRHT99

Bibliography

[21] Ronan Collobert and Samy Bengio. “A gentle Hessian for efficient gradient descent”.
In: Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ’04).
IEEE International Conference on. Vol. 5. May 2004, doi: 10.1109/ICASSP.

2004.1327161 (cit. on pp. 34, 54).

[22] Neil James Cooke. “Gaze-Contingent Automatic Speech Recognition”. PhD
Thesis. Department of Electronic, Electrical and Computer Engineering School of
Engineering University of Birmingham Birmingham B15 2TT United Kingdom:
University of Birmingham Department of Electronic, Electrical and Computer
Engineering, Dec. 2006 (cit. on p. 88).

[23] Mario Costa. “Probabilistic interpretation of feedforward network outputs, with
relationships to statistical prediction of ordinal quantities”. In: International
Journal of Neural Systems (IJNS) 7.5 (Dec. 1996), pp. 627–638. doi: 10.1142/
S0129065796000610 (cit. on p. 40).

[24] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems (MCSS) 2 (4 1989), pp. 303–314.
issn: 0932-4194. doi: 10.1007/BF02551274 (cit. on p. 13).

[25] Vassilis Digalakis, Dimitry Rtischev, and Leo G. Neumeyer. “Speaker adaptation
using constrained estimation of Gaussian mixtures”. In: Speech and Audio Pro-
cessing, IEEE Transactions on 3.5 (Sept. 1995), pp. 357 –366. issn: 1063-6676.
doi: 10.1109/89.466659 (cit. on p. 47).

[26] Rob A. Dunne and Norm A. Campbell. “On the pairing of the Softmax activation
and cross-entropy penalty functions and the derivation of the Softmax activation
function”. In: Proc. 8th Aust. Conf. on Neural Networks. Melbourne, 1997,
pp. 181–185 (cit. on p. 35).

[27] Stéphane Dupont and Leila Cheboub. “Fast speaker adaptation of artificial neural
networks for automatic speech recognition”. In: Acoustics, Speech, and Signal
Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference
on. Vol. 3. 2000, 1795 –1798 vol.3. doi: 10.1109/ICASSP.2000.862102 (cit. on
pp. 54, 58).

[28] Bradley Efron. “Better Bootstrap Confidence Intervals”. English. In: Journal of
the American Statistical Association 82.397 (1987), pp. 171–185. issn: 01621459.
url: http://www.jstor.org/stable/2289144 (cit. on p. 21).

[29] Jeffrey L. Elman. “Finding structure in time”. In: Cognitive Science 14.2 (1990),
pp. 179 –211. issn: 0364-0213. doi: 10.1016/0364-0213(90)90002-E. url:
http://www.sciencedirect.com/science/article/pii/036402139090002E

(cit. on p. 25).

[30] Scott E. Fahlman. “Faster-Learning Variations on Back-Propagation: An Empiri-
cal Study”. In: Proceedings, of the 1988 Connectionist Models Summer School.
Ed. by David S. Touretzky, Geoffrey E. Hinton, and Terrence J. Sejnowski. Los
Altos CA: San Francisco, CA: Morgan Kaufmann, 1989, pp. 38–51 (cit. on p. 35).

107

http://dx.doi.org/10.1109/ICASSP.2004.1327161
http://dx.doi.org/10.1109/ICASSP.2004.1327161
http://dx.doi.org/10.1142/S0129065796000610
http://dx.doi.org/10.1142/S0129065796000610
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1109/89.466659
http://dx.doi.org/10.1109/ICASSP.2000.862102
http://www.jstor.org/stable/2289144
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://www.sciencedirect.com/science/article/pii/036402139090002E

Bibliography

[31] Scott E. Fahlman and Christian Lebiere. “The Cascade-Correlation Learning
Architecture”. In: Advances in Neural Information Processing Systems. Vol. 2.
Morgan Kaufmann, 1990, pp. 524–532. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.56.4325 (cit. on p. 54).

[32] Craig L. Fancourt and José C. Principe. “Optimization in companion search
spaces: the case of cross-entropy and the Levenberg-Marquardt algorithm”. In:
Acoustics, Speech, and Signal Processing, IEEE International Conference on 2
(2001), pp. 1317–1320. doi: 10.1109/ICASSP.2001.941168 (cit. on p. 38).

[33] Philipp Färber. Quicknet on MultiSpert: Fast Parallel Neural Network Training.
Tech. rep. TR-97-047. 1947 Center Street, Berkeley, CA, 94704: Internetional
Computer Science Institute, Dec. 1997 (cit. on p. 103).

[34] W. Fisher, G. Doddington, and Goudie K. Marshall. “The DARPA speech
recognition research database: Specification and status”. In: Proceedings of the
DARPA Speech Recognition Workshop. 1986, pp. 93–100 (cit. on p. 77).

[35] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation”. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary, Sept. 2004, pp. 97–104 (cit. on p. 104).

[36] Mark J.F. Gales. “Maximum likelihood linear transformations for HMM-based
speech recognition”. In: Computer Speech & Language 12.2 (1998), pp. 75–98.
url: http://www.ingentaconnect.com/content/ap/la/1998/00000012/

00000002/art00043 (cit. on p. 56).

[37] John Garofalo et al. Continous Speech Recognition (CSR-I) Wall Street Journal
(WSJ0) news. Complete corpus. Linguistic Data Consortium, 1993 (cit. on pp. 78,
88).

[38] John S. Garofolo et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus.
CD-ROM. Philadelphia: Linguistic Data Consortium, 1993 (cit. on pp. 63, 77).

[39] Roberto Gemello et al. “Adaptation of Hybrid ANN/HMM Models Using Linear
Hidden Transformations and Conservative Training”. In: Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on. Vol. 1. May 2006, p. I. doi: 10.1109/ICASSP.2006.1660239

(cit. on pp. 52, 54).

[40] Roberto Gemello et al. “Linear hidden transformations for adaptation of hybrid
ANN/HMM models”. In: Speech Commun. 49 (10-11 Oct. 2007), pp. 827–
835. issn: 0167-6393. doi: 10.1016/j.specom.2006.11.005. url: http:

//dl.acm.org/citation.cfm?id=1284914.1285132 (cit. on pp. 52, 54).

[41] Christian Gollan and Michiel Bacchiani. “Confidence scores for acoustic model
adaptation”. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on. Apr. 2008, pp. 4289 –4292. doi: 10.1109/
ICASSP.2008.4518603 (cit. on p. 49).

108

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4325
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4325
http://dx.doi.org/10.1109/ICASSP.2001.941168
http://www.ingentaconnect.com/content/ap/la/1998/00000012/00000002/art00043
http://www.ingentaconnect.com/content/ap/la/1998/00000012/00000002/art00043
http://dx.doi.org/10.1109/ICASSP.2006.1660239
http://dx.doi.org/10.1016/j.specom.2006.11.005
http://dl.acm.org/citation.cfm?id=1284914.1285132
http://dl.acm.org/citation.cfm?id=1284914.1285132
http://dx.doi.org/10.1109/ICASSP.2008.4518603
http://dx.doi.org/10.1109/ICASSP.2008.4518603

Bibliography

[42] Frantǐsek Grézl. “TRAP-based Probabilistic Features For Automatic Speech
Recognition”. PhD Thesis. Brno University of Technology Faculty of Information
Technology, 2007 (cit. on p. 10).

[43] Frantǐsek Grézl and Petr Fousek. “Optimizing bottle-neck features for lvcsr”. In:
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on. Apr. 2008, pp. 4729 –4732. doi: 10.1109/ICASSP.2008.4518713
(cit. on p. 10).

[44] Frantǐsek Grézl et al. “Probabilistic and Bottle-Neck Features for LVCSR of
Meetings”. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on. Vol. 4. Apr. 2007, doi: 10.1109/ICASSP.

2007.367023 (cit. on p. 10).

[45] John B. Hampshire II and Alex Waibel. “The Meta-Pi network: building dis-
tributed knowledge representations for robust multisource pattern recognition”.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 14.7 (July
1992), pp. 751 –769. issn: 0162-8828. doi: 10.1109/34.142911 (cit. on p. 59).

[46] J. B. Hampshire and B. Pearlmutter. “Equivalence proofs for multilayer perceptron
classifiers and the Bayesian discriminant function”. In: Proceedings of the 1990
Connectionist Models Summer School. Ed. by David S. Touretzky et al. San
Mateo, CA: Morgan Kaufmann, 1990, pp. 159–172 (cit. on p. 40).

[47] Babak Hassibi, David G. Stork, and Gregory J. Wolff. “Optimal Brain Surgeon
and general network pruning”. In: Neural Networks, 1993., IEEE International
Conference on. 1993, 293 –299 vol.1. doi: 10.1109/ICNN.1993.298572 (cit. on
p. 52).

[48] Hynek Hermansky and Nelson Morgan. “RASTA processing of speech”. In: Speech
and Audio Processing, IEEE Transactions on 2.4 (Oct. 1994), pp. 578 –589. issn:
1063-6676. doi: 10.1109/89.326616 (cit. on p. 8).

[49] Josef Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. Diploma
thesis. Institut für Informatik, Technische Universität München, 1991 (cit. on
p. 26).

[50] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.2 (1998), pp. 107–116. doi: http:

//dx.doi.org/10.1142/S0218488598000094 (cit. on p. 26).

[51] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computations 9 (8 Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. url: http://dl.acm.org/citation.cfm?id=

1246443.1246450 (cit. on p. 26).

109

http://dx.doi.org/10.1109/ICASSP.2008.4518713
http://dx.doi.org/10.1109/ICASSP.2007.367023
http://dx.doi.org/10.1109/ICASSP.2007.367023
http://dx.doi.org/10.1109/34.142911
http://dx.doi.org/10.1109/ICNN.1993.298572
http://dx.doi.org/10.1109/89.326616
http://dx.doi.org/http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=1246443.1246450
http://dl.acm.org/citation.cfm?id=1246443.1246450

Bibliography

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359
–366. issn: 0893-6080. doi: 10.1016/0893-6080(89)90020-8. url: http:

//www.sciencedirect.com/science/article/pii/0893608089900208 (cit. on
p. 13).

[53] Chang-Wen Hsu and Lin-Shan Lee. “Higher Order Cepstral Moment Normalization
for Improved Robust Speech Recognition”. In: Audio, Speech, and Language
Processing, IEEE Transactions on 17.2 (Feb. 2009), pp. 205 –220. issn: 1558-
7916. doi: 10.1109/TASL.2008.2006575 (cit. on p. 43).

[54] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing:
A Guide to Theory, Algorithm and System Development. Prentice Hall PTR,
May 5, 2001. isbn: 978-0130226167. url: http://www.amazon.com/exec/

obidos/redirect?tag=citeulike07- 20\&path=ASIN/0130226165 (cit. on
p. 46).

[55] Xuedong D. Huang, K. F. Lee, and A. Waibel. “Connectionist speaker normaliza-
tion and its applications to speech recognition”. In: Neural Networks for Signal
Processing [1991]., Proceedings of the 1991 IEEE Workshop. Oct. 1991, pp. 357
–366. doi: 10.1109/NNSP.1991.239506 (cit. on p. 59).

[56] Raymond Hubbard and M. J. Bayarri. P-Values are not Error Probabilities.
published electronicaly. Nov. 2003. url: http://www.uv.es/sestio/TechRep/
tr14-03.pdf (cit. on p. 20).

[57] J. J. Humphries and P. C. Woodland. “The use of accent-specific pronunciation
dictionaries in acoustic model training”. In: Acoustics, Speech and Signal Pro-
cessing, 1998. Proceedings of the 1998 IEEE International Conference on. Vol. 1.
May 1998, pp. 317 –320. doi: 10.1109/ICASSP.1998.674431 (cit. on p. 88).

[58] Christian Igel and Michael Hüsken. “Empirical evaluation of the improved Rprop
learning algorithms”. In: Neurocomputing 50 (2003), pp. 105–123. issn: 0925-
2312. doi: 10.1016/S0925-2312(01)00700-7. url: http://linkinghub.

elsevier.com/retrieve/pii/S0925231201007007 (cit. on p. 35).

[59] F. Jelinek. “Continuous speech recognition by statistical methods”. In: Proceedings
of the IEEE 64.4 (Apr. 1976), pp. 532 –556. issn: 0018-9219. doi: 10.1109/
PROC.1976.10159 (cit. on p. 1).

[60] Michael Kirby and Lawrence Sirovich. “Application of the Karhunen-Loeve
procedure for the characterization of human faces”. In: Pattern Analysis and
Machine Intelligence, IEEE Transactions on 12.1 (Jan. 1990), pp. 103 –108. issn:
0162-8828. doi: 10.1109/34.41390 (cit. on p. 57).

[61] Fatih Köksal, Ethem Alpaydyn, and Günhan Dündar. “Weight Quantization
for Multi-layer Perceptrons Using Soft Weight Sharing”. In: Artificial Neural
Networks — ICANN 2001. Ed. by Georg Dorffner, Horst Bischof, and Kurt Hornik.
Vol. 2130. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

110

http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/10.1109/TASL.2008.2006575
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0130226165
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0130226165
http://dx.doi.org/10.1109/NNSP.1991.239506
http://www.uv.es/sestio/TechRep/tr14-03.pdf
http://www.uv.es/sestio/TechRep/tr14-03.pdf
http://dx.doi.org/10.1109/ICASSP.1998.674431
http://dx.doi.org/10.1016/S0925-2312(01)00700-7
http://linkinghub.elsevier.com/retrieve/pii/S0925231201007007
http://linkinghub.elsevier.com/retrieve/pii/S0925231201007007
http://dx.doi.org/10.1109/PROC.1976.10159
http://dx.doi.org/10.1109/PROC.1976.10159
http://dx.doi.org/10.1109/34.41390

Bibliography

2001, pp. 211–216. isbn: 978-3-540-42486-4. doi: 10.1007/3-540-44668-0_30
(cit. on p. 104).

[62] Stanislav Kontár. “Parallel training of neural networks for speech recognition”.
In: Proc. 12th International Conference on Soft Computing MENDEL’06. Brno,
CZ: Brno University of Technology, 2006, p. 6. isbn: 80-214-3195-4. url:
http://www.fit.vutbr.cz/research/view_pub.php?id=8180 (cit. on p. 104).

[63] Roland Kuhn et al. “Rapid speaker adaptation in eigenvoice space”. In: Speech
and Audio Processing, IEEE Transactions on 8.6 (Nov. 2000), pp. 695 –707. issn:
1063-6676. doi: 10.1109/89.876308 (cit. on p. 58).

[64] R. Kuhn et al. “Fast speaker adaptation using a priori knowledge”. In: Acoustics,
Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International
Conference on. Vol. 2. Mar. 1999, 749 –752 vol.2. doi: 10.1109/ICASSP.1999.
759776 (cit. on p. 58).

[65] Hugo Larochelle et al. “Exploring Strategies for Training Deep Neural Networks”.
In: J. Mach. Learn. Res. 10 (June 2009), pp. 1–40. issn: 1532-4435. url:
http://dl.acm.org/citation.cfm?id=1577069.1577070 (cit. on p. 34).

[66] Yann LeCun, John S. Denker, and Sara A. Solla. “Optimal brain damage”. In:
Advances in neural information processing systems 2. Ed. by David S. Touretzky.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. Chap. Optimal
brain damage, pp. 598–605. isbn: 1-55860-100-7. url: http://dl.acm.org/

citation.cfm?id=109230.109298 (cit. on p. 52).

[67] Y. LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks of the trade.
Ed. by G. Orr and Muller K. Vol. 1524. Lecture Notes in Computer Science.
Springer, 1998. isbn: 3-540-65311-2 (cit. on p. 34).

[68] Kai-Fu Lee and Hsiao-Wuen Hon. “Speaker-independent phone recognition using
hidden Markov models”. In: Acoustics, Speech and Signal Processing, IEEE
Transactions on 37.11 (Nov. 1989), pp. 1641 –1648. issn: 0096-3518. doi:
10.1109/29.46546 (cit. on pp. 78, 79).

[69] Vladimir I. Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet Physics Doklady 10.8 (1966), pp. 707–710 (cit. on p. 18).

[70] Bo Li and Khe Chai Sim. “Comparison of Discriminative Input and Output
Transformations for Speaker Adaptation in the Hybrid NN/HMM Systems”.
In: Eleventh Annual Conference of the International Speech Communication
Association. Makuhari, Chiba, Japan, Sept. 2010, pp. 526–529. url: http:

//www.isca-speech.org/archive/interspeech_2010/i10_0526.html (cit. on
pp. 55–57).

[71] Carla Lopes and Fernando Perdigao. Phoneme Recognition on the TIMIT Database.
Ed. by Ivo Ipsic. InTech, 2011. isbn: 978-953-307-996-7. url: http://www.

intechopen.com/articles/show/title/phoneme- recognition- on- the-

timit-database (cit. on p. 78).

111

http://dx.doi.org/10.1007/3-540-44668-0_30
http://www.fit.vutbr.cz/research/view_pub.php?id=8180
http://dx.doi.org/10.1109/89.876308
http://dx.doi.org/10.1109/ICASSP.1999.759776
http://dx.doi.org/10.1109/ICASSP.1999.759776
http://dl.acm.org/citation.cfm?id=1577069.1577070
http://dl.acm.org/citation.cfm?id=109230.109298
http://dl.acm.org/citation.cfm?id=109230.109298
http://dx.doi.org/10.1109/29.46546
http://www.isca-speech.org/archive/interspeech_2010/i10_0526.html
http://www.isca-speech.org/archive/interspeech_2010/i10_0526.html
http://www.intechopen.com/articles/show/title/phoneme-recognition-on-the-timit-database
http://www.intechopen.com/articles/show/title/phoneme-recognition-on-the-timit-database
http://www.intechopen.com/articles/show/title/phoneme-recognition-on-the-timit-database

Bibliography

[72] V. Mazya and G. Schmidt. “On approximate approximations using Gaussian
kernels”. In: IMA Journal of Numerical Analysis 16.1 (1996), pp. 13–29. doi:
10.1093/imanum/16.1.13. url: http://imajna.oxfordjournals.org/

content/16/1/13.abstract (cit. on p. 13).

[73] J. McDonough et al. “Speaker-adapted training on the Switchboard Corpus”.
In: Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE
International Conference on. Vol. 2. Apr. 1997, 1059 –1062 vol.2. doi: 10.1109/
ICASSP.1997.596123 (cit. on p. 48).

[74] T. Mikolov et al. “Neural network based language models for highly inflective
languages”. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on. Apr. 2009, pp. 4725 –4728. doi: 10.1109/
ICASSP.2009.4960686 (cit. on p. 17).

[75] Marvin L. Minsky and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry, Expanded Edition. The MIT Press, Dec. 1987. isbn:
978-0-262-63111-2 (cit. on p. 27).

[76] Nikki Mirghafori, Eric Fosler, and Nelson Morgan. “Towards robustness to fast
speech in ASR”. In: Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International Conference on. Vol. 1. May
1996, 335 –338 vol. 1. doi: 10.1109/ICASSP.1996.541100 (cit. on p. 89).

[77] Joao Neto et al. “Speaker-Adaptation for Hybrid HMM-ANN Continuous Speech
Recognition System”. In: Proceedings of the Fourth European Conference on
Speech Communication and Technology, Eurospeech-1995. International Speech
Communication Association, 1995, pp. 2171–2174. url: http://hdl.handle.

net/1842/1274 (cit. on pp. 50, 52, 54).

[78] Hermann Ney. “On the probabilistic interpretation of neural network classifiers and
discriminative training criteria”. In: Pattern Analysis and Machine Intelligence,
IEEE Transactions on 17.2 (Feb. 1995), pp. 107 –119. issn: 0162-8828. doi:
10.1109/34.368176 (cit. on p. 40).

[79] Steven J. Nowlan and Geoffrey E. Hinton. “Simplifying neural networks by
soft weight-sharing”. In: Neural Comput. 4 (4 July 1992), pp. 473–493. issn:
0899-7667. doi: 10.1162/neco.1992.4.4.473. url: http://dl.acm.org/

citation.cfm?id=148167.148169 (cit. on p. 104).

[80] Dong C. Park, Mohamed A. El-Sharkawi, and Robert J. Marks II. “An adaptively
trained neural network”. In: Neural Networks, IEEE Transactions on 2.3 (May
1991), pp. 334 –345. issn: 1045-9227. doi: 10.1109/72.97910 (cit. on p. 61).

[81] Junho Park et al. “Training and adapting MLP features for Arabic speech
recognition”. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on. Apr. 2009, pp. 4461 –4464. doi: 10.1109/
ICASSP.2009.4960620 (cit. on p. 55).

112

http://dx.doi.org/10.1093/imanum/16.1.13
http://imajna.oxfordjournals.org/content/16/1/13.abstract
http://imajna.oxfordjournals.org/content/16/1/13.abstract
http://dx.doi.org/10.1109/ICASSP.1997.596123
http://dx.doi.org/10.1109/ICASSP.1997.596123
http://dx.doi.org/10.1109/ICASSP.2009.4960686
http://dx.doi.org/10.1109/ICASSP.2009.4960686
http://dx.doi.org/10.1109/ICASSP.1996.541100
http://hdl.handle.net/1842/1274
http://hdl.handle.net/1842/1274
http://dx.doi.org/10.1109/34.368176
http://dx.doi.org/10.1162/neco.1992.4.4.473
http://dl.acm.org/citation.cfm?id=148167.148169
http://dl.acm.org/citation.cfm?id=148167.148169
http://dx.doi.org/10.1109/72.97910
http://dx.doi.org/10.1109/ICASSP.2009.4960620
http://dx.doi.org/10.1109/ICASSP.2009.4960620

Bibliography

[82] C. E. Pedreira and N. M. Roehl. “On adaptively trained neural networks”. In:
Neural Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 International
Joint Conference on. Vol. 1. Oct. 1993, 565 –568 vol.1. doi: 10.1109/IJCNN.

1993.713978 (cit. on p. 61).

[83] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook.
Nov. 14, 2008. url: http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.
pdf (cit. on p. 71).

[84] Johann Pfanzagl. Parametric Statistical Theory. Ed. by R. Hamböker. De Gruyter
Textbook. Berlin, Germany: Walter de Gruyter & Co, Aug. 1994, p. 387 (cit. on
p. 73).

[85] Michael Pitz and Hermann Ney. “Vocal Tract Normalization Equals Linear
Transformation in Cepstral Space”. In: Speech and Audio Processing, IEEE
Transactions on 13.5 (Sept. 2005), pp. 930 –944. issn: 1063-6676. doi: 10.

1109/TSA.2005.848881 (cit. on p. 47).

[86] Aleš Pražák. “Confidence Measures in Real-Time Large Vocabulary Continuous
Speech Recognition Systems”. PhD Thesis. Universit of West Bohemia Faculty of
Applied Sciences, Oct. 2008 (cit. on p. 15).

[87] Josef Psutka et al. Mluv́ıme s poč́ıtačem česky. Academia, 2006, p. 746. isbn:
80-200-1309-1 (cit. on p. 11).

[88] Lawrence R. Rabiner, Steve E. Levinson, and Mohan M. Sondhi. “On the Applica-
tion of Vector Quantization and Hidden Markov Models to Speaker-Independent,
Isolated Word Recognition”. In: Bell System Technical Journal 62.4 (1983),
pp. 1075–1105 (cit. on p. 11).

[89] Roger Ratcliff. “Connectionist models of recognition memory: constraints imposed
by learning and forgetting functions.” In: Psychological Review 97.2 (1990),
pp. 285–308. doi: 10.1037/0033-295X.97.2.285. url: http://www.ncbi.

nlm.nih.gov/pubmed/2186426 (cit. on p. 51).

[90] Michael D. Richard and Richard P. Lippmann. “Neural Network Classifiers
Estimate Bayesian a posteriori Probabilities”. In: Neural Computations 3.4 (Dec.
1991), pp. 461–483. issn: 0899-7667. doi: 10.1162/neco.1991.3.4.461

(cit. on pp. 40, 41).

[91] Martin Riedmiller. Rprop - Description and Implementation Details. Technical Re-
port. W-76128 Karlsruhe: Institut für Logik, Komplexität und Deduktionssysteme,
University of Karlsruhe, Jan. 1994 (cit. on p. 35).

[92] Eric Sven Ristad. “A natural law of succession”. In: Information Theory, 1998.
Proceedings. 1998 IEEE International Symposium on. Aug. 1998, p. 445. doi:
10.1109/ISIT.1998.709050 (cit. on pp. 77–79).

113

http://dx.doi.org/10.1109/IJCNN.1993.713978
http://dx.doi.org/10.1109/IJCNN.1993.713978
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://dx.doi.org/10.1109/TSA.2005.848881
http://dx.doi.org/10.1109/TSA.2005.848881
http://dx.doi.org/10.1037/0033-295X.97.2.285
http://www.ncbi.nlm.nih.gov/pubmed/2186426
http://www.ncbi.nlm.nih.gov/pubmed/2186426
http://dx.doi.org/10.1162/neco.1991.3.4.461
http://dx.doi.org/10.1109/ISIT.1998.709050

Bibliography

[93] Anthony Robins. “Catastrophic forgetting in neural networks: the role of re-
hearsal mechanisms”. In: Artificial Neural Networks and Expert Systems, 1993.
Proceedings., First New Zealand International Two-Stream Conference on. Nov.
1993, pp. 65 –68. doi: 10.1109/ANNES.1993.323080 (cit. on p. 51).

[94] Anthony Robins. “Catastrophic Forgetting, Rehearsal and Pseudorehearsal”. In:
Connection Science 7.2 (1995), pp. 123–146 (cit. on p. 51).

[95] Tony Robinson. SHORTEN: Simple Lossless and near-lossless waveform com-
pression. Technical report CUED/F-INFENG/TR.156. Cambridge University
Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, UK: Cam-
bridge University Engineering Department, Dec. 1994 (cit. on pp. 77, 79).

[96] Tony Robinson et al. “WSJCAM0: A Brittish English Speech Corpus for Large
Vocabulary Continuous Speech Recognition”. In: Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95., 1995 International Conference on. Vol. 1. IEEE
Computer Society, May 1995, pp. 81–84. doi: 10.1109/ICASSP.1995.479278

(cit. on pp. 63, 87).

[97] S. Scanzio et al. “Adaptation of Hybrid ANN/HMM Using Weights Interpolation”.
In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on. Vol. 5. May 2006, p. V. doi: 10.1109/
ICASSP.2006.1661455 (cit. on pp. 54, 56, 57).

[98] S. Scanzio et al. “Parallel implementation of artificial neural network training”.
In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on. Mar. 2010, pp. 4902 –4905. doi: 10.1109/ICASSP.2010.5495108
(cit. on p. 103).

[99] Petr Schwarz. “Phoneme recognition based on long temporal context”. PhD
thesis. Brno, CZ: Brno University of Technology, 2009, p. 95. url: http:

//www.fit.vutbr.cz/research/view_pub.php?id=9132 (cit. on pp. 10, 63).

[100] Petr Schwarz, Pavel Matějka, and Jan Černocký. “Hierarchical Structures of
Neural Networks for Phoneme Recognition”. In: Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference
on. Vol. 1. May 2006, p. I. doi: 10.1109/ICASSP.2006.1660023 (cit. on p. 85).

[101] Holger Schwenk and Jean-Luc Gauvain. “Training neural network language models
on very large corpora”. In: Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing. HLT ’05.
Vancouver, British Columbia, Canada: Association for Computational Linguistics,
2005, pp. 201–208. doi: 10.3115/1220575.1220601 (cit. on p. 17).

[102] The Editors of Scientific American. The Scientific American Book of the Brain.
The Lyons Press, 2001. isbn: 978-1585742851 (cit. on p. 22).

[103] Yi Shang and B.W. Wah. “Global optimization for neural network training”. In:
Computer 29.3 (Mar. 1996), pp. 45 –54. issn: 0018-9162. doi: 10.1109/2.

485892 (cit. on p. 34).

114

http://dx.doi.org/10.1109/ANNES.1993.323080
http://dx.doi.org/10.1109/ICASSP.1995.479278
http://dx.doi.org/10.1109/ICASSP.2006.1661455
http://dx.doi.org/10.1109/ICASSP.2006.1661455
http://dx.doi.org/10.1109/ICASSP.2010.5495108
http://www.fit.vutbr.cz/research/view_pub.php?id=9132
http://www.fit.vutbr.cz/research/view_pub.php?id=9132
http://dx.doi.org/10.1109/ICASSP.2006.1660023
http://dx.doi.org/10.3115/1220575.1220601
http://dx.doi.org/10.1109/2.485892
http://dx.doi.org/10.1109/2.485892

Bibliography

[104] Sangita R. Sharma. “Multi-stream approach to robust stream recognition”. PhD
Thesis. Oregon Graduate Institute of Science and Technology, Oct. 1999 (cit. on
pp. 8, 9).

[105] Sidney Siegel and N. John Castellan. Nonparametric statistics for the behavioral
sciences. 2nd ed. McGraw-Hill Humanities/Social Sciences/Languages, Jan. 1988.
isbn: 978-0070573574 (cit. on p. 19).

[106] X. Sierra-Canto, F. Madera-Ramirez, and V. Uc-Cetina. “Parallel Training of
a Back-Propagation Neural Network Using CUDA”. In: Machine Learning and
Applications (ICMLA), 2010 Ninth International Conference on. Dec. 2010,
pp. 307 –312. doi: 10.1109/ICMLA.2010.52 (cit. on p. 103).

[107] Sara A. Solla, Esther Levin, and Michael Fleisher. “Accelerated learning in layered
neural networks”. In: Complex Systems 2 (6 Dec. 1988), pp. 625–639. issn:
0891-2513. url: http://dl.acm.org/citation.cfm?id=65512.65513 (cit. on
p. 29).

[108] J. Stadermann and G. Rigoll. “Two-Stage Speaker Adaptation of Hybrid Tied-
Posterior Acoustic Models”. In: Acoustics, Speech, and Signal Processing, 2005.
Proceedings. (ICASSP ’05). IEEE International Conference on. Vol. 1. Mar.
2005, pp. 977 –980. doi: 10.1109/ICASSP.2005.1415279 (cit. on p. 52).

[109] Fritz Stager and Mukul Agarwal. “Three Methods to Speed up the Training of
Feedforward and Feedback Perceptrons”. In: Neural Networks 10.8 (1997), pp. 1435
–1443. issn: 0893-6080. doi: 10.1016/S0893-6080(97)00053-1. url: http:
//www.sciencedirect.com/science/article/pii/S0893608097000531 (cit.
on p. 38).

[110] Robert G. D. Steele and James H. Torrie. Principles and procedures of statistics.
McGraw-Hill, 1960 (cit. on p. 93).

[111] Nikko Ström. “Speaker adaptation by modeling the speaker variation in a con-
tinuous speech recognition system”. In: Spoken Language, 1996. ICSLP 96.
Proceedings., Fourth International Conference on. Vol. 2. Oct. 1996, 989 –992
vol.2. doi: 10.1109/ICSLP.1996.607769 (cit. on p. 60).

[112] Roberto Togneri, Aik M. Toh, and Sven Nordholm. “Evaluation and modifica-
tion of cepstral moment normalization for speech recognition in additibe Babble
ensemble”. In: Proceedings SST. 2006, pp. 94–99 (cit. on p. 43).

[113] E. Trentin and M. Gori. “Robust combination of neural networks and hidden
Markov models for speech recognition”. In: Neural Networks, IEEE Transactions
on 14.6 (Nov. 2003), pp. 1519 –1531. issn: 1045-9227. doi: 10.1109/TNN.

2003.820838 (cit. on p. 13).

[114] Matthew Turk and Alex Pentland. “Eigenfaces for Recognition”. In: Journal of
Cognitive Neuroscience 3.1 (Dec. 1991), pp. 71–86. doi: 10.1162/jocn.1991.3.
1.71 (cit. on p. 57).

115

http://dx.doi.org/10.1109/ICMLA.2010.52
http://dl.acm.org/citation.cfm?id=65512.65513
http://dx.doi.org/10.1109/ICASSP.2005.1415279
http://dx.doi.org/10.1016/S0893-6080(97)00053-1
http://www.sciencedirect.com/science/article/pii/S0893608097000531
http://www.sciencedirect.com/science/article/pii/S0893608097000531
http://dx.doi.org/10.1109/ICSLP.1996.607769
http://dx.doi.org/10.1109/TNN.2003.820838
http://dx.doi.org/10.1109/TNN.2003.820838
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1162/jocn.1991.3.1.71

Bibliography

[115] Jan Vaněk. “Discriminative training of acoustic models”. PhD Thesis. University
of West Bohemia Department of Cybernetics, 2009 (cit. on p. 16).

[116] Jan P. Verhasselt and Jean-Pierre Martens. “A fast and reliable rate of speech
detector”. In: Spoken Language, 1996. ICSLP 96. Proceedings., Fourth Interna-
tional Conference on. Vol. 4. Oct. 1996, 2258 –2261 vol.4. doi: 10.1109/ICSLP.
1996.607256 (cit. on p. 89).

[117] Karel Veselý, Lukáš Burget, and Frantǐsek Grézl. “Parallel Training of Neural
Networks for Speech Recognition”. In: Text, Speech and Dialogue. Ed. by Petr
Sojka et al. Vol. 6231. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2010, pp. 439–446. isbn: 978-3-642-15759-2. doi: 10.1007/978-3-
642-15760-8_56 (cit. on p. 103).

[118] Michael N. Vrahatis, George D. Magoulas, and Vassilis P. Plagianakos. “Globally
Convergent Modification of the Quickprop Method”. In: Neural Processing
Letters 12 (2 Oct. 2000), pp. 159–170. issn: 1370-4621. doi: 10.1023/A:

1009661729970. url: http://dl.acm.org/citation.cfm?id=361131.361157

(cit. on p. 35).

[119] H. Wakita. “Normalization of vowels by vocal-tract length and its application
to vowel identification”. In: Acoustics, Speech and Signal Processing, IEEE
Transactions on 25.2 (Apr. 1977), pp. 183 –192. issn: 0096-3518. doi: 10.

1109/TASSP.1977.1162929 (cit. on p. 44).

[120] Guangsen Wang and Khe Chai Sim. “Sequential Classification Criteria for NNs
in Automatic Speech Recognition”. In: Proceedings of the Interspeech 2011
Conference. Ed. by Piero Cosi et al. Causal Production Pty Ltd, Sept. 2011,
pp. 441–444 (cit. on p. 87).

[121] R. L. Watrous. “Speaker normalization and adaptation using second-order connec-
tionist networks”. In: Neural Networks, IEEE Transactions on 4.1 (Jan. 1993),
pp. 21 –30. issn: 1045-9227. doi: 10.1109/72.182692 (cit. on p. 60).

[122] Paul J. Werbos. “Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences.” PhD thesis. Harvard University, 1974 (cit. on p. 29).

[123] Qin Yan and Saeed Vaseghi. “A comparative analysis of UK and US English
accents in recognition and synthesis”. In: Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference on. Vol. 1. May 2002, pp. 413
–416. doi: 10.1109/ICASSP.2002.5743742 (cit. on p. 88).

[124] Steve J. Young et al. The HTK Book, version 3.4. Cambridge, UK: Cambridge
University Engineering Department, 2006 (cit. on p. 8).

116

http://dx.doi.org/10.1109/ICSLP.1996.607256
http://dx.doi.org/10.1109/ICSLP.1996.607256
http://dx.doi.org/10.1007/978-3-642-15760-8_56
http://dx.doi.org/10.1007/978-3-642-15760-8_56
http://dx.doi.org/10.1023/A:1009661729970
http://dx.doi.org/10.1023/A:1009661729970
http://dl.acm.org/citation.cfm?id=361131.361157
http://dx.doi.org/10.1109/TASSP.1977.1162929
http://dx.doi.org/10.1109/TASSP.1977.1162929
http://dx.doi.org/10.1109/72.182692
http://dx.doi.org/10.1109/ICASSP.2002.5743742

Authored or Co-authored Works

[1] R. Hippman et al. “Voice-supported Electronic Health Record for Temporo-
mandibular Joint Disorders”. In: Methods of Information in Medicine 49 (2010),
pp. 168–172. issn: 0026-1270. url: http://www.kky.zcu.cz/en/publications/
HippmanR_2010_Voice-supported.

[2] J. Matoušek et al. “Identification and Automatic Detection of Parasitic Speech
Sounds”. In: INTERSPEECH 2009, proceedings of 10th Annual Conference
of International Speech Communication Association. Brighton, Great Britain:
ISCA, 2009, pp. 876–879. url: http://www.kky.zcu.cz/en/publications/

MatousekJ_2009_Identificationand.

[3] Miroslav Nagy et al. “Voice-controlled Data Entry in Dental Electronic Health
Record”. In: Studies in Health Technology and Informatics 2008 (2008), pp. 529–
534. issn: 0926-9630. url: http://www.kky.zcu.cz/en/publications/

NagyMiroslav_2008_Voice-controlledData.

[4] Luboš Šmı́dl and Jan Trmal. “Keyword Spotting Result Post-processing to
Reduce False Alarms”. In: Recent Advances in Signals ans Systems. Vol. 9.
Budapest: WSEAS Press, 2009, pp. 49–52. isbn: 978-960-474-114-4. url: http:
//www.kky.zcu.cz/en/publications/SmidlLubos_2009_KeywordSpotting.

[5] Jan Trmal, Jan Zelinka, and Luděk Müller. “Adaptation of a Feedforward Artificial
Neural Network Using a Linear Transform”. In: Text, Speech and Dialogue. Lecture
Notes in Computer Science 6231 (2010), pp. 423–430. issn: 0302-9743. url:
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_Adaptationof.

[6] Jan Trmal, Jan Zelinka, and Luděk Müller. “On Speaker Adaptive Training of
Artificial Neural Networks”. In: Proceedings of Int. Conf. Interspeech 2010.
2010. url: http://www.kky.zcu.cz/en/publications/TrmalJan_2010_

OnSpeakerAdaptive.

[7] Jan Trmal et al. “Feature Space Transforms for Czech Sign-Language Recogni-
tion”. In: Proceedings of the 9th Annual Conference of the International Speech
Communication Association (Interspeech 2008). Causal Production Pty ltd., 2008,
pp. 2036–2039. url: http://www.kky.zcu.cz/en/publications/TrmalJan_

2008_FeatureSpace.

[8] Jan Trmal et al. “Online TV captioning of Czech Parliamentary Sessions”. In: Text,
Speech and Dialogue. Vol. 6231. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, pp. 416–422. isbn: 3-642-15759-9. url: http:

//www.kky.zcu.cz/en/publications/TrmalJan_2010_OnlineTVcaptioning.

117

http://www.kky.zcu.cz/en/publications/HippmanR_2010_Voice-supported
http://www.kky.zcu.cz/en/publications/HippmanR_2010_Voice-supported
http://www.kky.zcu.cz/en/publications/MatousekJ_2009_Identificationand
http://www.kky.zcu.cz/en/publications/MatousekJ_2009_Identificationand
http://www.kky.zcu.cz/en/publications/NagyMiroslav_2008_Voice-controlledData
http://www.kky.zcu.cz/en/publications/NagyMiroslav_2008_Voice-controlledData
http://www.kky.zcu.cz/en/publications/SmidlLubos_2009_KeywordSpotting
http://www.kky.zcu.cz/en/publications/SmidlLubos_2009_KeywordSpotting
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_Adaptationof
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_OnSpeakerAdaptive
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_OnSpeakerAdaptive
http://www.kky.zcu.cz/en/publications/TrmalJan_2008_FeatureSpace
http://www.kky.zcu.cz/en/publications/TrmalJan_2008_FeatureSpace
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_OnlineTVcaptioning
http://www.kky.zcu.cz/en/publications/TrmalJan_2010_OnlineTVcaptioning

Authored or Co-authored Works

[9] J. Trmal et al. “Comparison between GMM and decision graphs based si-
lence/speech detection method”. In: Proceedings of the 11th international confer-
ence ”Speech and computer” SPECOM’2006. St. Petersburg: Anatolya Publishers,
2006, pp. 376–379. isbn: 5-7452-0074-X. url: http://www.kky.zcu.cz/en/

publications/TrmalJ_2006_Comparisonbetween.

[10] J. Trmal et al. “Independent components for acoustic modeling”. In: Proceedings
of Int. Conf. Interspeech 2006 1 (2006), pp. 2486–2489. issn: 1990-9772. url:
http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Independent.

[11] J. Trmal et al. “Silence/speech detection method based on set of decision graphs”.
In: Lecture Notes in Artificial Intelligence. 4188th ser. (2006), pp. 539–546. url:
http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Silencespeech.

[12] Jan Vaněk et al. “Optimization of the Gaussian Mixture Model Evaluation on
GPU”. In: Proceedings of Int. Conf. Interspeech 2011. Vol. 1. International
Speech Communication Association. Sept. 2011, pp. 1737–1740.

[13] Jan Vaněk et al. “Training of Speaker-Clustered Discriminative Acoustic Models
for Use in Real-Time Recognizers”. In: Speech Processing. Prague: Institute
of Photonics and Electronics AS CR, 2010, pp. 152–158. isbn: 978-80-86269-
21-4. url: http://www.kky.zcu.cz/en/publications/VanekJan_2010_

Trainingof.

[14] Jan Zelinka, Jan Trmal, and Müller Luděk. “Low-dimensional Space Transforms of
Posteriors in Speech Recognition”. In: Proceedings of Int. Conf. Interspeech 2010.
Vol. 2010. Makuhari, Chiba, Japan: Curran Associates, 2010, pp. 1193–1196.
isbn: 978-1-61782-123-3. url: http://www.kky.zcu.cz/en/publications/

ZelinkaJan_2010_Low-dimensionalSpace.

[15] Jan Zelinka et al. “Posterior Estimates and Transforms for Speech Recognition”.
In: Lecture Notes in Artificial Intelligence 2010 (2010), pp. 480–487. issn: 0302-
9743. url: http://www.kky.zcu.cz/en/publications/ZelinkaJan_2010_

PosteriorEstimates.

[16] Jana Zvárová et al. “Biderectional Voice Interaction with Dental Electronic
Health Record”. In: Med-e-Tel 2008 2008 (2008), pp. 289–293. issn: 1818-
9334. url: http://www.kky.zcu.cz/en/publications/ZvarovaJana_2008_

BiderectionalVoice.

118

http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Comparisonbetween
http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Comparisonbetween
http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Independent
http://www.kky.zcu.cz/en/publications/TrmalJ_2006_Silencespeech
http://www.kky.zcu.cz/en/publications/VanekJan_2010_Trainingof
http://www.kky.zcu.cz/en/publications/VanekJan_2010_Trainingof
http://www.kky.zcu.cz/en/publications/ZelinkaJan_2010_Low-dimensionalSpace
http://www.kky.zcu.cz/en/publications/ZelinkaJan_2010_Low-dimensionalSpace
http://www.kky.zcu.cz/en/publications/ZelinkaJan_2010_PosteriorEstimates
http://www.kky.zcu.cz/en/publications/ZelinkaJan_2010_PosteriorEstimates
http://www.kky.zcu.cz/en/publications/ZvarovaJana_2008_BiderectionalVoice
http://www.kky.zcu.cz/en/publications/ZvarovaJana_2008_BiderectionalVoice

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Scope and Goals of the Thesis
	Goals of the Thesis

	Continuous Speech Recognition
	Speech Signal Analysis
	Mel-frequency Cepstral Coefficients
	Delta and Acceleration Coefficients
	Temporal Patterns (TRAPS)
	Long Temporal Spectral Patterns (LTSP)
	Hidden Activation TRAPS (HATS)
	Bottleneck Features (BNKS)

	Acoustic Modeling
	Gaussian Mixture Model (GMM)
	Neural Network Densities Functions

	Language Modeling
	Language Models Based on N-grams
	Training of the N-gram Language Models
	Neural Network Based Language Models

	Speech Decoding Techniques
	Speech Recognition Accuracy Evaluation
	Absolute and Relative Improvement
	Statistical Significance Tests
	Confidence Intervals

	Conclusion

	Artificial Neural Networks
	Biological Neural Networks
	Perceptron Unit
	Feedforward Multi-layer Perceptron
	Recurrent Multi-layer Perceptron
	Activation Functions
	Training of Multi-layer Perceptron Networks
	The Most Frequent Error Functions
	Backpropagation of an Error in the Multi-layer Perceptron
	Speeding Up the Training Process
	Natural Pairing of an Error Function and Transfer Functions
	Incremental, Batch and Bunch Mode Training
	Probabilistic Interpretation of Network Outputs

	Conclusion

	Training of the Speech Recognition Systems
	Speaker Normalization
	Cepstral Mean Normalization (CMN)
	Statistical Moments Normalization
	Vocal Tract Normalization (VTN)

	Acoustic Model Adaptation
	Speaker Adaptive Training
	Conclusion

	Current Approaches to Adaptation of a Neural Network
	Retraining of the Network
	Catastrophical Forgetting
	Rehearsal and Pseudo-rehearsal Techniques
	Conservative Training
	Partial Retraining

	One Step Hessian Manipulation
	Topology Manipulation
	Parallel Hidden Layer
	Linear Adaptation Layer
	Weights Interpolation

	Eigenvoices Adaptation
	Special and Hybrid Paradigms
	Speaker Morphing
	Special Architectures
	Compensation of Trends during Training

	Conclusion

	Proposed Approach to Adaptation of a Neural Network
	Description of the Experimental Systems
	Feature Extraction
	Bottleneck Features Extractor
	Posteriori Probabilities Estimator

	Adaptation of Long Temporal Spectral Features
	Linear Adaptation of the Weight Matrix
	Minimum Error Linear Transform
	Choice of the Error Function

	Using the MELT Normalization
	Selection of the Number of Free Variables
	Selection of the Normalization Locus
	The Adaptation Algorithm

	Conclusion

	Speech Corpora Used In This Work
	The Czech SpeechDat(E)
	Phoneme Level Language Model

	The DARPA TIMIT Acoustic-phonetic Continuous Speech Corpus
	Phoneme Level Language Model

	WSJCAM0 Cambridge Read News
	Phoneme Level Language Model
	Word Level Language Model

	Conclusion

	Experiments and Results
	Preliminary Experiments
	Objectives of the Preliminary Experiments
	Experiments Performed on the SpeechDat(E) Corpus
	Experiments Performed on the TIMIT Corpus
	Conclusion and Findings of the Preliminary Experiments

	WSJCAM0 – The Main Experimental Corpus
	Experiment Flowchart

	WSJCAM0 – The Reference System
	Comparison of the Reference System

	WSJCAM0 – Results for the Baseline (Unadapted) System
	Phoneme Recognition
	Hybrid LVCSR Word Recognition
	Bottleneck LVCSR Word Recognition

	WSJCAM0 – Speaker Adaptive Training
	Training Process Description
	Results
	Conclusion

	WSJCAM0 – Semi-supported Speaker Adaptive Training for the Hybrid Paradigm
	Description of the Semi-Supported SAT
	Results
	Conclusion

	WSJCAM0 – Unsupervised Speaker Adaptive Training for the Hybrid Paradigm
	Description of the Two-pass Unsupervised SAT
	Results
	Conclusion

	WSJCAM0 – The Unsupervised Speaker Adaptive Training for the Bottleneck Paradigm
	Description of the Task
	Results
	Conclusion

	Conclusion

	Conclusion and Future Work
	Future Work

	Bibliography
	Authored or Co-authored Works

