
University of West Bohemia

Faculty of Applied Sciences

Ontology Development

in EEG/ERP Domain

Ing. Petr Ježek

Doctoral Thesis

submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in specialization Computer Science and Engineering

Supervisor: Prof. Ing. Václav Matoušek , CSc.

Department of Computer Science and Engineering

Pilsen 2012

Západočeská univerzita v Plzni

Fakulta aplikovaných věd

Tvorba Ontologie

v EEG/ERP Doméně

Ing. Petr Ježek

Disertačńı práce

k źıskáńı akademického titulu doktor

v oboru Informatika a výpočetńı technika

Školitel: Prof. Ing. Václav Matoušek , CSc.

Katedra informatiky a výpočetńı techniky

V Plzni 2012

Prohlášeńı

Předkládám t́ımto k posouzeńı a obhajobě disertačńı práci zpracovanou na
závěr doktorského studia na Fakultě aplikovaných věd Západočeské univer-
zity v Plzni.

Prohlašuji t́ımto, ze tuto práci jsem vypracoval samostatně, s použit́ım
odborné

’
literatury a dostupných pramen̊u uvedených v seznamu, jenž je

součást́ı této práce.

V Plzni dne 20. března 2012 Ing. Petr Ježek

i

Abstract

Because of difficulties with neuroinformatics data/metadata storage, a new
research field dealing with the development of neuroinformatics databases
is gradually formed. The data within these databases are supposed to be
recognizable by interested researchers. To support the development of these
databases the description of specific neuroscience fields is needed. Therefore,
the scientific community is intensively working on description of individual
neuroscience fields by domain ontologies. These ontologies are expressed by
Semantic Web languages. Since the current neuroinformatics software tools
are usually based on object-oriented languages and relational databases a
need for suitable mapping is emerging. Due to differences in semantic ex-
pressivity of common modeling techniques and Semantic Web languages it is
necessary to fill these semantic gaps. This work is focused on developing an
ontology for EEG/ERP domain that expresses EEG/ERP experiments. The
developed ontology is practically implemented together with the EEG/ERP
Portal. The goal of the EEG/ERP Portal is to serve as a system for storing,
managing and interchanging EEG/ERP experiments. The work particularly
solves semantic gaps between object-oriented code and Semantic Web lan-
guages by adding a missing semantics into the object-oriented code. The
developed mapping is implemented within the presented Semantic Frame-
work. The integration of the Semantic Framework within the EEG/ERP
Portal ensures transformation of stored experiments into the ontology repre-
sentation. The registration of the EEG/ERP Portal within the Neuroscience
Information Framework practically validates the presented approach.

ii

Abstrakt

Při ukládáńı neuroinformatických dat/metadat vzniká celá řada problémů
souvisej́ıćı s vhodným popisem ukládaných záznamů. Z toho d̊uvodu vzniká
nový vědńı obor zabývaj́ıćı se vývojem neuroinformatických databáźı. Data
ukládaná v neuroinformatických databáźıch jsou určena vědecké komu-
nitě, která věnuje úsiĺı vývoji databáźı společně s popisem jednotlivých
neurovědeckých oblast́ı doménovými ontologiemi. Doménové ontologie jsou
vyjádřeny jazyky tzv. Sémantického Webu. Současné systémy použ́ıvané
v neuroinformatice jsou obvykle vyvinuté s využit́ım objektově-orientovaných
jazyk̊u a relačńıch databáźı, proto je potřeba navrhnout vhodné ma-
pováńı do jazyk̊u Sémantického Webu. Tato práce si klade za ćıl navrh-
nout ontologii, která poṕı̌se doménu EEG/ERP experiment̊u. Daľśı část
práce se věnuje řešeńı sémantických rozd́ıl̊u mezi objektově-orientovaným
kódem a jazyky Sémantického Webu a navrhuje zp̊usob rozš́ı̌reńı objektově-
orientovaného kódu o chyběj́ıćı sémantiku. Navržené mapováńı je implemen-
továno v Sémantickém Frameworku. Posledńı část práce se zabývá návrhem
a vývojem EEG/ERP Portálu. EEG/ERP Portál je systém navržený pro
ukládáńı, sd́ıleńı a správu EEG/ERP experiment̊u. Navržená ontologie je
v tomto systému implementována. Integrace Sémantického Frameworku
v EEG/ERP Portálu zajǐst’uje automatizovanou transformaci uložených ex-
periment̊u do jazyk̊u Sémantického Webu. EEG/ERP Portál je registrován
v systému zvaném ”Neuroscience Informational Framework”, č́ımž je ověřena
správnost navržené transformace.

iii

Contents

I Opening 1

1 Introduction 2
1.1 Problem Overview . 3
1.2 Document Structure . 4
1.3 Aims of the Dissertation Thesis 5

II Background and State of The Art 6

2 EEG/ERP Research 7
2.1 Introduction to EEG/ERP 7

2.1.1 Biological Background 7
2.1.2 Electroencephalography 8
2.1.3 Event-Related Potentials/Evoked Potentials 8
2.1.4 ERP Components . 9

2.2 EEG/ERP Experiments . 10
2.2.1 Oddball Paradigm . 10
2.2.2 Simple Example Experiment 10

2.3 EEG/ERP Laboratory . 11

3 EEG/ERP Data Formats 13
3.1 Formats Overview . 13
3.2 European Data Format . 13

3.2.1 Specification . 14
3.2.2 Disadvantages . 14

3.3 Vision Data Exchange Format 14
3.3.1 Specification . 15
3.3.2 Disadvantages . 15

3.4 Attribute-Relation File Format 16
3.4.1 Specification . 16
3.4.2 Disadvantages . 16

3.5 Conclusion . 17

iv

4 Common Systems for Data Modeling 18
4.1 Introduction . 18
4.2 Relational Databases . 18
4.3 Unified Modeling Language 20

4.3.1 UML Scope . 20
4.3.2 UML Diagrams Description 20
4.3.3 Class Diagram . 21

4.4 Object Oriented Modeling . 24
4.4.1 Overview . 24
4.4.2 Data Concepts . 24
4.4.3 Objects Identity . 25
4.4.4 Object Constructors 25
4.4.5 Operations Encapsulation 26
4.4.6 Objects Persistence . 27

5 Semantic Web Modeling 28
5.1 Introduction . 28
5.2 Languages and Technologies 30

5.2.1 Resource Description Framework 31
5.2.2 Ontology Web Language 34

6 Neuroscience Databases 37
6.1 Introduction . 37
6.2 Sustainability . 38

6.2.1 INCF Recommendations 38
6.3 Available Databases . 40

6.3.1 CARMEN Portal . 40
6.3.2 Neuroscience Information Framework 41
6.3.3 INCF Japan Node - Portal of Neuroinformatics 42

6.4 Conclusion . 43

III Comparison and Mapping of Data Models 45

7 Comparison of Concepts 46
7.1 OWL and UML . 46

7.1.1 Introduction . 46
7.1.2 Similar Concepts . 46
7.1.3 Different Concepts . 50
7.1.4 Summary . 52

7.2 Relational Schema and RDF 55

v

7.3 Existing Tools . 57
7.3.1 Tools with Common Semantic Expressivity 57
7.3.2 Tools with Additional Semantic Expressivity 59

8 Mapping Improvement 60
8.1 Motivation . 60
8.2 Context . 61

IV Construction of Ontologies 62

9 Generation of Ontology from JavaBeans 63
9.1 JavaBean Definition . 63
9.2 System Requirements . 63
9.3 Tools Overview . 64
9.4 Jena Models . 65

9.4.1 Introduction . 65
9.4.2 RDF Model . 65
9.4.3 Ontology Model . 65
9.4.4 Conclusion . 68

9.5 JenaBean - Jena Model Superstructure 69
9.6 JavaBean Structure Extraction 69

9.6.1 Mapping JavaBean to OWL Class 70
9.6.2 Mapping JavaBean Property to OWL Property 70
9.6.3 Mapping JavaBean Instance to OWL Individual 71

10 JavaBeans Semantic Extension 73
10.1 Prerequisites . 73
10.2 Mapping Realization . 74
10.3 Implementation of OWL Elements 75

10.3.1 Basic Elements . 75
10.3.2 Property Axioms . 75
10.3.3 Property Restriction 77
10.3.4 Individuals . 78
10.3.5 Mapping . 79
10.3.6 Design an Implementation of Annotations 80

10.4 Semantic Framework . 82
10.4.1 Modules Structure . 82
10.4.2 Running Semantic Framework 83
10.4.3 Conclusion . 85

10.5 Annotation Tool . 86

vi

10.5.1 Design . 86
10.5.2 Implementation . 86

V Ontology Dev. in EEG/ERP Experiments 88

11 Domain Ontology 89
11.1 Introduction . 89
11.2 Ontology Structure . 89

11.2.1 Activity . 90
11.2.2 Environment . 90
11.2.3 Tested Subject . 91
11.2.4 Hardware Equipment 91
11.2.5 Software Equipment 91
11.2.6 Used Electrodes . 91
11.2.7 Data Digitalization . 91
11.2.8 Signal Analysis . 92
11.2.9 Data Presentation . 92
11.2.10 Signal Artifact . 92

11.3 Ontology Visualization . 92

12 EEG/ERP Portal 94
12.1 Introduction . 94
12.2 Project Scope and System Features 95

12.2.1 User Roles . 95
12.2.2 Security . 96
12.2.3 Performance . 96

12.3 Design and Implementation 96
12.3.1 Architecture . 96
12.3.2 Persistence Layer . 97
12.3.3 Application and Presentation Layer 97
12.3.4 Additional Modules . 97

12.4 Conclusion . 99
12.5 Semantic Web Extension . 99

12.5.1 Semantic Framework Integration 100

VI Results 102

13 Performance Evaluation 103
13.1 Computational Complexity . 103

vii

13.2 Experimental Verification . 105

14 Evaluation of Ontology 107
14.1 Prerequisites . 107
14.2 Comparison with Specification 108
14.3 Validation Using Protége . 110
14.4 Evaluation Using NIF Portal 112

14.4.1 Registration Process overview 112
14.4.2 Resource Description 112
14.4.3 Dynamic Content Registration 113

15 Conclusion 115
15.1 Current State of Work . 116
15.2 Evaluation of Thesis Goals . 117
15.3 Future Work . 118

A Author’s Publications 125

viii

List of Figures

2.1.1 Neuron structure [3] . 8
2.2.1 Graph Segment for Non-target Stimulus 11
2.2.2 Graph Segment for target Stimulus 11
2.3.1 Laboratory Equipment [22] 12

4.3.1 Example of Objects in Class Diagram 22
4.3.2 Key Aspects of UML Class Diagram [44] 22

5.2.1 Semantic Web Layered Architecture [23] 30
5.2.2 Example of RDF Graph[25] 32
5.2.3 RDF and RDFS layers [23] 33
5.2.4 OWL Variants . 36

6.3.1 JNode Activities . 43

9.4.1 Jena Layers [33] . 67
9.4.2 Jena Ontology Model . 68

10.4.1 Component Diagram of Semantic Framework 83
10.4.2 Class Diagram of Semantic Framework 85
10.5.1 Annotation Tool Preview . 87

11.3.1 Ontology of EEG/ERP Experiment 93

12.3.1 EEG/ERP Portal Login Page Preview 98
12.3.2 EEG/ERP Portal Home Page Preview 99
12.5.1 Semantic Framework Integration UML 101
12.5.2 Semantic Framework Integration 101

13.2.1 Time Dependence on the Set of Input Objects 106

14.2.1 EEG/ERP Portal Ontology Validation Result 110
14.3.1 EEG/ERP Portal Ontology Loaded in Protége 111
14.3.2 EEG/ERP Portal Ontology Visualized in Protége 111
14.4.1 EEG/ERP Portal within NIF Registry 114

ix

List of Tables

4.1 Properties and Their Types in Simple Model 23
4.2 Classes and Owned Properties in Simple Model 23
4.3 Implementation of Association in Simple Model 24
4.4 Implementation of Association in Simple Model Using Unique

IDs . 24

7.1 Example Person Instance . 47
7.2 Translation of Simple OOM Associations to OWL 48
7.3 Translation of OOM Associations to OWL 49
7.4 OWL and UML Features Comparison 53
7.5 UML Features with no OWL Mapping 53
7.6 OWL Features with no UML Mapping 53
7.7 OWL Features with no Java Mapping 54

10.1 OWL Mapping of Java Annotations 81

13.1 Time Dependence on the Set of Input Objects 105

x

Acknowledgement

I would like to thank Václav Matoušek, my thesis supervisor who accepted
me for graduate study and gave me an opportunity to work on this very
interesting topic.

Next thanks go to my colleague and friend Roman Mouček for his valuable
help during my studies.

Last thanks belong to my partner Alena for her moral support and under-
standing.

Part I

Opening

1

Chapter 1

Introduction

With the gradual penetration of computer technologies into medicine a brand
new scientific discipline is gradually formed. This research field is known as
neuroinformatics because it combines research in the medicine with research
in the computer science.

Neuroinformatics is concerned with the organization of neuroscience data,
application of computational models and analytical tools. The usage of com-
puters within the medicine brings an excellent support in execution of time-
consuming tasks (e. g. signal processing) or collection of large data sets
(obtained during patients examinations or experimental research).

Major challenge for software engineers is to prepare software tools, analytical
methods or data standards usable in medical practice. Such software should
be based on unified interfaces, open-source technologies and clearly defined
protocols in order to knowledge should be distributed among medical labo-
ratories. Despite a lot of tools is being developed the potential benefits that
the dissemination of knowledge among laboratories offers are still not used.
The main reason is that the medical software is supplied by various mostly
commercial vendors who are not interested in developing reusable standards.

On the other hand, the suitable medium for sharing experimental data should
be the Internet. Despite the popularity of the Internet, how it is growing, it
contains of a huge amount of information with practically no classification.
Such not classified data are not suitable for sharing. As a solution an ex-
tension called the Semantic Web that is intended to give the data semantic
meaning is being developed.

Due to high complexity that relates to processing of medical data there are
developed specific databases intended for preservation of medical data. The

2

Chapter 1. Introduction

sustainability of these databases is very important field in the neuroscience.

1.1 Problem Overview

Our research group specializes in the research of brain activity, especially
attention of drivers and seriously injured people is investigated. We widely
use the methods of electroencephalography (EEG) and event related poten-
tials (ERP). According to difficulties mentioned in Chapter 1 we will discuss
several difficulties related to EEG/ERP experiments.

EEG/ERP experiments usually take a long time and produce a lot of data.
With the increasing number of experiments we had to solve their long-term
storage and management.

There is no widely spread and generally used standard for EEG/ERP data
files within the community. Data formats are usually closed and bounded
with specific hardware supplied by the specific vendor.

Results (interpretations) of EEG/ERP experiments are usually more impor-
tant than obtained data. Some researchers even declare that experimental
data have a low value when they are interpreted.

There is no reasonable and easily extensible tool for long-term EEG/ERP
experiments storage and management. The general practice is to organize
data and metadata in common file directories.

There is no general habit to share and interchange experiments between
EEG/ERP laboratories. Some researchers suppose that EEG/ERP experi-
ments are secret or unimportant to share them.

Several organizations that aims is to participate on solving difficulties with
sustainability of neuroscience databases were formed. Probably the most
important is International Neuroinformatics Coordinating Facility (INCF).
INCF develops an infrastructure that serves to interested researchers in de-
veloping of a partial infrastructure of each specific neuroscience domain.

The system that facilitates storing, interchanging and managing EEG/ERP
experiments is needed. Currently the domain description using a specific
ontology is discussed in many scientific fields. Ontologies are considered one
of the pillars of the Semantic Web. The Semantic Web is suitable for machine
processing hence a suitable ontology that expresses EEG/ERP experiments
should help with EEG/ERP experiments interpretation.

However, current software systems are usually object-oriented and they oper-

3

Chapter 1. Introduction

ate over large data collections usually stored in relational databases. Because
fundamental differences between semantics of object-oriented code and Se-
mantic Web languages, it is necessary to ensure a suitable mapping.

Because expressive capabilities of the Semantic Web languages are richer
than in the case of object-oriented systems it is necessary to investigate the
ways to fill these semantic gaps.

1.2 Document Structure

In this work we bring an introduction into EEG/ERP experiments (Chapter
2) and describe the most often data formats. Although the presented for-
mats were supposed as a promising attempts to standardize EEG/ERP data
formats serious disadvantages stay. (Chapter 3). We present the description
of these formats with their most pressing disadvantages.

Since data and their relationships can be expressed by various modeling
systems we describe the differences among individual systems (Chapter 4).
Since we want to design the ontology describing EEG/ERP experiments we
need to extract data from common data structures and transform them into
Ontology Web Language (OWL). To support this idea we investigate and
describe features that provide common data structures in comparison with
the Semantic Web structures (Chapter 7).

Already neuroscience databases exist, we selected the most representative set
of them (Chapter 6). Some of them we use for a direct cooperation with our
developed system while others we used only as an inspiration to support our
idea to develop the database of EEG/ERP experiments. We also selected
the most important recommendations for creating a neuroscience database
that were issued by INCF. These recommendations were respected when our
system was designed.

Since semantic gaps between common modeling techniques and the Seman-
tic Web exist we needed to describe them thoroughly and investigate their
removal. We present the proposed mapping and its implementation that
extends common object oriented code by missing semantics (Chapter 9 and
Chapter 10). The proposed mapping we practically implemented within a
custom Semantic Framework.

The ontology that precisely describes the EEG/ERP experiment is presented
(Chapter 11). Our effort to provide a system for storing and management of
EEG/ERP experiments resulted in a custom solution called the EEG/ERP

4

Chapter 1. Introduction

Portal (Chapter 12).

In Chapter 13 and Chapter 14 the designed ontology is evaluated with em-
phasis to its usability, syntactical validity and performance.

1.3 Aims of the Dissertation Thesis

According to mentioned difficulties the aim of this thesis can be summarized
in the following points:

1. To propose ontology that represents EEG/ERP domain.

2. To propose and implement an expression of proposed ontology by the
Semantic Web languages.

3. To propose and implement extension of a mechanism that transforms
data stored in our database into the Semantic Web.

4. To register the solution in NIF to evaluate the design and the practical
contribution of the approach.

5

Part II

Background and State of The
Art

6

Chapter 2

EEG/ERP Research

2.1 Introduction to EEG/ERP

Before discussing experiments it is necessary to introduce electroencephalog-
raphy (EEG), event-related potentials (ERP) and how the brain works.

2.1.1 Biological Background

The core component of the nervous system (including brain, spinal cord,
and peripheral ganglia) is a neuron. It is an electrically excitable cell that
processes and transmits information by electrochemical signaling via connec-
tions with other cells called synapses. A neuron is basically an on/off switch.
It is either in a resting state or it is shooting an electrical impulse down an
axon. On the very end of axon path there is a little part that shoots out a
chemical. This chemical goes across a gap (called synapse) where it triggers
another neuron to send a message. Figure 2.1.1 shows a structure of a typical
neuron [3].

7

Chapter 2. EEG/ERP Research

Figure 2.1.1: Neuron structure [3]

2.1.2 Electroencephalography

Electroencephalography (EEG) is a technique for recording and interpreting
the electrical activity of the brain. It is a non-invasive method. The nerve
cells of the brain generate electrical impulses that fluctuate rhythmically
in distinct patterns. To record the electrical activity of the brain, pairs of
electrodes are attached to the scalp. Each pair of electrodes transmits a signal
to one of several recording channels. This signal consists of the difference in
the voltage between the pair. The rhythmic fluctuation of this potential
difference is shown as peaks and troughs on a line graph by the recording
channel dependence on time. This graph is named electroencephalograph [1].

2.1.3 Event-Related Potentials/Evoked Potentials

Event-related brain potentials or Evoked Potentials1 (ERP resp. EP) are
derived techniques from EEG. The methods are non-invasive, they measure

1In this work it supposed that terms Event-Related Potentials and Evoked Potentials
have the same meaning

8

Chapter 2. EEG/ERP Research

a brain activity during e.g. the cognitive processing. The transient electric
potential shifts (so-called ERP components) are time-locked to the stimulus
onset (e.g. the presentation of a word, a sound, or an image). Each compo-
nent reflects brain activation associated with one or more mental operations.
In contrast to behavioral measures such as error rates and response times,
ERPs are characterized by simultaneous multi-dimensional on line measures
of polarity (negative or positive potentials), amplitude, latency, and scalp
distribution. Therefore, ERPs can be used to distinguish and identify psy-
chological and neural sub-processes involved in complex cognitive, motor, or
perceptual tasks. Moreover, unlike next technique used for registering brain
activity as magnetic resonance imaging (MRI) or functional magnetic reso-
nance imaging (fMRI) (even Event-Related fMRI, which precludes the need
for blocking stimulus items) is, ERP provides extremely high time resolution,
in the range of one millisecond [2].

2.1.4 ERP Components

The method of averaging is used for obtaining ERP from EEG. When ERP
experiment is recorded simultaneously with brain activity a position of stim-
ulus is stored (by creating markers in the signal). The single-trial waveforms
create averaged ERP waveforms for each type of stimuli at each electrode
site. By doing this averaging at each time point following the stimulus its
end up with highly replicable waveforms for each stimulus type.

The resulting averaged ERP waveforms consist of a sequence of positive and
negative voltage deflection, which are called components.

The components are designated by letters P, N or C. P is used for positive
signal, N for negative signal and C for components which are not completely
positive or negative but their polarity vary. The letter is typically followed by
a number which quantifies latency of the wave in milliseconds. For instance
there is a component named P300 which is very often used in experiments
based on the oddball paradigm described in Subsection 2.2.1. It signifies the
component with positive amplitude detected after 300ms on stimuli onset. A
notation of components is sometimes shorten so that we can see P3 instead
of P300 but the meaning is the same [4].

9

Chapter 2. EEG/ERP Research

2.2 EEG/ERP Experiments

2.2.1 Oddball Paradigm

The experiments based on the oddball paradigm typically contain two stim-
uli. Stimuli are presented in a random series such that one of them occurs
relatively infrequently. The first one presented more often is called non-target
and the second one is called target. Stimuli could be audio (two different
tones, beeps or voices) or video (two different signs, pictures, letters or digits
on the screen). The rate between stimuli is approximately 20 percent for
target to 80 percent for non-target. The tested subject is instructed to be
concentrated on the target stimuli or to do nothing [4, 5].

2.2.2 Simple Example Experiment

This section describes a simple EEG/ERP experiment used for demonstra-
tion of obtaining a P3 component from the EEG signal. This experiment was
done in our laboratory. The experiment is based on the experiment described
in [4].

The experiment is a variant on the classical oddball paradigm. Subjects
view sequences of 80 percent letters Os (non-target stimuli) and 20 percent
Qs (target-stimuli) and they calculate how many times Q (target stimuli)
occurs. Each letter is presented on a video monitor for 100ms, followed by a
1 400ms blank interstimulus interval. While the tested subject performs this
task, EEG from several electrodes embedded in an electrode cap is recorded.
The EEG is converted into the digital form and stored. Whenever a stimu-
lus is presented the stimulation computer sends a marker code to the EEG
digitization computer, which stores them along with EEG data.

A simple signal averaging procedure is performed continuously during the
session after each stimulus subside. Averaging extracts the ERPs elicited by
the Os and the Qs. Specifically, the segment of EEG surrounding each Q
and each O is extracted and lined up these EEG segments with respect to
the marker code.

Figure 2.2.1 shows ERP signal for a non target stimulus O. Onset of stimulus
is inserted into the coordinates of the origin.

10

Chapter 2. EEG/ERP Research

Figure 2.2.1: Graph Segment for Non-target Stimulus

Figure 2.2.2 shows ERP signal for a target stimulus Q. Onset of stimulus is
inserted into the coordinates of the origin as well. Approximately after 300ms
post stimulus a positive peak with much higher amplitude then neighboring
extremes is present.

Figure 2.2.2: Graph Segment for target Stimulus

2.3 EEG/ERP Laboratory

A specialized laboratory is used for performing ERP/ERP experiments. We
use 32-channels EEG recorder BrainAmp with BrainVision recording soft-
ware and a custom software for presenting experimental scenarios. We use
two computers. The first one is used for playing scenarios and the second
one for storing EEG/ERP experimental data and watching progress of the

11

Chapter 2. EEG/ERP Research

experiment. Both computers are connected together by a USB adapter in
order to storing markers from the scenario. The tested subject sits on the
seat, he/she has an EEG cap on the head and he/she is watching the scenario
of the experiment on the computer screen. The attendant person is present
during the experiment in order to instruct the tested subject. Laboratory
equipment is presented in Figure 2.3.1.

Figure 2.3.1: Laboratory Equipment [22]

12

Chapter 3

EEG/ERP Data Formats

3.1 Formats Overview

When EEG potentials are obtained from the scalp of a tested subject, they
have to be digitalized. A special device called the analog-digital converter
converts data into the digitalized form. Producers of these converters are
responsible for the output format specification. Since there are many of
producers of the EEG recording devices and they profit from selling a custom
solution there is no general endeavor to make formats open or compatible
with solutions of other producers.

The formats most often used for storing EEG data and metadata are de-
scribed in this section. Some formats were developed by commercial compa-
nies. Reading or storing data usually requires using a supplied commercial
software. Other described formats are open.

3.2 European Data Format

The European Data Format (EDF or EDF+ for its extension)[7] is a sim-
ple format for exchange and storage of multichannel biological and physical
signals. It was developed by a few European medical engineers in 1987 who
met on international Sleep Congress in Copenhagen. With the support of
professor Annelise Rosenfalck, the engineers initiated the European project
on Sleep-Wake analysis (1989-1992). They wanted to apply their sleep anal-
ysis algorithms to each others data and compare the analysis results. So, in
Leiden in March 1990, they agreed upon a very simple common data format.

13

Chapter 3. EEG/ERP Data Formats

This format became known as the European Data Format first introduced in
1992 and published in [8].

3.2.1 Specification

One data file contains one uninterrupted digitized polygraphic recording.
The data file consists of a header record followed by data records. The first
part of header contains a set of metadata that identify tested subject, time
information about the recording, the number of data records and finally the
number of signals in each data record.

The first part of header is 256 bytes length and it is followed by the second
part of header record that specifies type of signal, amplitude calibration or
number of samples in each data record. The length of the second part is 256
bytes for each signal so total header length is possible to express by (3.2.1).
The header is followed by data record where each sample is represented by
two bytes integer.

header length = 256b+ (ns ∗ 256b) ; ns = signals count (3.2.1)

Although this format is used in some commercial (e.g. Walter Graphtek [9]
or xltech [10]) and in many of open source readers and writers (e.g. Brainlab
[11] or OpenXDF [12]) it has several disadvantages.

3.2.2 Disadvantages

Raw data and metadata are in one file together. Metadata contain only
a restricted set of information about the tested subject. The format is not
intended for ERP experiments directly because does not provide a possibility
to store markers to the signal. Information about the experimental scenario
is totally missing.

Despite its drawback this data format has been probably the most hopeful
attempt to standardize description of EEG data.

3.3 Vision Data Exchange Format

Vision Data Exchange Format (VDEF) [13] is produced by BrainAmp de-
vice designated for reading EEG/ERP. This format is used by the Vision

14

Chapter 3. EEG/ERP Data Formats

Recorder developed by BrainProduct company [13]. This software and hard-
ware equipment is used in our EEG/ERP laboratory. The Vision Recorder
has the following features.

� User can control different amplifiers, software also enables an integra-
tion of new EEG/ERP formats.

� The number of channels is restricted only by the amplifier that is in
use. The internal structure supports an unlimited number of channels.

� Segmentation based on event markers is available to reduce the space
required by EEG/ERP files.

� Averaging based on event markers is available to form ERP during
recording.

� The data can be filtered separately for display, for segmentation or
averaging and for storage.

3.3.1 Specification

The format consists of three files (the header file, the marker file and the
raw data) that have to be stored in one folder. The header file has an ASCII
format with the extension ”.vhdr”. It has normally the same base name
as the raw data EEG/ERP file that is described in it. It also contains the
name of marker and raw data files, data format, number of channels, sampling
interval and for each channel number, reference channel name, channel name,
resolution and resolution unit. The format of the header file is based on the
Windows INI format. The marker file, contains the name of data file, used
encoding and for each marker their number, type, description, position, size
and channel number.

3.3.2 Disadvantages

Although this format solves many disadvantages of EDF data format, es-
pecially data and metadata are stored separately into diverse files and the
format is directly used for ERP experiments (it provides possibility to store
markers), several disadvantages remain open.

The format does not define metadata about a scenario of the experiment
or other a custom set of experimental metadata. Because the format is a

15

Chapter 3. EEG/ERP Data Formats

commercial its acceptance as a standardized EEG/ERP experimental format
is questionable because its usage is bounded with the need to use it together
with the specific hardware equipment from the specific vendor.

3.4 Attribute-Relation File Format

Attribute-Relation File Format (ARFF) is used internally by the Weka Ma-
chine Learning Project (WEKA)[14]. WEKA is a collection of machine learn-
ing algorithms for data mining tasks written in Java. It contains tools for
regression, association rules, clustering, data pre-processing, classification,
and visualization. It is also suitable for developing a new machine learning
schemes.

3.4.1 Specification

ARFF file is an ASCII text file that describes a list of instances sharing a
set of attributes. ARFF file contains two sections; Header and Data. Header
part is marked by header annotation. It contains the name of the relation
and the list of attributes and their types.

The data part is marked by data annotation and contains a set of values
separated by comma. Attributes in the header part have to be ordered; they
define the name of the attribute and its data type. The order of the attributes
define the column position in the data section of the file. For example, if an
attribute is the third one declared then WEKA expects that all attribute
values will be found in the third comma delimited column in data section.

3.4.2 Disadvantages

Although ARFF is an open source format published under the General Public
License1 as well as whole WEKA project so it could be more extended, it is
used only in the WEKA project.

The format does not provide possibilities to store metadata of experiments.
Searching and seeking in the text file is problematic because data from each
channel are stored together with metadata in one text file. Moreover, there
is no possibility to store markers from ERP experiments.

1http://www.gnu.org/copyleft/gpl.html

16

Chapter 3. EEG/ERP Data Formats

3.5 Conclusion

The unification of available data formats is not without difficulties as follows
from the previous text. The reason is that a format specification is defined
by the vendor of a measuring device. The main disadvantage of the presented
formats is that metadata description is almost missing. The data without
metadata precisely describing an experiment are almost useless. We could
say that interpretation of data is almost more important then data itself.

We are not able to unify existing formats until there is not an effort from
the vendors of measuring devices to make an internal formats based on open
standards. We describe the EEG/ERP experiment by clearly defined meta-
data and we design a system that will provide a possibility to store raw data
obtained from the measured device and the metadata description defined in
Chapter 11.

The described formats store data within the common files stored in the com-
puter hard disc. It has several disadvantages related to long term sustain-
ability of these data.

17

Chapter 4

Common Systems for Data
Modeling

4.1 Introduction

Since data obtained during the EEG/ERP experiments are raw data we need
to extend data by metadata description. We will investigate possibilities of
the data/metadata modeling in this Section. Data/metadata have to be
further processable by software tools. It includes searching, interchanging or
managing.

There are several ways how data/metadata can be represented. Data/meta-
data are usually stored in a relational database. On the other hand, tools that
work with data/metadata are usually based on the object oriented program-
ming. Each approach uses a different way to access data. These approaches
are described in the following text in detail.

4.2 Relational Databases

Relational databases are based on relational model represented by a collection
of data items organized as a set of formally-described tables. Data can be
accessed or reassembled in many different ways without having to reorganize
the database tables. The standard user and application program interface to
a relational database is the structured query language (SQL).

Each table contains one or more data categories in columns. Each row con-
tains a unique instance of data for the categories defined by the columns.

18

Chapter 4. Common Systems for Data Modeling

Next six definitions describe constitution of relational model [26].

Definition 1. (Domain)

A domain is non empty set of values with unique name commonly referred
to as a data type.

Definition 2. (Scheme)

A scheme for Relation R of arity n is a list of unique attribute names A
where

R={A1, ... An}.

Definition 3. (Relation)

A relation r on scheme R is a subset of the Cartesian product

R ⊆ A1 × ...× An

We can say that R has arity n.

Definition 4. (Relational Database)

A relational database DB is a finite set of relations R1, R2, ..., Rn. The
schema for R1, R2, ..., Rn comprise the database schema for DB.

Definition 5. (Key)

We will suppose key K, relation r and schema R.

A key for relation r in schema R is subset of R such that, for any two tuples
in r, they are the same if they have same value for K.

Definition 6. (Attribute)

For a relation R of arity k, each element Xi(i ≤ 1 ≤ k) of some tuple t
ε R can be referenced either by the ordinal value (Xi = t[i]), or by some
predefined string si called an attribute (xi = t[i] = t[si]). Because elements
can be referenced by attribute value in this way, a relation is often called a
table.

19

Chapter 4. Common Systems for Data Modeling

4.3 Unified Modeling Language

4.3.1 UML Scope

The primary goal of UML is to advance the state of the industry by en-
abling object visual modeling tool interpretability. UML meets the following
requirements:

� A formal definition of a common metamodel that specifies the abstract
syntax of the UML. The abstract syntax defines the set of UML model-
ing concepts, their attributes and their relationships. It also defines the
rules for combining these concepts to construct complete UML models.

� A detailed explanation of the semantics of each UML modeling con-
cepts. The semantics define, in technology independent manner, how
the UML concepts are realized by computers.

� A specification of the human-readable notion elements for representing
the individual UML modeling concepts.

One reason UML has become a standard modeling language is that is pro-
gramming language independent. UML notation set is a language not a
methodology.

UML provides several types of diagrams that increase understanding an ap-
plication under the development.

4.3.2 UML Diagrams Description

Use case illustrates a unit functionality provided by the system. This di-
agram visualizes the functional requirements of a system. It describes the
relationships with actors to essential processes or the relationships among
different use cases.

Class diagram shows how the different entities (data) relate to each other.
It shows the static structure of the system.

Sequence diagram shows a detailed flow for a specific use case or even just
part of a specific use case. It shows the calls between the different objects in
their sequence.

StateChart diagram models the different states that a class can be in and
how the class transitions from state to state.

20

Chapter 4. Common Systems for Data Modeling

Activity diagram shows the procedural flow of control between two or more
class objects while processing an activity.

Component diagram provides a physical view of the system. It shows the
dependencies that the software has on the other software components.

Deployment diagram shows how a system will be physically deployed in the
hardware environment. It shows where the different components of the sys-
tem will physically run and how they will communicate with each other.

The detailed description of the diagrams is in [43].

Because the aim of this work is to solve storage and interpretation of experi-
mental data/metadata the suitable diagram for describing relations between
data and its metadata is the Class Diagram.

4.3.3 Class Diagram

A class in the class diagram is represented as a rectangle with three hori-
zontal sections. Let suppose an example with two data classes (Experiment
and Person) presented in Figure 4.3.1. The upper section describes a class
name. The class attributes are in the middle section. The bottom section
is intended for class operations (methods) (some methods are omitted in or-
der to keep the diagram readable). Solid lines express associations between
classes. There is a few associations because one person has several relation-
ships related to an experiment (experiment owner, member, tested or testing
person, ...).

21

Chapter 4. Common Systems for Data Modeling

Figure 4.3.1: Example of Objects in Class Diagram

Class Diagram Kernel

Figure 4.3.2: Key Aspects of UML Class Diagram [44]

Figure 4.3.2 shows representation of a metamodel of the UML class diagram.
From this metamodel we can observe the following [44]:

� There is no direct linkage between Association and Class. The linkage
is mediated by Property.

� A Property is a structural feature (not shown), which is typed. The
model is built from structural features.

� Both Class and Association are types.

22

Chapter 4. Common Systems for Data Modeling

� A Class can have properties that characterize instances of the Class.

� A property may or may not be owned by a class. A property may be
either navigable or not navigable1. Associations ends are properties.

We can express properties and their types from Figure 4.3.1 presented in
Table 4.1. Table shows properties for Experiment and Person classes (only
several properties are selected).

Property Type
experimentId int
startTime TimeStamp
endTime TimeStamp
privateExperiment boolean
personId int
givenname string
surename string

Table 4.1: Properties and Their Types in Simple Model

The classes in Table 4.2 are represented by sets of ownedAttribute properties.

Class Owned Properties
Experiment experimentId, startTime, endTime, privateExperiment
Person personId, givenname, surename

Table 4.2: Classes and Owned Properties in Simple Model

Associations from Figure 4.3.1 are: experiments, experimentsForOwnerId,
experimentsForSubjectPersonId, personBySubjectPersonId, personByOwner,
persons.

If classes are implemented as in Table 4.2 the association can be modeled as
the disjoint union of the owned attributes of the two classes (see Table 4.3).

1A navigable property is owned by a class while a non-navigable is not (it is an atomic
type e.g.: integer, string, ...)

23

Chapter 4. Common Systems for Data Modeling

Association Implementation
experimentForOwnerId experimentId, startTime, endTime,

privateExperiment, personId, given-
name, surename

Table 4.3: Implementation of Association in Simple Model

If we know that the property experimentId identifies instances of Experiment
and the property personId identifies instance of Person we can express an
implementation of association as Table 4.4:

Association Implementation
experimentForOwnerId experimentId, personId

Table 4.4: Implementation of Association in Simple Model Using Unique IDs

4.4 Object Oriented Modeling

4.4.1 Overview

UML diagrams (mainly class diagram) describe object oriented concepts that
most appropriately describe the real world. These concepts have their roots
in object oriented programming. Object oriented programming languages
use the concepts in practical sense. This Section describes the process of
applying object oriented concepts to data modeling.

4.4.2 Data Concepts

The main construct in object-oriented modeling (OOM) is an object. Since
entities and their relations exist in relational databases the similar repre-
sentation exist in OOM as well. Entities are represented by objects and its
relations are represented by their association ends represented by class at-
tributes. In the OOM we need to identify objects of the system and identify
the operations for these objects.

24

Chapter 4. Common Systems for Data Modeling

4.4.3 Objects Identity

An object can be a physical or abstract thing that encapsulates the behavior
of the thing that is being modeled. All objects should be unique so every
object has an identity. Similar mechanism as a key in relational database is
used in OOM (see Definition 5). This identity is represented by an object
identifier (OID) that distinguishes it from all other objects. OID is generated
and used internally by the system to identify each object uniquely and to
create and manage inter-object references. Its value is not visible to user.

The OID has the following features:

� It is immutable: The value of OID for a particular object should not
change.

� It is used only once: Even if an object is removed its OID is not assigned
to other objects.

� Its value does not depend on any object attribute value. If some at-
tribute value is changed OID has still the same value.

� Its value should not depend on a physical address value in the memory.
There is a mechanism for generating OID value.

The internal structure of an object includes specification of its fields. These
fields hold the values, that define a state of the object.

We define objects as follows:

Definition 7. (Object Definition) Consider a following triple t(i, c, v);
where

- i is an OID

- c is a constructor (that is an identification of how the object value is con-
structed)

- v is an object value (state)

4.4.4 Object Constructors

Objects are created by constructors. The constructor can be of several types
depending on specific Object Oriented (OO) system. Typical constructors
are: atom, tuple, set, list, array. The atomic value is typically integer, real

25

Chapter 4. Common Systems for Data Modeling

number, character string, boolean, dates. Different systems can also support
other data types.

The object value v is interpreted on the basis of the value of the constructor
c in the triple (i, c, v) that represents the object according to the algorithm
4.1.

Algorithm 4.1 Constructing of Object

Input:
triple (i, c, v) from Definition 7

Output: c← construed object
if c = atom then
v ← an atomic value from D

else
if c = set then
v ← a set of objects identifiers[i1, i2, ..., in]

end if
else

if c = tuple then
v ← a tuple of the form (a1 : i1, ..., an : in)

end if
else

if c = list then
v ← an ordered list of object identifiers [i1, ...in] of the same type

end if
else

if c = array then
v ← an array of object identifiers

end if
end if

4.4.5 Operations Encapsulation

The encapsulation related to the aim to hide the internal structure of the
object. The object is accessible only through a small predefined set of op-
erations. Some operations are used to create object (constructor), destroy
objects (destructor), other operations may update the object, retrieve object
value or apply some calculations to the object.

The external users access the object through the interface. The interface
defines the name and arguments of the operations that the user can execute
on the object. A real implementation of the method is hidden from the
external users.

The interface operation is called the signature and the operation implemen-

26

Chapter 4. Common Systems for Data Modeling

tation is called the method. Next two terms Inheritance and Polymorphism
relate with encapsulation.

Inheritance

Inheritance is a way of reusing any existing code. Inheritance is deriving
objects from existing objects. The derived objects inherit properties and
operations from the parent object. It is true that the derived object is a
specific subtype of the parent object.

Polymorphism

Polymorphism allows the programmer to access attributes and operations
with the same name from different objects using the same interface.

4.4.6 Objects Persistence

In order to store data in the relational database there is a mechanism for
persisting the object into the database systems. This mechanism involves
giving the object a unique persistent name though which it can be retrieved.

The mechanisms for persisting objects into the database system is called Ob-
ject Relational Mapping (ORM). ORM is a mechanism that makes possible
to address, access and manipulate objects without having to consider how
those objects relate to their data source. ORM lets programmers maintain a
consistent view of objects over time, even as the sources that deliver them,
the sinks that receive them and the applications that access them change.

ORM manages the mapping details between a set of objects and underlying
relational databases, while simultaneously hiding the often changing details
of related interfaces from developers and the code they create [54].

27

Chapter 5

Semantic Web Modeling

5.1 Introduction

The World Wide Web (WWW) resp. the Internet1 is the largest knowledge
database which is available for human readers over the world. Its boom
changed the way of people communication.

Currently the Internet consists of a huge amount of information, with prac-
tically no classification. It is extremely difficult to effectively handle this
enormous amount of information.

Today’s Web content is mostly suitable for human readers. It typically in-
volves people’s seeking and making use of information, searching for or get-
ting in touch with other people, reviewing catalogs of on-line stores and
ordering products by filling out forms and so on. Main tools used for find-
ing relevant information are search engines such as Google, Yahoo or Alta
Vista. Although search engines are widely used they have several important
disadvantages:

� They have low precision. Even if the main relevant pages are retrieved,
relevant or irrelevant documents are also retrieved.

� Low or no recall. Users does not often get any relevant result for their
request.

1Between meaning of the Internet and WWW phrases is a difference. The Internet
is a network of all subnetworks over the world against WWW is the way of accessing
information over the Internet. Nevertheless for this work the difference between these two
terms is irrelevant.

28

Chapter 5. Semantic Web Modeling

� Results are highly sensitive to vocabulary. Offered user’s initial key-
words don’t get the results they want because relevant documents use
different terminology from original query.

� Results are single Web pages. If user needs information that is spread
over various documents, they have to initiate several queries to collect
the relevant documents.

One possible solution is to develop increasingly sophisticated techniques
based on artificial intelligence and computational linguistics.

An alternative approach is to represent Web content in a form that is more
easily machine-processable and to use intelligent techniques to take advantage
of these representation. One of these approaches is the Semantic Web [23].

The Semantic Web is not a separate web but it is an extension of the current
one. The phrase Semantic Web was firstly introduced by inventor of WWW,
URIs, HTTP and HTML sir Tim Berners-Lee [24].

The idea is to enrich the web content by semantic metadata that describe
the content in order to be computer-understandable. Metadata should by
expressed by special languages intended to represent data that could be un-
derstood by various kinds of software tools (often called software agents).
Ontologies and set of statements translating information from various data
sources into common terms and rules have to be defined. Data formats, on-
tologies and software agents should operate as one big application on the
World Wide Web.

Although the Semantic Web is difficult for people to understand it consortium
W3C2 is working to improve, extend and standardize the system of tools,
languages, publications etc. to make the Semantic Web easy to use.

Data in the WWW are typically stored in relational databases. Databases are
made available in several forms on the Web where users or applications are
end-users. In such cases, the semantics of data has to be made available along
with the data. For human readers appropriate formats (e.g. HTML) are
available but for application programs the data semantics has to be provided
in a formal and machine processable form.

Data from databases are typically translated from relational model into ob-
ject oriented model using object-relational mapping. The transformation of
data from relational database to an Ontology can be done by two parallel ap-
proaches. The first approach includes the direct transformation of relational

2World Wide Web Consortium is the main international standards organization for the
World Wide Web founded and headed by Tim Berners-Lee.

29

Chapter 5. Semantic Web Modeling

database into Ontology. The second approach transforms object oriented
representation. Both approaches are described in Chapter 7.

5.2 Languages and Technologies

The Semantic Web is based on a layered architecture, often represented using
a diagram first proposed by Tim Berns-Lee. Typical diagram representation
is in Figure 5.2.1. This schema is quite old (proposed in 1999) but it can still
serve as a simple illustration of the Semantic Web architecture.

Figure 5.2.1: Semantic Web Layered Architecture [23]

Description of layers is:

� UNICODE and URI : Unicode is the standard for computer charac-
ter representation, URI is the standard for identifying and locating
resources.

� XML: XML and its related standards, such as Namespaces, and
Schema, form a common means for structuring data on the Web but
without communicating the meaning of the data.

� Resource Description Framework : RDF is a simple metadata repre-
sentation framework, using URIs to identify Web-based resources and
a graph model for describing relationships between resources. Several
syntactic representations are available, including a standard XML for-
mat.

30

Chapter 5. Semantic Web Modeling

� RDF Schema: a simple type modelling language for describing classes
of resources and properties between them in the basic RDF model. It
provides a simple reasoning framework for inferring types of resources.

� Ontologies : a richer language for providing more complex constraints
on the types of resources and their properties.

� Logic and Proof : an automatic reasoning system provided on top of
the ontology structure to make new inferences. Thus, using such a
system, a software agent can make deductions as to whether a particular
resource satisfies its requirements and vice versa.

� Trust : The final layer of the stack addresses issues of trust that the
semantic web can support. This component has not progressed far be-
yond a vision of allowing people to ask questions of the trustworthiness
of the information on the Web, in order to provide an assurance of its
quality.

In next Section technologies from Figure 5.2.1 up to the Ontologies layer are
described. The layers above ontologies as well as downmost layers are beyond
the scope of this work.

5.2.1 Resource Description Framework

Resource Description Framework (RDF) is a standard model for data inter-
change on the Web. RDF extends the linking structure of the Web to use
URIs to name the relationship between things as well as two ends of the link
(this relation is called triples). More formal definition follows.

31

Chapter 5. Semantic Web Modeling

Definition 8. (RDF triples)

Assume an infinitive set of RDF URI references marked U;

an infinitive set of blank nodes marked B where B = {bj, j ε N} ;

and an infinite set of RDF literals marked L

A triple (v1, v2, v3) ε(U ∪B)× U × (U ∪B ∪ L) is called an RDF triple.

Because the linking structure of RDF triples is directed, labeled graph, from
the definition 8 could be inferred Definition 9.

Definition 9. (An RDF document is directed labeled graph)

G = (N, E, lN, lE)

E (Edges) represent named links between two resources,

N (Nodes) represent resources,

lN,lE represent their labels.

Graphical representation of RDF graph looks like in Figure 5.2.2. Ellipses
represent URI-identified resources, rectangles are literals and arcs are URI-
identified predicates.

Figure 5.2.2: Example of RDF Graph[25]

Although RDF is essentially a data-model it needs any syntax. Since XML
provides a uniform framework, that structure could be validated according
to DTD or XSD3, to RDF model has been given a XML syntax. As a result

3DTD or XSD schema languages express a set of rules to which an XML must conform
in order to be valid.

32

Chapter 5. Semantic Web Modeling

RDF/XML language with XML benefits and with possibilities to express
RDF triples was introduced. Other but not so common and not XML based
formats are e.g. N3 or Turtle. The formal grammar for the syntax is anno-
tated with actions generating triples of the RDF graph.

RDF contains several elements and attributes. Basic primitives
are: rdf:Resource, rdf:type, rdf:Description, rdfs:Class, rdfs:SubClassOf,
rdfs:Domain, rdfs:Range, rdfs:Literal, rdfs:Property, rdfs:ConstraintResource
etc. These primitives provide possibilities to describe classes, their data
types, restrictions etc.

Moreover, there are two layers; RDF and RDFS. RDFS describes a structure
of classes compared to RDF which describes instances of these classes. The
example is in Figure 5.2.3. The schema contains classes: lecture, academic
staff member, first-year courses and properties: taught by, involves, phone,
employee id. Properties are blocks, ellipses above the dashed line are classes
and ellipses below the dashed line are instances.

Figure 5.2.3: RDF and RDFS layers [23]

33

Chapter 5. Semantic Web Modeling

Limitations of the Expressive Power of RDF

RDF contains primitives to concern about classes and subclasses, properties
and subproperties, subclasses and subproperties relationships, domain and
range restrictions and instance of classes. However, a number of features are
missing.

There are no properties with local range. The range of property using
rdf:range can be defined for all classes but not only for a set of classes.
Let suppose the property range “eat”. It is not possible to define that cows
eat only plants, while other animals may eat meat too.

Definition of disjointness classes is not possible. For example, we could say
that male and female are disjoint. RDF only enables to define that female is
a subclass of Person while male is a subclass of Person as well.

Further boolean combinations of classes like union, intersection or comple-
ment are not available, therefore it is not possible to define that class Person
is a union of the classes male and female.

RDF does not solve special characteristics of properties. It is not possible to
say that property is transitive, unique or the inverse of another property.

More limitations of RDF are described in [23].

5.2.2 Ontology Web Language

The expressivity of RDF is limited. RDF schema is limited to a subclasses hi-
erarchy and properties hierarchy with domain and range definition. Because
more semantic expressivity than RDF offers is required W3C defined a more
powerful language named Ontology web language (OWL). The OWL has
more facilities for expressing meaning and semantics than RDF. The OWL
also facilitates greater machine interpretability of the web content than RDF.

There are various syntaxes available for OWL; the most often used is
OWL/XML. It is the only one that is mandatory to be supported by all
OWL tools.

Against the RDF the OWL allows users to write explicit formal concep-
tualizations of domain models. The main requirements are a well-defined
syntax, efficient reasoning support, a formal semantics, sufficient expressive
power and convenience of expression.

Well-defined syntax is necessary for the machine-processing of information.
The formal semantics describes the meaning of knowledge precisely. It means

34

Chapter 5. Semantic Web Modeling

that the semantics does not refer to subjective intuitions, nor it is open to
different interpretations by different people or machines.

The formal semantics and reasoning support are usually provided by mapping
an ontology language to a known logical formalism, and by using automated
reasoners that already exist for those formalisms.

Reasoning support is important because it allows one to check the consistency
of the ontology and the knowledge, to check for unintended relationships be-
tween classes and automatically classify instances in classes. OWL is a richer
vocabulary description language for describing properties and classes, such as
relations between classes (e.g., disjointness), cardinality (e.g. “exactly one”),
equality, richer typing of properties, characteristics of properties (e.g., sym-
metry), and enumerated classes. Relationships between classes are described
using following Definitions.

Definition 10. (Class membership)

We will suppose two classes A and B

If we suppose that there is x an instance of A.

Next we will suppose that B is a subclass of A (B ⊂ A)

⇒x is an instance of B.

The next Definition deals with transitivity of classes.

Definition 11. (Equivalence of classes)

We will suppose three classes A, B and C.

If A is equivalent to B and

B is equivalent to C then

⇒A is equivalent to C

The next Definition deals with consistency of the ontology

Definition 12. (Ontology Consistency)

We will suppose x which is instance of class A and

A is subclass B and C (A ⊂ B ∩ C) and A is subclass of D (A ⊂ D),

B and D are disjoint

⇒Ontology inconsistency because A should B empty, but has the instance x

⇒We have indicated an ontology error

35

Chapter 5. Semantic Web Modeling

The next Definition deals with the classification of an individual to the class

Definition 13. (Classification)

We will suppose that certain property-value pairs are a sufficient condition
for membership in a class A then

if an individual x meets all such conditions

⇒x must be an instance of A

Three Sublanguages of OWL

Because the full set of requirements for an ontology language is extensive,
W3C defines OWL as three different sublanguages, each geared toward ful-
filling different aspects of this full set of requirements.

1. OWL FULL - OWL full uses all the OWL language primitives. It also
allows the combination of these primitives with RDF scheme. OWL
full is fully compatible with RDF

2. OWL DL - OWL DL is a sublanguage of OWL Full. OWL DL for
example restricts how the constructors from OWL and RDF may be
used.

3. OWL Lite - OWL Lite contains more restrictions than OWL DL. For
example, OWL Lite excludes enumerated classes, disjointness state-
ments, and arbitrary cardinality. The advantage of this ontology is
that is easy to use and implement.

Relation among OWL languages is in Figure 5.2.4. The full description of
available constructs is in [55]. When we construct an ontology for EEG/ERP
domain (Chapter 11) and investigate an automatic mapping from the object
oriented model (Chapter 9) we express ontology at least in OWL DL semantic
expressivity.

Figure 5.2.4: OWL Variants

36

Chapter 6

Neuroscience Databases

6.1 Introduction

Because of many problems that exists with organizing the research within
the neuroscience, in January 2004 the ministers of research of the OECD
countries endorsed the recommendation from the Neuroinformatics Working
Group of the OECD Global Science Forum to start a global neuroinformatics
initiative to coordinate international research and resources in the field. As
the result, the International Neuroinformatics Coordinating Facility (INCF)
was established in August 2005.

INCF develops and maintains database and computational infrastructure
for neuroscientists. Software tools and standards for the international neu-
roinformatics community are being developed through the INCF Programs,
which address infrastructures issues of high importance to the neuroscience
community.

The INCF collects and makes available neuroinformatics tools in the INCF
Software Center, where anyone can upload documentation, executables and
related files; track use of their software; create a wiki; and establish develop-
ment teams.

INCF also deals with the sustainability of neuroscience databases. The INCF
formulated several recommendation important for this work. This Section
summarizes the most important of them.

37

Chapter 6. Neuroscience Databases

6.2 Sustainability

Neuroscience databases are young and dynamic field with many developments
still have to be done. Databasing already gives a new flavor to the term neu-
roinformatics emphasizing high-throughput technologies for data generation,
systematic large-scale data collection and presentation, and the development
of computational tools that allow researchers to extract features and relation
ships among ever-grooving amounts of data.

Neuroscience databases are provided by a diverse collection of neuroscientists.
These databases provide a set of analytical tools or computational models
and some of them provide possibilities for storing raw data and metadata of
experiments. These resources could be useful in new research, development
of methods and scientific education. The development of these databases
requires several years of work focused on researchers needs with active re-
searchers cooperation.

Nowadays there is a question how these databases sustain their activities in
the long therm. INCF organized the 1st INCF Workshop on Neuroscience
Database Sustainability. The goal of this workshop was to discuss issues re-
lated to the sustainability of neuroscience databases, identify problems and
discuss solutions or approaches to these problems, and formulate recommen-
dations [15, 16].

6.2.1 INCF Recommendations

INCF formulated several recommendations that should be followed when
neuroscience databases are created in order to ensure long term sustainability.
Extraction of recommendations useful for this work follows [15]:

� Clearly define the community (audience for the resources), identify
roles and needs of each, provide mechanisms for incorporating feed-
back (wiki, bulletin, boards, etc.).

� Develop focused but flexible standards, follow best practices, make
standards open to community.

� In developing of infrastructure for data sharing and sustainability it is
critical to understand how neuroscience community is organized and
how it works with data.

38

Chapter 6. Neuroscience Databases

� Data can be safely expressed in relational schema. A comprehen-
sive data model, integrating datasets, documents and annotations are
needed. Large neuroscience datasets should be isolated.

� To use open source solutions in the maximal range, including XML,
Web-Services or semantic web technologies, adherence to standards
(ISO) is important.

� Datasets could be replicated at the central site, have to be formulated
on ethical and patent/copyright issues, and users identificational re-
quirements for integrated datasets.

� Technical issues include grid and web service security, access control,
single sign on, etc. should not be missed out.

� INCF could identify the data resources with highest information value,
and the interconnections between these resources. Then, INCF can
specify which resources shall be preserved and at which schedule, which
resources are not sustained, and which resources have a low information
value and do not need to be sustained.

� Databases should be based on defined ontologies and schemata that
are portable (in visible formats). They should allow import/export of
database data in exchange formats. Query engines must be integral
to databases and be defined explicitly. Languages and source code
specifications must be provided for database applications.

� Data should have a markup language with metadata info for formats,
experimental information, granularity, description of terminology, and
minimal standards. It should be portable, scalable and extensible, and
needs an ontological framework on which the data is based.

� The Web should be taken as a standard for interfaces (user interface).
Each interface must have a defined API, with specifications for graph-
ical interfaces, portability, query, and use cases.

Generally INCF should establish and moderate web-based infrastructure,
identifying specific types of data/databases and investigate existing neuro-
science data. The complete text of recommendations is available in [15]. Our
effort in this work is respecting the maximum of these recommendations.

39

Chapter 6. Neuroscience Databases

6.3 Available Databases

This section introduces databases developed for storing and sharing neu-
roscientific data.The main advantage of introduced databases is that they
provide possibility to register a custom data source. Such registered resource
can serve as a recognizable data source.

6.3.1 CARMEN Portal

CARMEN is a project funded by the Engineering and Physical Sciences Re-
search Council (UK) [17]. The system CARMEN has been designed to allow
neuroscientists to share data and programs from neurophysiological exper-
iments amongst collaborators, in a secure and formally annotated manner.
Core of the CARMEN is a data storage resource which is available to end-user
through web interface.

The portal provides to user a set of the following objectives:

� To search achieved data

� To upload, annotate and store own experimental data

� To run processes and routines on the stored data on the CARMEN
computers.

Searching the data stored in the portal is possible by using the search box
in the system. This search box provides the text field where user puts entry
key words; a relevant set of results is obtained. The owner can sign data as
private or as public. Not logged user can see only public data.

The system provides a possibility to show the metadata associated with
archived data and download data for a local processing.

Registered users can upload experimental data to the CARMEN system. The
uploading process consists of several steps. One step requires completion of
data by metadata description.

The Portal also enforces a privacy of archived data. Through a simple user
interface the end user can specify who can access the uploaded data/meta-
data.

In addition, it is possible to store and run analysis tools that were used in data
processing. It allows collaborators to share tools, methods and algorithms,

40

Chapter 6. Neuroscience Databases

and provides means to run the analysis tools on the CARMEN computer
resources. Uploaded tools are implemented as web-services hence they could
be called locally from user’s computer without their downloading. The access
control list defines who can call particular services. Services could not be
uploaded directly by the user but the user has to contact the CARMEN
system support staff.

6.3.2 Neuroscience Information Framework

Neuroscience Information Framework (NIF) is a dynamic inventory of Web-
based neuroscience resources. It includes data, materials, and tools accessible
via any computer connected to the Internet.

An effort of NIF is to advance neuroscience research by providing possibilities
to access public research data and tools through the Internet with require-
ments to use open source.

NIF is created by several participant universities including University of Cal-
ifornia, San Diego, California Institute of Technology, George Mason Univer-
sity, Yale University Medical College, and Washington University.

A comprehensive vocabulary for annotating and searching neuroscience re-
sources is developed. The vocabularies are available for download as OWL
files and also through the NCBO BioPortal [21]. The community news and
Neuro Wiki that informs about news are published. The tools available in
the current version of NIF are described in [19].

The possibility to register a custom data source is probably the most useful
feature. Registered resources are actively seeking to be available through
NIF. The goal of NIF is to enable users to register his/her data source within
the portal. NIF indexes registered data sources. When an interested user
wants to search some data he/she accesses NIF, put key words into and NIF
searches data within the registered databases. Therefore the interested user
can search over a lot of databases by using a uniform interface. NIF does
not maintain any resource locally.

The registration within NIF is based on the three following levels:

1. Level 1 - Registration requires providing URL of user’s data source and
basic information about the type of data source. This level places data
source into the NIF registry where is available through NIF web portal
but it does not provide a direct access to the dynamic content.

2. Level 2 - It uses a XML-based script to provide a wrapper to a web

41

Chapter 6. Neuroscience Databases

site that allows searching for key details about a requested data source
including dynamic content. Content wrapping is ensured by a special
tool named DISCO1.

3. Level 3 - This level knits independently maintained databases into a vir-
tual data federation by registering of schema information and databases
views within NIF. This concept maps tables fields and values into the
NIFSTD ontology2. Data within a source database can be combined
with other databases by defining an integrated view across databases.
It means that individual databases may be small but user access this
data source as one virtual large database.

6.3.3 INCF Japan Node - Portal of Neuroinformatics

The Japan Node of the INCF (JNode) coordinates neuroinformatics activ-
ities in Japan and represents Japanese efforts in INCF. The Japan Node
mainly domestics neuroinformatics research and directions, advises on In-
tellectual Property Rights and protects experimental subjects, develops and
publishes brain science databases, coordinates database management, dis-
seminates neuroinformatics information via the web portal, develops the in-
frastructure for brain science information and neuroinformatics and supports
the development and diffusion of neuroinformatics technology.

Activities of the Japan node with relation to INCF are shown in Figure 6.3.1
[18].

Except the mentioned activities JNode has developed the portal of neuroin-
formatics. Within this portal it is possible to find links to the web sites of
organizations that participate in the neuro research.

1It is the tool used as a gateway to the neuroscience database, it provides machine
understandable information to integrator servers (developed by Dr. Luis Marenco at Yale
University)[20].

2NIF Standard Ontology is composed of a collection of OWL modules covering distinct
domains of biomedical reality.

42

Chapter 6. Neuroscience Databases

Figure 6.3.1: JNode Activities

6.4 Conclusion

Several well known databases in neuroscience were introduced in this Section.
CARMEN is the well-designed portal where the user can make custom user
account and share data from experiments. When the user uses some addi-
tional tools for data processing he/she can provide them as a web service.
Data and services can be public or private according to the owner decision.
The portal provides a suitable solution for users who do not have a propri-
etary solution for data sharing and they want to share a custom experiments.
The portal is also suitable for users who are interested in neuroresearch but
they do not have their own laboratory but they are interested e.g. in data
processing. The disadvantage of CARMEN portal is that it does not provide
the possibility to register users data source.

Japan portal provides a set of useful information and news from neuroscience.
It contains several links to the existing data sources and a set of available soft-
ware tools therefore could serve as a good guidepost. Although the possibility
to add a custom data source exists, it is not possible to do it automatically
(e.g. by registering a custom ontology).

43

Chapter 6. Neuroscience Databases

The most promising project seems to be NIF where the user can find a lot of
useful information, tools and data from neuroscience. The main idea of NIF
is not to serve as a global database but it enables users to register a custom
database. These partial databases are maintained by their owners but data
are available using the unified interface (through the NIF registry). Com-
mon users have possibility to only register URL and provide description of a
custom data source; while advanced users can register their OWL structure.
Data in databases registered within NIF are searched by a full text search
engine. Despite all advantages this solution is not addressed to users who
do not have a custom data source. Such users can use NIF for obtaining
available experiments, but not for sharing their experiments.

44

Part III

Comparison and Mapping of
Data Models

45

Chapter 7

Comparison of Concepts

7.1 OWL and UML

7.1.1 Introduction

This section compares the features of OWL with the features of UML. First
it looks at the features the two have in common, then the features in one but
not the other.

A description of the translation from a model expressed in UML to an OWL
expression is given in the features in common. Because there are features that
exist only in OWL but not in UML the transformation has several difficulties.

The description of these difficulties is based on Ontology Definition Meta-
model [44].

Since this work is focused on a one side transformation from Object Oriented
Code to the Semantic Web structures the backward transformation from
OWL to UML is not presented.

7.1.2 Similar Concepts

Classes and Properties Mapping

Both OWL and UML are based on classes. The class in OWL is a set of
zero or more instances while the class is a more general construct in UML.
The set of instances associated at a particular time with a class is called the
class’ extent.

46

Chapter 7. Comparison of Concepts

In UML the extent of a class is a zero or more instances. The instance is
associated with one or more classifiers while in OWL the extent of a class is a
set of individuals identified by URIs. The individual is defined independently
of classes. A universal class Thing exists in OWL. All individuals have extent
of class Thing and all OWL classes are subclasses of Thing. In OWL an
individual may be an instance of Thing and not necessary of any other class,
so it could be used as a stand alone entity outside the system.

If we suppose the same example as in Figure 4.3.1 the OWL class for Person
class can be expressed as follows:

Listing 7.1: OWL Class Example

<owl : Class rd f : ID=”Person”/>

Let suppose existence of an instance of the Person class (see Table 7.1).
PersonId value is an OID (Subsection 4.4.3).

Classifier personId givenname surname dateOfBirth
Person 101 Jan Novak 1980/08/09

Table 7.1: Example Person Instance

An individual is essentially a construct with a unique name (an instance). So
the instance from Table 7.1 could be expressed as the individual as follows1:

Listing 7.2: OWL Individual Example

<owl : Thing rd f : ID=”Person 101 ”/>

Relationships among OWL classes are called properties. Properties are
not necessarily tied to a specific class. By default, a property is a bi-
nary relation between Thing and Thing. The relationship among classes
could be represented by two OWL constructs owl:ObjectProperty and
owl:DatatypeProperty.

The UML ownedAttribute from Figure 4.3.2 instance is translated
to owl:ObjectProperty if the type of Property is UML Class and
owl:DatatypeProperty otherwise.

Table 7.2 shows translation of classes from Table 4.2 from OOM to OWL.

1Because ID has to be unique for each individual we generate an ID using class name
and its id (separated by underscore). However, a different strategy for generation the
individual ID in different applications can be used.

47

Chapter 7. Comparison of Concepts

Class Owned
Property

Property
Type

OWL representation

Experiment

experimentId int <owl:DatatypeProperty rdf:ID=”ExperimentId”>
<rdfs:domain rdf:resource=”Experiment”/>
<rdfs:range rdf:resource=

”http://www.w3.org/2001/
XMLSchema#integer”/>

</owl:DatatypeProperty>
startTime TimeStamp <owl:ObjectProperty rdf:ID=”StartTime”>

<rdfs:domain rdf:resource=”Experiment”/>
<rdfs:range rdf:resource=”TimeStamp”/>

</owl:ObjectProperty>
endTime TimeStamp <owl:ObjectProperty rdf:ID=”EndTime”>

<rdfs:domain rdf:resource=”Experiment”/>
<rdfs:range rdf:resource=”TimeStamp”/>

</owl:ObjectProperty>
private boolean <owl:DatatypeProperty rdf:ID=
Experiment ”privateExperiment”>

<rdfs:domain rdf:resource=”Experiment”/>
<rdfs:range rdf:resource=

”http://www.w3.org/2001/
XMLSchema#boolean”/>

</owl:DatatypeProperty>

Person
personId int <owl:DatatypeProperty rdf:ID=”PersonId”>

<rdfs:domain rdf:resource=”Person”/>
<rdfs:range rdf:resource=

”http://www.w3.org/2001/
XMLSchema#integer”/>

</owl:DatatypeProperty>
givenname string <owl:DatatypeProperty rdf:ID=”GivenName”>

<rdfs:domain rdf:resource=”Person”/>
<rdfs:range rdf:resource=

”http://www.w3.org/2001/
XMLSchema#string”/>

</owl:DatatypeProperty>
surname string <owl:DatatypeProperty rdf:ID=”Surname”>

<rdfs:domain rdf:resource=”Person”/>
<rdfs:range rdf:resource=

”http://www.w3.org/2001/
XMLSchema#string”/>

</owl:DatatypeProperty>

Table 7.2: Translation of Simple OOM Associations to OWL

An OWL property is also represented by UML association that is translated
directly to an owl:ObjectProperty. The translation of Table 4.3 is in Table
7.3.

48

Chapter 7. Comparison of Concepts

Association Owned end Member
end

OWL representation

experiment Experiment Person <owl:DatatypeProperty rdf:ID=
ForOwnerId ”experimentForOwnerId”>

<rdfs:domain rdf:resource=”Experiment”/>
<rdfs:range rdf:resource=”Person”/>

</owl:DatatypeProperty>

Table 7.3: Translation of OOM Associations to OWL

While the UML association is always between types the OWL association
has domain and range specified.

Both UML and OWL have subclasses (in OWL owl:SubclassOf) and sup-
port subproperties.

Advanced Concepts

There is a number of concepts appearing in both UML and OWL. Mapping of
this similar concepts is straightforward, so it is not described more in depth.

Both support a separation into modules, called package in UML and ontology
in OWL. Both can use a system of namespaces.

Both support fixed enumeration of elements OWL owl:OneOf and UML enu-
meration.

UML has two ends for associations that can be navigable or non-navigable
(described in Subsection 4.3.3). OWL properties have also two ends called
domain and range. When an UML association has one navigable and one
non-navigable ends this association is translated into a OWL property which
domain is the navigable end. The UML association with two navigable ends
is translated into a pair of OWL properties where one is inverseOf the other.

UML properties have scope only in the class and its subclasses where they
are defined while all OWL properties are properties of one superclass Thing
therefore they have a global scope. So when UML properties have the same
names in different classes they have a different semantics in each class. Names
of OWL properties have to be unique because they have the same semantics
everywhere they appear.

Both languages allow the class to be a subclass of more than one class, but
it appears impractical in a common usage. Therefore current OO languages
usually do not support the multiple inheritance.

49

Chapter 7. Comparison of Concepts

OWL properties can be constrained by cardinality restrictions
(owl:minCardinality and owl:maxCardinality). UML also supports
cardinality restrictions but in OO languages possibilities for expressing
cardinality are restricted. We usually express such cardinalities: only one,
one or more, but usually not a specific restricted range.

In UML the association with its multiplicity is generally declared only once,
whereas the OWL property can have different cardinalities for different
classes.

OWL allows properties to be declared symmetric (owl:SymmetricProperty)
or transitive (owl:TransitiveProperty). UML uses OCL [45].

The OWL property permits declaration of a value to be the same for all
instances of a class owl:AllValuesFrom.

UML properties can be derived from other model constructs (generalization).
Operations can be also derived in UML. The UML derivation rules cannot
in general be represented in OWL. Derivation rules in UML are expressed in
OCL. There is no translation of OCL into OWL.

The classifiers in UML are private, protected, default or public. OWL con-
structs are always public.

Two different objects modeled in UML may have dependencies that are not
represented by UML named elements. OWL does not have a comparable
feature, but RDF permits an RDF:property relation between very general
elements classified by RDFS:Class. Therefore, a dependency relationship
between a supplier and client UML model element is translated to a reserved
name RDF:Property relation which domain and range are both RDF:Class.

7.1.3 Different Concepts

OWL Predicates

OWL class may be defined as the set of individuals which satisfy a restriction
expression. These expressions can be a boolean combination of other classes
(intersectionOf, UnionOf, complementOf), or property value restriction on
properties.

The following class definition defines the class Experiment as a subclass of
the property experimentOwner.

50

Chapter 7. Comparison of Concepts

Listing 7.3: OWL Subclass Example

<owl : Class rd f : ID=”Experiment”>
<owl : Equiva lentClass>

<owl : Re s t r i c t i on>
<owl : onProperty rd f : Resource=”#experimentOwner” />
<owl : AllValuesFrom rd f : r e s ou r c e=”#Person” />

</owl : Re s t r i c t i on>
</owl : Equiva lentClass>

<owl : Class>

It defines individuals for which the range of experimentOwner is in the class
Person. So if we know the individual to be an instance of Experiment we
infer that it has the property experimentOwner and all its values associated
with this property are instances of Person. Conversely if we have an individ-
ual which has the property experimentOwner and all of its values associated
with that individual are Person, we can infer that the individual is an in-
stance of Experiment. In contrast to OOM we cannot infer a class data type
according to its attributes.

On the basis of mentioned above we can define the following:

Definition 14. (OWL Restriction as a Predicate Logic)

When it is possible to infer from the properties of an individual that the indi-
vidual is a member of a class then we can revolve the classes and properties
restriction as a sort of predicate logic.

OWL Names

In the common OOM the names within one namespace always refer to the
same object, and different names always refer to a different object (unique
name assumption). Names in OWL do not by default fulfill unique name
assumption. Although the same name always refers to the same object, the
object may be referred by several different names.

So, in the unique name assumption, if we have a set of names we can infer
that these objects refer to the same number of objects whereas in OWL a set
of objects does not warrant the inference that the set of OWL names refers
to the same number of objects.

There are several constructs to discipline names. The unique name assump-
tion can be declared using owl:AllDifferent. If two or more names indi-
cate the same object they can be declared using owl:SameAs. When one
name refers to something different referred by any other names there is
owl:DifferentFrom.

51

Chapter 7. Comparison of Concepts

Behavioral Concepts

UML allows to define a behavioral features using classes operations. This fea-
tures can e.g. calculate property values. UML classes with their operations
are essentially programs. Facilities of UML supporting programs include op-
erations, responsibilities, static operations, interface classes, abstract classes.
In contrast OWL is intended to only represent data and additional data
semantics that enables to infer an additional data meaning.

7.1.4 Summary

Difficulties with mapping UML constructs to OWL constructs have been
described in this Section. The features which are in similar are compared in
Table 7.4. This table shows the individual UML constructs and their OWL
equivalents. In addition, the table expresses the representation of described
constructs in Java that is used in this work. The selection of this language is
described in 6.2.1. UML features are grouped in clusters that are translated
to a single OWL feature or a group of related OWL features.

Almost satisfactory mapping from UML constructs to OWL constructs and
vice versa exists. Java mapping also exists for the most of described features.
Nevertheless some constructs without straightforward mapping stay. These
constructs were described in Section 7.1.3. The tables bellow clearly summa-
rize the features of UML, OWL and Java where a satisfactory mapping does
not exist. Table 7.5 summarizes the features that exist in UML but there
is no straightforward way to map them into OWL. Table 7.6 shows OWL
constructs with no UML mapping. Table 7.7 describes OWL constructs that
are particulary possible to map in UML but a Java equivalent does not exist.

52

Chapter 7. Comparison of Concepts

UML OWL Java Comment
Class, atomic type,
property ownedAt-
tribute

owl:Class class

instance individual class instance OWL
owl:individual
class independent

owned attribute,
association

owl:property class attribute OWL has only
global attributes

subclass, general-
ization

owl:subclass,
owl:subproperty

extends Java doesn’t sup-
port multiple inher-
itance

enumeration owl:oneOf enum
disjoint owl:disjointWith,

owl:unionOf
In Java one object is
always an instance of
exactly one class, but
we should pay atten-
tion to class inheri-
tance

multiplicity owl:MinCardinality,
owl:MaxCardinality

There is no Java repre-
sentation

package ontology package
dependency RDF:property methods parameters or

return value

Table 7.4: OWL and UML Features Comparison

navigable, non-navigable
derived
abstract classifier
classes as instances

Table 7.5: UML Features with no OWL Mapping

Things, global properties, autonomous individual
owl:allValuesFrom, owl:someValuesFrom
owl:SymetricProperty, owl:TransitiveProperty
classes as instances
rdfs:Comment, rdfs:SeeAlso, rdfs:Label, rdfs:isDefinedBy
owl:versionInfo
owl:disjointWith, owl:complementOF
owl:hasValue
owl:Cardinality
owl:inverseOf

Table 7.6: OWL Features with no UML Mapping

53

Chapter 7. Comparison of Concepts

owl:EquivalentClass
owl:EquivalentProperty
owl:SameAs
owl:DifferentFrom, owl:AllDifferentFrom
owl:intersectionOf, owl:unionOf, owl:complementOf
rdfs:Comment, rdfs:SeeAlso, rdfs:Label, rdfs:isDefinedBy
owl:versionInfo
owl:SymetricProperty, owl:TransitiveProperty
owl:inverseOf
owl:AllValuesFrom, owl:SomeValuesFrom
owl:MinCardinality, owl:MaxCardinality
rdfs:someValuesFrom

Table 7.7: OWL Features with no Java Mapping

We can summarize that Semantic Web technologies associate three types
of features used in the object oriented world. They describe reality in the
conceptual level independent to technological restrictions so they are similar
to UML representations in OOP. They also constitute database schema for
the base of facts (RDF). Eventually they are processed by software tools in
the implemented application so they are part of the implementation.

At the first sight there are several similarities between OOP (expressed by
UML) and OWL. They both have classes, instances or inheritance. Both also
enable defining cardinality restrictions etc.

However, in detailed view there are many differences. The substantial dif-
ference is a meaning of properties and individuals. In the UML instances
and properties are removed from classes, in the OWL properties are double
types; object and datatype properties. The first one links an individual to
an individual and the second one links individuals to data values. The UML
also does not provide support for describing anonymous classes. Ontologies
are static so they do not provide possibilities to reflect changes in the time
while in the UML it is possible to use the state model.

The differences are particulary caused by a different focus on the Semantic
Web compared to UML and OOP. Mainly the Semantic Web is based on
predicate logic and an open world assumption while object oriented systems
are based on close word assumption. Several UML constructs without an
equivalent in common programming languages exist. For instance a cardi-
nality restriction does not exist in the Java Language.

The aim of the following sections is to describe a possible mapping of common
programming structures into the semantic web technologies with an emphasis
to cover the most of the semantic gaps.

54

Chapter 7. Comparison of Concepts

However, when we want to investigate an automatic mapping mechanism we
have to fill these semantic gaps by a suitable extension of common program-
ming language. Since we use the Java language as the main programming
language within our research the following task is to develop a mapping that
translates this Java extension to appropriate OWL constructs.

7.2 Relational Schema and RDF

There are several approaches that try to solve a mapping of common data
structures to the Semantic Web structures. Some of these approaches exist
only as initial proposals or prototypes described in scientific papers, while
some of them have been really implemented as available frameworks.

RDF triple can describe a simple fact such a relationship between two things
where the predicate names the relationship, and the subject and object de-
note the two things. A familiar representation of such a fact might be as
a row in a table in a relational database. This table has two columns, cor-
responding to the subject and the object of the RDF triple. The name of
the table corresponds to the predicate of the RDF triple. In this table each
row represents a unique instance of the subject. Such a row has to be de-
composed for representation as RDF triples. Such designed table must be
further normalized in order to be at least in the third normal form [56, 26].

Furthermore in RDB model, every table has a primary key. This key is
typically an additional column with unique row id. The form of mapping
from a row of a table to RDF triples is defined as follows:

� The primary key value corresponds to the common subject of collection
of triples and the subject has an rdf:type property whose value is the
table name.

� The column name of each table corresponds to the predicate of the
RDF triple.

� The value in the cell corresponds to the object.

� A more complex fact is expressed in RDF using a conjunction of simple
binary relationship.

The algorithm obtains an equivalent RDF model from the relational model,
(1) creates an RDF class for each entity-table, (2) converts all primary keys

55

Chapter 7. Comparison of Concepts

into IRI2 class, (3) assigns a predicate IRI to each non-primary key attribute,
(4) assigns an rdf:type predicate for each row, linking it to an RDFS class
IRI corresponding to the table, (5) for each column that is neither part of
primary or foreign key, constructs a triple containing the primary key IRI as
the subject, the column IRI as the predicate and the column’s value as the
object.

The framework OntoGrate [29] combines ontology-based schema representa-
tion, first order logic inference, and some SQL wrappers. There are defined
several mapping rules from the first order logic to relational scheme needed
for developing SQL wrappers.

By using the set of developed features described in [29, 30, 31] it is possible
to express simple ontologies by using first-predicate logic and according to
mentioned rules to transform it to the relational schema. In addition, there
is described merging of ontologies consisting of common elements from a
source and target ontology. Given merged ontology between two sources it
is again expressed in the first order logic language. There is also defined a
data integration model where integration of ontologies is done in two steps.

� Query Translation: The process of extracting data expressed by one
schema to answer a query posed using another schema, also known as
query answering.

� Data Translation: Translating data from a source schema to a target
(or integrated) schema for the purpose of information exchange.

A promising approach for mapping from RDB to RDF migration is D2RQ
[36]. This framework uses a declarative language to describe mappings be-
tween relational database schema and RDF. D2RQ Platform provides possi-
bilities to query a non-RDF database using the SparQL [34] query language,
to access information in a non-RDF database using the Jena API or the
Sesame API [37], to access the content of the database as Linked Data over
the Web or to ask SparQL queries over the SparQL Protocol against the
database. Further D2RQ consists of D2RQ engine, a plug-in for the Jena
and Sesame, which uses the mappings to rewrite Jena and Sesame API calls
to SQL queries against the database and passes query results up to the higher
layers of the frameworks. The last part of D2RQ platform is D2R Server,
HTTP server that can be used to provide a Linked Data view, a HTML view
for debugging and a SparQL Protocol endpoint over the database.

2IRI - Internationalized Resource Identifier is generalization of URI but may contain
Unicode characters against URI that can contain only ASCII characters.

56

Chapter 7. Comparison of Concepts

METAMorphoses [38] is data transformation processor from RDB into RDF
uses the mapping described in the template XML document. The processor
employs an algorithm based on author´s data transformation model, which is
maintained to have a higher performance than similar solutions in the field.
The tool is designed to hide the complexity of the Semantic Web technologies
into the schema mapping layer, while exposing the simple template layer to
the programmer.

SquirelRDF [35] is a tool which allows relational databases to be queried
using SparQL. It is just an implementation of RDB to RDF mapping, thus
ontology is not considered.

7.3 Existing Tools

The most of tested tools are based on Jena [33]. It is Java Framework for
building the Semantic Web applications. It provides a program environment
for RDF, RDFS, OWL, SparQL and includes a rule-based inference engine.
Jena is open source and has grown out of work with the HP Labs Semantic
Web Programme. The Jena Framework includes: A RDF API Reading and
writing RDF in several formats (RDF/XML, N3 and N-Triples), The OWL
API, In-memory and persistent storage or SparQL query engine. Jena is a
parser which is able to read/write mentioned formats and store them into
the internal model (described in Section 9.4). This model could be read by
encapsulated frameworks.

7.3.1 Tools with Common Semantic Expressivity

Mapping of OWL classes to Java Interfaces is described in [28]. Every OWL
class is mapped into a Java Interface containing just the accessor/mutator
method declarations (set/get methods) for properties of that class. Using
an interface instead of a Java class to model an OWL class is the key to
expressing the multiple inheritance of properties OWL, because Java class
is simple inheritance language. The corresponding Java class that embeds
each interface (corresponding to the OWL class) wherein there are explicitly
defined the fields (properties of the class) and the acceding methods. These
interfaces allow to mapp a various set of OWL operators like subClassOf,
intersectionOf and oneOf.

Properties in OWL assume multiple-cardinality so Collection type is used
for expressing Java fields. But in Java each variable can be of one type.

57

Chapter 7. Comparison of Concepts

It contrasts with the permitted multi-range properties in OWL. For avoid-
ing this Java insufficiency the special set of listeners with range checkers is
implemented.

Back transformation is described in [32] where an OWL processor SWCLOS3
is developed. It is on top of Common Lisp Object System (CLOS). CLOS
allows lisp programmers to develop Object-Oriented systems, and SWCLOS
allows lisp programmers to construct domain and task ontologies in software
application fields.

A resource node in the RDF graph is represented by a CLOS object in
SWCLOS. A labeled arc from a node to another is represented by a slot
that belongs to an arrow-tail node and has an arrow-head node as the
slot value, but rdf:type relation is replaced with the instance-class relation
and rdfs:subClassOf relation is replaced with the class-superclass relation in
CLOS.

The situation with OWL mapping is better because OWL representation
is much more likely for objects. Especially, the property restrictions that
provide the local constraints on property values for a specific domain may
be straightforwardly implemented by CLOS slot definitions that belong to a
class.

Sommer [39] is a very simple library for mapping Java Objects to RDF graphs
and back. It uses XML/RDF template in the input. This template is ex-
tended by information from input objects.

Java2OWL-S is a tool which is able to generate OWL directly [40]. It uses
two transformations. The first transformation is from JavaBeans into WSDL
(Web Service Description Language). The input of this transformation is
formed by Java class and the output is temporary WSDL file. The sec-
ond transformation transforms temporary WSDL file into OWL (four OWL
documents are created).

JenaBean [41] is a similar tool, it is a flexible RDF/OWL API to persist
JavaBeans. It takes an unconventional approach to binding that is driven
by the Java object model rather than the OWL or RDF schema. By default
JenaBean uses typical JavaBean (see Section: 9.1) conventions to derive RDF
property URI’s. JenaBean against Sommer does not need any input template
but generates RDF/XML representation according to JavaBean structure.

There exist several syntaxes for representation of ontologies. The OWL API
[42] is a Java API and reference implementation for creating, manipulat-
ing and serializing OWL Ontologies. It includes a number of components
including RDF/XML, OWL/XML; Turtle parsers and writers.

58

Chapter 7. Comparison of Concepts

7.3.2 Tools with Additional Semantic Expressivity

Concerning one side transformations the tools described in 7.3.1 work quite
satisfactorily because object-oriented code has poorer semantics than OWL.
However, if we want to use more capabilities of OWL, we have to enrich
object-oriented code by missing semantics.

There are several frameworks and tools that try to enrich object-oriented
code by additional semantics that appears in the OWL output structure.

The ActiceRDF [46] is a library for accessing RDF data from Ruby pro-
grams. It provides a domain specific language for RDF models; it can ad-
dress RDF resources, classes and properties programmatically without using
e.g. SparQL queries.

This tool solves only a part of OWL and OOP mismatches due to the usage of
Ruby that is a dynamic interpreted language. Namely developed framework
does not need strictly typed classes and properties. Types are evaluated in
runtime and can be changed dynamically. An availability to add additional
semantics into source codes is missing.

The Semantic object framework (SOF)[47] utilizes embedded comments in
source codes to describe semantic relationships between classes and at-
tributes. Heterogeneous data sources could be processed using implemented
parsers.

This approach seems to be promising but programmer has to insert RD-
F/OWL keywords into source code comments directly. It can be an obstacle
for object-oriented developers. Moreover, source comments should be used
for description of the class meaning, not for insertion of different language
syntax. In addition, common systems are usually distributed in compiled
forms while comments are presented within the source codes. Such seman-
tics can not be processed at runtime.

The eClass [48] is a solution that changes Java syntax to embed semantic
descriptions into the source code. The eClass contains data attributes, meth-
ods, inference rules and presentations. It can be implemented as an extension
of an existing object-oriented programming language.

However, when a common programming syntax is changed, it affects compil-
ers and virtual machines. It is an obstacle to use it in common systems and
computers with common software installation.

59

Chapter 8

Mapping Improvement

8.1 Motivation

Possibilities for mapping Object Oriented Languages (especially Java) into
the Semantic Web technologies were described in Section 7.3. Similarities
and differences between interpretations and the practical mapping of OWL
to OOP in the existing software solutions were described.

Although tools for development of ontologies did a progress in the last years
(from text editors till graphical user interfaces), current tools still do not
provide such user comfort as existing tools for object oriented modeling.
One reason is that ontology discipline was later formalized but the larger
problem is the complicated essence of ontological models.

Since the description of a specific domain by a suitable ontology is desirable
construction of domain ontologies is still not well managed. Construction
of an ontology can be divided in to two main parts. Firstly, we have to
determine specific metadata for the described domain. Secondly, we have to
solve construction of an ontology and its future maintenance in the case of
future changes with the elimination of manual work. Further, we have to
ensure the consistency of the ontology.

The Semantic Web languages suppose to be description languages than pro-
gramming languages. It means that they are suitable for describing data
but not for storing data records. Relational databases better cope with sets
of extensive data collections. Since there are semantic gaps between these
approaches (described in Section 7.1.3) we need to investigate a way to fill
these gaps by adding missing semantics into available data sets. Because
data within relational databases are accessed typically by tools often written

60

Chapter 8. Mapping Improvement

in an object oriented language the data layer is the suitable place where to
place additional semantics.

Section 7.3 described existing tools that are able to transform an object
oriented code into the OWL representation to a certain extent.

Because we are focused on to one side transformation from OO code to OWL
the selected tools (described in Subsection 7.3.1) work quite satisfactory. In
spite of the fact that the described tools are able to transform an input
OO code to an output OWL structure the generated output is usually se-
mantically poor due to poorer semantic expressivity of OO code against the
semantic expressivity of OWL.

We investigated several approaches described in 7.3.2 that particulary add
missing semantics into the input OO code. The most of tested frameworks
are difficult to use either because added semantic information is insufficient
or confused, or the usage of the modified compiler or interpreter is required.

8.2 Context

According to difficulties mentioned above we proposed a custom approach
which allows us to map and transform common object-oriented language
(Java) into an OWL output.

We suppose that the proposed solution will be also used by software engineers
and not only by experts in the Semantic web field. Thus a framework based
on common programming technologies is preferred.

We expect that our solution could serve a wide community of researchers
that use object oriented systems and need to generate ontologies. To sup-
port this idea we decided to use only the standard syntactic structures of
used programming language for data input which is extended by missing
semantics.

61

Part IV

Construction of Ontologies

62

Chapter 9

Generation of Ontology from
JavaBeans

9.1 JavaBean Definition

In [49] a JavaBean is defined as follows:

A Java Bean is a reusable software component that can be visually
manipulated in builder tools.

More precisely, JavaBeans are named Java classes with class attributes which
are accessed only by get/set methods. The name convention is to concatenate
prefix get (resp. set) with an attribute name. When an attribute is boolean
type the prefix is is used instead of get. The JavaBean is often called by an
abbreviation POJO.1

9.2 System Requirements

Before we started with the development of the custom solution we had de-
fined several requirements to the system. Firstly, the system based on open
source programming technologies is preferred. We selected the programming
language Java because the majority of current open source tools are based
on Java as well. The system has to comply the INCF recommendations de-
scribed in Section 6.2.1 in the maximal range. The output of the system

1Plain Old Java Object

63

Chapter 9. Generation of Ontology from JavaBeans

should be well-formed according to the OWL W3C specification with the
input of the system based on common JavaBean. Because JavaBeans are
common programming structures for persisting data we can apply mapping
rules defined in Chapter 7. We also suppose the possibility to add missing
semantics into the common JavaBean structure. This additional semantics
should not require a modification of a common JavaBean syntax in order to
be deployed on common operation systems2. Such system is compiled using a
standard Java compiler and run on a standard Java Runtime Environment3.

These requirements ensure that such system could be immediately deployed
on the computers with the standard software installation. It is necessary for
common users of the system. This system will be easy to use by software
engineers which usually work with the familiar programming language. In
general, software engineers are used to develop object oriented systems but
usually they are not familiar with the development of ontologies.

9.3 Tools Overview

Because several tools for transforming a data structure from common sys-
tems to the Semantic Web representation were described in 7.3.1 we decided
not to implement a custom solution from scratch but come out from an ex-
isting solution that we improve on in order to meet our requirements. We
selected JenaBean with OWL API from described tools. JenaBean internally
uses Jena framework that is responsible for creation of an internal semantic
model. Using Jena framework facilitates integration of frameworks because
the internal model is clearly defined and RDF parsers are already imple-
mented. Using Jena model ensures abstraction of managed data.

JenaBean itself serves as a simple superstructure that provides construction
of the model from the input based on common JavaBean.

JenaBean generates only the RDF/XML output in one syntax. Serialization
of the output into various syntax is ensured by OWL API. We can take result
of JenaBean transformation as the input of OWL API.

2It means operation systems where it is possible to run standard Java installation.
3In the time of writing this work JDK 6 is available. Due to backward compatibility

in the future version of Java the system should work as well.

64

Chapter 9. Generation of Ontology from JavaBeans

9.4 Jena Models

9.4.1 Introduction

Jena has become as a system with several different kinds of models
[31]. The simplest way to create a model is calling the factory method
createDefaultModel() of ModelFactory. It returns the interface Model

that is a plain RDF model stored in the memory with no ontology interface.

The Jena gives a possibility to manage more than one model simultaneously
using Interface ModelMaker. Various models are created with unique names.
Such models could be saved and looked up by the specific name if needed.

The model maker can create models stored within the memory or serial-
ized/deserialized within the file using FileBasedModel.

In addition Jena allows models to be created within the database by the API
called RDB Maker. Models from the RDB Maker are the same as in-memory
models, but they can be much larger and they could be stored permanently.
Nevertheless access to these models could be significantly slower.

A specific model can be also inferred from a base model. Inference models
are constructed by applying reasoners to base models. The statements de-
duced by the reasoner from the base model then appear in the inferred model
alongside the statements from the base model itself.

But probably the most comprehensive and the most useful model for this
work is an Ontology Model described later in Section 9.4.3.

9.4.2 RDF Model

The Jena Framework provides an extended Java API for creating and manip-
ulating RDF graphs. Jena has object classes to represent graphs, resources,
properties and literals represented by Java Interfaces.

An algorithm for creating an RDF model is in Algorithm 9.1.

9.4.3 Ontology Model

The Jena provides a Jena ontology API for reading or creating ontologies
regardless of which specific Semantic Web language is used. Jena provides
the interface OntoClass that can represent a RDFS class as an OWL class.

65

Chapter 9. Generation of Ontology from JavaBeans

Algorithm 9.1 Constructing RDF Graph

Input:
m∈ N - count of requested resources
n∈ N - count of properties for each request

Output: model - Ontology Model
1: Model model← ModelFactory.createDefaultModel();
2: for i = 1→ m do
3: Resource r ← model.createResource(resourceURI);
4: for i = 1→ n do
5: Resource r2← r.addProperty(property, propertyName);
6: end for
7: end for

The differences between various representations is solved using profiles that
define permitted constructs.

To represent the differences between the various representations each of the
ontology languages has a profile which lists the permitted constructs. A
used profile is defined when the ontology model is created and it is bound
up wit the ontology model. Jena encodes all information within construed
ontology as RDF triples in the RDF model and provides possibility to add
an additional semantic information available in the specific OWL profile.
The ontology API does not change the RDF representation of ontologies.
For manipulation with ontology predicates Jena provides a set of accessor
methods on the Java classes in the Jena API. Actually when user adds an
subclass, this subclass is asserted as an additional RDF statement into the
model. Conversely, when user wants to e.g. gets a list of superclasses of a
specific class, Jena retrieves information from the underlying RDF statement.

When we want to build an ontology based application we can use reasoners.
Reasoners are able to derive an additional truth about the concepts modeled
within the ontology. Jena includes a support for variety reasoners through
the Inference API. When Jena reasoner is enabled, it creates a new RDF
model that contains RDF triples from the base model and new RDF triples
that are derived from reasoning. The new model is still a Jena Model so they
can be used wherever the base model can be used. Figure 9.4.1 visualizes
how the Jena API works.

66

Chapter 9. Generation of Ontology from JavaBeans

Figure 9.4.1: Jena Layers [33]

The base statements that can appear in the output ontology are held in Base
RDF graph. Additional statements can be inferred from the base graph
using the selected in-build reasoner. The complete set of statements resulted
in the output ontology. Because both RDF graph and reasoners are accessed
through the Jena Graph interface it allows us to build ontology models with
or without a reasoner. In addition, the RDF graph can be represented by
in-memory storage, database storage, or some other storage structure.

Resource called OntoResource exists in Ontology model. Some of the
common attributes of ontology resources are: versionInfo, comment, label,
seeAlso, isDefinedBy, sameAs, differentFrom.

Because classes, properties and advanced ontology expressions on properties
are the building blocks of the ontology Jena provides a set of classes and
methods for handling individual constructs.

The ontology class OntoClass accesses related classes by calling methods:
subClass, superClass, equivalentClass, disjointWith.

The properties are manipulated by methods: subProperty, domain, range,
equivalentProperty, inverse.

Advanced ontology expression on properties are represented by classes:
Restriction (hasValue, allValuesFrom, someValuesFrom, cardinality),
Boolean, Intersection, Union, Complement, Enumeration, etc.

The structure of Jena Ontology Model is in Figure 9.4.2.

67

Chapter 9. Generation of Ontology from JavaBeans

Figure 9.4.2: Jena Ontology Model

9.4.4 Conclusion

The Jena provides an abstraction of supported models. We can use the
ontology model that allow us to construct the RDF triples extended by the
additional semantics provided by the OWL. The Jena API hides manual con-
struction of the semantic constructs; the user only creates the model calling
the prepared API. The main interface is OntResource. The main subclasses

68

Chapter 9. Generation of Ontology from JavaBeans

are OntClass and OntProperty. Restriction is inherited from OntClass.
Additional subrestrictions are inherited from the Restriction. An addi-
tional restriction can be added into the model by implementing Restriction

interface.

Jena can be easily encapsulated within various that are supposed to work
with ontologies.

9.5 JenaBean - Jena Model Superstructure

Jena provides API for constructing domain ontologies. When we want to
create an ontology from JavaBeans we use JenaBean modified for our needs.

JenaBean provides API for the processing of input JavaBeans and calling the
JenaBean API internally. JenaBean transforms the input JavaBean structure
(classes with their properties) to RDF triples. The output of this transfor-
mation is semantically poor with only a fraction of possibilities that OWL
provides due to poor semantic expressivity of common JavaBean. When
we want to use more capabilities of OWL we need to provide semantically
enriched JavaBeans. It requires investigation and definition of semantic en-
richment of the common JavaBean structure with modification of JenaBean
transformational mechanism. The proposed modifications are described in
Chapter 10.

9.6 JavaBean Structure Extraction

Transformation of the JavaBean into the OWL is defined as follows.

Definition 15. (JavaBean structure extraction process)

The process is the transformation of set of JavaBeans JS to an ontology O
that satisfies:

For each JavaBean J i exists OWL class OC i in the ontology O.

For each JavaBean J j that is a superclass of J i exists OWL class OC j that
is a superclass of OWL class OC i in the ontology O.

For each field of JavaBean Jf i exists an equivalent class OC i in the ontology
O its extent is an DataType property in the ontology O when Jf i extent is
an atomic type.

69

Chapter 9. Generation of Ontology from JavaBeans

For each field of JavaBean Jf i exists an equivalent class OC i in the ontology
O its extent is an Object property when Jf i extent is an class J i.

For each instance of JavaBean J i and for each field Jf ij exists an equivalent
OWL literal OLij in the ontology O with a corresponding value of field Jf ij.

9.6.1 Mapping JavaBean to OWL Class

If it is possible to transform UML class to an OWL class (described in Chap-
ter 7) we can analogically transform JavaBean into OWL class as well. If
we suppose a persistent object Experiment its JavaBean representation is in
Listing 9.1.

Listing 9.1: Java Class Definition

package cz . zcu . k iv ;

public class Experiment{

}

Because Java classes with the same semantic meaning are grouped using
packages and OWL classes are grouped using namespaces, we can simply
transform the package name to the namespace name and the Java class name
to the OWL class name. OWL uses the character ’#’as a separator for the
namespace and the class name.

Listing 9.2: OWL Class Equivalent

<owl : Class rd f : about=”http :// cz . zcu . k iv#Experiment”>

</owl : Class>

9.6.2 Mapping JavaBean Property to OWL Property

When we can express an UML class property as a JavaBean property we
can map a Javabean property to an OWL property according to mapping
described in Listing Chapter 7. In 9.3 we extend the JavaBean from Listing
9.1 by two class properties.

70

Chapter 9. Generation of Ontology from JavaBeans

Listing 9.3: Java Class Property Definition

package cz . zcu . k iv ;

public class Experiment {

private Person t e s t edSub j e c t ;
private int exper imentId ;

public Person getTestedSubject () {
return t e s t edSub j e c t ;

}

public void s e tTes tedSubjec t (Person t e s t edSub j e c t) {
this . t e s t edSub j e c t = te s t edSub j e c t ;

}

public int getExperimentId () {
return exper imentId ;

}

public void setExper imentId (int exper imentId) {
this . exper imentId = exper imentId ;

}
}

One JavaBean with two class attributes is defined in Listing 9.3. The
first attribute testedSubject is the reference (association relation) to the
other class Person while the second one is the atomic value (integer type).
The underlying differences in mapping of JavaBean properties are that
experimentId is mapped as DataTypeProperty while testedSubject as
ObjectProperty according to mapping described in Section 7.1.2.

Listing 9.4: OWL Property Mapping

<owl : Class rd f : about=”http :// cz . zcu . k iv#Experiment”>
</owl : Class>
<owl : ObjectProperty rd f : about=”http :// cz . zcu . k iv#te s t edSub j e c t ”>

<r d f s : domain rd f : r e s ou r c e=”http :// cz . zcu . k iv#Experiment”/>
</owl : ObjectProperty>
<owl : DatatypeProperty rd f : about=”http :// cz . zcu . k iv#exper imentId ”>

<r d f s : domain rd f : r e s ou r c e=”http :// cz . zcu . k iv#Experiment”/>
<r d f s : range rd f : r e s ou r c e=”http ://www.w3 . org /2001/XMLSchema#in t ”/>

</owl : DatatypeProperty>

9.6.3 Mapping JavaBean Instance to OWL Individual

Since JavaBeans are used to persist data we have to investigate a mapping
of data from JavaBeans instances. As a suitable structure for storing a
JavaBean value OWL individuals can be used. OWL individual is a typed
property with the value. This property can represent the JavaBean property

71

Chapter 9. Generation of Ontology from JavaBeans

value. When we suppose JavaBean from Listing 9.3 with values [experimen-
tId=1,testedSubject=”Jan Novak”] we can infer the following OWL structure:

Listing 9.5: OWL Individual Instance

<cz . zcu . k iv : Experiment rd f : about=”http :// cz . zcu . k iv#Experiment 1421876889”>
<cz . zcu . k iv : t e s t edSub jec t>

<cz . zcu . k iv : Person rd f : about=”http :// cz . zcu . k iv#Person 511811991 ”>
<cz . zcu . k iv : name rd f : datatype=”http ://www.w3 . org /2001/XMLSchema#s t r i n g ”
>Jan Novak</ j . 1 : name>

</cz . zcu . k iv : Person>
</cz . zcu . k iv : t e s t edSub jec t>
<cz . zcu . k iv : exper imentId rd f : datatype=”http ://www.w3 . org /2001/XMLSchema#in t ”

>1</cz . zcu . k iv : experimentId>
</cz . zcu . k iv : Experiment>

Listing 9.5 expresses a part of OWL document with expressed values of the
instance of JenaBean defined in Listing 9.3.

Serialization of DataTypeProperty is straightforward, we directly serialize the
property value. When we want to serialize an ObjectProperty the transforma-
tion is more difficult because the extent of ObjectProperty can be a complex
data type.

In this case we serialize the value that toString method4 returns. When a
JavaBean persists a large collection of raw binary data we do not serialize
them into the output OWL document, we place there only the link that
points to the data within the document.

4It is a method of each JavaBean thats returns a string that represents the current
object.

72

Chapter 10

JavaBeans Semantic Extension

10.1 Prerequisites

The mapping of simple JavaBean to an OWL structure was described in
Chapter 9. We presented transformation of Java classes to OWL classes and
their attributes to OWL DataType and Object properties. We successfully
used OWL literals for expression of instance values. However, the OWL
provides much more expressivity. If we want to use more capabilities of
OWL we have to enrich object-oriented code by missing semantics.

Several concepts where a straightforward transformation from OOM to OWL
does not exist is presented in Section 7.1.3. In this Section we describe
addition of the missing semantics into the input OOM in order to map most
of OWL concepts.

When we were looking for suitable way for adding missing semantics into in-
put JavaBeans we decided to develop a solution based on Java Annotations1.

Java Annotation is a special form of syntactic metadata that can be added
to the Java source code. Classes, methods, variables, method parameters and
packages may be annotated. Java annotations may be reflective so they can
be embedded within the compiled code and retrieved at runtime.

This approach has several benefits. Firstly, we can directly execute a com-
piled code in the transformation input (in contrast with the solutions that
uses source code comments e.g. [48] described in 7.3.2). Secondly, since Java
5.0 Annotations are the part of Standard Java Development Kit, they can
be processed immediately. Finally, the Java Annotations are used in current

1http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html

73

Chapter 10. JavaBeans Semantic Extension

software development (by several common frameworks e.g. Spring, Hiber-
nate, Java Persistent API), hence the software developers can work with the
Java Annotations without difficulties.

Such JavaBean extension can be immediately used by software engineers. It
does not matter if they are familiar with the development of the Semantic
Web or not.

10.2 Mapping Realization

Annotations themselves may be annotated to indicate where they can be
used. We can define if the annotation is applied to a class, a field, a method,
a constructor or a package.

There are some OWL language resources that can express a class restriction
and other resources that can express a property restriction.

When we were realizing an annotations mapping to individual OWL con-
structs we divided the set of proposed annotations to annotations with class
or field scope accordingly to scope of individual OWL constructs that they
describe.

An example of annotated JavaBean is showing in Listing 10.1. We demon-
strate the annotated class Experiment with the class attribute testedPerson
with the Person extent. The example demonstrates using two annotations.
The first one defines an equivalent class to the Experiment class. The sec-
ond one shows definition of an equivalent property of the testedSubject

property. The serialization of such JavaBean is showing in Listing 10.2.

Listing 10.1: Annotated Java Bean Example

package cz . zcu . k iv ;

@EquivalentClass (” http :// cz . zcu . k iv /Measurement”)
public class Experiment {

@EquivalentProperty (”http :// cz . zcu . k iv /TestedSubject ”)
private Person tes tedPerson ;

}

Listing 10.2: Annotated Java Bean OWL Serialization

<owl : Class rd f : about=”http :// cz . zcu . k iv /Measurement”/>
<owl : Class rd f : about=”http :// cz . zcu . k iv#Experiment”>
<owl:equivalentClass rdf:resource=”http://cz.zcu.kiv/Measurement”/>

74

Chapter 10. JavaBeans Semantic Extension

</owl : Class>
<owl : ObjectProperty rd f : about=”http :// cz . zcu . k iv#tes tedPerson ”>
<owl:equivalentProperty rdf:resource=”http://cz.zcu.kiv/TestedSubject”/>

<r d f s : domain rd f : r e s ou r c e=”http :// cz . zcu . k iv#Experiment”/>
</owl : ObjectProperty>

10.3 Implementation of OWL Elements

We described the set of OWL concepts (Table 7.7) for that a Java mapping
does not exist. This section brings a brief description of these concepts. The
concepts vary according to their semantic meaning [52]. The concepts can
be properties of classes restrictions, class axioms, they can define a relation
of property to other properties, they can be a part of ontology header, etc.
The semantic meaning and its proposed implementation is described.

10.3.1 Basic Elements

owl:equivalentClass

This property expresses that two classes have the same class extension (the
same set of individuals), but not necessarily the same concepts2. It means
that although two equivalent classes have the same instances, they does not
have to be equal.

In OWL Full class equality can be expressed using owl:sameAs. OWL Lite
or DL cannot express class equality.

Implementation: Class annotation @EquivalentClass. Its value must be
a well-formed URI (referencing the equivalent class).

10.3.2 Property Axioms

owl:equivalentProperty

This statement links properties to be equivalent, which means they have the
same extension (the same values). It does not necessarily mean that they
are equal (have the same concepts).

2Classes in OWL provide an abstraction mechanism for grouping resources with similar
characteristics. Every OWL class is associated with a set of individuals, called the class
extension. It corresponds to the concept in description logic .

75

Chapter 10. JavaBeans Semantic Extension

In OWL Full properties can be treated as individuals that is why we can
describe equal properties using owl:sameAs. OWL Lite or DL cannot express
property equality.

Implementation: Field annotation @EquivalentProperty.

owl:inverseOf

This statement links two properties that are inverse each other. It means
they describe the same relation from the other side (some parent has a child,
this child has that parent).

Implementation: Field annotation @Inverse. Its value must be a well-
formed URI (referencing the inverse property).

owl:SymmetricProperty

This element is used to specify a property to be symmetric. Symmetric
property means that the subject and the object from the triple can be inter-
changed and the statement is true as well. In other words, if the pair (X, Y)
is an instance of a symmetric property, then the pair (Y, X) is an instance
of this property too. It follows that its domain and range must be the same.
Owl:SymmetricProperty is a subclass of owl:ObjectProperty.

Implementation: Implemented as the field annotation @Symmetric without
arguments. If a field is marked by this annotation, the resulting property will
be specified as an owl:SymmetricProperty instance. JenaBeanExtension does
not check if the annotation is used properly (domain and range must be the
same), it must be arranged by a programmer.

owl:TransitiveProperty

This element is used to specify a property to be transitive. It is useful
primarily for inferencing. Transitive property means that if we have two pairs
(X, Y) and (Y, Z) as instances of a transitive property, then the pair (X, Z)
is also an instance of this property. Owl:TransitiveProperty is a subclass of
owl:ObjectProperty.

Implementation: Field annotation @Transitive without arguments. If a
field is marked by this annotation, the resulting property will be specified as
an owl:TransitiveProperty instance.

76

Chapter 10. JavaBeans Semantic Extension

10.3.3 Property Restriction

owl:allValuesFrom

This property restricts values of some property inside a restriction class. Its
meaning is to give a range to the property under consideration, but unlike
the rdfs:range property this constraint concerns only the restriction class.
Property under consideration has no value constraint outside this class. In
contrast, the rdfs:range property asserts that the property’s values must al-
ways belong to a defined range. The restricting value can be either a class
or a data range.

Implementation: Field annotation @AllValuesFrom. The containing java
class turns into the owl’s restriction class, where this constraint is valid.

owl:someValuesFrom

This property restricts values of some property inside a restriction class.
Its meaning is to give a range to the property under consideration. It is
similar to owl:allValuesFrom, but this one is less restrictive. It describes all
individuals for which at least one value of the property under consideration
has the defined range. This constraint concerns only the restriction class
as well as owl:allValuesFrom. Property under consideration has no value
constraint outside this class. The restricting value can be either a class or a
data range.

Implementation: Field annotation @SomeValuesFrom.

owl:cardinality

This is a property restriction. It indicates that all individuals of the restric-
tion class have exactly N (where N∈ N) different values of the concerned
property. In fact, this statement has exactly the same meaning as using both
owl:maxCardinality and owl:minCardinality with the same value (N).

This element has to be used inside a owl:Restriction class which is usually
anonymous. Except the owl:cardinality this class contains owl:onProperty.
The anonymous restriction class can be used afterwards e.g. as a superclass
of another class for which we want to use the restriction.

Implementation: Field annotation @Cardinality with an integer argu-
ment.

77

Chapter 10. JavaBeans Semantic Extension

The difficulty of this implementation is the difference between the object
code and the RDF ontology. We can say that some property’s cardinality is
N using @Cardinality(N) for the field under consideration. But we ca not
create instances in Java with the cardinality greater then one (because every
instance has exactly N different values of that field at the same time).

We suppose usage of this annotation for collections or arrays. The meaning
is then ”number of elements” of the collection.

owl:maxCardinality and owl:minCardinality

This is a property restriction. It indicates that all individuals of the restric-
tion class have at most (res. at least) N (where N∈ N) different values of the
concerned property. If both owl:minCardinality and owl:maxCardinality are
used, it defines an interval to which the number of property’s different values
must belong.

This element must be used inside a restriction class (owl:Restriction) which is
usually anonymous. Except owl:maxCardinality (resp. owl:minCardinality)
this class also contains an owl:onProperty element which determines the re-
stricted property. The anonymous restriction class can be used afterwards
e.g. as a superclass of another class for which we want to use this restriction.

Implementation: Field annotation @MaxCardinality (resp.
@MinCardinality).

We also suppose usage of these annotations only for collections or arrays due
to the same difficulty as in the case of @Cardinality restriction.

10.3.4 Individuals

owl:AllDifferent

This element indicates that individuals in a group are mutually different.
It has the same meaning as owl:differentFrom, but this property describes
only two individuals. This is a more convenient way to describe a group of
mutually different individuals.

Owl:AllDifferent is in fact a special class with the owl:distinctMembers prop-
erty. This property contains a list of individuals that are pairwise different.

In OWL Full classes they can be treated as individuals. That is why we
can describe different classes using this property. However, such a statement

78

Chapter 10. JavaBeans Semantic Extension

cannot be used in OWL Lite or DL.

Implementation: Class annotation @AllDifferent. Usage of this annota-
tion is inaproppriate and we currently deprecated it, because in a static code
we cannot annotate individuals, but classes (OWL Full).

owl:differentFrom

This property indicates that two individuals are not the same. We can use
it to express that two URIs refer to different individuals. It is the opposite
to owl:sameAs.

In OWL Full classes can be treated as individuals that is why we can describe
different classes using this property. However, such a statement cannot be
used in OWL Lite or DL.

Implementation: Class annotation @DifferentFrom. Usage of this an-
notation is also deprecated, because we cannot annotate individuals, only
classes, in a static code (OWL Full).

owl:sameAs

This property states that two individuals are equal. It is the opposite of
owl:differentFrom. We can use it to express that two different URIs refer to
the same thing.

In OWL Full classes and properties can be treated as individuals. That is
why we can express class equality and property equality using owl:sameAs.
However, such a statement cannot be used in OWL Lite or DL which implies
that there cannot be expressed class equality or property equality in OWL
Lite or DL. This property is similar to owl:equivalentClass, but it does not
have the same meaning, likewise owl:equivalentProperty.

Implementation: Class annotation @SameAs. Use of this annotation is
deprecated, because in a static code we cannot annotate individuals, but
classes (OWL Full).

10.3.5 Mapping

The transformation in Section 9.6 describes a process of mapping a simple
JenaBean structure into an OWL structure. When we want to extend Jav-
aBean by the set of annotations we need to extend the described algorithm.

79

Chapter 10. JavaBeans Semantic Extension

The following definition describes a process of transforming Java annotations
into the corresponding OWL resource.

Definition 16. (Java annotation extraction process)

The process is the transformation of a set of Java annotations JA to an
ontology resources OR in the ontology O that satisfies:

For each JavaBean annotation JBAi exists an equivalent OWL class resource
ORi in the ontology O when JBAi is a class annotation.

For each JavaBean annotation JBAi exists an equivalent OWL property re-
source ORi in the ontology O when JBAi is a property annotation.

10.3.6 Design an Implementation of Annotations

We defined and implemented a set of Java Annotations that we map to OWL
constructs. Table 10.1 shows the set of currently supported annotations and
their mapping to the OWL constructs. Most of designed annotations are
parameterizable with an input string parameter. The parameters shown in
Table 10.1 are demonstration examples; they can be changed according to
the needs of a specific domain. The set of supported annotations is still
extended. New annotations are gradually proposed and implemented.

Java Annotation OWL construct Scope
@EquivalentClass <owl:equivalentClass class
(”http://www.kiv.zcu.cz/Person”) rdf:resource=

”http://www.kiv.zcu.cz/Person”/>
@EquivalentProperty <owl:equivalentProperty field
(”http://www.kiv.zcu.cz rdf:resource=
/first name”) ”http://www.kiv.zcu.cz

/first name”/>
@Symmetric <rdf:type class/field

rdf:resource=
”http://www.w3.org/2002/07/owl#

SymmetricProperty”/>
@Inverse <owl:inverseOf class/field
(”http://www.kiv.zcu.cz/ rdf:resource=
givenname”) ”http://www.kiv.zcu.cz

/givenname”/>
@AllValuesFrom <owl:allValuesFrom field
(”http://www.kiv.zcu.cz/ rdf:resource=”
#Persons”) http://www.kiv.zcu.cz/#Persons”/>

80

Chapter 10. JavaBeans Semantic Extension

@Transitive <rdf:type class/field
rdf:resource=

”http://www.w3.org/2002/07/owl#
TransitiveProperty”/>

@AllDifferent <rdf:type class
(”http://www.kiv.zcu rdf:resource=”http://www.w3.org/
/Experiment”) 2002/07/owl #AllDifferent”/>
@DifferentFrom <owl:differentFrom class
(”http://www.kiv.zcu.cz rdf:resource=”http://www.kiv.zcu/
/Experiment”) Experiment”/>
@SameAs <owl:sameAs class
(”http://www.kiv.zcu.cz rdf:resource=”http://www.kiv.zcu/
/Experiment”) Experiment”/>
@Cardinality(1) <owl:cardinality field

rdf:datatype=”http://www.w3.org
/2001/XMLSchema#int” >

1
</owl:cardinality>

@MaxCardinality(1) <owl:maxCardinality field
rdf:datatype=”http://www.w3.org
/2001/XMLSchema#int”>

1
</owl:maxCardinality>

@MinCardinality(1) <owl:minCardinality field
rdf:datatype=”http://www.w3.org
/2001/XMLSchema#int”>

1
</owl:minCardinality>

@SomeValuesFrom <owl:someValuesFrom field
(”http://www.kiv.zcu/Person”) rdf:resource=

”http://www.kiv.zcu/Person”/>

Table 10.1: OWL Mapping of Java Annotations

81

Chapter 10. JavaBeans Semantic Extension

10.4 Semantic Framework

10.4.1 Modules Structure

The theoretical background described in previous sections resulted in the Se-
mantic Framework that we have implemented in order to provide an advanced
Java API for the Semantic Web technologies.

We provide the Semantic Framework as the library that user can integrate
into the custom system. The user can use the Framework as a black box
with input in the form of the set of JavaBeans and output in the form of
an ontology document. The ontology document can be serialized into the
several supported Semantic Web languages syntaxes. We currently support
RDF/XML, OWL/XML, Turtle, Abbreviated OWL/XML formats.

Figure 10.4.1 shows the component diagram of the Semantic Framework. The
framework contains three main subcomponents. The first subcomponent is
the modified JenaBean. We extend the current JenaBean so that the output
corresponds to the mapping described in Chapter 9. Moreover, we added the
processing of Java annotations into the processing of JavaBeans structure so
that we are able to transform the set of annotations described in Chapter
10. The output of the Extended JenaBean component is an internal model
representation.

This internal model representation is submitted to the second, Ontology
Model Creator, subcomponent. This subcomponent creates an Ontology
model using an Ontology Model Factory. The internal JenaBean model is
processed and an ontology document is created by calling Jena API methods.

The result model can be further processed by the last subcomponent, OWL
API, that is able to transform an ontology model into the supported ontology
formats.

82

Chapter 10. JavaBeans Semantic Extension

Figure 10.4.1: Component Diagram of Semantic Framework

10.4.2 Running Semantic Framework

When a user wants to use the Semantic Framework within a custom sys-
tem he/she has to add the released library into his/her project. When the
library is used the user needs to know only one interface (see Listing 10.3).
This interface has only one overloaded method getOntologyDocument. The
method in the implemented class returns the ontology document generated
from the set of JavaBeans. We currently provide one implemented class
JenaBeanExtensionTool where the list of input JavaBeans is used as a con-
structor parameter. This approach ensures that an advanced developer can
use this interface as well if e.g. he/she wants to write his/her own implemen-
tation that reads the input from another structure than the set of JavaBeans
is.

The provided interface gets the ontology document in the InputStream. The
user can process this Stream according to his/her needs. It does not depend
if he/she serializes it to the file, or e.g. exposes it directly on the web using
e.g. the HTTP protocol.

The transformation of the obtained ontology document into a specific ontol-
ogy format is provided another interface (see Listing: 10.4). This interface

83

Chapter 10. JavaBeans Semantic Extension

provides the method getOntologyDocument that returns the document in
the requested format.

The supported Java Annotations are included within the library as well. The
user can use a defined annotation and annotate a custom JavaBeans as well.
When the user annotates a custom JavaBeans with annotations from Table
10.1, his/her output document will be supplemented by additional semantics.

Listing 10.3: Semantic Framework Interface

/**
* Defines user i n t e r f a c e f o r working with the JenaBeanExtension l i b r a r y .
*/

public interface JenaBeanExtension {
/**
* Writes a s e r i a l i z a t i o n o f the onto logy model as a RDF/XML document .
* This method doesn ’ t run the trans format ion process i t s e l f , i t on ly
* c r ea t e s the XML de s c r i p t i on o f the onto logy model .
*

* @return RDF/XML onto logy document
* @throws IOException i f t he re occurred problems c rea t ing the stream
*/

public InputStream getOntologyDocument () throws IOException ;
/**
* Writes a s e r i a l i z a t i o n o f the onto logy model as an onto logy document
* in a s p e c i f i e d language .
* This method doesn ’ t run the trans format ion process i t s e l f , i t on ly
* c r ea t e s the XML de s c r i p t i on o f the onto logy model .
*

* @param lang Required language o f the onto logy document .
* @return RDF/XML onto logy document
* @throws IOException i f t he re occurred problems c rea t ing the stream
*/

public InputStream getOntologyDocument (S t r ing lang) throws IOException ;
}

Listing 10.4: Semantic Framework OWL API Interface

/**
* Defines user i n t e r f a c e f o r working with the OwlApi l i b r a r y .
* This l i b r a r y can be used to conver t the semantic model in to
* one o f the standard semantic formats .
*/

public interface OwlApi {
/**
* Converts the semantic model in to chosen semantic standard .
* @param type semantic standard
* @return XML de s c r i p t i on o f the semantic in the chosen format
* @throws IOException i f t he re occurred problems c rea t ing
* the input stream
* @throws OWLOntologyStorageException i f t he re occurred problems
* with the format
*/

public abstract InputStream convertToSemanticStandard (St r ing type)
throws IOException , OWLOntologyStorageException ;

}

84

Chapter 10. JavaBeans Semantic Extension

Figure 10.4.2 shows the most important classes of the framework. The inter-
faces that the user needs to know (shown by arrows from the Actor) are:

� JenaBeanExtension that generates an ontology document.

� OwlApi that enables transformation of the ontology document into var-
ious Semantic Web formats.

Figure 10.4.2: Class Diagram of Semantic Framework

10.4.3 Conclusion

The Semantic Framework is a complex tool for serializing common JavaBeans
with additional semantics into the output OWL structure. The integration
within a user system is simple because of the unified interface. The system
could be used by software engineers. When such engineer does not know
details about the ontology development it does not prevent him/her to work
on systems that work with ontologies. Because only common programming
technologies are used, the system with our framework can be immediately
deployed. The input JavaBeans are semantically enriched so they still use
the common Java syntax.

85

Chapter 10. JavaBeans Semantic Extension

10.5 Annotation Tool

10.5.1 Design

Section 10.4 describes the developed Framework that transformations input
annotated JavaBeans to the Semantic Web structures. If the user wants to
use all capabilities the Semantic Framework provides he/she has to add an
additional semantics in the form of Java Annotations.

Even though the work with the Semantic Framework is user-friendly we do
the work even easier. We designed and developed the Annotation Tool that
enables to annotate input JavaBeans using a well-arranged graphical tool.
Such a tool minimizes the manual work needed for preparing input Java-
Beans.

10.5.2 Implementation

We implemented the Annotation Tool using Annotation File Utilities3. This
is an open-source tool that provides possibility to read annotations from an
annotation mapping file and insert them into the class or read them from the
class and write them back to the annotations mapping file. This tool is con-
trolled by the set of Linux or Windows scripts. We extended the possibility
to control this tool using a custom GUI so the annotation of the JavaBeans is
more comfortable. We also provided the possibility to work with the system
of projects. When the user loads the set of JavaBeans he/she can annotate
them and save the work as a project within the project file. This project can
be reloaded an updated whenever in future. Figure 10.5.1 shows an example
of the project. The set of loaded JavaBeans can be seen in the project win-
dow. The left column shows the list of attributes of the selected JavaBean.
When the user clicks on ”change selected” button, a popup window with the
list of available annotations appears. The user can check desired annotations
and fill the parameter values within the parameterizable annotations. The
tool enables a bulk change of annotations when more than one class attribute
is selected (In Figure 10.5.1 the selected attributes are red colored).

3http://types.cs.washington.edu/annotation-file-utilities/

86

Chapter 10. JavaBeans Semantic Extension

Figure 10.5.1: Annotation Tool Preview

87

Part V

Ontology Development in
EEG/ERP Experiments

88

Chapter 11

Domain Ontology

11.1 Introduction

We proposed a custom ontology that precisely describes the domain of
EEG/ERP experiments because of inconsistence in EEG/ERP data formats
described in Chapter 3. The ontology should serve as a description of the
EEG/ERP experimental data/metadata structure for the entire neuroscience
community. When the community accepts this ontology as an initial standard
ontology for EEG/ERP domain the interpretation of data from experiments
will be unified across laboratories.

When data from experiments are precisely described by suitable metadata in
a well-formed structure these experiments may be reproduced and processed
across various laboratories.

The specification of the ontology originated from experience of our labora-
tory, co-workers from cooperating institutions, books describing principles
of EEG/ERP design and data recording (e.g. [4]) and numerous scientific
papers describing specific EEG/ERP experiments. It also corresponds to the
effort of the INCF described in Chapter 6 and [15] in the field of development
and standardization of databases in neuroinformatics.

11.2 Ontology Structure

The experimental data are supplemented by its description according to a
defined protocol when we carry out an EEG/ERP experiment. The collected
metadata can be divided into several semantic groups according to their

89

Chapter 11. Domain Ontology

semantic meaning. We defined the following semantic groups:

� Activity

� Environment

� Tested subject

� Hardware equipment

� Software equipment

� Used electrodes

� Data digitalization

� Signal analysis

� Data presentation

� Signal artifact

The following subsections describe these semantic groups more precisely.

11.2.1 Activity

Because an experiment is carried out according to predefined scenarios (e.g.
the scenario defined in Section 2.2) we need to describe the activity that take
place according to the specific scenario. This description includes information
about video, pictures on the computer screen, or sound sloughed off into the
headphone, or information about the instructions that received the tested
subject when the experiment starts. Since experiments contains a set of
stimuli we propose to record which stimuli is a target and which is a non
target and it’s timing.

11.2.2 Environment

When the experiment may be affected by surrounding conditions we need to
describe an environment and conditions where the experiment takes place.
It includes: weather, time of the day and temperature.

90

Chapter 11. Domain Ontology

11.2.3 Tested Subject

We also store information about the tested subject. We propose to store the
following items: Laterality - left or right handed, Education, Age, Gender,
Diseases, Disability, Drugs, Optional note.

11.2.4 Hardware Equipment

During the experiments various hardware equipment may be used. The de-
scription of the used hardware should be stored. We propose to store the
type, producer and the serial number of the used hardware.

11.2.5 Software Equipment

The experiment is usually performed using supporting software equipment.
This software includes software for running an experimental scenario or soft-
ware for digitalizing data from electrodes. We propose to store information
on each software that is used during the experiment. This description con-
tains the name of the software, the version and the producer. When software
for running an experimental scenario uses a specific configuration we propose
to store this configuration (e.g. configuration files) as well.

11.2.6 Used Electrodes

Since the brain activity is measured by the set of electrodes putted on the
tested subject scalp the proposed ontology describes their type, impedance,
location, the used system and their fixation.

11.2.7 Data Digitalization

Before the data from electrodes are stored they are digitalized using an
analogue-digital converter. This conversion is influenced by the set of pa-
rameters as filtration, sampling frequency and band-pass. The conditions of
such digitalization process are described using the ontology as well.

91

Chapter 11. Domain Ontology

11.2.8 Signal Analysis

The signal is analyzed using various techniques. The most often technique is
averaging described in Subsection 2.1.4. The ontology describes the technique
of analyzing the EEG/ERP signal. It includes the length of pre- and post-
stimuli part of the signal, the number of epochs or the verbal description of
signal processing procedure.

11.2.9 Data Presentation

The ontology also provides a way to describe experimental results or assump-
tions needed to reproduce the experiment. We propose to store: Averaged
ERP waves - Image of averaged waves, Grand averages - Image of grand
averages (an average over more epochs), Evolution of ERP in time and space
- Images how the ERP is being spread over scalp, Waves description – de-
scription of the well-known or new waves which were formed during study,
Link to raw experimental data – Link to all recorded raw data.

11.2.10 Signal Artifact

Since data could be affected by artifacts we included the description of this
artifacts within the ontology. Artifacts may originate from muscle activi-
ties, eyes movement, etc. The ontology contains information describing a
compensation method that prevents the formation of the artifact. When a
method for removing of the formed artifact is used the description is also
placed there. When some artifact totally degrades the signal the user can
define conditions when it is possible to assume the signal as totally useless.

11.3 Ontology Visualization

Section 11.2 describes metadata that are supposed to be necessary for describ-
ing EEG/ERP experiments. We developed an ontology based on mentioned
metadata. This ontology is modeled using Protége1 a tool for modeling and
visualizing ontologies. The ontology contains more than ten classes with
many subclasses. Figure 11.3.1 shows the visualization of developed ontol-
ogy. This ontology very precisely describes EEG/ERP experiment. This

1http://protege.stanford.edu/

92

Chapter 11. Domain Ontology

ontology we presented as a proposal of standardized EEG/ERP experiments
description. When researchers who is performing EEG/ERP experiments
provide metadata according the presented ontology the experimental results
will be easily reusable in future research.

In order to do the proposed ontology practically usable the following chapter
describes the developed portal for management of EEG/ERP experiments.
The storage of EEG/ERP experiments based on defined ontology is imple-
mented.

Figure 11.3.1: Ontology of EEG/ERP Experiment

93

Chapter 12

EEG/ERP Portal

12.1 Introduction

Because of hard manual work with large amounts of EEG/ERP data and
metadata and difficulties mentioned in Chapter 3, we decided to design and
implement a custom software tool suitable for EEG/ERP data and metadata
storage and management.

As the result we developed the system called EEG/ERP Portal intended not
only for our local research but in general it contributes to advancements in
human brain understanding. In addition, we believe that such advanced soft-
ware tools increase both the efficiency and the effectiveness of neuroscientific
research.

The interpretation of EEG/ERP experimental data/metadata is solved by
developing a custom ontology described in Chapter 11. The practical imple-
mentation of the designed ontology is ensured by the database structure and
the internal logic of the developed EEG/ERP Portal.

The EEG/ERP Portal provides a possibility to store, get, manage or inter-
change EEG/ERP experiments among interested researchers. The internal
system data storage is supposed to be implemented according to the devel-
oped ontology.

When we want the ontology to be accepted by a wide community of re-
searchers we need to register the EEG/ERP Portal as a recognizable data
source of neuroscience data. This registration is described in Section 14.4.

This Chapter describes the EEG/ERP Portal. It includes system features,
system users and system user roles. Since we plan to provide the system as

94

Chapter 12. EEG/ERP Portal

an open-source we provide a brief description of the system architecture and
technologies. The mapping of data from common data structures into the
Semantic Web technologies according to developed ontology is also presented.

12.2 Project Scope and System Features

EEG/ERP Portal enables clinicians and various community researchers to
store, update and download data and metadata from EEG/ERP experiments.
The EEG/ERP Portal is developed as a stand alone product. The database
access is available through a web interface. We use a web server supporting
open source (Java and XML) technologies and a database system, which is
able to process huge EEG/ERP data. The system is easily extensible and
can serve as an open source.

The crucial user requirement is the possibility to add an additional set
of metadata required by a specific EEG/ERP experiment. The complete
overview of the system features and user roles (use case diagram) is available
in [50].

The EEG/ERP Portal is dedicated for department users and collaborative
partners as well as for a limited group of researchers interested in EEG/ERP
research. The EEG/ERP Portal is supposed to be widely tested to guarantee
the safety of personal information, availability of EEG/ERP resources and
their usability for people interested in this research field.

12.2.1 User Roles

Since the EEG/ERP Portal is open to the whole EEG/ERP community it is
necessary to protect EEG/ERP data and metadata, and especially personal
data of tested subjects stored in the database from an unauthorized access.
Then a restricted user policy is applied and user roles are introduced. On
the basis of activities that a user can perform within the EEG/ERP Portal
the following roles are proposed:

� Anonymous user has the basic access to the system (it includes essential
information available in the system homepage and the possibility to
create his/her account by filling the registration form).

� Reader has already his/her account in the system and can list through
and download experimental data, metadata and scenarios from the sys-

95

Chapter 12. EEG/ERP Portal

tem, if they are made public by their owner. Reader cannot download
any personal data or store his/her experiments into database.

� Experimenter has the same rights as the Reader; in addition he/she
can insert his/her own experiments (data and metadata including ex-
perimental scenarios) and he/she has the full access to them. This
user role cannot be assigned automatically, a user with the role Reader
has to apply for it and the new role must be accepted by the group
administrator.

� Group administrator has privileges to add a new user into the group.
Each group is the autonomous unit within the system.

� Supervisor has an extra privilege to administer user accounts and
change their user roles according to the policy across all groups.

12.2.2 Security

The database contains personal data, which are necessary for interpretation
of experiment or for contact with tested subjects. Only the experimenter has
access to personal data of tested persons who took part in his/her experiment.
The collection of personal data and their storage are managed according to
law.

12.2.3 Performance

The database has to work with long EEG/ERP records (usually tens of
megabytes) in reasonable time. The main limiting factor is a user internet
connection, not the database performance.

12.3 Design and Implementation

12.3.1 Architecture

The system uses three-layer architecture. This architectonic style is sup-
ported by selection of programming tools and technologies. We used Java
and XML technologies to ensure a high level of abstraction (system extensi-
bility) as well as a long term existence of the system as open source.

96

Chapter 12. EEG/ERP Portal

12.3.2 Persistence Layer

The persistence layer uses the Hibernate framework. It means that a rela-
tional database and an object - relational mapping are supported. Oracle
11g database server is used to ensure the processing of large data files.

12.3.3 Application and Presentation Layer

The application and presentation layers are designed and implemented using
the Spring technology. This framework supports MVC architecture, De-
pendency injection and Aspect Oriented Programming. Integration of both
frameworks, Hibernate and Spring MVC, was without difficulties. The Spring
Security framework is used to ensure management of authentication and user
roles. User access to the relational database is realized through the web in-
terface. Majority of users are familiarized with web applications and they do
not need any additional software except a web browser. The user interface is
divided into several parts (the main menu, the second level menu, the header,
the footer and a content part). Input data are validated. Error messages are
presented using special marks in JSP views and by definition of CSS styles
for corresponding input fields.

Storage/download of raw EEG/ERP files is universal; it is possible to store/-
download any allowed file type.

Figure 12.3.1 shows the login page that is visible to not logged user. The user
can see basic information about the system. He/she can see instructions for
working with the EEG/ERP portal in the form of youtube videos or he/she
can log-in using a custom account or using a Facebook account. When user
does not have any account he/she can create one.

Figure 12.3.2 shows the home page visible for logged user. The home page
provides a simple preview of various system parts. The user can access the
additional system pages using the top menu.

12.3.4 Additional Modules

Since the EEG/ERP Portal is supposed to be a complex tool for working
with EEG/ERP experiments including signal processing or interaction within
various external systems we designed and implemented an Analytical tools
module that enables running of the implemented methods. Currently we
have implemented the following methods: The matching pursuit algorithm,

97

Chapter 12. EEG/ERP Portal

wavelet transform and Hilbert-Huang transform [57]. The new implemented
methods are gradually added. The methods are designed and implemented
as single libraries integrated within the EEG/ERP Portal.

When the user executes an individual method the method runs in a separate
thread on background. The results are represented in charts when execution
ends. This approach ensures that a parallel work may be done although the
execution of methods may be time-consuming.

Since many research groups with different aims use various signal processing
methods integration of these methods within the EEG/ERP Portal was done.

Currently, when a request for adding a method occurs it is solved individually.
In the near future we plan to develop a plug-in based framework that will
solve adding methods automatically.

We also designed and implemented a module for sharing our experiments
with other applications using the Apache CXF Web Service Framework. Web
Services in the module are secured using secured HTTP protocol when user
account is used as credentials of the Web Service. This approach ensures
that only the registered user is able to download experiments through the
Web Service.

Figure 12.3.1: EEG/ERP Portal Login Page Preview

98

Chapter 12. EEG/ERP Portal

Figure 12.3.2: EEG/ERP Portal Home Page Preview

12.4 Conclusion

We presented the EEG/ERP Portal for management of EEG/ERP ex-
periments. The set of metadata items relating to the inserted experi-
ment, based on ontology defined in Chapter 11, is defined and imple-
mented within the Portal. When the EEG/ERP experiment is putted
in its metadata description satisfies the developed ontology. Such ex-
periment could be easily repeated or processed by interested researchers.
Due to the web interface the usage of the Portal is intuitive. The user
does not need any additional software equipment except of a web browser.
Today, the EEG/ERP Portal is released and available in the web site:
http://eegdatabase.kiv.zcu.cz/home.html.

12.5 Semantic Web Extension

The EEG/ERP Portal uses a common system for preservation of experiments
(the relational database, persistent JavaBeans). The EEG/ERP Portal is
suitable for human readers but when we want to register the EEG/ERP Por-
tal as a recognizable data source according to INCF recommendation (Sub-
section 6.2.1) we need to extract ontology from the EEG/ERP Portal into the

99

Chapter 12. EEG/ERP Portal

Semantic Web structures. We used the Semantic Framework (described in
Section 10.4) to derive Semantic Web structures from the EEG/ERP Portal
persistence model.

Because of the data layer consists of the relational database that is mapped
to the JavaBeans using the Hibernate Framework we can straightforward
map such JavaBeans into the OWL structure in the developed framework.

12.5.1 Semantic Framework Integration

The module responsible for generating the Semantic Web structure from the
experiments stored within the EEG/ERP Portal uses the Semantic Frame-
work API. The input point of the EEG/ERP Portal internal logic is cre-
ated by the set of controllers according to Spring MVC design1. The con-
trollers are responsible for processing HTTP requests and generating a re-
lated response. Since the software agent (OWL reasoner) reads ontologies
available in the Internet we need to put our ontology on the Internet as
well. We defined the set of URLs processed by SemanticMultiController.
We defined that all portal URLs containing */semantic/* are processed
by the SemanticMultiController. The controller contains two methods
getOntology and getOntologyOwlApi. The first one is responsible for gen-
erating an OWL/RDF document. The second one provides, moreover, the
possibility to transform the output into various semantic formats. Since the
generation of the ontology is parameterizable we transmit the input param-
eters using GET response parameters.

When the SemanticMultiController processes input parameters it calls
the factory SimpleSemanticFactory through the SemanticFactory inter-
face. This factory is responsible for getting JavaBeans from the database
and handover such data to the Semantic Framework. The Semantic Frame-
work generates the ontology according to input parameters and returns Data
Stream. This stream is sent back to the controller that returns it to the web
browser using HTTP response. Figure 12.5.1 shows the UML structure.

1http://static.springsource.org/spring/docs/current/spring-framework-
reference/html/mvc.html

100

Chapter 12. EEG/ERP Portal

Figure 12.5.1: Semantic Framework Integration UML

The input GET parameter is called type with values RDF/XML, OWL/XML for
the ontology formats and RDF/XML-ABBREV, N-TRIPLE, TURTLE, N3, N3-PP,
N3-PLAIN, N3-TRIPLE for the ontology syntaxes.

For instance, when a reasoner visits the URL
http://eegdatabase.kiv.zcu.cz/semantic/getOntologyOwlApi.html?

type=turtle it obtains the OWL document in the turtle syntax. This
approach ensures that the ontology is regenerated after each request so it
is always up to date. Figure 12.5.2 shows the integration of the Semantic
Framework within the EEG/ERP Portal.

Figure 12.5.2: Semantic Framework Integration

101

Part VI

Results

102

Chapter 13

Performance Evaluation

13.1 Computational Complexity

When we want to make the developed framework usable for transforming on-
tological documents from systems working with real data, we need to discuss
the complexity of implemented algorithm.

We analyze the time complexity of the transformational algorithm in this
section. Here we consider the transformation operations and ignore the pre-
processing operations (Obtaining of JavaBeans from the database).

Firstly, we derive time complexity according to the complexity of the im-
plemented algorithm, then we do the set of experiments that should prove
practical usability of the framework.

The algorithm that translates the set of input JavaBeans into the output
Ontology document is expressed in Algorithm 4.1. The algorithm is based
on Definition 15 that describes individual steps for transforming ontology
from a JavaBean. Algorithm 13.1 shows implementation details of the trans-
formation process.

The algorithm consists of three cycles: extracting classes ∨ properties of
partial classes ∨ annotations of classes and its properties. The extraction of
classes (lines 1 to 3 of the algorithm) is executed in time N, we denote it NC.
The extraction of properties (lines 4 to 10 of the algorithm) is executed in
time N, we denote it NP. The extraction of class or properties annotations
(lines 11 to 18 of the algorithm) is in the worst case N+M (when else branch
is executed). We can simplify it and substitute it 2NA.

Summing up the above basic operations, the amount of work done by the

103

Chapter 13. Performance Evaluation

algorithm is:

F (N) = NC +NP + 2NA ≈ 4N (13.1.1)

We can infer (from (13.1.1)) the worst-case complexity of the translation algo-
rithm is O(N). This complexity expresses that the transformation algorithm
is directly proportional to the complexity of the input data.

Algorithm 13.1 Translation JavaBeans to Ontology

Input:
Set of JavaBeans
JB = (CJB, P JB, AJB) where

CJB: classes,
P JB: properties,
AJB: annotations of given JavaBean

Output:
Ontology
O = (CO, OO, DO, RO, SO) where

CO: classes,
OO: object properties,
DO: datatype properties,
RO: restrictions,
SO: subclases of given ontology

The translation from JavaBeans JB according to translation φ results in ontology O
following:

1: for all classes C ∈ CJB do
2: create a class φ(C) ∈ O
3: end for
4: for all properties P ∈P JB do
5: if P ∈ T where T ∈ {real, integer, boolean, enum, set, string} → primitive type

then
6: create a DataType property φ(D) ∈ O
7: else
8: create an Object property φ(O) ∈ O
9: end if

10: end for
11: for all annotations A ∈AJB do
12: if A ∈ N where N ∈ {@differenFrom,@equvivalentProperty} then
13: create a subproperty φ(P) ∈ {CO, PO} ∈ O
14: else
15: create a subclass φ(S) ∈ {CO, PO} ∈ O
16: create a restriction φ(R) ∈ {CO, PO} ∈ O
17: end if
18: end for

104

Chapter 13. Performance Evaluation

13.2 Experimental Verification

The computational complexity was demonstrated in Algorithm 13.1 and de-
duced in Formula (13.1.1). The theoretical calculation was practically verified
in Table 13.1.

We designed a test scenario where we tested the time needed for transforming
the set of input JavaBeans of various size to an ontology document. Firstly,
we prepared the set of Experiment instances. Later, we assigned instances of
Person, Scenario, Hardware and Data to each experiment. The class Person
was extended by the set of supported annotations (see Table 10.1).

The tests were executed on the computer with processor Intel®Core�i5-
2500, 3,3GHz with 6Gb of RAM assigned to Java Virtual Machine. The
tests were run ten times and the result was created as average of partial
results.

The first column of the table shows the number of created Experiments in
individual tests. We increased the number of instances in each test. The
other columns represent the time (in milliseconds) needed to generate the
output ontology document for individual supported syntaxes. We tested
RDF/OWL/XML, RDF/XML ABBREVIATED, Turtle, N3 triple, N3 plain,
N3-PP, N-triple syntaxes. Syntaxes [53] are functionally equivalent they
differ only in the format of the serialized output document. Figure 13.2.1
shows the chart representation of the results from Table 13.1. The linearity
of chart shows the legitimacy of our claim from Formula (13.1.1) for all
syntaxes.

Num. RDF RDF TTL N3 N3 N3 N3 N
/XML /XML -TRIP. -PL. -PP -TRIP.

-ABBR.
1000 2140 1241 742 442 559 538 509 517

10000 5486 7999 4838 3732 4906 4702 4748 4618
10500 5596 8434 5037 3823 5149 4966 4944 4922
10800 5881 8480 5210 3852 5232 5311 5128 4930
19000 10591 18272 10297 6878 9142 9132 9371 8849
20000 11833 17374 9774 7358 9750 10262 11178 12663

100000 57439 82667 56997 37269 50045 49137 57613 46777
150000 83467 127402 73511 60790 76899 76344 79515 73764
200000 116840 179608 100304 83623 98697 98621 98499 110474

Table 13.1: Time Dependence on the Set of Input Objects

105

Chapter 13. Performance Evaluation

Figure 13.2.1: Time Dependence on the Set of Input Objects

106

Chapter 14

Evaluation of Ontology

14.1 Prerequisites

Developing ontologies is a significant task across domains. When ontologies
are developed it is very difficult to discuss their correctness. We suppose
that the designed ontology has to follow several requirements: The output
ontology document has to be valid according to the specification defined
by W3C. When the ontology is valid it is readable by the common tools
(e.g. Protége) used for ontologies modeling. The ontology matching the
specification is processable by a common languages for querying of ontologies
(e.g. SparQL). The last, but probably the most important requirement is to
ensure that the ontology is accepted by community interested in the domain
for which the ontology was developed.

We defined three different ways to validate the developed ontology. We
presented NIF (see Subsection 6.3.2) as a portal that serves as an online
inventory of registered neuroscience data sources. Since the NIF is impor-
tant framework within the INCF community developed according to INCF
recommendations (see Subsection 6.2.1) we choose it as the best choice for
validating the ontology we presented. Therefore, NIF was defined, in the
goal of this thesis, as the authority that validates our approach.

The validation within NIF ensures that the developed ontology is supposed
to express EEG/ERP experiments. Such ontology is ready to be accepted
within the neurophysiology community.

Before starting with the registration of the ontology within NIF we needed
to check the validity of the ontology document. We compared the document
with the W3C specification and used the Protége tool.

107

Chapter 14. Evaluation of Ontology

14.2 Comparison with Specification

Ontologies expressed by the Semantic Web languages are intended to be read
by reasoners. The ontology has to conform the defined syntax in order to
should be read by the reasoner. We described the main important require-
ments that the ontology must satisfy to be valid. This requirements were
presented in Definitions 10, 11 and 12. The full specification of all available
OWL features is defined by W3C [55].

We took the simple JavaBean from Listing 10.1 that has the serialization
expressed in Listing 10.2. Let we discuss partial OWL constructs.

Since we serialize the ontology document into XML-based syntax we have to
firstly define the XML definition header;

<?xml version=” 1 .0 ”?>

Before we start with description of partial ontology constructs we need to
define linked namespaces:

<rdf:RDF
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”
xmlns : j .0=” ht tp : // thewebsemantic . com/”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xmlns : j .1=” ht tp : // cz . zcu . k iv#”

xml:base=” ht tp : // data . pojo ”>

An OWL class is syntactically represented as a named instance of owl:Class
[52]. When we look at our class definition from the following listing we can
see owl:Class as well. Therefore we can say that we satisfy the syntax of
class definition.

<owl :C la s s rd f : abou t=” ht tp : // cz . zcu . k iv#Experiment”/>

The listing above is correct but does not provide the full description of the
class Eperiment. OWL provides possibility to add additional components of
OWL class [52]. It contains three language constructs for combining class de-
scriptions into class axioms: rdfs:subClassOf, owl:equivalentClass and
owl:disjointWith. Syntactically, these three language constructs are prop-
erties that the class expresses as a subelement of owl:Class. If we compare
this definition with listing bellow, we can say that the output is syntactically
correct.

<owl :C la s s rd f : abou t=” ht tp : // cz . zcu . k iv#Experiment”>
<ow l : e qu i va l en tC l a s s r d f : r e s o u r c e=” ht tp : // cz . zcu . k iv#Measurement”/>

</ ow l :C la s s>

108

Chapter 14. Evaluation of Ontology

Constructs owl:equivalentProperty and owl:inverseOf represent rela-
tions to other properties [52]. These properties are syntactically defined as
build-in properties of owl:ObjectProperty or owl:DataTypeProperty. The
following listing shows the owl:equivalentProperty from our ontology.

<owl :ObjectProperty rd f : abou t=” ht tp : // cz . zcu . k iv#te s t edSub j e c t ”>
<owl : equ iva l en tPrope r ty r d f : r e s o u r c e=” ht tp : // cz . zcu . k iv#TestedSubject ”/>
<rd f s :domain r d f : r e s o u r c e=” ht tp : // cz . zcu . k iv#Experiment”/>

</ owl :ObjectProperty>

Finally, the following listing closes the ontology document.

</rdf:RDF>

The last OWL construct is the property restriction. Property restrictions
are defined in [52] as a special kind of class description. They describe an
anonymous class, namely a class of all individuals that satisfy the restriction.

Property restrictions have the following general form:

<ow l :R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” (some property) ” />
(p r e c i s e l y one value or c a r d i n a l i t y c on s t r a i n t)

</ ow l :R e s t r i c t i o n>

The class owl:Restriction is defined as a subclass of owl:Class. A restric-
tion class should have exactly one triple linking the restriction to a particular
property, using the owl:onProperty property. The restriction class should
also have exactly one triple that represents the value constraint c.q. cardinal-
ity constraint on the property under consideration, e.g., that the cardinality
of the property is exactly 1.

Property restrictions can be applied both to Datatype properties and Object
properties.

For demonstration we extend listing 10.1 about a cardinality annotation
@MaxCardinality(1) on testedSubject property. See Listing 14.1.

Listing 14.1: Tested Subject With Cardinality

@MaxCardinality (1)
p r i va t e Person t e s t edSub j e c t ;

The output OWL document is extended as follows:

<owl :C la s s rd f : abou t=” ht tp : // cz . zcu . k iv#Experiment”>
<rd f s : subC la s sO f>

<ow l :R e s t r i c t i o n>
<owl :maxCardinal i ty rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#in t ”
>1</ owl :maxCardinal i ty>
<owl :onProperty>

<owl :ObjectProperty rd f : abou t=” ht tp : // cz . zcu . k iv#te s t edSub j e c t ”/>

109

Chapter 14. Evaluation of Ontology

</ owl :onProperty>
</ ow l :R e s t r i c t i o n>

</ rd f s : subC la s sO f>
<j . 0 : j a v a c l a s s>cz . zcu . k iv . Experiment</ j . 0 : j a v a c l a s s>

</ ow l :C la s s>

We compared a partial construct of our ontology generated from JavaBeans
build-in within the EEG/ERP Portal. This section verified that the ontology
is syntactically correct according to the specification defined by W3C [52].
There are on-line validators enabling to verify a custom ontology according
to W3C specification. We selected the validator provided by the Manchester
University1 and used it for verifying the developed ontology. Figure 14.2.1
shows the successful validation result of the developed ontology. It shows
correctness of the constructs we discussed above.

Figure 14.2.1: EEG/ERP Portal Ontology Validation Result

14.3 Validation Using Protége

Since the Protége is probably the most extended tool used for modeling of
ontologies we decided to use Protége as a secondary validation tool of the
generated ontology. When the ontology is readable by the Protége it can be
easy managed, visualized or modified.

Figure 14.3.1 shows the loaded EEG/ERP Portal ontology using Protége.
The ontology was successfully loaded so it can be considered as a valid for the
Protége tool. Classes derived from the ontology are listed in the left window.

1http://owl.cs.manchester.ac.uk/validator/

110

Chapter 14. Evaluation of Ontology

The right two windows shows the selected class. The class Experiment is
selected. The bottom right window shows superclasses derived from the
Experiment class. The visualization of the ontology is shown in Figure 14.3.2.
We can see the classes: Experiment, Person, Scenario, etc.; all are inherited
from the class Thing.

Figure 14.3.1: EEG/ERP Portal Ontology Loaded in Protége

Figure 14.3.2: EEG/ERP Portal Ontology Visualized in Protége

111

Chapter 14. Evaluation of Ontology

This section proved that the ontology we presented can be processed using
Protége. An advanced user can use this tool when he/she wants to adapt this
ontology to custom needs, or he/she wants to only visualize the ontology.

The last two sections proved that the ontology we automatically generated
from the EEG/ERP Portal using the Semantic Framework is syntactically
valid according to the specification defined by W3C. Such ontology is pre-
pared to be read by software agents (ontology reasoners).

14.4 Evaluation Using NIF Portal

14.4.1 Registration Process overview

The registration within NIF takes places at 3 levels described in 6.3.2. Each
level makes a neuroscience resource available in different way. The registra-
tion takes place gradually from the lowest to the highest level.

When we were registering our resource we had to follow several steps: The
first step is registering the EEG/ERP Portal on the first level. Such regis-
tration required to provide basic information about the EEG/ERP Portal.
When the resource was curated (approved by the NIF interoperability team)
the WIKI page was assigned to the resource. The curated resource is regis-
tered within the NIF registry. Once our resource was curated we generated a
sitemap using the NIF build-in tool. Because our data source is a database
we created an Interop File. This file allows us sharing data using the dynamic
search. The last step required creation Linkout File that enables to link the
resource with papers published in the PubMed2.

14.4.2 Resource Description

NIF uses a proprietary framework Disco [51]. This framework consists of
several tools and description files for describing resources and for access-
ing a dynamic context of the registered resource as well. The registered
resource is described using two XML files: disco.xml and disco.rd.xml.
Both have RDF syntax that are computer-processable on the NIF side.
The first file provides a basic description of the registered resource as
its URL, contact, etc. The second one provides a more detailed de-

2PubMed comprises more than 21 million citations for biomedical literature from MED-
LINE, life science journals, and online books. See http://www.ncbi.nlm.nih.gov/pubmed/

112

Chapter 14. Evaluation of Ontology

scription of the source as a description of partial sections of the sys-
tem, keywords, publication links, etc. These files are located in the root
of our EEG/ERP Portal so they can be read by NIF mediators. The
URLs of this files are: http://eegdatabase.kiv.zcu.cz/disco.xml and
http://eegdatabase.kiv.zcu.cz/disco.rd.xml. When we change the de-
scription in these files the NIF registry description will be changed automat-
ically. This approach ensures that we manage the description of our resource
locally. The EEG/ERP portal registered as the NIF resource is available at
http://neurolex.org/wiki/Nif-0000-08190.

14.4.3 Dynamic Content Registration

We prepared two Disco files that describe our EEG/ERP Portal in the NIF
registry. Such description provides static information about the registered
source, but the main contribution, in relation to our EEG/ERP Portal, of
the Disco protocol is the possibility to access a dynamic content of the stored
experiments. When experimental data and metadata are searchable we can
assume that the ontology is valid.

The stored experiments we provided in two different forms. The first form is
the ontology in the Semantic Web form that is generated by integrated Se-
mantic Framework (see: Section 10.4). The second form uses Interoperability
XML file [21].

The Interoperability XML is used to describe the structure of meta-
data instances stored in a plain text file. The plain text file is a dy-
namic file that consists experimental data/metadata from the EEG/ERP
Portal. The XML file is in the project root as well as Disco XML
files and is accessed by NIF. The XML description file is available at:
http://eegdatabase.kiv.zcu.cz/eegdatabase.xml. The NIF reloads it
in regular intervals. When the Interoperability XML file is reloaded the dy-
namic plain text file is also refreshed. This approach enables a dynamic access
to the dynamic content of the EEG/ERP Portal using the NIF registry. Fig-
ure 14.4.1 shows the overview of the NIF registry with the EEG/ERP Portal
listed.

113

Chapter 14. Evaluation of Ontology

Figure 14.4.1: EEG/ERP Portal within NIF Registry

When experiments stored in the EEG/ERP Portal are searchable through
NIF we can infer that the ontology is searchable and valid according to
NIF requirements. Since NIF supposes to be an authority for neuroscience
resources we can consider a custom developed ontology as an appropriate
expression of EEG/ERP experiments. The last step, the registration of the
ontology in the Semantic Web form, despite intensive cooperation with the
NIF support, is still in progress. We have the OWL output fully prepared
but due to unpreparedness of NIF we are not able to finish this step yet.
We suppose that the process of the registration of ontologies is still under
development. As soon as the NIF side will be prepared we are able to register
our OWL immediately. However, we can verify the ontology according to the
W3C specification or by using Protége tool.

114

Chapter 15

Conclusion

The goal of this thesis was to identify difficulties relating to storage of
data/metadata from EEG/ERP experiments.

The scientific papers focused on EEG/ERP experiments usually describe
designing and creating experimental scenarios or performing experiments.
They usually do not solve storage, interchange or description of experimental
data and medatata.

The interchange of experimental data relates to the need to provide uni-
fied data/metadata formats. The Internet seems to be appropriate to share
experimental data. However, due to limits that the current web gradually
reaches a parallel web called the Semantic Web is being developed. The
current web consists of large collections of data without any classification.
The Semantic Web that expresses meaning of data by domain ontologies is
supposed to solve the problem of missing semantics of the current web.

Development of specific ontologies is crucial task in the creation of Semantic
Web. Ontologies usually serve as recognizable data sources accessible by
automatic software readers. However, current software systems are usually
based on object-oriented programming languages and they operate over large
data collections. The data layer of such systems is usually represented by the
set of data objects. These objects are stored within the relational database.

Since fundamental differences between semantics of the object-oriented code
and Semantic Web languages exist, it is necessary to ensure a suitable map-
ping.

Because expressive capabilities of Semantic Web languages are richer than
in the case of the object-oriented code we investigated the way to fill these
semantic gaps.

115

Chapter 15. Conclusion

In this work we presented an approach based on extending a common Jav-
aBean using JavaAnnotations that adds missing semantics into the plain
JavaBean. We presented the defined mapping of Java annotations to the
corresponding OWL constructs. We also presented the developed framework
where the mapping is implemented. This framework is supposed to be a
powerful tool for preparing domain ontologies extracted from object-oriented
Java based systems independently on the specific domain needs.

Difficulties relating to description of EEG/ERP experiments were solved by
designing the ontology that describes metadata. This ontology was presented
to large neuroscience community to accept it as the standard ontology of
EEG/ERP experiments.

The EEG/ERP Portal serves the community as the practical tool for storing,
managing and interchanging custom experiments. The internal structure of
the system is designed to satisfy restrictions given by the ontology. The web
based user interface is easy to use.

The developed Semantic Framework was integrated with the EEG/ERP Por-
tal, therefore we are able to transform the portal ontology into the Semantic
Web languages (OWL, RDF). This ontology was registered in the NIF Portal.
This approach proved the correctness of our solution.

15.1 Current State of Work

The work solves several difficulties we were facing. Firstly, we pointed out the
problems related to description of data by suitable metadata and the needs
of unified formats to preserve large data sets obtained during EEG/ERP ex-
periments. We solved it by defining a custom ontology based on practical
experiences gained during experiments performed in our laboratory, reading
scientific papers and books and intensive communication with our collabora-
tors.

The second important task included development of the EEG/ERP Portal.
The system is implemented with the emphasis to provide data/metadata in
the form prescribed by the defined ontology.

The most important contribution was to infer the transformational mecha-
nism that transforms common JavaBeans into the Semantic Web languages.
In addition, the semantic diversity that exists due to different semantic ex-
pressivity of the object oriented code and the Semantic Web languages we
partly solved. The proposed transformational mechanisms was practically

116

Chapter 15. Conclusion

implemented in the Semantic Framework. This framework is usable as a sin-
gle library integrable within various Java-based systems. Such libraries can
serve in various domains, not only in the domain of EEG/ERP experiments.

The ontology registered in NIF is searchable through the unified interface
that enables simple sharing of stored experiments.

15.2 Evaluation of Thesis Goals

Now we summarize the thesis goals appointed in Section 1.3:

1. The first point of this work was the definition an ontology that describes
EEG/ERP experiments. The ontology was designed and implemented.
This ontology is fully prepared to be discussed within the community.
The interested community can use it as the template for the description
of custom experiments. The defined ontology is represented using com-
mon Semantic Web languages and it can be manipulated using various
tools for ontologies modeling.

2. The second point of this work was the representation of the developed
ontology using Semantic Web technologies. The developed ontology is
represented by Ontology Web Language (OWL). It is fully prepared to
be read by ontology reasoners.

3. The third point was investigation of the transformation of an ontology
from the systems that are not primarily based on the Semantic Web
languages. As the result we proposed and developed a way to transform
common data structures into the Semantic web languages. The main
contribution of this part of the thesis was extension of current data
modeling to solve the semantic gap caused by different expressivity of
various data modeling techniques. In addition, the presented system
improved mapping in general, it is used across various systems, not
only in neuroscience.

4. The developed transformational mechanism and the developed ontology
were verified to discuss their validity in the fourth point. We selected
NIF. NIF enables registration of domain ontologies in three levels. We
successfully registered the ontology almost at the last level. This reg-
istration is done by XML-based files. The registration of the ontology
in the form of OWL document was not finished yet due to unfinished

117

Chapter 15. Conclusion

implementation of the NIF registry. However, the ontology registered
in the present state is searchable (experiments are listed within NIF).

15.3 Future Work

The presented work introduced the complete way from theoretical design
of the ontology of EEG/ERP experiments over its practical implementation
until its automatic extraction from common object-oriented system and its
verification using NIF.

Since a lot of work was done, the range of issues related to expression of
knowledge by the Semantic Web and mainly its transformation from com-
mon data structures is not possible to cover by this thesis. The presented
approach produces the ontology document that is generated in OWL. When
we compare the ontology document with specifications defined in Subsec-
tion 5.2.2 we can say that it fully satisfies OWL DL but it does not use all
constructs of OWL Full. Since OWL Full e.g. does not enforce a strict sepa-
ration of classes, properties, individuals and data values it is problematic to
map object-oriented constructs (where such strictly separation is enforced)
to equivalent OWL constructs.

In the future we plan to investigate a strict separation between OWL speci-
fications and clearly define which OWL constructs are possible to express by
object-oriented languages and where it is fundamentally impossible.

Since many limitations of OWL exist the extension (called OWL2)1 has been
started developed [58] when this work was written. OWL2 aims is to remove
issues of different syntaxes, improve datatype expressivity, provide better
organization of imports or remove difficulties with different versions of OWL
syntaxes [59].

As the significant next step we plan to start with transformation from the
object-oriented code into the OWL2 syntax.

There is also outstanding task related to the technical implementation of the
presented solution. From Chapter 13 we suspect possible future performance
problems. Currently the EEG/ERP Portal contains tens of experiments but
in the future we expect a sharp increase in the number of stored experiments.
Since we inferred linear dependence of transformation process in Chapter
13 the direct online serialization could be time consuming. Therefore we
plan to store partial models formed from the transformation process in the

1the current one was renamed to OWL1.

118

Chapter 15. Conclusion

database. The stored model will be gradually supplemented by experiments
being added. The serialized output documents will be stored also in the
database. When a document request occurs it will be retrieved from the
database and returned to the user.

Together with the continuing development of NIF we will work on the reg-
istration of the presented OWL document into the NIF registry. It should
replace the current XML-based approach.

119

Bibliography

[1] Rémond, A., Handbook of elektroencephalography and clinical neuro-
physiology: Graphic and magnetic-tape recording of bioelectrical phe-
nomena, Amsterdam, 1976, ISBN: 978-0444801258

[2] Handy, T. C., Event-related potentials, A Bradford Book; 1 edition,
2004, ISBN: 978-0262083331

[3] Johnson, G., Understanding how to brain works. Traumatic Brain Injury
survival guide, http://www.tbiguide.com/howbrainworks.html, Online,
2010

[4] Luck, S. J., An Introduction to the Event-Related Potential Technique
(Cognitive Neuroscience), The MIT Press, August 2005, ISBN: 978-
0262621960

[5] Dean, A., Voss, D., Design and Analysis of Experiments, Springer Ver-
lag, New York, USA, 1999, ISBN: 978-0-387-98561-9

[6] Polich, J., Kok, A., Cognitive and biological determinants of P300: an
integrative review, Biological Psychology, Elsevier Science 41, pp. 103 -
146, 1995

[7] Kemp, B., European Data Format,
http://www.edfplus.info/index.html, Online, 2010

[8] Kemp, B., Värri, A., Rosa, A. C., Nielsen, K. D., Gade, J., A simple
format for exchange of digitized polygraphic recordings. Clinical Neuro-
physiology 82, pp. 391 - 393, 1992

[9] Walter Graphtek, http://www.walter-graphtek.com/, Online, 2010

[10] Natus, http://www.natus.com/index.cfm?page=company 1&crid=139,
Online, 2010

120

Bibliography

[11] Brainlab, http://www.brainlab.be/, Online, 2010

[12] OpenXDF Consortium, OpenXDF, http://www.openxdf.org/, Online,
2010

[13] Brain Product, http://www.brainproducts.com/, Online, 2010

[14] Holmes, G., Donkin, A., Witten, I.H., WEKA: a machine learning work-
bench, Intelligent Information Systems,1994. Proceedings of the 1994
Second Australian and New Zealand Conference on, IEEE, pp. 357-361,
1994, ISBN: 0-7803-2404-8

[15] Pelt, J. van, Horn, J. van, Workshop report, 1st INCF Workshop on
Sustainability of Neuroscience Databases, Stockholm, 2007

[16] Kötter, R., Neuroscience Databases: A Practical Guide, Kluwer Aca-
demic Publishers, USA, 2003, ISBN: 1-4020-7165-5

[17] CARMEN Portal, http://www.carmen.org.uk/, Online, 2010

[18] INCF Japan node, http://www.neuroinf.jp/, Online, 2010

[19] Gupta, A., Bug, W., Marenco, L., Qian, X., Condit, Ch., Rangarajan,
A., Müller, H. M., Miller, P. L., Sanders, B., Grethe, J. S., Astakhov, V.,
Shepherd, G., Sternberg, P. W., Martone, M. E., Federated Access to
Heterogeneous Information Resources in the Neuroscience Information
Framework (NIF), Neuroinformatics 6, Springer, pp. 205–217, 2008

[20] The NIF DISCO Framework: Facilitating Automated Integration of
Neuroscience Content on the Web, Neuroinformatics 8, Springer, pp.
101–112, 2010

[21] NCBO BioPortal, http://bioportal.bioontology.org/ontologies/40510,
Online, 2010

[22] Mouček, R., Mautner, P., Driver attention while double stress -
EEG/ERP experiment (Pozornost řidiče při dvoj́ı zátěži – EEG/ERP
experiment in Czech), Kognice a umelý život IX, Opava 2009, ISBN:
978-80-7248-516-1

[23] Antoniou, G., Harmelen, F. van, A Semantic Web Primer, The MIT
Press, April 2004, ISBN: 0-262-01210-3

[24] Berners-Lee, T., Hendler, J., Lassila, O., The Semantic Web, Scientific
American Magazine, May 2001

121

Bibliography

[25] Obitko, M., Translations between Ontologies in Multi-Agent Systems,
Ph.D. dissertation thesis, CTU, Prague, 2007

[26] Yanhui Lv Ma, Z. M., Transformation of relational model to RDF model.
Systems, Man and Cybernetics, 2008, ISBN: 978-1-4244-2383-5

[27] Guimaraes, J. de O., The object oriented model and its advantages,
ACM SIGPLAN OOPS Messenger, January 1995, pp. 40 - 49, ISSN:
1055-6400

[28] Kalyanpur, A., Pastor, D. J., Padget, J. A., Automatic Mapping of OWL
Ontologies into Java, Software Engeering and Knowledge Engeering, pp.
98 - 103, June 2004

[29] LePendu, P., Ontology based Relational Databases, University of Ore-
gon, 2007

[30] Dou, D., LePendu, P., Ontology-based integration for relational
databases, In ACM Symposium on Apllied Computing (SAC) pp. 461-
466, 2006

[31] Dou, D., LePendu, P., Kim, S. and Qi, P., Integrating databases into
the semantic web through an ontology-based framework, Proceedings of
the 22nd International Conference on Data Engineering Workshops, pp.
54-63, 2006

[32] Koide, S., Aasman, J., Haflich, S., OWL vs. Object Oriented Program-
ming. In International Workshop on Semantic Web Enabled Software
Engineering (SWESE), 2005

[33] Jena Framework, http://jena.sourceforge.net/, Online, 2010

[34] Prud’hommeaux, E., Seaborne, A., SPARQL Query Language for RDF.
W3C Recommendation, http://www.w3.org/TR/2005/WD-rdf-sparql-
query- 20050217/, February 2005.

[35] Steer, D., SquirrelRDF, http://jena.sourceforge.net/SquirrelRDF/, On-
line, 2010

[36] The D2RQ Plattform - Treating Non-RDF Databases as Virtual RDF
Graphs, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/, Online, 2010

[37] Sesame sematic web toolkit, http://semanticweb.org/wiki/Sesame, On-
line, 2010

122

Bibliography

[38] Švihla, M., Transforming Relational Data into Ontology Based RDF
data, Thesis, CTU, Prague, 2007

[39] Sommer, https://sommer.dev.java.net/sommer/index.html, Online,
2010

[40] Java2OWL-S, http://www.daml.org/2003/10/java2owl/, Online, 2010

[41] JenaBean, http://code.google.com/p/jenabean/, Online, 2010

[42] The OWL Api, http://owlapi.sourceforge.net/, Online, 2010

[43] Bell, D., UML basics: An introduc-
tion to the Unified Modeling Language,
http://www.ibm.com/developerworks/rational/library/769.html,
Online, 2011

[44] OMG Consorcium, Ontology Definition Metamodel,
http://www.omg.org/spec/ODM/1.0/PDF/, Online, 2011

[45] OMG Consorcium, OMG Object Constraint Language (OCL),
http://www.omg.org/spec/OCL/2.3.1/, Online, 2011

[46] Oren, E., Delbru, R., Gerke, S., Haller, A. and Decker S., ActiveRDF:
object-oriented semantic web programming, In Proceedings of the 16th
international conference on World Wide Web, pp. 817-824, 2007

[47] Po-Huan, Ch., Chi-Chuan, L., Kuo-Ming, Ch., Integrationg Semanic
Web and Object-Oriented Programming for Cooperative Desig, In Jour-
nal of University Computer Science,vol. 15, no. 9, 2009

[48] Liu, F., Wang, J., Dillon, S. T., Web Information Representation, Ex-
traction and Reasoning based on Existing Programming Technology, In
Computational Inteligence 37, pp. 147-168, 2007

[49] Hitchcock, S., The Open Journal Project, What is a Bean,
http://journals.ecs.soton.ac.uk/java/tutorial/beans/whatis/simple-
definition.html, Online, 1998

[50] Pergler, J., Database of ERP experiments - business and presentation
layer (Databáze ERP experiment̊u - aplikačńı a prezentačńı vrstva),
Thesis (in Czech), University of West Bohemia, Pilsen, 2009

[51] Marenco, L., Wang, R., Shepherd, M. G., Miller, P. L., The NIF DISCO
Framework: Facilitating Automated Integration of Neuroscience Con-
tent on the Web, In Journal Neuroinformatics no. 8, 2010

123

Bibliography

[52] W3C OWL Working Group, OWL Web Ontology Language Reference,
http://www.w3.org/TR/owl-ref/, W3C Recommendation, Online, 2011

[53] W3C OWL Working Group, RDF/XML Syntax Specification (Revised),
http://www.w3.org/TR/rdf-syntax-grammar/, W3C Recommendation,
Online 2012

[54] Roebuck, K., Object-relational mapping (Orm): High-impact Strategies
- What You Need to Know: Definitions, Adoptions, Impact, Benefits,
Maturity, Vendors, Tebbo, June 2011, ISBN: 1743044755

[55] W3C OWL Working Group, OWL Web Ontology Language, W3C Rec-
ommendation 10 February 2004, Overview http://www.w3.org/TR/owl-
features/, Online, 2012

[56] Teorey, T. J., Lightstone, S. S., Nadeau, T., Jagadish, H.V., Database
Modeling and Design, Fifth Edition, Morgan Kaufmann, February 2004,
ISBN: 0123820200

[57] Ciniburk, J., Mouček, R., Mautner, P., Řond́ık, T., ERP components de-
tection using wavelet transform and matching pursuit algorithm, DCII,
Prague 2010

[58] W3C OWL Working Group, OWL 2 Web Ontology Language Document
Overview, http://www.w3.org/TR/owl-overview/, W3C Recommenda-
tion, October 2009

[59] Graua, B. C., Horrocksa, I., Motika, B., Parsiab, B., Patel-Schneiderc,
P., Sattlerb, U., OWL 2: The next step for OWL, Web Semantics:
Science, Services and Agents on the World Wide Web, Elsevier, Volume
6, Issue 4, pp. 309-322, November 2008

124

Appendix A

Author’s Publications

The following papers were published in conference proceedings:

1. Ježek, P. Hromadné úložǐste EEG/ERP záznamů. Informatika v
škole a v praxi. Ružomberok, 2008, pp. 158 - 161, ISBN 978-80-8084-
362-5

2. Mouček, R., Ježek, P. EEG/ERP experiments - Data and Meta-
data Structures. Frontiers in Neuroinformatics. Stockholm, 2008,
pp. 123

3. Ježek, P., Mouček, R. Database for EEG/ERP Experiments. 2nd

INCF Congress of Neuroinformatics. Frontiers in Neuroinformatics,
Pilsen, 2009, pp. 141

4. Ježek, P. Úložǐste dat a metadat EEG/ERP experiment̊u. Kog-
nice a umelý život IX. Opava, 2009, pp. 125 - 129, ISBN: 978-80-7248-
516-1

5. Ježek, P., Mouček, R. Database of EEG/ERP Experiments. Third
International Conference on Health Informatics. Valencia, Spain, 2010,
pp. 222 - 227, ISBN: 978-989-674-016-0

6. Mouček, R., Ježek, P. System for Storage and Management
of EEG/ERP Experiments - Generation of Ontology. In-
ternational Conference on Enterprise Information Systems. Funchal,
Madeira - Portugal, 2010, pp. 415 - 420, ISBN: 978-989-8425-04-1

7. Ježek, P., Papež, V. Systém pro správu ERP experiment̊u. Kog-
nice a umělý život X. Slezská univerzita v Opavě, 2010, pp. 177 - 180,
ISBN: 978-80-7248-589-5

125

Appendix A. Author’s Publications

8. Mouček, R., Ježek, P., Papež, V. Prostředky sémantického webu
v oblasti EEG a evokovaných potenciál̊u. Kognice a umělý život
X. Slezská univerzita v Opavě, 2010, pp. 259 - 262, ISBN: 978-80-7248-
589-5

9. Papež, V., Ježek, P. Neuroinformatická databáze a sémantický
web. Kognice a umělý život X. Slezská univerzita v Opavě, 2010, pp.
269 - 273, ISBN: 978-80-7248-589-5

10. Ježek, P., Mouček, R. EEG/ERP Portal - Semantic Web Exten-
sion,Generating Ontology from Object Oriented Model. Sec-
ond Global Congress on Intelligent Systems. Wuhan, China, 2010, pp.
392 - 395, ISBN: 978-1-4244-9247-3

11. Ježek, P., Mouček, R. System for Storage EEG/ERP Data and
Metadata. Frontiers in Neuroinformatics. 3rd INCF Congress of Neu-
roinformatics. Kobe, Japan, 2010, pp. 150

12. Mouček, R., Ježek, P., Papež, V. Deriving Semantic web Struc-
tures from EEG/ERP Data Source. Frontiers in Neuroinformat-
ics, 3rd INCF Congress of Neuroinformatics. Kobe, Japan, 2010, pp.
45

13. Ježek, P., Mouček, R. Integration of Signal Processing Methods
into EEG/ERP System. Healthinf - International conference on
health informatics. Rome, Italy. 2011. pp. 563 - 566, ISBN: 978-989-
8425-34-8

14. Mouček, R., Ježek, P., Václav, P. Semantic Web Technologies in
EEG/ERP Domain - Software Solution. Healthinf - International
conference on health informatics. Rome, Italy, 2011, pp. 618 - 621,
ISBN: 978-989-8425-34-8

15. Ježek, P., Mouček, R. Transformation of Object-Oriented Code
Into Semantic Web Using Java Annotations. ICEIS - 13th In-
ternational Conference on Enterprise Information Systems. Beijing,
China, 2011, pp. 1 - 4, ISBN: 978-989-8425-65-2

16. Mouček, R., Ježek, P. Overview of Neuroinformatics Infrastruc-
ture in Pilsen, CZ. Frontiers in Neuroinformatics. 4th INCF Congress
of Neuroinformatics. Boston, USA, 2010, pp. 310

126

Appendix A. Author’s Publications

17. Ježek, P., Mouček, R. EEG/ERP portal - Extending Object Ori-
ented Code for the Missing Semantics Using Java Annota-
tions. Frontiers in Neuroinformatics. 4th INCF Congress of Neuroin-
formatics. Boston, USA, 2010, pp. 320

18. Mouček, R., Jaroš, P., Ježek, P., Papež, V. Software infrastructure
for EEG/ERP research. International Conference on knowledge
Enginering and Ontology Development. Setúbal: SciTePress, 2011,
pp. 478 - 481, ISBN: 978-989-8425-80-5

19. Ježek, P., Mouček, R. Semantic Web in EEG/ERP Portal. 4th

International Conference on Biomedical Engineering and Informatics.
New York: IEEE. 2011, pp. 2076 - 2080. ISBN: 978-1-4244-9350-0

20. Ježek, P., Mouček, R. Semantic Web in EEG/ERP Portal - Ex-
tending of Data Layer using Java Annotations. HEALTHINF -
International Conference on Health Informatics. Vilamoura, Algarve,
Portugal, 2012 pp. 350 - 353, ISBN: 978-989-8425-88-1

127

