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Abstrakt

Při vyhodnocováńı ERP experiment̊u je naprosto nezbytné přesně určit am-

plitudu a latenci jednotlivých ERP komponent. Protože je EEG signál kvazi-

stacionárńı, je nezbytné pro jeho analýzu použ́ıt časově-frekvenčńı metody, jako

je waveletová transformace, krátkodobá Fourierova transformace, nebo matching

pursuit. Daľśım zástupcem metod časově-frekvenčně analýzy je Hilbert-Huangova

transformace, která byla navržena př́ımo pro zpracováńı nestacionárńıch signál̊u.

V mé práci jsem navrhl několik modifikaćı Hilbert-Huangovy transformace,

které umožńı omezit tzv. overshoot efekt, který vzniká v pr̊uběhu vytvářeńı

obálek. S navrženými vylepšeńımi jsou př́ıdavné extrémy lépe umı́stěny, t́ım je

zajǐstěna vyšš́ı rychlost rozkladu na intrinsic mode funkce a źıskané intrinsic mode

funkce v́ıce odpov́ıdaj́ı p̊uvodńımu EEG signálu.



Abstract

While evaluating ERP experiments, it is essential to determine the amplitude

and latency of ERP components. Time-frequency domain methods, such as

the wavelet transform, short-time discrete Fourier transform, matching pursuit,

are usually used for this task, because the EEG signal is quasi-stationary. The

Hilbert-Huang transform was designed to process non-stationary signals. There-

fore, it should be suitable for processing EEG signals as well.

I have designed several modifications of the Hilbert-Huang transform, which

restrain the over/undershoot effect occuring when envelopes are being calculated.

My modifications contribute to better estimation of additional extrema and im-

prove the results acquired from processing the EEG signal (even when it is con-

tamined with artifacts). They make the empirical mode decomposition faster and

the decomposed IMFs corresponds more with the original EEG signal.
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Chapter 1

Introduction

The electroencephalography (EEG) still has its place as a diagnostic tool in to-

day’s world. It has several advantages over newer methods such as the com-

puterized tomography (CT), magnetic resonance imaging (MRI), functional MRI

(fMRI), positron emission tomography (PET). The greatest advantages are excel-

lent temporal resolution (sampling frequency in kHz), low cost of examinations,

and very low cost of the equipment. The other advantage is portability; today’s

EEG devices are small enough to be used as holters. These advantages lead to

acquiring long time records (often longer than 24 hours). But there is the greatest

disadvantage: the only way to analyze is to conduct a visual analysis of the raw

EEG recording. This is still the state of art of the clinical electroencephalography

– there hasn’t been any significant progress in last 75 years [7]. The situation of

the processing and analyzing event-related potentials (ERPs) is similar.

Event Related Potentials (ERPs) play the essential role in the Brain-Computer

Interface, in the medicine and attention experiments. We cooperate with the

University Hospital in Pilsen, Skoda Auto Inc., and Faculty of Transportation

Science of Czech Technical University in Prague on assessment of the level of

drivers’ attention. Our research group at the Department of Computer Sciences

and Engineering, University of West Bohemia is responsible for technical and

scientific issues, e.g. EEG/ERP laboratory operation, development of advanced

software tools for EEG/ERP research, or analysis and proposal of signal process-

ing methods.
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1. Introduction

To detect an ERP component means to locate the wave and determine its

amplitude and latency. There are suitable time-frequency domain methods to

achieve this task, such as Wavelet transform and Matching pursuit. Matching

pursuit and Wavelet transform are using predefined functions (wavelets, Gabor

atoms) in which the EEG signal is decomposed to. Another alternative is repre-

sented by Hilbert Huang transform, which decomposes the signal into Intrinsic

Mode Functions (IMFs) defined by the signal itself. The Hilbert Huang transform

was specially designed for processing non-stationary signals such as EEG.

The aim of my PhD thesis is to use the Hilbert Huang transform for EEG

signal processing, especially for the ERP detection. Hilbert Huang transform is

a relatively new method proposed by Huang in [10]. It seems to be very promising

for the EEG signal processing because it could calculate instantaneous frequency

and amplitude - tasks essential for the ERP detection.

During tests of the Hilbert Huang transform on the data acquired in our

laboratory, I have encountered several drawbacks of the Empirical Mode Decom-

position method (first part of Hilbert Huang Transform). Therefore, I had to

design modifications which adapt the Hilbert Huang transform for EEG signal

processing and ERP detection.
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Chapter 2

Aims of the PhD Thesis

The PhD thesis is focused on the EEG signal processing with time-frequency

methods, especially on using Hilbert Huang transform to accomplish this task.

Following objectives were defined for my PhD thesis:

1. To implement and test HHT for EEG signal processing and ERP detection.

2. To propose necessary modifications of HHT in EEG/ERP analysis (estima-

tion of first and last extrema point, stopping conditions, etc.)

3. To design and implement HHT algorithm improved according to 2.

4. To validate the proposed method in multiple experiments including tests

on real world data (acquired in our laboratory).

3



Chapter 3

Introduction into EEG

3.1 Origin of the EEG Signal

EEG is an abbreviation of the Electroencephalogram and it is a result of the neu-

rophysiologic measurement of an electrical activity emitted by the brain. This

method is called the Electroencephalography. The EEG signal is a time varia-

tion of potential difference between two electrodes placed on the patient’s scalp

surface.

The EEG signal is created by weighted summation of signals produced by huge

amount of single neurons, located in parts of the brain: cortex and thalamus. The

intensity of the electric activity of neuron groups depends on the distance between

the electrode and neurons. Neurons located in greater distance from the electrode

contribute less to the resulting electric activity than neurons which are closer to

the electrode. There is no way to separate contribution of the single neuron.

3.2 Measurement of the EEG Signal

Nowadays is the EEG recorded as a discrete signal and stored on optical discs,

flash cards, hard disks and in databases. The capacity of storage media enables

to keep recordings from every patient’s examination.

Each modern encephalographic recording system consists of [37]

• electrodes,

4



3. Introduction into EEG

Fp1 Fp2

Fz F4 F8
F3F7

T3 C3 Cz C4 T4

Pz P4
A2

P3
A1

O1 O2

 

Figure 3.1: 10-20 electrode placement system

• amplifiers with filters,

• an A/D converter

• and a recording device.

Electrodes are attached to the patient’s scalp and read the signal from the sur-

face. To decrease the impedance between the patient’s scalp and the electrode,

a conductive gel is applied. When the impedance is lower, the EEG signal is

more suitable for the processing. The usual layout of electrodes for the standard

EEG examination was established in 195. It is called 10-20 electrode placement

system [37] (see figure 3.1. However the count of the used electrodes could be

greater or lower (e.g. five or even three electrodes are sufficient for some event

related potentials experiments).

5



3. Introduction into EEG

The EEG signal acquired from the patient’s scalp is too weak (µV ) to activate

the differential amplifier. It has to be pre-amplified before the amplification

or processing (A/D converter). There are pre-amplifiers (usually the Common-

Emitter amplifiers (see more int [36])) designed special for this task.

Before the analogue signal is converted into the discrete signal, the signal is

amplified using the difference amplifier. It amplifies the difference between two

electrodes. Therefore three kinds of electrodes are usually used: the ground-

ing, reference electrode and active electrodes. The difference amplifiers reduce

the outside interference and artifacts because they amplifies just the potential

difference between two electrode distorted by the same artifact.

To store the signal on the computer, it is necessary to convert it to the discrete

form. The A/D converter does this task. The signal is sampled repeatedly with

the fixed time interval and each sample is converted into the digital form. a suf-

ficient sampling frequency (at least two times higher than the highest measured

frequency) is the requirement for a suitable A/D converter. So is the resolution -

the smallest amplitude which could be sampled (it is recommended to be at least

0.5µV ) [37].

3.3 Brain Rhythms

Brain waves have been categorized into five main groups according to their fre-

quency range:

α The frequency of alpha waves lies within the range 8-13Hz. The amplitude

is higher over the occipital areas and normally is less than 50µV . Best seen

is with eyes closed and under condition of physical relaxation and relaxed

awareness without any attention or concentration [23; 32].

β The frequency of beta waves lies within the range 14-26Hz (in some liter-

ature no upper bound given). Higher frequencies usually called fast beta

and corresponds with gamma range. Amplitude is normally up to 30µV .

Beta can be found, when the patient is actively thinking or solving concrete

problem [32].

6



3. Introduction into EEG

γ The usual frequency range is above 30Hz, usually up to 45Hz (sometimes

called fast beta). Its occurrence is very rare, it is used for diagnoses of

certain brain diseases [32].

δ Delta waves are very slow 0.5-4Hz. Delta waves are associated with the deep

sleep, but they could be rarely present in the waking state. They could be

easily confused with artifact (caused by neck and jaw muscles). [23].

θ Waves with frequencies between 4-7.5Hz are called theta waves. Theta

waves play an important role in the infancy and childhood. Normal adults

have their theta activity only during drowsiness and sleep [23; 32].

3.4 Interference

The acquired signal conists of signals originating in the neural activity, and sig-

nals that originate from other sources than the neural activity. These recorded

non-cerebral signals are termed as artifacts. Artifacts could be divided into two

categories:

• physiologic

• extraphysiologic

. Physiological artifacts are generated by the patient’s body but not by the brain.

Extraphysiologic artifacts come from the equipment and the environment (outside

of the patient’s body)[3].

3.4.1 Physiologic Artifacts

Muscle Activity

Muscle artifacts are most common artifacts. Most often they are caused by

clenching of jaw muscles (figure 3.2). Duration of the muscle artifacts is shorter

than the duration of potentials generated in the brain. The frequency of muscle

artifacts is in the range 50-100Hz [3].

7



3. Introduction into EEG

Figure 3.2: Muscles and EKG artifact [3]

Figure 3.3: Example of eye movement artifacts [3].

Eye Movements

The eyeball acts as a dipole where the positive pole represents the cornea and

the negative pole represents the retina. When the eye moves, it generates the

alternate current field measurable with all electrodes near the eye (figure 3.3.

The muscle artifacts, produced by muscles of the eye, influence the measured

signal as well.

Glossokinetic Artifact

The tongue acts also as a dipole in the same manner as eyes. When the tip of

the tongue moves, it produces broad potential field which drops from frontal to

occipital areas. Frequency is variable but usually lies in the delta range [3].

8



3. Introduction into EEG

Figure 3.4: Skin artifact [3]

EKG Artifact

electrocardiography (EKG) artifacts are related to the field of the heart potentials.

ECG artifacts are synchronized with the ECG tracing (figure 3.2) and could be

recognized through their rhythmical repetition [3].

Pulse

Pulse artifacts are caused by the pulsating vessel when the EEG electrode is

placed near such vessel. Then the EEG signal contains pulse artifact with low

frequency similar to the EEG activity. This artifacts correspond the ECG arti-

facts (delayed 200-300ms past the ECG) [3].

Respiration Artifact

One of the respiration artifacts is slow and rhythmic. It corresponds with body

movements, which affects the impedance of electrodes. The second type corre-

sponds with the exhalation or inhalation and it is presented as slow or sharp

waves. The second type affects the electrodes, on which the patient is lying [3].

Skin Artifact

Skin artifacts are caused by the biological artifacts which alter the impedance of

the electrode. Sodium chloride and lactic acid from sweating react with the metal

of electrodes and produce large and very slow waves (0̃.5Hz, figure 3.4) [3].

9



3. Introduction into EEG

Figure 3.5: Electrode artifact. Sudden change of the impedance. [3]

3.4.2 Extraphysiologic Artifacts

Electrode Artifacts

When the impedance of the electrode changes suddenly, “pop” artifact (figure

3.5) appears. It is usually limited to the single electrode. The impedance of

the electrode could change slowly. One of the causes is the drying-out of the

conductive gel applied on the electrode [3].

Power grid 50Hz(60Hz)

This artifact is induced from external power sources like the power grid (50Hz

Europe, 60Hz North America) see figure 5.2. Similar problems are caused by

switched-mode power supplies. They spread interference with higher frequen-

cies across the power grid. When the impedance between grounding and active

electrode is significantly higher then this artifact affects the EEG signal more

intensively. But it could be easily removed by using filters and lowering the

grounding impedance. The common practice is to use batteries for the EEG

measuring unit. The best solution would be a room shielded with Faraday cage.

3.5 Properties of the EEG Signal

If we calculate statistics of the EEG signal in different time points, we realize that

these statistics vary significantly. If the statistics were nearly equal in the whole

signal, the signal would be deemed as stationary. Therefore, the EEG signal is

10



3. Introduction into EEG

deemed as non-stationary because its statistic differs. This is caused with the

nature of the signal as it consits of different brain rhythms, artifacts, etc.

The EEG signal can be divided into the short intervals with different length

but the same statistics within the interval. Such intervals are called segments

and the process of acquiring them is called segmentation [32].

Nowadays the EEG is stored in its digital form only. Therefore one of the sig-

nificant properties of the EEG signal is the sampling frequency. It represents the

time resolution. For continuous EEG the sampling frequency up to 256Hz is suf-

ficient usually. Higher sampling frequency around 1 or 2 kHz is more conventient

for the ERP detection.
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Chapter 4

Introduction into ERP

4.1 What is ERP?

Event-related potentials (ERPs) are EEG signals, which represent the response

of the cortex to sensory, affective or cognitive events. The ERP are created as

large sum of action potentials, which follow sensory or cognitive events.

The amplitude of ERPs is quite small, up to 30µV (the background EEG

activity has amplitudes even 100µV ). Therefore, it is necessary to use averaging

technique to highlight them and suppress the background EEG [32; 39].

4.2 Properties of ERP Wave

Three parameters could be used to describe ERP waves (figure 4.1):

• the amplitude,

• the latency,

• the scalp distribution.

The amplitude represents the rate of neural activity as the response to the

stimulus. The latency (delay after stimulus) reveals the timing of the neural

activity. The scalp distribution provides us with the information which part of

12
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Figure 4.1: Properties of ERP wave

a brain was involved in the response (visual components are higher on the top of

the head).

In the ideal case the amplitude will peak at the point of the ERP component.

But the interference and averaging distort the ERP wave, so the maximum ampli-

tude isn’t suitable for describing the ERP component. The average amplitude or

the area under the curve would be a better criterion. The area under the curve

isn’t so much affected by the distortion caused by averaging. When the ERP

component is wider because of averaging, then the amplitude is lower, but the

area under the curve remains almost same. The latency is affected in the same

manner. When the averaging is performed on the ERP waves, the resulting wave-

form will be “wider” (has lower frequency) and the maximum amplitude doesn’t

have to be exactly in the middle of the wave (interference, artifacts). Then the

better way how to establish latency, would be to divide the area below the curve

(ERP component) into the two equal parts. The latency would be measured as

the distance from this point (see more in [20]).

4.3 Sorts of ERPs

In this section some of the ERP components (parts of the ERP waveform) are

described briefly.

ERP components are usually labeled as P1, N2, P3. The labeling refers their

polarity; P for the positive and N for the negative orientation (be aware that

13



4. Introduction into ERP

the positive orientation is plotted downward in medical practice ). The number

represents the position within the waveform. The labeling is not linked to the

nature of the underlying brain activity. Therefore the the auditory component

P1 and N1 are not related with visual components P1 and N1. Some of the later

components such as P3 could be modality-independent, but they could contains

specific sub-components.[19].

4.3.1 Visual Sensory Response

C1

C1 is the first major visual ERP component. It isn’t labeled as P or N, because its

amplitude polarity can vary. Usually it is positive for stimuli in the lower visual

field and negative for stimuli in the upper visual field. When it is positive it

merges with P1 component usually. It starts 40-60ms after stimuli and the peak

is in range 80-100ms post-stimuli. Its generation is located in primary visual

cortex [19].

P1

The P1 component follows the C1 wave. P1 achieves its highest amplitude at

lateral occipital electrodes. P1 onsets 60-90ms post-stimuli and its peak is located

between 100-130ms. The latency of P1 varies according to the contrast of the

stimulus. The P1 component is also affected by parameters of te stimulus and

spatial attention (see more in [19]).

N1

After P1 wave, the N1 wave comes. The N1 component is usually divided into

several sub-components. The peak of the earliest component appears after 100-

150 ms at frontal electrodes. At least two posterior N1 components follow the

first N1 component. They peak between 150 and 200ms after stimulus (one from

parietal cortex and second form occipital cortex) [19].

14



4. Introduction into ERP

P2

The N1 wave is followed by the P2 wave on frontal and central electrodes. When

the stimuli contain target features and come relatively infrequently, the compo-

nent is larger. In this way the P2 is similar to the P3, but the P3 can occur by

far more complex target categories. The P2 wave is often overlapped with N1,

N2 and P3 waves [19].

N170

The component N170 has its peak between 150 and 200ms. The N170 is later

and/or larger for inverted faces used as stimuli. This effect is also observed

for non-face stimuli when the subject has extensive experience of viewing these

stimuli in the upright orientation. The similar effect is observed when the subject

is stimulated with familiar stimuli such as words [19].

4.3.2 Auditory Sensory Response

Very Early Components

It is possible to observe a sequence of ERP peaks within the first 10 ms after

auditory stimuli. These peaks are generated by various stages along the brainstem

auditory pathways. Therefore these peaks are called brainstem evoked potentials

(BERs) or auditory brainstem responses (ABRs). BERs are useful for testing

auditory pathology, especially for infants. The BERs are followed by mid-latency

components. Their latency is in range 10-50 ms. These waves arise from the

medial geniculate nucleus (auditory thalamus) and the primary auditory cortex.

After these waves comes the auditory P1 wave (ca. 50ms) which achieve its largest

amplitudes at fronto-central electrodes [19].

N1

The auditory N1 has several sub-components like the visual N1 wave. The first

fronto-central has its maximum amplitude about 75ms after stimuli and its origin

is in the auditor cortex. The second wave peaks around 100 ms and the third

peaks about 150ms. The latency of N1 component is affected by the attention [19].

15



4. Introduction into ERP

Mismatch Negativity (MMN)

When the subject is exposed to identical stimuli and occasionally to other different

stimuli called mismatching stimuli, the mismatching stimuli elicit the negative

wave. This wave achieves its highest amplitude in the area of central scalp. Its

latency lies between 160 and 220ms. The MMN is observed even when the subject

isn’t focused on the stimuli (stimuli are not task-relevant) [19].

The N2 Family

The N2 family contains several different components. Their latency corresponds

to the time range of the N2. The first one could be called the basic N2 which is

elicited by repetitive non-target stimuli. If the subject is exposed to other stimuli

(usually called deviants), the amplitude will be larger. If the deviants are task-

relevant (differs from the MMN), then the later N2 component called N2b will be

observed. This component could occur at both visual and auditory stimuli [19].

The P3 Family

In the time range of P3 wave, several different ERP components could be found.

The first two of them are the P3a and P3b. The P3a and P3b are elicited by the

infrequent shift in the tone or intensity (deviant stimulus), but the P3b is only

present when the shift is task-relevant. The P3b component is almost always

meant as the P3/P300 component (I follow this trend). The amplitude of the

P3(P3b) wave is larger when the target probability is lower. The amplitude is

also higher when the target-stimulus comes “unexpected”. The third factor is

the attention of the subject. More is the subject focused on the task, the higher

amplitude of the P3 wave is.

The P3 wave is generated after the stimulus has been processed and cate-

gorized according to the task (depends on the probability of the task-relevant

stimulus), therefore the P3 represents the early cognitive function of the brain

(the earlier waves are just sensorical) [19].
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4. Introduction into ERP

Language related ERP components

The best known language-related component is the N400. The N400 is usually

elicited as the response to violations of semantic expectancies. The N400 compo-

nent could be elicited by non-linguistic stimuli [19].

4.4 Simple ERP Experiment

Let me introduce the simple ERP experiment, which I have used for acquiring

the testing data. This description could clarify terminology used for the ERP

experiments.

The most simple ERP experiment focused on continuous performance task. Is

classic odd-ball paradigm. We have performed same experiment in our laboratory.

Subject is stimulated with target stimulus letter “Q” (15%) and the non-target

stimuli the letter “O” (85%). The letters are presented on the screen of the

computer. The delay between two successive stimuli is 1500ms. The proband’s

task was to count the occurrences of the “Q” letter (The proband doesn’t know

the count before the experiment).This experiment is designed to elicit the P3b

component [13; 19].

The ongoing EEG signal was recorded with our BrainAmp device directly into

another computer than the one presenting the stimuli. We have recorded signals

from only five active electrodes P3, P4, Fz, Pz and Cz. Also the BrainAmp

recorded marks for each stimuli. The stimuli marks are different for each group of

stimuli (target and non-target). Therefore, each mark is described with the type

of the stimulus and the time index of the sample when the stimulus presented.

It is essential for ERP experiments to store these marks; without those marks it

would not be possible to locate epochs in the EEG signal and to process them.

We have been using sampling frequency of 1 kHz and the resolution 0.1 µV .
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Chapter 5

ERP Detection Techniques

5.1 Signal to Noise Ratio

When we are processing the EEG signal to detect the ERP wave, we have to keep

in mind that the amplitude of the strongest ERP wave (called P3) peaks up to

20µV, but amplitudes of common EEG rhythms are higher (α < 50µV , λ < 90µV

[32]). The signal-to-noise ratio (SNR) expresses this property of the signal. In

our case the SNR is 20µV/90µV, it could be expressed as 0.2 as well. Such

SNR is very low for simple ERP detection, but there is a technique which could

increase the SNR to more suitable level. Such level of SNR could be achieved by

averaging. In order to use the averaging method, there has to be enough epochs

acquired during the examination process. [19].

5.2 Averaging as Basic Method for ERP Detec-

tion

It is required to increase value of SNR. The averaging technique could accomplish

such task. Short epochs extracted from the continuous EEG signal are aligned

with respect to the stimulus (time locking event) and mutually averaged. The

i-th sample of the calculated wave is the average of N (count of averaged epochs)

samples at the i-th position. This approach is based on two premises:
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• The ERP waves are assumed to be almost identical in each trial.

• The rest of the EEG signal is completely unrelated to the time-locked event

(the stimuli).

When we include sufficient number of epochs in the average, the remaining noise

(background EEG) will be close to the zero at every point, but the ERP wave will

stay almost unchanged. The relationship between the noise R and the number of

averaged trials could be expressed as (1/
√
N) · R (see more in [19]). There are

three ways how to calculate averages:

• Stimulus-Locked (described above),

• Response-Locked

• and Time-Locked.

The stimulus-locked averaging is described above, other methods are described

in the following sections.

5.2.1 Response-Locked Averages

When the latency of particular trials varies significantly (typically during experi-

ments focused on reaction time), it is necessary to calculate the average by some

other way than the stimulus-locked approach which could distort the wave (see

more in section 5.2.3). In such cases it is better to use response-locked averages.

In response-locked averaging, the epochs are aligned according to the response

(ERP wave) at each single-trial.

5.2.2 Time-Locked Spectral Averaging

Another way how to calculate averages, is the Time-Locked Spectral averaging.

For every epoch the time-frequency representation (time-frequency map) is calcu-

lated. Discrete and Continuous wavelet transforms, Short-time Fourier transform,

Matching pursuit and Hilbert-Huang transform are suitable methods for the task.

The epochs are aligned to the selected time (could be stimulus) and then averages

of time-frequency maps of all epochs are calculated. This approach is very useful

in cases when the phase shift of the ERP waves in trials could vary.
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Figure 5.1: Latency variability could cause deformation of ERP wave, when the
trials are averaged.

5.2.3 Latency Variability

During the averaging, we have to be very careful about the latency variability.

This latency variability could lower the maximum amplitude of the ERP wave.

But when the latency significantly varies, resulting averaged ERP wave could be

distorted in such way that the ERP wave couldn’t be recognized at all. For the

illustration, see figure 5.1.

5.3 Interference and Artifacts

There are many glitches ocurring during the averaging. We have to avoid them

or minimize their impact on the resulting averaged ERP wave. Such glitches

could be caused by properties of the ERP wave itself, for example by the latency

variability (section 5.2.3). But distortion of the averaged ERP wave could be

caused also by external influences (interference) or by signals of non-EEG origin.

5.3.1 Noise From the Power Grid

Interference coming from the power grid is always present. The noise is induced

into conductors connecting the electrodes. The frequency of the noise is 50Hz

(Europe) and 60Hz (North America). The interference can be easily removed with

a notch-filter (see figure 5.2). The filtering has to be done before the averaging,
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Figure 5.2: 50Hz noise in the EEG signal and the same signal after processing
with a notch-filter.

because there is a significant chance, that the noise doesn’t disappear during

the process of averaging. Such inconvenient cases might occur, when the 50Hz

sinusoid has the same phase shift in each trial. Therefore, the averaging process

is not able to eleminate the interference.

5.3.2 Artifacts

Dealing with artifacts is more important task by the ERP detection than by pro-

cessing of the ongoing EEG signal. Artifacts are caused usually by the muscle

proband’s activity (see more in section 3.4 and [3] [16] [14]). Usually the am-

plitude of artifacts is higher than 100µV ; it is no exception, that artifact could

have the amplitude above 200µV. Such high amplitude drives the SNR very low,

making the number of trials required to be included into the average grow rapidly.

Therefore, it is the common practice to exclude trials with artifacts before the av-

eraging. Even better solution of this problem is to anticipate the artifacts during

the experiment, instruct the proband to try not to blink (as much as possible),

seat him comfortably or adapt the experiment to eliminate the artifacts as much

as possible. Good data (without artifacts) are irreplaceable.
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Figure 5.3: Created averaged ERP wave without baseline correction.

5.3.3 Baseline Correction

During the running ERP experiment, proband might sweat or the conductive

gel on electrodes might get dry. Both circumstances cause the change of the

impedance of the electrode. As a result of both phenomena, we get the dif-

ferent value of DC component for each trial. In the worst cases, changes of the

impedance of the electrodes can demonstrate themselves as slow waves, that don’t

belong to components of the EEG signal.

When the averaged is calculated from trials, where the DC component changes

along with trials, the resulting amplitude of the averaged ERP depends on the

values of DC component of each trial, not on the amplitudes of ERP waves (see

figure 5.3).

This issue could be easily solved by a simple method called base-line correc-

tion. Before including trials into the averaged ERP wave, the average value of

first samples of the signal is calculated. The count of first samples can be derived

from the latency of the first ERP component. If we are expecting that the first

component comes after 100ms, we can use the first 100ms of the signal to calcu-
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late the average. Than the average is simply subtracted from the whole signal

of the trial, sample by sample. This will ensure that the DC component doesn’t

have the influence on the amplitude of the averaged ERP wave.
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Chapter 6

Time-frequency Domain Methods

for ERP detection

For the time-frequency representation, wavelet transform (WT) and matching

pursuit (MP) are often used. These two methods are suitable also for the pro-

cessing of the EEG signal and ERP detection. In our team we use the WT and

MP for ERP detection. Therefore, I’m going to shortly introduce the MP and WT

and their application. The comparison of MP, WT and HHT will be presented

in chapter 11.

The content of this chapter is taken from our common paper [53].

6.1 Wavelet Transform

Wavelet Transform (WT) is a suitable method for analyzing and processing non-

stationary signals such as EEG. The WT has good ability of time and frequency

localization, which is necessary for ERP detection. For the EEG signal processing

it, is possible to use continuous wavelet transform (CWT) or discrete wavelet

transform (DWT).
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6. Time-frequency Domain Methods for ERP detection

6.1.1 Principles of Continuous Wavelet Transform

Let me demonstrate the principle of the CWT using the Mexican hat wavelet.

The Mexican hat is defined as:

Ψ(
t− b
a

) = [1− (
t− b
a

)2] · e−
1
2
[
(t−b)

a
]2 (6.1)

where a (dilatation) corresponds with the frequency, and b (translation) describes

shifting the wavelet over the signal (Figure 6.1, Figure 6.2). The translation

parameter was set to 1 when we performed the CWT.
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Figure 6.1: Dilatation of Mexican hat wavelet

We have used the following algorithm of CWT for the ERP detection:

1. We have chosen the mother wavelet, set the starting and ending value of

dilatation; the translation step has been set to 1.

2. We have calculated the sum of correlation for the current dilatation and

repeated for every translation step in order to cover the whole signal.

3. According to the chosen step, we have changed the dilatation and continued

with the 2.

25



6. Time-frequency Domain Methods for ERP detection

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25

b=4 b=8 b=17

Figure 6.2: Translation of Mexican hat wavelet

Figure 6.3: Input signal and its scalogram.

4. We stopped the run of the algorithm when the maximum dilatation value

was reached.

The result of the wavelet transform is visualized in a scalogram where each

coefficient represents a degree of correlation between the transformed wavelet and

the signal. The scalogram is gray scaled and the highest values are white (Figure

6.3).
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Figure 6.4: Haar wavelet (scaling function on the right, wavelet function on the
left)

6.1.2 Principles of Discrete Wavelet Transform

The continuous wavelet function, known from the CWT, is replaced by two dis-

crete signals - a wavelet function and a scaling function (see Figure 6.4 for Haar

wavelet example).

Given the limited spectrum band of wavelet functions, the convolution process

with this function can be interpreted as a limited band-pass filter [38]. In terms of

digital signal processing, wavelet transform can be considered as a bank of filters

with signal decomposition into sub-frequency bands. The slowest fundamental

frequency components are detected using a scale function. Wavelet function is

then documented by a high pass filter and the scale function is a complementary

low pass filter. Relevant coefficients are determined taking the convolution of

signal and the corresponding analyzing function [34] [27]. The scale is inversely

proportional to the frequency; the low frequencies correspond to large scales and

to the dilated wavelet function. Using the wavelet analysis at large scales, we

obtain global information from the signal (an approximate component). At small

scales we obtain detailed information (a detailed component) representing rapid

changes in the signal [27].

Calculation of DWT coefficients is implemented by a gradual application of

wavelet function (high frequency filter) and scale function (low frequency filter)

to the given signal using Mallatov decomposer scheme [1] (see Figure 6). For each

level of decomposition p so-called detailed component Dp(n) of the input signal
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Figure 6.5: Principle of Discrete Wavelet transform [34]

is the output of high pass filter hd(k). The approximation component A p(n) is

the output of low frequency filter hd(k) Using the convolution and the subsequent

subsampling the following relationships are valid [27]:

6.1.3 ERP Detection with WT

During our experiments we detected the P3 component in the EEG signal (this

ERP component usually follows a stimulus with delay starting at 300 ms). When

we look for the P3 component, we compute the correlation between a wavelet

(which is scaled to correspond to the P3 component) and the EEG signal only in

the corresponding part of the signal, where the P3 component could be situated.

This approach avoids a false ERP detection in the signal parts, which couldn’t

contain the P3 component. Wavelet coefficients are affected by the match of
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Wavelet threshold value

Mexican hat 25
Gaussian -25
Haar 10
Daubechies6 10
Symmlet8 10

Table 6.1: Threshold values for wavelet coefficients detecting ERP component.

scaled wavelet and the signal and also by the signal amplitude. Because the

degree of correlation is different for each type of wavelet we had to establish cor-

responding threshold values empirically (table 6.1). To determine a threshold

for ERP detection we have to preprocess EEG signal rejecting the epochs with

artifacts and to correct the baseline of each epoch [34]. When the degree of corre-

lation is higher than the established threshold, the ERP component is considered

to be detected. Based on the threshold values given in table 6.1, Mexican hat,

Gaussian wavelet, Haar and Symmlet8 were selected for the next elaboration.

The disadvantage of CWT is its computational complexity which is linearly

growing according to the number of signal samples. An increase in the number

of input signal samples doesn’t have so big impact if we use DWT. To detect

ERP components, we use 2 kHz sampling frequency. Then the epoch, which has

to be at least one second long, has 2048 samples. CWT computation on 2048

samples takes approximately 1.3 second. Therefore CWT is not suitable for BCI

application [1]. We can say that the time of DWT computation on the same

sample is insignificant.

6.2 Matching pursuit

The matching pursuit (MP) algorithm decomposes any signal into the sum of

so-called atoms, which are selected from a dictionary. The atom that best ap-

proximates the input signal, is chosen in each iteration. This atom is subtracted

from the input signal and the residue enters the next iteration of the algorithm.
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Averaged
Wavelet

correctly false positive false negative
Epochs detected detection detection

count [%]

10
Mexican hat 32 80.0 6 2

Gaussian 33 82.0 6 1

20
Mexican hat 34 85.0 5 1

Gaussian 34 85.0 3 3

30
Mexican hat 36 90.0 3 1

Gaussian 37 92.5 2 1

Table 6.2: P3 component detection using CWT

Averaged
Wavelet

correctly false positive false negative
Epochs detected detection detection

count [%]

10
Simmlet8 28 70.0 8 4

Haar 25 62.5 9 6

20
Simmlet8 33 82.5 3 4

Haar 29 72.5 6 5

30
Simmlet8 34 85.0 4 2

Haar 31 77.5 5 4

Table 6.3: P3 component detection using DWT
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The total sum of atoms selected successively in algorithm iterations is an approxi-

mation of the original signal - more iterations we do, more accurate approximation

we get.

The matching pursuit algorithm is most often associated with so-called Gabor

atoms dictionary. Gabor atoms are defined as the Gaussian window

g(t) = e−π·t
2

(6.2)

modulated using cosine function as follows

g = g(s,u,v,w)(t) = g(
t− u
s

) · cos(vt+ w) (6.3)

Each atom is uniquely defined by the ordered quadruple (s, u, v, w), where s

denotes the scale, u is the shift, v is the frequency and w denotes the phase shift.

6.2.1 Classic ERP detection with MP

The principle of matching pursuit algorithm is to decompose the input signal

into individual atoms; initially the signal trend is approximated by the atoms,

secondly signal details are approximated. During recordings of the brain activity

ERPs appear just like the signal trends, which are disturbed by EEG signal.

After several iterations the input signal is approximated by the atoms in such

a way that the signal trend is highlighted [10].

According to equation 6.3 each atom is uniquely defined by four values (s,u,v,w).

In addition, after running of the algorithm a modulus is available for each atom.

The modulus is a degree of correlation between the atom and the input signal

in the iteration. The trend of the atom in time can be determined from these

values. The accuracy of approximation of the original signal can be determined

according to the value of the module (higher value means better approximation).

ERP reflects the signal trend and the value of the modulus is high in the case of

its occurrence. At the same time, the value of the shift corresponds to the loca-

tion of its anticipated occurrence [25]. The idea of ERP components detection

was introduced in [22].
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Figure 6.6: Input signal with P3 component [25]

Figure 6.7: Gabor atom which best approximates P3 component [25]

An example of P3 components detection is shown in Figures 6.6, 6.7 and 6.8.

Wigner-Villa’s transformation (see [42] and [7]) was used to display the output of

the matching pursuit algorithm. This transformation shows the energy density

of the signal in time frequency spectrum.

6.2.2 Principles of Modification of ERP Detection with

MP

The basic idea of the MP algorithm modification is not to base an ERP component

detection on classification of feature vectors (feature vectors are parameters of
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Figure 6.8: Wigner-Ville transform of MP algorithm output [25]

Figure 6.9: Input signal

Gabor atoms), but to use the MP algorithm as the method of input signal filtering

and then to compute correlation between filtered (reconstructed) signal and an

ERP component model.

First we approximate an input signal (figure 6.9) using several Gabor atoms

and then we reconstruct the input signal from them. Loss of information caused

by approximations is considered as filtering of the input signal (figure 6.10).

The nature of the MP algorithm is to suppress noise. Then the reconstructed

signal corresponds to the trend of the input signal. This can be suitably used

33



6. Time-frequency Domain Methods for ERP detection

Figure 6.10: Reconstruction of input signal from five Gabor atoms

Figure 6.11: ERP component model in the corresponding location

because ERP components are (if not discarded by artifacts) the part of the signal

trend. The following phase includes the detection itself when an ERP component

model (figure 6.11) is used. This model is obtained e.g. by averaging a sufficient

number of epochs containing raw ERP signal or by filtering of ERP component

from one epoch. The ERP component model is shifted on the restored signal in

the expected range of ERP component. Correlation between the ERP component

model and the reconstructed signal is computed for each shift. The maximum

value of the correlation and the attaching shift value are stored. After calculating

all possible correlations the stored maximum value is compared to the threshold.

If the maximum value is equal to or greater than the threshold, the ERP compo-

nent is detected in the corresponding location.
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6. Time-frequency Domain Methods for ERP detection

Averaged Matching correctly false positive false negative
Epochs pursuit detected detection detection

count [%]

10
Modified 31 77.5 7 2
Classic 26 65.0 5 9

20
Modified 34 85.0 3 3
Classic 24 60.0 9 7

30
Modified 36 90.0 2 2
Classic 31 77.5 6 3

Table 6.4: P3 component detection using MP algorithm

The results of ERP detection using modified and classic MP algorithms are

available in table 6.4.

35



Chapter 7

Hilbert-Huang Transform

The Hilbert-Huang transform was designed to analyze nonlinear and non-stationary.

The method was proposed by Huang in [11]. It consists of empirical mode de-

composition (EMD) and the Hilbert spectral analysis (HAS) methods, both of

these methods were introduce by Huang et al [11].

7.1 Intrinsic Mode Functions

An intrinsic mode function (IMF) is a function which has to fulfill following two

conditions:

1. In the whole data set, the number of extrema and the number of zero

crossings must be either equal or differ by one at most.

2. The mean value of the envelope defined by the local maxima and the local

minima is zero at any point [10; 11; 18].

An IMF represents simple oscillatory mode as counterpart to a simple harmonic

function, but it is much more general by its definition. The conditions which IMF

fulfills, are necessary for defining instantaneous frequency.

36



7. Hilbert-Huang Transform

7.2 Empirical Mode Decomposition

The goal of the empirical mode decomposition is to decompose the original data

(signal) to the IMFs and the residue. The EMD is a data driven method and

IMFs are derived directly from the signal itself [15].The most of the data are not

IMFs. At any time the data may involve more than one oscillatory mode. That

is why the simple Hilbert transform cannot provide the full description of the

frequency. The process of acquiring the IMFs is called sifting and it’s described

below [9; 14; 17; 28]:

1. Initialize the residue to the original signal r0(t) = x(t) and IMF counter

i = 1

2. Extract the i-th IMF:

(a) Initialize h0(t) = ri−1(t) and initialize step counter k = 1

(b) Locate local maxima and minima in hk−1(t)

(c) Create upper envelope by connecting detected maxima with cubic

spline

(d) Create lower envelope by connecting detected minima with cubic spline

(e) Calculate the mean mk−1(t) by averaging the upper and lower en-

velopes

(f) Calculate hk(t) = hk−1(t)−mk−1(t)

(g) Check stopping criteria (see chapter 7.2.1)

i. If stopping criteria are satisfied, then IMFi(t) = hk(t)

ii. Else k = k + 1 and continue with 2b.

3. New residue is ri(t) = ri−1(t)− IMFi(t)

4. Check stopping criteria of EMD

(a) If ri(t) has at least 2 extrema then i = i+ 1 and continue with 2.

(b) Else the decomposition is finished and ri(t) is the residue after the

decomposition.
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7. Hilbert-Huang Transform

7.2.1 Stopping Criteria

During the EMD we want to retrieve IMFs described in chapter 7.1. These func-

tions have to fulfill two conditions. The second condition (mean of the envelopes

is meant to be zero) is very difficult to fulfill. As the points 2b to 2g of the EMD

(from chapter 7.2) are repeated, the mean approaches to zero. But this makes

amplitude variations of the individual waves more even. When we want to achieve

strictly zero mean, we can assume that the amplitudes are constant and we lose

very important information of the signal. So there were proposed two stopage

criteria (SC). The first one is standard deviation (SD) proposed in [5; 10; 41]:

SC = SD =
T∑
t=0

|hk−1(t)− hk(t)|2

h2k−1(t)
(7.1)

The alternative to the SD is similar to Cauchy convergence test (CCT) [9]:

SC = CCT =

∑T
t=0 |hk−1(t)− hk(t)|2∑T

t=0 h
2
k−1(t)

(7.2)

The sifting process will stop when the SC is smaller than the selected thresh-

old. The second stoppage criterion is based on the S-number defined as the

number of consecutive sifting when the number of zero-crossings and extrema are

equal or differs by one at most.

7.3 Hilbert Transform

Hilbert transform (HT) [21; 31] returns the analytic signal from real data se-

quence. The analytic signal x = xr + i · xi has its real part, xr which represents

the original data, and its imaginary partxi, which contains the Hilbert transform.

The imaginary part is a version of the original real sequence with a 90◦ phase

shift. Sines are therefore transformed to cosines and vice versa. The Hilbert

transformed series has the same amplitude and frequency content as the origi-

nal real data and includes phase information that depends on the phase of the

original data.

38



7. Hilbert-Huang Transform

The Hilbert transform is useful for calculating instantaneous attributes of time

series, especially the amplitude and frequency. The instantaneous amplitude is

the amplitude of the complex Hilbert transform; the instantaneous frequency

expresses the rate of change of the instantaneous phase angle. In case of a pure

sinusoid, the instantaneous amplitude and frequency are constant.

7.3.1 Computing Standard Discrete-Time Analytic Signal

of Same Sample Rate

The analytic signal for a sequence x has a one-sided Fourier transform (with 0

negative frequencies). To approximate the analytic signal, the Hilbert method

calculates a FFT of the input sequence, replaces those FFT coefficients corre-

sponding to negative frequencies with zeros, and calculates an inverse FFT of the

result. In detail, Hilbert uses a four-step algorithm [31]:

1. It calculates the FFT of the input sequence, storing the result in a vector

x.

2. It creates a vector h with following values:

• 1 for i = 1, (n/2)+1

• 2 for i = 2, 3, ... , (n/2)

• 0 for i = (n/2)+2, ... , n

3. It calculates the element-wise product of x and h.

4. It calculates the inverse Fast-Fourier transform (FFT) of the sequence ob-

tained in step 3 and returns the first n elements of the result.

7.3.2 Representing the Result of Hilbert Transform

When we have all IMFs from EMD, we can calculate the analytic signal by using

the algorithm described in section 7.3.1. Calculated analytic signal Z(t) is defined

as [5; 10]:
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7. Hilbert-Huang Transform

Z(t) = X(t) + iY (t) = a(t)eiθ(t), (7.3)

where X(t) is the original signal, Y (t) the Hilbert transform of X(t), so the

instantaneous attributes of Z(t) are defined:

a(t) =
√
X(t)2 + Y (t)2 (7.4)

θ(t) = arctan(
Y (t)

X(t)
) (7.5)

ω(t) =
dθ(t)

dt
(7.6)

where a(t) is the instantaneous amplitude, θ(t) is the instantaneous phase and

ω(t) is the desired instantaneous frequency. If you want to know more about

visualization see [2; 17].

7.4 Application of HHT

The Hilbert-Huang transform was designed recently, in 1998 [11]. So far it has

been used in various domains where it is necessary to process non-linear and non-

stationary data. The method has particular properties and advantages described

in table 7.1. Basis functions used for decomposition are derived from data itself

when the EMD is performed (other methods like Fourier, Wavelet transforms and

Matching pursuit have their bases function defined a priori). The HHT derives

the frequency by differentiation, therefore the HHT has no uncertainty principle

limitation on time or frequency resolution [10].

The Hilbert-Huang transform (HHT) was originally designed for study of fluid

mechanics [11] and in the same year used in biomedical engineering [12]. The

empirical mode decomposition (EMD) has been already extended into 2D form [8].

The list of domains, where is HHT used, and interesting articles will follow:

• biomedical engineering

– Engineering analysis of biological variables: An example of blood pres-

sure over 1 day [12]
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7. Hilbert-Huang Transform

Fourier Wavelet HHT

Basis a priori a priori Adaptive

Frequency
Convolution: Convolution: Differential:
global, uncertainty global, uncertainty local, certainty

Presentation Energy-frequency
Energy-time- Energy-time-
-frequency -frequency

Nonlinear No No Yes
Nonstationary No Yes Yes

Feature Extraction No
Discrete: no

Yes
Continuous: yes

Table 7.1: Comparison between Fourier transform, wavelet transform and HHT
[10].

– The local mean decomposition and its application to EEG perception

data [33]

– a New Tool for Nonstationary and Nonlinear Signals: The Hilbert-

Huang Transform in Biomedical Applications [8]

– Epileptic Seizure Detection Using Empirical Mode Decomposition [35]

• Mechanical engineering

– An improved method for restraining the end effect in empirical mode

decomposition and its applications to the fault diagnosis of large ro-

tating machinery [28]

• Electrical engineering

– The Application of a New Process Method for End Effects of EMD in

the Insulator State Diagnosis [40]

• Economy

– Identifying the oil price–macroeconomy relationship: An empirical

mode decomposition analysis of US data [24]

The HHT was successfully used for processing non-stationary data in different

fields, where the high frequency-time resolution is required. Therefore, the HHT

seems to be suitable for the ERP detection and EEG signal processing.
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Chapter 8

Application of HHT for EEG

Processing

8.1 Creating Envelopes During EMD

When the EMD is performed on the data series, we are trying to create upper

and lower envelopes by connecting local extrema with cubic spline. Though,

some difficulties surface in the process. When we want to create an envelope

which covers whole signal, we have to realize that some first and last points of

the signal don’t count as local extrema. The closest extremum to the beginning

or the end of the signal belongs to the upper or lower envelope. Then the second

closest extremum is the point from where the both envelopes are defined.

We have to add additional extremum points to extend the envelopes over the

whole signal. It is the difficult part. We have to position them very carefully,

because their incorrect location leads to imprecise estimate of the cubic spline (see

figures 8.1 and 8.2). This overshoots or undershoots don’t describe characteristics

of the signal, but they could be propagated inward and corrupt the whole signal.

The problem is described in [4; 6; 29; 40; 41] in detail.

To create a complete envelope and restrain the overshoot effect, several meth-

ods of additional extrema selection were proposed. They are described in follow-

ing chapters.
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Figure 8.1: Example of a signal and the spline overshoot effect. Undershoot
effects are better visible in figures 8.2.
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Figure 8.2: Detail of spline undershoot effects.
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8. Application of HHT for EEG Processing

8.1.1 Mirror Method

Mirror method was proposed by Rilling [30] and described in [28]. The procedure

is very simple. Additional extrema are mirror symmetric to the extrema that are

closest to the beginning or end of the signal. The algorithm follows:

1. Locate the extremum closest to the begin of the signal (we found Max(1)).

Then locate the extremum closest to Max(1), this is Min(1)

2. Create new extremum on the begin of the data by creating Min(0) respect-

ing the mirror symmetry.

Minx(0) = Maxx(1)− (Minx(1)−Maxx(1)), (8.1)

Miny(0) = Miny(1) (8.2)

3. Repeat this process until the end of the signal is reached.

8.1.2 Slope-Base Method

The slope based method was proposed in [6] and described in [28]. This method

also extends extrema, but adds one minimum and one maximum to the beginning

or end of the signal. The new extrema are calculated from mathematically defined

slopes created through the extrema. These slopes are derived from the distances

between successive minimums and maximums and from amplitude differences.

The method is shown in figure 8.4.

In the first step we have to calculate the slopes s1 and s2 for the signal x(t)

shown in the figure 8.4. The slopes are defined as:

s1 =
Maxy(2)−Miny(1)

Maxx(2)−Minx(1)
(8.3)

s2 =
Miny(1)−Maxy(1)

Miny(1)−Maxx(1)
(8.4)
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8. Application of HHT for EEG Processing

Figure 8.3: Demonstration of the mirror method from [28].
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8. Application of HHT for EEG Processing

The x coordinates are defined as

∆tmax(1) = Maxx(2)−Maxx(1) (8.5)

∆tmin(1) = Minx(2)−Minx(1) (8.6)

Maxx(0) = Maxx(1)−∆tmax(1) (8.7)

Minx(0) = Minx(1)−∆tmin(1) (8.8)

Then we have to calculate the Y values of new maximum and minimum:

Miny(0) = Maxy(1)− s1 · (Maxx(1)−Minx(0)) (8.9)

Maxy(0) = Miny(0)− s2 · (Minx(0)−Maxx(0)) (8.10)

This procedure has to be repeated in order to generate additional extrema at

the end of the signal. See more in [6; 28].

8.1.3 Drawbacks of Mirror and Slope-Based methods in

EEG signal processing

When we are performing EMD on the EEG signal, we want to create envelopes

covering the signal completely. The mirror method and slope based method create

additional extrema to ensure this condition. The weak point of these two methods

is the estimation of an additional extrema position on the time axis.

When edges of the processed signal contain time-short components of signif-

icantly higher frequency (in our case artifacts), the insufficiency of methods is

apparent. The problem surfaces distinctively when we use artificial signals with

randomly placed artifacts (see the figure 8.5).

The example signal in the figure 8.5 starts with relatively slow frequencies

but there is an artifact (with high frequency and amplitude) in the short interval

after the start. Unfortunately, this artifact includes all four extrema, which we

use to estimate new extrema to extend envelopes, as you can see in figures 8.6

and 8.7.
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8. Application of HHT for EEG Processing

Figure 8.4: The illustration of the slope based method from [28].
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Figure 8.5: Example of artificial signal which represents the EEG signal with
artifacts.
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Figure 8.6: Example of poorly estimated additional extrema point with mirror
method.

When we calculate a new extremum with mirror method according to algo-

rithm described in chapter 8.1.1, we get a new minimum with x-coordinate:

Minx(0) = Maxx(1)− (Minx(1)−Maxx(1)) = 13− (15− 13) = 11

Index of a sample was used as the x-coordinate. The new minimum is at the

position of the 11th sample. Therefore we cannot create the envelope covering

all the data. Similar problem appears when we use the slope based method to

estimate x-coordinates of new extrema:

Maxx(0) = Maxx(1)−∆tmax(1) = Maxx(1)− (Maxx(2)−Maxx(1))

Maxx(0) = 13− (16− 13) = 10

Minx(0) = Minx(1)−∆tmin(1) = Minx(1)− (Minx(2)−Minx(1))

Minx(0) = 15− (19− 15) = 11
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Figure 8.7: Example of poorly estimated additional extrema with slope based
method.

We also use the index of the sample as the x-coordinate. Newly estimated extrema

have its x-coordinate before the beginning of the signal. So we cannot construct

the proper envelope for the sifting process (similarly described in [41].

The mirror method and slope-based method are not suitable for processing

the EEG signal, because the EEG signal could contain significant changes of am-

plitude and frequency (artifacts). Both methods are not able to estimate addi-

tional extrema, which could determine points of complete envelopes. A significant

change of amplitude and frequency is present in the processed signal; therefore,

it is neccessary to design other methods for estimating additional extrema.

49



Chapter 9

Proposed Modifications of HHT

9.1 Methods for Estimating Additional Extrema

Points

Because there is no suitable method for estimating additional extrema points,

I have proposed two methods for the task. The first one is much simplier than the

other, derived from the Mirror method and adapted for EEG signal processing.

9.1.1 First/Last Points Method

The principle of the method is very simple. To create a complete envelope all

over the signal, we add simply the first and last point of the signal to the set

of maximums and minimums. Then we can create complete envelopes. This

simple approach enables to create complete envelopes but could cause significant

over/undershoot effects in figures 8.2;

9.1.2 Requirements on the New Method for Estimating

Additional Extrema

The new method for estimating additional extrema points has to deal with

several requirements. These requirements were established during testing with

First/Last, Slope-based and Mirror methods on real EEG data. Established re-
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Figure 9.1: Misplaced additional extrema created by First/Last method

quirements represent drawbacks of tested methods which has to be solved to adapt

the EMD for EEG signal processing. List of established requirements follows:

1. artifacts in the beginning/end of the signal (described in section 8.1.3)

2. minimize overshoot effect

3. envelopes mean of IMF should be zero

Mean of envelopes

The mean calculated from the upper and lower envelope should be zero, this

is one of conditions defining the IMF (section 7.1). This condition depends on

calculated envelopes derived from detected local extrema and additional extrema

which are placed at the beginning/end of the processed signal. So the additional

extrema could affect the mean of the envelope.

I have tested this phenomena on a simple sinus wave which is definitely an

IMF. The mean value of the envelope the simple sinus wave should be equal to

zero in its every point. But misplaced additional extrema can cause non-zero

mean values of the envelopes. An example of such misplaced extrema and their

impact on the mean of envelopes can be seen in the figure 9.1.
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Figure 9.2: Example of distorted IMF, caused by misplaced additional extrema.

To calculate the mean of envelopes correctly is crucial for all stopping criteria

applied during the sifting process. When the EMD sifts the simple sinus wave, it

should stop immediately, because its envelopes mean is equal to zero and therefore

the mean won’t change in further iterations of the sifting process (the mean is

subtracted from the signal see section 7.2). But when the envelopes mean is

inaccurate due to misplaced additional extrema, the EMD continues with sifting

and the envelopes mean varies from one iteration to another. Due to the variation

of the envelopes mean, the EMD decomposes the simple sinus wave into several

IMFs instead of single IMF, because the residue contains fluctuations from the

envelopes mean. This affected the convergence speed of the EMD.

Minimization of the Overshoot effect

The overshoot/undershoot effect is a situation when the envelopes don’t follow

the trend of the signal precisely (see more in [29; 30] ). a similar situation can be

seen in the figure 9.1. When the overshoot/undershoot effect is present in every

iteration of the sifting process, then it propagates inward and causes distortion of

created IMFs (like the first IMF of the testing sinus wave in the figure 9.2). More

iterations with overshoot/undershoot effect is performed, the more significant
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distortion we get. Therefore, the overshoot/undershoot effect is more dangerous

when the EMD converges slowly.

Additional extrema affect the overshoot/undershoot effect significantly in the

beginning and the end of the processed signal. With better estimated additional

extrema, the over/under-shoot effect could be minimized like in the figure 9.4.

9.1.3 Modified Mirror Method

According to established requirements introduced in section 9.1.2, I have designed

a method based on the Mirror method (section 8.1.1). Its algorithm is very simple:

1. Locate the closest minimum and maximum at the signal beginning.

2. Create a new extrema that it would preceed the beginning of the signal and

respect the mirror symmetry, as in equations 9.1 and 9.2.

3. Locate the first extremum of the signal. (In our case it is Max(0).) It

means that the signal before extremum has ascending trend.

4. Therefore, we have to ensure that the value of the new minimum Miny(0)

is lower or equal than the first value of the signal(x(0)). If the Miny(0)

is greater than the first signal value(x(0)), we simply replace Min(0) with

x(0). This ensures that the envelope will respect the trend at the beginning

of the signal(see the figure 9.3).

Minx(0) = −Minx(1), Miny(0) = Miny(1) (9.1)

Maxx(0) = −Maxx(1), Maxy(0) = Maxy(1) (9.2)

An accurate local extrema detection (see figure 11.3 and section 11.3) are

essential for the Modified mirror method. Without the accurate local extrema

detection, the estimated additional extrema would be a mirror images of points

which are not considered as suitable extrema for envelopes (see more in section

9.2).
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Figure 9.3: Modified Mirror Method

When the envelopes are created with additional extrema estimated by Modi-

fied mirror method, the envelopes mean is equal to zero at every point for testing

simple sinus wave (figure 9.4. This means, that Modified mirror method makes

the sifting process more stable, ensures its better convergence speed, and prevents

from distortion of created IMFs due to the over/undershoot effect.

The modified mirror method minimizes the over/shoot effect, because it en-

sures that created envelopes are closer to the detected local extrema (figure 9.4).

Then the EMD decomposes the simple sinus wave into single IMF which is exactly

the same as the input wave.

9.2 Local Extrema Detection in the EEG Signal

Local extrema detection is essential for creating envelopes during the sifting pro-

cess (part of the EMD)and significantly affects the stopping criterion of entire

EMD (see more in [26; 29; 30]). The EMD ends when the residue after sifting

has less than two extrema(section 7.2).
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Figure 9.4: Envelopes created with additional extrema estimated by Modified
mirror method

9.2.1 Inflection Point Method

Another very simple method for local extrema detection is based on detection of

inflection points. To locate the local extremum, it is necessary to test three data

points. When the middle one is greater/lower than the other, it is marked as

the local maximum/minimum. This method considers every inflection point as

a local extremum.

Tests on the real EEG data acquired in our laboratory revealed some draw-

backs of this approach. It seems that not every inflection point is a local ex-

tremum. Some of inflection points could be created by signal preprocessing tech-

niques like filtering, averaging etc. The amplitude of false detected inflection

points is insignificantly higher/lower than the amplitude of surrounding points.

The absolute value of the difference could be lower than the resolution of used

analog-to-digital converter.

Moreover, some of the extrema cannot be detected with this method at all.

When we have set of two (or more) points with equal amplitude and their am-

plitude is higher/lower than amplitude of theirs surrounding points, one of these

points should be marked as an extremum. But when using this method, no points

are marked as extrema, because there is no point of inflection. Therefore, I have
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Figure 9.5: Detected extrema with Inflection Point Method

to designed more suitable method for local extrema detection. The method is

described in the next section 9.2.2.

9.2.2 Delta Difference Method

The upper and lower envelope should cover all the data within. [10]. This con-

dition cannot be fulfilled, when the extrema are incorrectly detected; as you can

see in the figure 9.5. Therefore, I have decided to design a new, more suitable

method for extrema detection. First I have stated two requirements which the

new method has to fulfill:

• Ignore insignificant changes in the amplitude.

• Detect the extrema, even when there is no inflection point.

The following algorithm can fulfill these two requirements:

1. Initialize threshold δ, sample index i = 0

2. Initialize base value with first sample and maxp = null
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Figure 9.6: Extrema detected by Delta Difference Method

3. Store amplitude of the i-th sample into y = x[i]

4. If yi > (yi−1− δ) then accept i-th sample as new potential extremum maxp

5. If (maxp−yi) > δ then maxp is the maximum, start search for another one,

maxp = null

6. If maxp == null and base < yi then base = yi

7. i++, continue with 3.

The δ parameter represents the tolerance for small amplitude fluctuations. When

it is set to zero, the method detects exactly the same extrema as the Inflection

Point method introduced in section (9.2.1). This method marks the sample as

a maximum when some of previous and next samples has the amplitude lower

and the difference between amplitudes is greater than value of the δ parameter.

An example of detected extrema can be seen in the figure 9.6.

By a simple comparison of detected extrema on figures 9.5 and 9.6 we could

intuitively recognize that detected extrema by Delta Difference method are more

convenient for creating envelopes.
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Figure 9.7: Hilbert transform results of simple sinus wave using simple arctan

9.3 Instantaneous Frequency Calculation from

the Analytic Signal

After performing Hilbert transform on detected IMFs, the instantaneous ampli-

tude and frequency are calculated according to equations 7.4, 7.5 and 7.6. To

calculate an instantaneous amplitude is simple, but calculate the instantaneous

phase shift, which is needed for instantaneous frequency, could be difficult in some

cases.

Let us consider a simple sinus function with frequency 4Hz and amplitude

2µV , which represents an IMF. After performing the Hilbert transform, we get the

analytic signal. From acquired analytic signal we can calculate the instantaneous

amplitude and the instantaneous phase shift (see figure 9.8).

In the next step we want to calculate the instantaneous frequency according to

the equation 7.6. The instantaneous phase shift is stored as an array of doubles.

Therefore, we calculate the instantaneous frequency as

f(i) =
[θ(i)− θ(i− 1)] ∗ fs

2π
(9.3)
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But there is a numerical issue in the process of the phase shift calculation.

When we calculate the phase shift with ordinary arctan function, the result fits

in the interval (−π/2;π/2) for every half period of the sinus function. Therefore,

the difference of the phase shift calculated from the last and the first point of the

interval is (−π/2−π/2) = −π. When we get the negative difference between two

phase shift values, the calculated instantaneous frequency would be negative (see

figure 9.7. But negative frequency is meaningless, therefore we have to minimize

or eliminated this phenomena.

First step to minimize negative frequencies, is to use arctan function which

respects quadrants. This function is usually called arctan2 and it accepts two

arguments - x and y coordinates and returns the angle between them in the

correct quadrant. The return value fits in a range from −π to π radians. Using

the arctan2 function, we can minimize the crossing which produces mentioned

negative frequencies (compare figures 9.8 and 9.7).

When we use arctan2, we get even higher values of negative frequencies at

the crossing, because the difference at the crossing point is −2π now. But it is

possible to correct the values of negative instantaneous frequency simply. We

could assume that the processed signal has almost the same frequency all the

time. This assumption is based on properties of IMFs. If the difference of two

phase shift values is close to the value of −2π, we could assume, that at this

point the signal transcendes from one period to another. The negative frequency

f(i) can be easily replaced with the average of f(i-1) and f(i+1). Using these

improvements we get better instantaneous frequencies, as you can see on figures

9.8 and 9.7;
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Figure 9.8: Hilbert transform results of simple sinus wave using arctan2
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Chapter 10

Implementation

When I started my research in this area, there was only one freely accessible

implementation of the HHT. It’s written in Matlab. In our laboratory we in-

tend to use the HHT for many purposes, such as live signal processing dur-

ing experiments and integrating it into our Portal of EEG/ERP Experiments

http://eegdatabase.kiv.zcu.cz/home.html. Therefore, I have decided to cre-

ate my own implementation of the HHT in Java. We have already used this

programming language for our development of the portal and other tools.

I have implemented the HHT as a part of my experimental software. Its

implementation is more likely a library than an application. There is no need to

implement a complex application, because the HHT module will be integrated

into other tools developed in our research group. My implementation is open to

modifications and suitable for testing the HHT.

My implementation could be divided into three main modules:

1. core of the HHT

2. logging and visualization

3. testing

Modules will be briefly described in the following sections.
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10. Implementation

Figure 10.1: Class diagram of Core module of HHT

10.1 Core Module of HHT

The core module contains all necessary classes for the Hilbert-Huang transform.

The class structure is displayed in the class diagram (figure 10.1). The class dia-

gram doesn’t contain all of them, but only the most important. As you can see, all

the important parts (extrema detection, stopping criteria, estimation of extrema

points) of the EMD can be simply replaced with different implementation.

EmpiricalModeDecomoposition class

This class performs the EMD on input data and returns a list of double arrays

which represents IMFs. It requires instances of classes LocateLocalExtremaFa-

cade and Sifter. LocateLocalExtremaFacade is required, because the decomposi-

tion stops when there are less than two extrema in the residue. The decomposition

is executed by calling the run(. . . ) method.
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Sifter class

The Sifter class performs the sifting process on input data and returns detected

IMF as an array of double For the sifting process, the Sifter needs instances of

EstimateEndingExtremaPoints, StopSiftingCriteria, LocateLocalExtremaFacade

classes. Internally the Sifter uses an instance of the Enveloper class to create

envelopes (upper and lower). The IMF itself is calculated by calling the method

getImf(. . . ).

LocateLocalExtremaFacade class

The easiest way to obtain both sets of local extrema (minima and maxima) is

to use this. Internally the class uses the LocateLocalExtrema class which iterates

through the input data and checks via IsExtremum interface, whether a point be-

longs to local extrema. Therefore, the LocateLocalExtremaFacade class requires

two instances of IsExtremum interface - for minima and for maxima detection.

There are two implementations of the local extrema detection method. Maxi-

mumFinder and MinimumFinder represents the inflection point method (section

9.2.1) and ExtremaLocator represents the Delta-difference method. ExtremaLo-

cator requires instances of MaximumLocatorHelper or MinimumLocatorHelper

class.

StopSiftingCriteria interface

The interface represents necessary methods to stop the sifting process. Sifting

process should be stopped when an IMF is detected.

I have implemented the Standard Deviation (StandardDeviation class) stop-

ping condition and Cauchy convergence test (CauchyConvergence class), both

rules were described in section 7.2.1.

HilbertHuangTransform class

HilbertHuangTransform class applies the HHT on the input data. First, it runs

the EMD and after retrieving all IMFs, it performs the Hilbert transform on every
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single one of them. The result is saved as a list of instances of HilbertTransform

class, one per each IMF.

10.2 Configuration of Empirical Mode Decom-

position

An instance of the EmpiricalModeDecomposition class can be created in the

source code by composing required instances of classes together. Another way

to create an instance is to use an XML file as the configuration file. For this

purpose I have used a part of the Spring Framework, the XmlBeanFactory. It

instantiates Java Beans from a XML file (see example on page 97). The XML file

also contains the configuration settings which could be easily accessed this way.

10.2.1 How to run the HHT easily

The easiest way to run the HHT and save its results, is to use static methods in

the class HhtSimpleRunner. The methods are :

1. runHht(String resultPath, String emdCfg, double[] xVals, double[] yVals,

int samplingFrequency, ResultsConfigs resultsCfg)

2. runHht(String resultPath,String emdCfg, double[] xVals, double[] yVals, int

samplingFrequency)

3. runHhtDataFromTxt(String resultPath, String emdCfg, String dataFile, int

samplingFrequency, int samplesCount)

where resultPath is the path where the results and logs should be saved ;

emdCfg is a filename of the EMD configuration file; dataFile is a name of the

file with the source signal; resultsCfg describes, which result data are going to be

saved and whether a PDF preview should be created.
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10.3 Module for Logging and Visualization

During my delevoplent of the method, I needed to record every step - such as

calculated IMFs, each iteration of sifting process, envelopes, or convergence of the

sifting criteria - for debugging purposes. Therefore it was necessary to implement

a flexible logging mechanism and simple visualization of logged data.

10.3.1 Using Aspect-Oriented Programming

I wanted to keep the actual code of the HHT separated from the logging part

which would lose its usefullness after conclusion of the development. I have

decided to use the aspect-oriented programming (AOP) technique, namely the

AspectJ library. This AOP library was designed for Java. AOP makes it possible

to remove the logging part when the development of my method is finished. Also,

the classes implementing the HHT will be more understandable and readable

without the logging code.

Because of my focus on the EMD, I needed to store data about the conver-

gence of sifting criteria and resulting envelopes, their mean values, and processed

signal into separated files. Therefore I have implemented three aspects Sifting-

ConvergenceLogger, EnvelopesLogger and EmdLogger.

SiftingConvergenceLogger

This aspect logs the data about the convergence of the sifting process. Its poincut

(called isImf) is linked to the interface method StopSiftingCriteria.isImf method,

so all results of implementation of this interface are automatically logged. After

each call of the isImf method, the current value of the criterion evaluation is

logged. If it rises (instead of expected decline, which would signify improving

convergence), it is logged as a warning with the current value and the previous

value of the stopping criterion. These information is very useful for testing new

stopping criteria and for setting suitable threshold values of the stopping criteria.
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EnvelopesLoggger

This aspect logs the created envelopes, their mean and the input data for each

iteration of the sifting process. Used pointcut (called meanCurve) is linked to the

method Enveloper.countEnvelopesMeanCurve (the class is responsible for calcu-

lating envelopes). This method calculated the mean from the upper and lower

envelope. After calculating, the mean curve, the mean itself, the upper and

lower envelope, and input data are written into a file by EnvelopesFileAppender

(section 10.3.2.1).

EmdLogger

The EmdLogger aspect logs values and classes of input parameters and results

of all invoked methods at every place of my implementation of the HHT. During

the logging, it indents methods called within the superior method. Stored data

are very useful for debugging. The detail level of logged information can be set in

the log4j.properties file (section 10.3.2). List of classes and packages to be logged,

can be listed in the properties file as well.

10.3.2 Logging

For logging itself I have used most popular logging library for Java log4j. I have

chosen this library because it is simple to use and offers great amount of config-

uration options. It could be configured via its properties file and also by changes

in the source code in run-time. An user can choose the level of details to be

logged (TRACK, DEBUG, INFO, WARNING, ERROR) by each logger (see list-

ing 10.1), even for each class or package (see listing 10.2).

Listing 10.1: Example of log4j levels for each logger

l o g 4 j . l o gg e r . hht . a spec t s . S i f t ingConvergenceLogger = INFO, SCL

l o g 4 j . l o gg e r . hht . a spec t s . EnvelopesLogger = DEBUG, ENVELOPES

l o g 4 j . l o gg e r . t e s t i n g . c l a s s i f i c a t o r s = TRACE, CLASS

Listing 10.2: Example of log4j levels for each class

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . s t opp i ngCr i t e r i a = TRACE
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l o g 4 j . l o gg e r . hht . emd . s i f t i n g . Enveloper = TRACE

l o g 4 j . l o gg e r . hht . emd . EmpiricalModeDecomposition = TRACE

For saving logs into a file, the log4j offers so called Appenders. Mostly I have

been using the FileAppender, which can be set to overwrite logging files and to

use a specified layout for logs. The filename of the logger can be read from system

properties. It is very useful when the HHT is performed several times on different

data and it is necessary to save logs into different files or different directories. It

is very simple to use the system property in log4j.properties file. A placeholder

has to be inserted (${placeholder.name}) into the file and the value of the system

property altered accordingly. (see listing 10.3).

Listing 10.3: Example configuration of FileAppender

l o g 4 j . appender .SCL=org . apache . l o g 4 j . FileAppender

l o g 4 j . appender .SCL . F i l e=${ s i f t i n g . l og . f i l ename }
l o g 4 j . appender .SCL . append=f a l s e

l o g 4 j . appender .SCL . layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .SCL . layout . Convers ionPattern=%5p%6.6 r [%t ]%x − %m%n

10.3.2.1 EnvelopesFileAppender

It was necessary to store each sifting iteration into separate file for further analysis

of the EMD and sifting process. The name of the file should consist of the index

of currently detected IMF and the index of the iteration of the sifting process.

Therefore, I have designed a new appender called EnvelopesFileAppender. This

appender automatically increases the counter of IMFs and also it counts iterations

of the sifting process. An user needs only to set the path where the files should

be stored. The filenames will be like path/imf 0001 iteration 0001. An example

of the configuration follows (listing 10.4). The complete log4j.properties file used

for logging during testing can be seen in listing 2 on page 98.

Listing 10.4: Configuration of EnvelopesFileAppender

l o g 4 j . appender .ENVELOPES=data . l og . EnvelopesFi leAppender

l o g 4 j . appender .ENVELOPES. path=log // imfs //

l o g 4 j . appender .ENVELOPES. append=f a l s e
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l o g 4 j . appender .ENVELOPES. s e p a r a t eF i l e s=true

l o g 4 j . appender .ENVELOPES. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .ENVELOPES. layout . Convers ionPattern=%m

10.3.3 Visualization

The process of testing designed modifications requires the possibility to view and

analyse saved logs (see 10.3.2). Vector images seem to be the most suitable form

of visualization of collected log data. Therefore I have decided to save them into

PDF files. This task has been accomplished with use of the JFreeChart library.

I have wrapped it and designed a number of classes to visualize IMFs, envelope

logs and time frequency maps.

ImfMapToSignalPdf class

The frequency and amplitude of each sample are saved in the imfs map directory

after the Hilbert trasnform is performed. The files are named imf map [index] [ampl—freq].txt.

a PDF file is built from those files. There is the amplitude displayed at the first

chart, and the frequency is displayed in the second line. Third chart shows the

original signal. The path to those files has to be passed to the main method. An

example of the input can be seen on page 99.

ImfsToPdf class

This class creates PDF files from each iteration of the sifting process. Iterations

are saved along with envelopes, section 10.3.2.1). a single file is created for each

IMF. Such file contains the iterations, which lead to identification of the IMF. The

main method requires the path where the data are stored. An example output

PDF file can bee seen on page 100.

ImfsToSignalPdf class

The ImfsToSignalPdf class is able to save IMFs of the decomposed signal into

PDF files. A file with IMFs is passed as its input parameter. The main method

requires the filename of the file where IMFs are saved, to be passed as its input
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along with a name of the output file. An example of the result can be seen on

page 101.

MapsToPdf class

To create the time-frequency map from files containing frequency and amplitude

was implemented the MapsToPdf class. In these two files is stored frequency/am-

plitude for each sample. Example of the PDF map could be seen on page 102.

10.4 Module for Testing

During tests of the designed modifications, the HHT had to be performed on all

the test data with different configuration profiles. Results of each profile was

evaluated according to criteria established in section 11.2. Classes described in

following section serve this purpose.

10.4.1 Processing Data With Different Configurations of

the HHT

The HhtDataRunner class was designed to process all the input data with different

settings. The main method requires the configuration file as its input (see listing

10.5.

Listing 10.5: Configuration file for HhtDataRunner class

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<c on f i gu r a t i on xmlns=” runnerCfg ”>

<logpath>r e l a t i v e /path/where/ to / s t o r e / l o g s /</ logpath>

<dataPath>path/ to / the / d i r e c t o r y /with/ input /data</dataPath>

<samplingFrequency>1000</ samplingFrequency>

< !−− read 1024 samples from input f i l e −−>
<useNSamples>1024</useNSamples>

<r e su l tPath>path/where/ to / s t o r e / r e s u l t s /</ re su l tPath>

<c f g s L i s t>

<name>path/ to /emd/ c f g / f i l e /EmdCfg1 . xml</name>

</ c f g s L i s t>
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< !−− l i s t o f r e gu l a r e xp r e s s i on s

de s c r i b ing , which data w i l l be processed −−>
<f i l eNameLi s t>

<name>10 Cz ?ep \ [\d{3}\ ] ( t a r g e t | nonTarget ){1}\ . tx t</name>

<name>20 Cz ?ep \ [\d{3}\ ] ( t a r g e t | nonTarget ){1}\ . tx t</name>

<name>30 Cz ?ep \ [\d{3}\ ] ( t a r g e t | nonTarget ){1}\ . tx t</name>

</ f i l eNameLi s t>

</ c on f i g u r a t i on>

The input data should be stored as simple text files (in my case each testing

subject have its own folder). The directory with subjects is passed as the log-

path parameter. The fileNamelist accepts the regular expressions, which makes

possible to store target/non-target and variously preprocessed data into the one

subject’s directory.

Results of performed HHTs are stored into the directory sets in the resultsPath

element. For each configuration is created the directory, which name is same as

base filename from EMD configuration file (in our case it will be EmdCfg1). In

this directory are stored all processed data.

10.4.2 Acquiring Iterations Count From the EMD

The EmpiricalDecompositionClass contains the Counter class, which counts the

iterations during the EMD and the sifting process. The counter could limit the

iterations count during EMD, when it has set up the maxValue property. To

limit the iterations count is necessary, because some of configurations don’t have

to converge. The iterations count is logged into the itCount.log file in logs path.

This file contains only the iteration count.

For summarising all iterations count of all configurations was implemented

IterationCounter class with main method. In the configuration file could be

defined several “counter” which could provide different information about sifting.

This “counters” view could be done with regular expressions, same way as is

shown in the example on page 99.
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Figure 10.2: Preview of the classifiers result

10.4.3 Classification of Processed Data

For evaluating the modifications of HHT was essential to test the classification.

For this purpose I had designed and implemented several classes.

RunClassificationAll class

This class classify all the processed data into two classes target/non-target. Used

classifiers have to implement the Classifier interface. Configuration is Spring bean

file, which should contains list of used classifiers, list of directories (with data)

and list of regular expression representing groups of data, which will be classified.

The example of the configuration file could be seen on page 103.

The results of the classifiers process are stored as HTML pages for eas-

ier manipulating. Name of each HTML file consists of configuration name,

processed pattern (name of the data) and used classifier for example we have

configuration named EmdCfg1.xml, used data are 20 Cz (twenty averages from

Cz electrode) and classifiers name is Class1 then the filename will be Emd-

Cfg1 20 Cz Class1.html. Example of the created HTML file is in the figure 10.2.

ClassifiersSucessViewer class

For gathering information about classification reliability of designed classifiers

and used configuration of HHT is designed the ClassifiersSucccessViewer class.

This class process the classifiers results (HTML pages described in section 10.4.3)

and create the previews according to configuration file. Using the example of the
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configuration file on page 103 creates for you previews of configurations, classifiers

and data. The page contains references to the stored HTML files, so it is easy to

analyse the acquired data (see figure 10.3).

10.5 Summary

I have implemented the HHT as a part of the experimental software in Java. The

algorithm can be used as a part of a more complex library, because it offers great

modularity and almost every part of it could be easily replaced with another

implementation. This feature makes the library very suitable for testing new

methods to estimate additional extrema, stopping criteria, etc.
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Figure 10.3: Success preview of used classifiers
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Chapter 11

Results and Evaluation

11.1 Testing data

I have tested and evaluated my improvements of the HHT on real EEG data

acquired in our laboratory. We have performed 20 Odd-Ball experiments (the

experiment is described in 4.4) with 20 different subjects. We recorded the data

with a device called BrainAmp. Its sampling frequency 1kHz was sufficient for

our experiment.

I have decided to evaluate proposed methods by its ability to detect P3 wave.

The tests were performed on 1s (1000 samples) long epochs. The original data

consists of 30 epochs of the target stimulus responses and 90 epochs of the non-

target stimulus responses, though subsets of 30 epochs were selected at random

for the test.

Testing data contained a single trial (one epoch) and averaged epochs (up

to 2nd, 5th, 10th, 20th and 30th). I have calculated several averages from data

according to table 11.1. First 100 samples (0.1s) were included in the average

used for the baseline correction.

11.2 Evaluation

My aim is to prove that proposed improvements of the EMD are beneficial for

processing EEG signals. I chose three criteria:
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Averaged Epochs Created Averages Count
1 4
2 4
5 6

10 3
20 1
30 1

Table 11.1: Used averages count

• the average iterations count during the sifting process,

• the average count of created IMFs,

• the average classification reliability.

11.2.1 Average Iterations Count During the Sifting Pro-

cess

The count of the sifting process iterations represents explicitly the speed of EMD.

The aim of the criterion is to prove that proposed methods decrease the iterations

count with same or better classification reliability (see section 11.2.3). The av-

erage iteration count is collected from all testing data including averaged epochs

(2, 5, 10, 20, 30).

11.2.2 Average Count of Created IMFs

The number of created IMFs corresponds with the speed of sifting process. The

more IMFs is created, the more iterations are neccessary to complete the sifting

process. This criterion also reflects the “quality” of the decomposition. A rea-

sonable number of IMFs has to be achieved with the decomposition. The average

count of produced IMFs is calculated from all testing data including averaged

epochs (2, 5, 10, 20, 30).
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11.2.3 Average Classification Reliability

Automatic classification reliability represents directly the quality of decomposed

IMFs. The more successful the classification is, the more IMF components retain

enough physical sense of both amplitude and frequency. Therefore I designed

simple classifier described in section 11.2.3.1.

Classifiers were applied on testing data including averaged epochs (2, 5, 10,

20, 30) and their results were summarized. The average classification reliability

represents the evaluation.

11.2.3.1 Designed Classifier

The designed classifier has to reflect the variability of the P3 component. The

P3 wave can vary in frequency, amplitude and latency among persons and even

among trials.

I have assumed that the P3 wave has to occur between 150ms and 650ms after

occurance of stimuli. Its frequency lies between 0.2Hz and 3Hz. I have designed

a simple classifier which algorithm is as follows:

1. i = 0

2. Store i-th IMF into the imfi

3. Calculate the mean frequency between 150ms and 650ms from the imfi

4. If the calculated frequency mean fits into range 〈0.2Hz, 3Hz〉 then continue

with 4a, else continue with 5.

(a) Calculate mean amplitude between 150ms and 650ms from the imfi.

(b) If the mean amplitude is greater than threshold then the P3 wave is

detected.

5. If there is another IMF increase i and continue with 2, else there is no P3

and the algorithm ends.

I have used a set of three classifiers for the evaluation. They differ only in their

mean amplitude threshold value. These three classifiers were selected from a
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Figure 11.1: Envelopes created using Inflection Point Method.

greater set of classifiers according to their rate of successful recognition. Thresh-

old values were set to 3.5, 3.25 and 3.0. Classifiers weren’t adapted for testing

data. Their settings reflects the description of the P3 wave.

11.3 Extrema Detection Methods Comparison

I have presented two methods for local extrema detection in the EEG signal.

The Delta-difference method was designed as a result of requirements described

in section 9.2.2. These requirements emerged from testing on real EEG data.

As you can see at figure 11.1, when using the Inflection point method to detect

extrema, the envelopes don’t follow the trend of the signal. This drawback is

fixed when local extrema are detected by Delta-difference method. In that case

the envelopes surround the signal more tightly and follow its trend as intended

(see figure 11.2).

The first-last method for estimating additional extrema point(see 9.1.1) was

applied in both cases, stopping criteria were same. Therefore the decomposition

is only affected by detected extrema, not by estimated extrema. It made possible

to evaluate the speed of proposed method and its classification reliability. Results

are presented in table 11.2;
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Figure 11.2: Envelopes created using Delta-difference method.

Used Extrema Average Average Classification
Stopping Detection Iterations IMFs reliability
Criteria Method Count Count [%]

Cauchy
Delta-difference method 278.5 13.2 63.8
(δ = 0.05)
inflexion points 318.2 14.3 64.2

SD
Delta-difference method 943.8 19.0 63.0
(δ = 0.05)
inflexion points 958.8 19.8 66.0

Table 11.2: Comparison of extrema detection methods.

78



11. Results and Evaluation

-4

-2

0

2

4

6

8

0 20 40 60 80am
p

lit
u

d
e

[µ
V
] 

time[samples] 

mean upper envelope

lowe envelope data

-4

-2

0

2

4

0 20 40 60 80

am
p

lit
u

d
e

 [
µ
V
] 

time[samples] 

mean upper envelope

lowe envelope data

Figure 11.3: Comparison of Improved mirror method using Inflection point
method (left) and Delta-difference method (right) for extrema detection.

The Delta-difference method speeded up the convergence of the EMD (see ta-

ble 11.2), but it decreased the classification reliability insignificantly. This method

was although proposed to detect “correct” local extrema, not to improve classifi-

cation reliability. Correct extrema detection is essential for the trend of envelopes,

moreover, it is crucial for estimating additional extrema with the improved mirror

method (see figure 11.3). Without Delta-difference method it would be almost

impossible to use the Improved mirror method for processing the EEG signal.

11.4 Additional Extrema Methods Comparison

As shown in section 11.3, the extrema detection is crucial for the modified mirror

method. Therefore, I had to use the Delta-difference method to detect extrema

while comparing the Modified mirror method and First-last.

The Improved mirror method is supposed to decompose the signal in a better

way than the First-last method. I set δ to 0.05 while performing the comparison.

The Modified mirror method improves significantly the EMD for EEG pro-

cessing. The method increased the classification reliability greatly. It means that

decomposed IMFs correspond more to the signal. The method increases the speed
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Used Stopping Additional Average Average Classification
Stopping Criteria Extrema Iterations IMFs reliability
Criteria Value Method Count Count [%]

SD 10.0 Modified Mirror 162.4 5.7 77.0
Cauchy 0.001 Modified Mirror 42.4 5.1 74.7
Cauchy 0.001 First-last 278.5 13.2 63.8
SD 10.0 First-last 943.8 19.0 63.0

Table 11.3: Comparison of additional extrema methods.

Used Stopping δ Average Average Classification
Stopping criteria [µV] Iterations IMFs reliability
Criteria value Count Count [%]

Cauchy 0.001

0.001 63.5 6.1 71.9
0.01 53.2 5.7 74.1
0.05 42.3 5.1 74.7
0.1 38.4 4.8 72.8

SD 10
0.001 265.5 7.1 75.4
0.05 162.4 5.7 77.0
0.1 142.4 5.4 76.5

Table 11.4: Influence of δ parameter on speed and “quality” of EMD.

of the sifting process rapidly. The average iterations count is approximately six

times smaller when the Modified mirror method estimates additional extrema,

instead of First-last method. Results are presented in table 11.3.

11.5 Influence of the δ Parameter on the EMD

The value of δ parameter expresses the tolerance for small amplitude fluctua-

tions(see section 9.2.2). These fluctuations don’t bear important information

about processed signal. Therefore they can be considered as a noise or interfer-

ence. The delta parameter of Delta-difference method makes it possible to ignore

small amplitude fluctuations. Several tests were performed with different values

of δ parameter(see table 11.4).

The δ parameter affects the speed of EMD(table 11.4). The greater value of

δ parameter makes the lower average iterations count drop, because the EMD
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11. Results and Evaluation

Stopping Criteria Max Iterations Count

Cauchy 500
SD 700

Table 11.5: Max iterations count during sifting process.

Cauchy 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5

SD
0.1 0.2 0.5 1 2 5 10 20
30 50

δ
0.001 0.005 0.01 0.05 0.075 0.1 0.25 0.75
1.0 1.25 1.5

Table 11.6: Values for EMD configurations.

ignores more details while creating envelopes. The δ parameter influences also

the classification reliability (see table 11.4). Therefore, I have tested several

configurations of stopping criteria and the δ parameter. Results can be seen in

section 11.6.

11.6 Recommended Configurations for the EMD

The aim of this section is to recommend some configurations of EMD. They could

serve as starting point for other researchers.

I had to established an additional criterion for testing proposed configurations

- the maximum iterations count. This criterion represents the stability of the sift-

ing process (its convergence). Configurations exceeding the maximum iterations

count even in single case, are considered as unsuitable for ERP detection. Cri-

terion values were established empirically with regards of time consumption (see

table 11.5). Additional 200 iterations were used with the Standard Deviation

stopping criterion (well known for its problematic convergence[9]).

Testing configurations were created for EMD stopping criteria (Cauchy con-

vergence test and Standard deviation). I have proposed a set of stopping criteria

values for each stopping criterion (table 11.6). The values of δ parameter can be

seen in the table 11.6.
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Stopping δ Average Average Classification Average
criteria [µV] Iterations IMFs reliability classification
value Count Count [%] reliability

0.005 0.25 15.2 3.6 92.5 71.1
0.001 0.075 35.9 4.4 90.0 72.7
0.0005 0.075 42.0 4.4 90.0 73.9
0.0005 0.05 49.2 4.7 90.0 73.7
0.0001 0.1 97.1 4.7 90.0 74.0

Table 11.7: Suitable configurations for 30 averaged epochs.

Suitable EMD configurations were selected for 10, 20 and 30 averaged epochs

(tables 11.9, 11.8 and 11.7). Configurations were selected according to following

criteria:

1. classification reliability with corresponding averaged epochs

2. averaged classification reliability

The NA signifies that the averaged classification reliability couldn’t be deter-

mined, because the method didn’t provide its result before reaching iterations

limit for all testing data.

The standard deviation as stopping criterion failed in my test. It exceeded the

maximum iteration limit with some testing data samples in almost every case.

Therefore, I don’t recommend it to be used as the stopping criterion, because of

its convergence instability. The Cauchy convergence test seems to be a better

choice.

The most successful configurations are selected in table 11.10. The configu-

rations offer best average classification reliability for all testing data.

11.7 Comparison HHT with WT and MP

Best achieved results from HHT, WT and MP were compared in table 11.11.

When the HHT was performed with the modified EMD, it achieved similar results
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Stopping δ Average Average Classification Average
criteria [µV] Iterations IMFs reliability classification
value Count Count [%] reliability

0.005 1.5 8.1 2.3 85.0 73.3
0.0001 1.5 41.5 2.5 85.0 72.2
0.0001 0.75 50.2 3.3 85.0 71.6
0.001 1.5 14.0 2.4 85.0 71.4
0.0005 0.5 97.1 4.7 85.0 71.2

Table 11.8: Suitable configurations for 20 averaged epochs.

Stopping δ Average Average Classification Average
criteria [µV] Iterations IMFs reliability classification
value Count Count [%] reliability

0.0001 0.05 64.4 3.6 78.3 72.5
0.0005 0.075 50.6 4.9 78.3 73.9
0.0001 0.01 150.3 6.0 79.2 NA
0.0005 0.25 41.5 4.2 77.5 71.6
0.0005 0.05 47.0 4.7 77.5 73.1

Table 11.9: Suitable configurations for 10 averaged epochs.

Stopping δ Average Average Classification
criteria [µV] Iterations IMFs reliability
value Count Count [%]

0.0001 0.1 97.1 4.7 74.0
0.0005 0.075 50.6 4.9 73.9
0.0005 0.05 49.2 4.7 73.7
0.005 1.5 8.1 2.3 73.3
0.0005 0.1 47.0 4.7 73.1

Table 11.10: Most reliable settings
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Averaged
Method

correctly false positive false negative
Epochs detected detection detection

count [%]

10
MP 31 77.5 7 2

CWT 33 82.0 6 1
HHT 31 77.5 2 7
oHHT 24 60.0 7 7

20
MP 34 85.0 3 3

CWT 34 85.0 3 3
HHT 34 85.0 3 3
oHHT 26 65.0 5 7

30
MP 36 90.0 2 2

CWT 37 92.5 2 1
HHT 37 92.5 1 2
oHHT 28 70.0 3 9

Table 11.11: Comparison of MP, CWT and modified and original HHT

as the CWT and modified MP algorithm. It is significant improvement, because

the average classification reliability of the originally proposed EMD was lower.

My modifications of the HHT ( and the modified mirror method) improved

the sifting process. The resulting IMFs correspond more to the original EEG

signal. Therefore, the classification reliability has increased. After modification,

the HHT achieves same results as the MP and CWT in the ERP detection task.
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Chapter 12

Conclusion

In my PhD thesis, I have described the Hilbert-Huang transform in detail. My aim

was to use HHT for ERP detection, because it offers precise time resolution. But

during my tests on real EEG data acquired in our laboratory, I had encountered

several drawbacks in EMD. Therefore, I had to focused on the Empirical Mode

decomposition, which is the core of HHT.

Described drawbacks were related to the envelope calculation process (part

of EMD). Created envelopes have to cover the whole input signal (see section

8.1). Points of envelopes are derived from local maxima and minima, therefore,

it is necessary to add additional points in order to create complete envelope

covering the signal from its first to its last sample. But additional extrema points

have to be chosen carefully. The envelopes could suffer from overshoot effect if

additional points were chosen incorrectly. The Mirror method(section 8.1.1) and

Slope-based method (section 8.1.2) were already designed for this specific task.

But they weren’t designed for the EEG signal processing. Both of them are not

able to estimate additional extrema points, when the edge of the signal contains

time-short components of significantly higher frequency, such as like artifacts (see

section 8.1.3). Therefore, I have designed the Improved mirror method (section

9.1.3), which makes it possible to create complete envelopes, even when the edges

of the signal contain artifacts.

For Improved mirror method and envelopes creation process, the local ex-

trema detection is the essential part. When processing the discrete signal, not

every inflection point can be considered as a local extremum and not every local
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extremum has its highest/lowest value in its surroundings. To detect more suit-

able local extrema, I have designed Delta-difference method (see section 9.2.2). It

makes possible to ignore small amplitude fluctuation in the signal and to detect

local extrema not having their highest/lowest amplitude value in their surround-

ings. With Delta-difference method, the envelopes surround the signal more

tightly and follow its trend (section 11.3).

I have implemented the modified mirror method and Delta-difference method.

Both methods were tested on data (section 11.1) acquired in our laboratory during

odd-ball experiments. These two improvements significantly increase the speed

of EMD (section 11.4). Average iterations count during the sifting process is

approximately six times lower. Moreover, designed modifications increase clas-

sification reliability because created IMFs corresponds to the decomposed signal

with their more physical properties (amplitude, frequency). Now the classifi-

cation reliability of the ERP detection by HHT is comparable with Continuous

wavelet transform and with Modified Matching pursuit [25] (introduced in section

6.2.2). Comparison of CWT, MP and HHT can be seen in section 11.7. During

the testing, I have selected some configurations of EMD to be suitable for ERP

detection and EEG signal processing (section 11.6).

My achievements in short:

• implementation of the HHT in Java

• proposition of the new method for local extrema detection in a discrete

signal

• proposition of the new method for additional extrema estimation in order

to minimize the overshoot effect during envelopes calculation

• implementation of proposed modifications

• verification of proposed modifications on real EEG signals

• HHT with my modifications is far more suitable for ERP detection than

the original HHT
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12.1 Future Work

My work on the HHT could be divided into two parts. First, I have implemented

the HHT as a part of the testing software written in Java. I suggest to include

the HHT module into an open source library to offer the HHT algorithm to other

researches who use Java for their projects. Also, I made future improvement

and refactoring of the source code easier by positioning standard eclipse marks.

I recommend to conduct subsequent performance tests and identify weak points

of my implementation.

The second part of my contribution is focused on improving the EMD and

classification. My idea is to design an additional stopping criteria which could

be combined with Standard deviation and Cauchy convergence stopping criteria.

The newly designed criteria is based on tests conducted on the EEG data acquired

in our laboratory. The implementation of the sifting process makes it easy to

change stopping criteria and combine them together. New criteria could be,

for example, the mean or standard deviation of the mean curve calculated from

envelopes.

I would gladly encourage the further development of new methods for estimat-

ing additional extrema, because, as I have shown, suitably positioned additional

extrema could significantly improve the speed and reliability of the EMD. It

should be possible to use a neural networks to estimate additional extrema [41].

Also, it is necessary to establish more features for classification than the

medium amplitude and frequency of the P3 wave. New classification features

will increase the classification reliability and lead to a design of more suitable

classifier. This features could be based on earlier ERP waves like N1 or P2. The

possibility of combining the time-locked spectral averaging (section 5.2.2) with

the HHT should be explored in order to acquire these features.

12.1.1 Future Work Summary

1. refactoring of the current implementation of HHT

2. performance tests and optimization of current implementation

3. release the HHT open-source library
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4. design new stopping criteria and test their combination

5. test neural networks and their ability to estimate additional extrema

6. focus on the classification feature extraction using time-locked spectral av-

eraging

7. design more suitable classifiers
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umělý život, pages 201–205, Bezručovo náměst́ı 13, Opava, Czech Republic,
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Appendix A

Listing 1: Example of configuration file
<?xml

version=” 1.0 ” encoding=”UTF−8”?> <beans xmlns=” ht tp : //www. springframework . org /schema/beans”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xs i : s chemaLocat ion=” ht tp : //www. springframework . org /schema/beans

h t tp : //www. springframework . org /schema/beans/ spr ing−beans . xsd”>

<bean id=”emd” c l a s s=”hht . emd . EmpiricalModeDecomposition” >

<const ructor−arg r e f=” s i f t e r ”/>

<const ructor−arg r e f=” extremaLocator ”/>

<property name=” counter ” r e f=” counter ”/>

</bean>

<bean id=” counter ” c l a s s=”hht . emd . s i f t i n g . I t e ra t i onCounte r ”>

<property name=”max” value=”3”/>

</bean>

<bean id=” extremaLocator ”

c l a s s=”hht . emd . s i f t i n g . extrema . l o c a t o r s . LocateLocalExtremesFacade ” >

<const ructor−arg r e f=”maxLocator” />

<const ructor−arg r e f=”minLocator” />

</bean>

<bean id=”minLocator”

c l a s s=”hht . emd . s i f t i n g . extrema . l o c a t o r s . ExtremeLocator”>

<const ructor−arg r e f=”minHelper”/>

</bean>

<bean id=”maxLocator”

c l a s s=”hht . emd . s i f t i n g . extrema . l o c a t o r s . ExtremeLocator”>

<const ructor−arg r e f=”maxHelper”/>

</bean>

<bean id=”minHelper”

c l a s s=”hht . emd . s i f t i n g . extrema . l o c a t o r s . MinimumLocatorHelper”>

<property name=” de l t a ” value=” 0.05 ”/>

</bean>

<bean id=”maxHelper”

c l a s s=”hht . emd . s i f t i n g . extrema . l o c a t o r s . MaximumLocatorHelper”>

<property name=” de l t a ” value=” 0.05 ”/>

</bean>

<bean id=” s i f t e r ” c l a s s=”hht . emd . s i f t i n g . S i f t e r ”>

<const ructor−arg r e f=”Or1”/>

<const ructor−arg r e f=”EndPointMirrorEstimator2 ”/>

<const ructor−arg r e f=” extremaLocator ”/>

</bean>

<bean id=”EndPointMirrorEstimator2 ”

c l a s s=”hht . emd . s i f t i n g . extrema . e s t imato r s . EndPointMirror2”/>

<bean id=”Or1” c l a s s=”hht . emd . s i f t i n g . s t opp ingCr i t e r i a . Or”>

<property name=” c r i t e r i a ”>

< l i s t>

<r e f bean=”CauchyConvergence” />

</ l i s t>

</ property>

97



</bean>

<bean id=”CauchyConvergence”

c l a s s=”hht . emd . s i f t i n g . s t opp ingCr i t e r i a . CauchyConvergence”>

<property name=” dev iat ionThresho ld ” value=” 0.001 ” />

</bean>

<bean id=”MonotonicFunction”

c l a s s=”hht . emd . s i f t i n g . s t opp ingCr i t e r i a . MonotonicFunction”>

<property name=” d i f e r enceThre sho ld ” value=” 0.005 ” />

</bean>

<bean id=”Resu l t sCon f i g s ” c l a s s=”data . Resu l t sCon f ig s ”>

<property name=”genPdfFromImfs” value=” f a l s e ”/>

<property name=”genPdfFromImfsMaps” value=” f a l s e ”/>

<property name=”genImfsAllMapPdf” value=” f a l s e ”/>

<property name=”genImfMapToSignalPdf” value=” f a l s e ”/>

</bean>

</beans>

Listing 2: Example of the log4j property file
l o g 4 j . debug=f a l s e

l o g 4 j . rootLogger=INFO, EMD

log4 j . l o gg e r . hht . a spec t s . S i f t ingConvergenceLogger=INFO, SCL

l o g 4 j . l o gg e r . hht . a spec t s . EnvelopesLogger=DEBUG, ENVELOPES

l o g 4 j . l o gg e r . t e s t i n g . c l a s s i f i c a t o r s=TRACE, CLASS

l o g 4 j . l o gg e r . EmdIterat ionsLogger = INFO, ItCount

#CLASS

l o g 4 j . appender .CLASS=org . apache . l o g 4 j . FileAppender

l o g 4 j . appender .CLASS. F i l e=${ c l a s s . l og . f i l ename }
l o g 4 j . appender .CLASS. append=f a l s e

l o g 4 j . appender .CLASS. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .CLASS. layout . Convers ionPattern=%5p%6.6 r [%t ]%x − %m%n

#O Stdout

l o g 4 j . appender .O=org . apache . l o g 4 j . ConsoleAppender

l o g 4 j . appender .O. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .O. layout . Convers ionPattern=%5p%6.6 r [%t ]%x − %m%n

# EMD

log4 j . appender .EMD=org . apache . l o g 4 j . FileAppender

l o g 4 j . appender .EMD. F i l e=${emd . log . f i l ename }
l o g 4 j . appender .EMD. append=f a l s e

l o g 4 j . appender .EMD. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .EMD. layout . Convers ionPattern=%5p%6.6 r [%t ]%x − %m%n

#SCL

l o g 4 j . appender .SCL=org . apache . l o g 4 j . FileAppender

l o g 4 j . appender .SCL . F i l e=${ s i f t i n g . l og . f i l ename }
l o g 4 j . appender .SCL . append=f a l s e

l o g 4 j . appender .SCL . layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .SCL . layout . Convers ionPattern=%5p%6.6 r [%t ]%x − %m%n

#ENVELOPES

#log4 j . appender .ENVELOPES=data . EnvelopeAppender

l o g 4 j . appender .ENVELOPES=data . l og . EnvelopesFi leAppender

l o g 4 j . appender .ENVELOPES. path=${ imfs . l og . path}
l o g 4 j . appender .ENVELOPES. append=f a l s e

l o g 4 j . appender .ENVELOPES. s e p a r a t eF i l e s=true

l o g 4 j . appender .ENVELOPES. f i l eNamePre f ix=matrix

l o g 4 j . appender .ENVELOPES. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender .ENVELOPES. layout . Convers ionPattern=%m

#I t e r a t i o n s count

l o g 4 j . appender . ItCount=org . apache . l o g 4 j . FileAppender

l o g 4 j . appender . ItCount . F i l e=${ imfs . itCount . f i l ename }
l o g 4 j . appender . ItCount . append=f a l s e
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Figure 1: The visualization of HT results - single IMF.

l o g 4 j . appender . ItCount . layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender . ItCount . layout . Convers ionPattern=%m%n

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . S i f t e r=TRACE

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . s t opp ingCr i t e r i a=TRACE

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . Enveloper=TRACE

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . extrema . Extremes=TRACE

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . extrema . e s t imato r s=TRACE

l o g 4 j . l o gg e r . hht . emd . EmpiricalModeDecomposition=TRACE

l o g 4 j . l o gg e r . hht . emd . s i f t i n g . extrema . e s t imato r s . EndPointMirror=TRACE

Listing 3: Configuration file for IterationCounter class
<?xml version=” 1.0 ” encoding=”UTF−8”?>

<beans xmlns=” ht tp : //www. springframework . org /schema/beans”

xm ln s : u t i l=” ht tp : //www. springframework . org /schema/ u t i l ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans
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Figure 2: An example of sifting process iterations.
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Figure 3: An example of decomposed IMFs of the EEG signal.
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Figure 4: Time-Frequency map

ht tp : //www. springframework . org /schema/beans/ spr ing−beans . xsd

ht tp : //www. springframework . org /schema/ u t i l

h t tp : //www. springframework . org /schema/ u t i l / spr ing−u t i l −2.0. xsd”>

< !−− l i s t o f d i r e c t o r i e s w i th p ro c e s s ed data−−>
<u t i l : l i s t id=” d i r e c t o r i e s ”>

<value> i : / hhtResu l t sTest ing /Cauchy d 0 .0010 c 0 .0010</ value>

<value> i : / hhtResu l t sTest ing /Cauchy d 0 .0010 c 0 .0050</ value>

</ u t i l : l i s t>

<bean id=” ba s e l i n e ” c l a s s=” t e s t i n g . i t e ra t i onCount . I t e ra t i onCounte r ”>

<property name=” c f gD i r e c t o r i e s ” r e f=” d i r e c t o r i e s ” />

<property name=” da taD i r e c t o r i e sPa t t e rn s ”>

< l i s t>

<value>\d+ Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>\d+ Cz ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

</ l i s t>

</ property>

<property name=” outputFi l e ” value=” base l ineVsNotBase l ine . html”/>

</bean>

<bean id=” averages ” c l a s s=” t e s t i n g . i t e ra t i onCount . I t e ra t i onCounte r ”>

<property name=” c f gD i r e c t o r i e s ” r e f=” d i r e c t o r i e s ” />

<property name=” da taD i r e c t o r i e sPa t t e rn s ”>

< l i s t>

<value>10 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>20 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>30 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>05 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>02 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>01 Cz ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

</ l i s t>

</ property>

<property name=” outputFi l e ” value=” averages . html”/>

</bean>

<u t i l : l i s t id=” counters ”>

<r e f bean=” ba s e l i n e ”/>

<r e f bean=” averages ”/>

</ u t i l : l i s t>
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</beans>

Listing 4: Configuration file for HhtDataRunner class
<?xml version=” 1.0 ” encoding=”UTF−8”?>

<beans xmlns=” ht tp : //www. springframework . org /schema/beans”

xm ln s : u t i l=” ht tp : //www. springframework . org /schema/ u t i l ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans

h t tp : //www. springframework . org /schema/beans/ spr ing−beans . xsd

ht tp : //www. springframework . org /schema/ u t i l

h t tp : //www. springframework . org /schema/ u t i l / spr ing−u t i l −2.0. xsd”>

< !−− import t h e l i s t o f t h e used c l a s s i f i e r s −−>
<import r e sou r c e=” c l a s s i f i e r s . xml”/>

<bean id=”RunC la s s i f i c a t i onA l l ”

c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . RunC la s s i f i c a t i onA l l ”>

<property name=” da taD i r e c t o r i e s ” r e f=” d i r e c t o r i e s ”/>

<property name=” pat te rns ” r e f=” pat te rns ”/>

<property name=” c l a s s i f i e r s ” r e f=” c l a s s i f i e r s ”/>

<property name=” re su l t sPath ” value=”data // r e s u l t s // c l a s s i f i e r s //”/>

<property name=” templateFilename” value=” con f i g s // c l a s s i f i c a t i o n //htmlTemplate . s tg ”/>

<property name=” logsDirName” value=” c l a s s i f i c a t i o n ”/>

</bean>

<u t i l : l i s t id=” c l a s s i f i e r s ”>

<r e f bean=” c l a s s i f i e r 1 ”/>

<r e f bean=” c l a s s i f i e r 2 ”/>

<r e f bean=” c l a s s i f i e r 3 ”/>

</ u t i l : l i s t>

<u t i l : l i s t id=” d i r e c t o r i e s ”>

<value> i : // hhtResults //CauchyCfg6 3//</ value>

<value> i : // hhtResults //SDCfg4 3//</ value>

</ u t i l : l i s t>

<u t i l : l i s t id=” pat te rns ”>

<value>10 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ( t a r g e t | nonTarget )</ value>

<value>10 Cz ( ep \ [\d{3}\ ] ) ( t a r g e t | nonTarget )</ value>

<value>20 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>20 Cz ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>30 Cz ba s e l i n e ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

<value>30 Cz ( ep \ [\d{3}\ ] ) ? ( t a r g e t | nonTarget )</ value>

</ u t i l : l i s t>

</beans>

Listing 5: Configuration file for ClassifiersSucessViewwer class
<?xml version=” 1.0 ” encoding=”UTF−8”?>

<beans xmlns=” ht tp : //www. springframework . org /schema/beans”

xm ln s : u t i l=” ht tp : //www. springframework . org /schema/ u t i l ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xs i : s chemaLocat ion=”

ht tp : //www. springframework . org /schema/beans

h t tp : //www. springframework . org /schema/beans/ spr ing−beans . xsd

ht tp : //www. springframework . org /schema/ u t i l

h t tp : //www. springframework . org /schema/ u t i l / spr ing−u t i l −2.0. xsd”>

<import r e sou r c e=” c l a s s i f i e r s . xml”/>

<bean id=” C l a s s i f i e r s Su c c e s sV i ewe r ” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s //”/>

<property name=” pat te rns ” r e f=” con f i g sPa t t e rn s ”/>
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<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // c on f i g s ” />

<property name=”next ” r e f=”configsSum” />

</bean>

<bean id=”configsSum” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s // c on f i g s ”/>

<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // c on f i g s ” />

<property name=”next ” r e f=” c l a s s i f i e r s ” />

</bean>

<bean id=” c l a s s i f i e r s ” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s //”/>

<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // c l a s s i f i e r s ” />

<property name=” pat te rns ” r e f=” c l a s s i f i e r s P a t t e r n ”/>

<property name=”next ” r e f=” c l a s s i f i e r s Sum ” />

</bean>

<bean id=” c l a s s i f i e r s Sum ” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s // c l a s s i f i e r s ”/>

<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // c l a s s i f i e r s ” />

<property name=”next ” r e f=” averages ” />

</bean>

<bean id=” averages ” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s //”/>

<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // averages ” />

<property name=” pat te rns ” r e f=” averagesPattern ”/>

<property name=”next ” r e f=”averagesSum” />

</bean>

<bean id=”averagesSum” c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . C l a s s i f i e r s Su c c e s sV i ewe r ”>

<property name=”dataDir ” value=” c : // hhtResults // c l a s s i f i e r s // averages ”/>

<property name=” r e s u l t sD i r ” value=” c : // hhtResults // c l a s s i f i e r s // averages ” />

</bean>

<u t i l : l i s t id=” averagesPattern ”>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗ 10 .∗ ”/>
<property name=” f i l ename ” value=”10”/>

</bean>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗ 20 .∗ ”/>
<property name=” f i l ename ” value=”20”/>

</bean>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗ 30 .∗ ”/>
<property name=” f i l ename ” value=”30”/>

</bean>

</ u t i l : l i s t>

<u t i l : l i s t id=” c l a s s i f i e r s P a t t e r n ”>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗FreqAmpl4 .∗ ”/>
<property name=” f i l ename ” value=”FreqAmpl4”/>

</bean>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗FreqAmpl5 .∗ ”/>
<property name=” f i l ename ” value=”FreqAmpl5”/>

</bean>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=” .∗FreqAmpl6 .∗ ”/>
<property name=” f i l ename ” value=”FreqAmpl6”/>

</bean>

</ u t i l : l i s t>

<u t i l : l i s t id=” con f i g sPa t t e rn s ”>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=”CauchyCfg1 .∗ ”/>
<property name=” f i l ename ” value=”CauchyCfg1”/>

</bean>
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<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=”CauchyCfg2 .∗ ”/>
<property name=” f i l ename ” value=”CauchyCfg2”/>

</bean>

<bean c l a s s=” t e s t i n g . c l a s s i f i c a t o r s . view . Value”>

<property name=”value ” value=”CauchyCfg3 .∗ ”/>
<property name=” f i l ename ” value=”CauchyCfg3”/>

</bean>

</ u t i l : l i s t>

</beans>
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