
University of West Bohemia

Faculty of Applied Sciences

Semantic Web Search Using

Natural Language

Ivan Habernal

Doctoral Thesis
Submitted in partial ful�llment of the requirements

for a degree of Doctor of Philosophy
in Computer Science and Engineering

Supervisor: Professor Václav Matou²ek
Department of Computer Science and Engineering

Plze¬, 2012

Západo£eská univerzita v Plzni

Fakulta aplikovaných v¥d

Vyhledávání v Sémantickém

webu pouºitím p°irozeného

jazyka

Ing. Ivan Habernal

diserta£ní práce
k získání akademického titulu doktor v oboru

Informatika a výpo£etní technika

�kolitel: Prof. Ing. Václav Matou²ek, CSc.
Katedra informatiky a výpo£etní techniky

Plze¬ 2012

Prohlášeńı

Předkládám t́ımto k posouzeńı a obhajobě disertačńı práci zpracovanou na
závěr doktorského studia na Fakultě aplikovaných věd Západočeské univer-
zity v Plzni.

Prohlašuji t́ımto, ze tuto práci jsem vypracoval samostatně, s použit́ım od-
borné literatury a dostupných pramen̊u uvedených v seznamu, jenž je sou-
část́ı této práce.

V Plzni dne 31. března 2012 Ing. Ivan Habernal

i

Abstract

This thesis presents a complete end-to-end system for the Semantic Web
search using a Natural Language. The system is placed into the context of
recent research in Information Retreival, Semantic Web, Natural Language
Understanding, and Natural Language Interfaces. The key feature of Natu-
ral Language Interfaces is that users can search for the required information
by posing their questions using natural language instead of e.g. filling web
forms.

The developed system uses the Semantic Web technologies in both tradi-
tional and new forms. The idea of the Semantic Web has brought many
interesting concepts into domain modeling and data sharing. Furthermore,
the development in Natural Language Interfaces to Semantic Web has shown
that bridging the gap between the Semantic Web and Natural Language In-
terfaces can uncover new research challenges.

The main contributions of this thesis are as follows. First, a unique for-
malism for capturing a natural language question semantics, based upon
Semantic Web standards, was proposed. Second, the statistical model for
the semantic analysis based upon supervised training was developed. Third,
the evaluation of the fully functional end-to-end system with a real data and
real queries was conducted.

The system was tested in the accommodation domain using real data ac-
quired from the Web as well as the corpus of real queries in natural lan-
guage. The thesis deals with both theoretical and practical issues that must
be solved in a fully functional system. A complete work-flow is described,
including preparation of data, natural language corpus, ontology design,
annotation, semantic model and search.

Finally, a very detailed evaluation with promising results is presented and
discussed. Special attention is also paid to open issues, such as a perfor-
mance, a usability, a portability, or sources of a real Web data.

ii

Abstrakt

Disertačńı práce popisuje kompletńı systém pro vyhledáváńı v sémantickém
webu použit́ım přirozeného jazyka. Systém je představen v kontextu výzku-
mu na poli Information Retrieval, sémantického webu, porozuměńı přiro-
zenému jazyku a rozhrańı využ́ıvaj́ıćıch přirozený jazyk. Hlavńı výhodou
rozhrańı využ́ıvaj́ıćıch přirozený jazyk je možnost zadat otázku celou větou
namı́sto vyplňováńı webových formulář̊u nebo použit́ı pouze kĺıčových slov.

Vyvinutý systém využ́ıvá technologie sémantického webu tradičńımi i no-
vými zp̊usoby. Myšlenka sémantického webu vnesla mnoho zaj́ımavých kon-
cept̊u do modelováńı domén a sd́ıleńı dat např́ıč doménami. Nav́ıc kombi-
nace sémantického webu a rozhrańı využ́ıvaj́ıch přirozený jazyk skýtá nové
možnosti pro vylepšeńı uživatelského komfortu při vyhledáváńı.

Disertačńı práce má tyto hlavńı př́ınosy. Zaprvé: byl navržen nový formalis-
mum pro zachyceńı sémantiky otázky v přirozeném jazyce. Tento formalis-
mum využ́ıvá technologíı sémantického webu. Zadruhé: byl vyvinut statis-
tický model pro sémantickou analýzu založený na strojovém učeńı. Zatřet́ı:
systém byl otestován na reálných datech a reálných otázkách.

Systém byl testován na doméně pro vyhledáváńı ubytováńı. Data byla źıská-
na z reálných webových portál̊u stejně jako testovaćı otázky v přirozeném
jazyce. Práce se zabývá teoretickými i praktickými problémy, které muśı být
ve funkčńım systému vyřešeny. Je popsán celý postup źıskáńı dat, korpus
otázek, návrh ontologíı, anotace, sémantická analýza a vyhledáváńı.

Na závěr je provedeno velmi d̊ukladné vyhodnoceńı funkčnosti systému. Po-
zornost je také zaměřena na otevřené problémy, např. výkon, použitelnost,
přenositelnost na jinou doménu a jazyk a zdroje webových dat.

iii

Contents

I Introduction 1

1 Motivation and Introduction 2

1.1 Thesis Outline . 3

1.2 Discussion of the Terminology Used 4

II State of the Art 7

2 Natural Language Interfaces to Structured Data 8

2.1 Natural Language Interfaces to Databases 9

2.2 Semantic Web and Ontologies 9

2.3 Architecture of NLISW . 11

2.3.1 Knowledge Base and Ontologies 11

2.3.2 Question Understanding 12

2.3.3 Knowledge Base Querying and Answer Representation 14

2.4 Evaluation Metrics and Testing Datasets 14

2.5 Overview of Existing Systems 15

2.5.1 PowerAqua and AquaLog 15

2.5.2 ORAKEL . 16

2.5.3 FREyA . 16

2.5.4 PANTO . 17

2.5.5 QACID . 17

2.5.6 QUETAL QA . 18

2.5.7 Other related work . 19

iv

3 Statistical Methods for Natural Language Understanding 20

3.1 Introduction to NLU . 21

3.1.1 Basic Approaches . 21

3.1.2 Semantic Representation 22

3.2 Sequential models . 22

3.2.1 Hidden understanding model 22

3.2.2 Flat-concept parsing 24

3.2.3 Conditional Random Fields 25

3.3 Stochastic Semantic Parsing 26

3.3.1 Preprocessing . 26

3.3.2 Probabilistic semantic grammars 26

3.3.3 Vector-state Markov model 28

3.3.4 Hidden Vector-state Markov model 30

3.3.5 Context-based Stochastic Parser 32

3.4 Other approaches to semantic parsing 33

3.5 Evaluation of NLU Systems 34

3.5.1 Exact match . 34

3.5.2 PARSEVAL . 34

3.5.3 Tree edit distance . 35

3.6 Existing corpora . 35

3.6.1 ATIS . 35

3.6.2 DARPA . 36

3.6.3 Other corpora . 36

3.7 Existing systems . 37

3.7.1 HVS Parser . 37

3.7.2 Scissor . 37

3.7.3 Wasp . 37

3.7.4 Krisp . 38

3.7.5 Other systems . 38

III Natural Language-Based Semantic Web Search Sys-

v

tem 39

4 Target Domain 40

4.1 Domain Requirements . 40

4.2 Natural Language Question Corpus 42

4.2.1 NL Question Corpus Statistics 43

4.2.2 Question Examples . 44

4.3 Knowledge Base and Domain Ontology 45

4.3.1 Pattern-based Web Information Extraction 45

4.3.2 Domain Ontology . 46

4.3.3 Qualitative Analysis of the Knowledge Base 49

4.3.4 Semantic Inconsistencies Causing Practical Issues . . . 52

4.4 Test Data Preparation . 53

4.4.1 Search Results . 54

4.4.2 Semantic Interpretation 54

4.4.3 Assigning the Correct Results 54

5 Semantic Annotation of NL Questions 57

5.1 Describing NL Question Semantics 57

5.1.1 Domain Ontology versus NL Question Ontology . . . 58

5.1.2 Two-Layer Annotation Approach 58

5.1.3 Ontology of NL Question 58

5.2 NL Question Corpus Annotation 62

6 Semantic Analysis of Natural Language Questions 64

6.1 Semantic Analysis Model Overview 64

6.2 Formal Definition of Semantic Annotation 65

6.3 Statistical model . 66

6.4 Named Entity Recognition . 67

6.4.1 Maximum Entropy NER 68

6.4.2 LINGVOParser . 68

6.4.3 String Similarity Matching 68

vi

6.4.4 OntologyNER . 68

7 Semantic Interpretation 69

7.1 Transformation of Semantic Annotation into Query Language 69

7.1.1 Semantic Interpretation of Named Entities 70

7.2 Practical Issues of Semantic Interpretation 71

7.3 Semantic Reasoning and Result Representation 72

8 Evaluation 74

8.1 Semantic Analysis Evaluation 74

8.1.1 Evaluation of NER . 74

8.1.2 Evaluation of the Semantic Analysis Model 76

8.2 Matching Named Entities to KB Instances 78

8.3 End-to-end Performance Evaluation 79

8.3.1 Fulltext Search . 79

8.3.2 Simulation of End-to-end Performance With Correct
Semantic Annotation 80

8.3.3 The end-to-end results of SWSNL system 80

8.4 Evaluation on Other Domains and Languages 81

8.4.1 ConnectionsCZ Corpus 81

8.4.2 ATIS Corpus Subset 82

9 Conclusion 85

9.1 Open Issues . 85

9.1.1 Performance Issues . 85

9.1.2 Deployment and Development 86

9.1.3 Problems Caused by Real Web Data 86

9.1.4 Research-related Issues 86

9.1.5 Use in the Business Sector 87

9.2 Future Work . 87

9.3 Final Conclusion . 88

9.3.1 Major Contributions 88

9.3.2 Review of Aims of Ph.D. thesis 88

vii

A Hybrid Semantic Analysis System – ATIS Data Evaluation 90

A.1 Introduction . 91

A.2 Related Work . 91

A.3 Semantic Representation . 92

A.4 Data . 93

A.4.1 LINGVOSemantics corpus 93

A.4.2 ATIS corpus . 93

A.5 System Description . 94

A.5.1 Lexical Class Identification 94

A.5.2 Semantic Parsing . 96

A.6 Performance Tests . 98

A.6.1 Results on the LINGVOSemantics corpus 98

A.6.2 Results on the ATIS corpus 99

A.7 Conclusions . 100

Bibliography 101

List of Published Articles . 109

viii

Acknowledgement

I would like to thank everyone who helped me.

Part I

Introduction

1

Chapter 1

Motivation and Introduction

Nowadays it is almost impossible to deal with the current extent of online
data without a search engine. The possibility of finding a particular piece
of information has been playing a crucial role in the Internet usability over
the past decade. Major search engines can perform very fast and accurate
search almost on the whole Web, providing simple user interfaces based
upon keywords. Keyword-based search has proven to be very efficient on a
collection of unstructured textual content, e.g. web pages. However, if users
want to find information in a structured content, e.g. in a database, the
basic keyword search fails.

A simple, yet sufficient solution on the Web can be provided by a form-
based user interface. With this type of interface the user can typically
combine keywords with some other restrictions, according to the specific
domain structure. Form-based interfaces are user friendly in the sense that
they do not require a prior knowledge of the underlying data structures from
the user. The structure is typically shown as multiple forms or menus that
allow further specification of the user request. Nevertheless, the form-based
user interfaces are more complex than the straightforward keyword search.

One step beyond the above-mentioned traditional approaches are Natural
Language Interfaces (NLI). The key feature of such interface is that users can
search for the required information by posing their questions using natural
language which allows formulating their information needs precisely. Since
NLI can operate on both structured and unstructured content, it helps to
unify the access to data and allows a new way of user experience.

The need of computer understanding natural languages has been playing a
crucial role in many research fields in the few past decades. Some of the
results have already been successfully transferred from the purely scientific
proof-of-concept research into commercial sphere and industry. However, the
combination of Natural Language Understanding (NLU) and Information

2

3

Retrieval (IR) brings a lot of new challenging tasks.

Another promising direction in the evolution of Web, the Semantic Web, has
brought many interesting concepts into domain modeling and data sharing.
Since its fundamentals are based upon very precise semantic description,
many existing Web applications can benefit from incorporating Semantic
Web technologies. Furthermore, the development in Natural Language In-
terfaces to Semantic Web (NLISW) has shown that bridging the gap between
Semantic Web and Natural Language Interfaces can uncover new research
challenges.

Inspired by the recent research, this thesis presents a complete Semantic
Web Search using Natural Language (SWSNL) system. It uses the Seman-
tic Web technologies in both traditional and new forms. It was tested in
the accommodation domain using real data acquired from the Web as well
as the corpus of real queries in natural language. It deals with both theo-
retical and practical issues that must be solved in a fully functional system.
A complete work-flow is described, including preparation of data, natural
language corpus, ontology design, annotation, semantic model and search.
A very detailed evaluation with promising results is also presented.

1.1 Thesis Outline

The thesis is divided into two parts. The first part describes the current state
of the art. Since the thesis topic covers a wide range of research directions,
this survey is an attempt to present the most important up-to-date ideas
from each research field. To the author’s best knowledge, all fundamental
subjects related to the thesis topic are covered. Still, the development in
this area is very rapid and there is a chance that some new studies could
have appeared very recently without author’s attention.

The survey is divided into two chapters.

Chapter 2 is focused on the recent attempts to develop Natural Language
Interfaces on structured data such as Semantic Web. It describes basic
ideas of Semantic Web and ontologies. The main content of the chapter
is an analysis of existing Natural Language Interface systems in the
Semantic Web.

Chapter 3 deals with understanding of questions in natural language in gen-
eral. The problems are presented from the perspective of recent devel-
opment in spoken language understanding and it can bridge the gap
between traditional approaches used in Natural Language Interfaces
and recent advanced techniques for natural language understanding.

4

The second part continues with a thorough description of a development of a
complete end-to-end Semantic Web Search system using a natural language.

Chapter 4 explores the possibilities of modeling domain data. It describes
the target domain together with techniques required to deal with real
Web data sources. A natural language corpus is also presented.

Chapter 5 describes formalism for capturing a natural language question
semantics, based upon Semantic Web standards used in a unique way.

Chapter 6 proposes a statistical semantic model for analysing natural lan-
guage questions.

Chapter 7 deals with semantic interpretation of a semantic annotation in
order to perform a search on a particular knowledge base.

Chapter 8 thoroughly describes the evaluation of the SWSNL system. Open
issues and the future work are then discussed in Chapter 9.

1.2 Discussion of the Terminology Used

The field covered by this thesis is fairly broad since it combines various
research directions. Thus, it is important to discuss the terminology in
advance in order to avoid any misunderstanding.

Natural Language Processing (NLP). NLP is a general term, mostly
used to describe a family of tools and techniques dealing with processing of
natural language.

Named Entity Recognition (NER). Named entities are defined as
proper names and quantities of interest. In general, named entities relate to
persons, organizations, location names as well as dates, times, percentages,
and monetary amounts. The goal of NER is to identify named entities in a
(plain) text (G. Zhou & Su, 2005).

Question Answering (QA). QA research is basically devoted to com-
puter systems that understand a written natural language question and are
able to present an answer, either in a natural language or in another form
(Habernal, Konoṕık, & Rohĺık, 2012).

5

Information Retrieval (IR). ”Information retrieval (IR) is finding ma-
terial (usually documents) of an unstructured nature (usually text) that sat-
isfies an information need from within large collections (usually stored on
computers).” (Manning, Raghavan, & Schütze, 2008, p. 1) Given this de-
scription, it is obvious that the term IR is very broad in its nature.

Spoken Human-Computer Dialogue. In general, spoken dialogue sys-
tems communicate with users in natural language. Such a system accepts
spoken input and returns a spoken answer, forming a dialogue. A dialogue
system should typically deal not only with questions but also with commands
or answers (Jurafsky & Martin, 2008).

Spoken Language Understanding (SLU). SLU is a part of Spoken
Human-Computer Dialogue system and its role is to robustly interpret the
meanings of users’ utterances. SLU implementation normally comprises of
three main components: a speech recognizer, a semantic parser to extract
the semantic information from the recognized utterance and a dialogue act
decoder to determine the overall goal expressed by the utterance (He &
Young, 2006b).

Natural Language Understanding (NLU). The meaning of the term
NLU overlaps with SLU. Again, the role of NLU is to capture semantics of
an input. It is assumed that the input is in textual form therefore a speech
recognizer is not a part of a NLU system. However, some sources freely mix
NLU and SLU, e.g. (He & Young, 2005).

Semantic Analysis. The same as NLU—the role of Semantic Analysis
system is to represent the meaning of the given text input.

Natural Language Interface (NLI). Typically, the term NLI is used
in the literature when a system can be accessed using (written) natural
language. The system contains (mostly structured) information and, given
the natural language question, it can find an appropriate answer.

Natural Language Interfaces to Databases (NLIDB). The same as
NLI. The system holds information in a relational database.

Natural Language Interfaces to Semantic Web (NLISW). In this
case of NLI, the information is stored in the form of ontology which plays
an important role in the Semantic Web research field.

6

Semantic Web Search Using Natural Language (SWSNL). This
is purely the author’s choice of the thesis title. It is based upon previous
literature survey and it also takes into consideration its most appropriate
meaning. Although NLISW covers a very similar task, the most of the ex-
isting NLISW systems are designed to query the knowledge base in order to
find also non-trivial information, such as counts of certain instances, struc-
ture of the knowledge base and others (see Chapter 2). On the contrary,
SWSNL can be viewed as a special case of search engines that return a set
of results according to natural language question.

Part II

State of the Art

7

Chapter 2

Natural Language Interfaces
to Structured Data

Natural Language Interface (NLI) is a very general description of a user in-
terface which allows to access data using a natural language. This term has
been used mostly in the field of NLI to structured data, e.g. for accessing
databases using NLI or NLI on the Semantic Web platform. Nevertheless,
such a general characterisation of NLI can also cover Question Answering
(QA) or a part of Spoken Human-computer Dialogue Systems (see next
chapter). The terminology does not limit the scope of NLI explicitly, there-
fore there are some overlaps among the research fields (see the discussion on
page 4).

As pointed out by (Kaufmann & Bernstein, 2007), querying structured data
(or knowledge base, KB) using a domain-specific query language can be
complicated for casual users1. Most of existing query languages such as
SQL or SPARQL uses a precise syntax and they expect the user to be aware
of the back-end data structure. Evidently, this allows to formulate exact
queries by domain experts but on the other hand this is also a big obsta-
cle for users. An evaluation conducted by (Kaufmann & Bernstein, 2007)
compared four different interfaces to KB (namely: constructing SPARQL
queries using graphical interface, controlled language interface, natural lan-
guage interface, and keyword search) and it showed that NLI is the most
appropriate interface to satisfy the user needs with just a little knowledge
about the KB.

A short comment to the controlled language interfaces mentioned above:
Since the understanding of natural language questions is still far from being
solved, there have been attempts to put some constraints to the nature of
the questions themselves by introducing Controlled Language (CL). CL is

1We will use simply the term users.

8

9

a subset of a natural language and it uses e.g. simplified syntax or limited
vocabulary. An example of a recent CL system can be found in (Schwitter,
2010). However, we feel that CL is a dead branch in NLI due to effort
that must be invested to design the CL and to train the users (which is not
feasible in the case of e.g. freely accessible web-based QA systems).

This chapter presents the state of the art of NLI to a structured data along
with its specifics and typical domains and applications. In the first section,
the traditional NLI to databases and its history are briefly introduced. The
second section then follows with an application of NLI in the Semantic Web
environment. It also includes a brief introduction of some foundations of
Semantic Web.

2.1 Natural Language Interfaces to Databases

Natural Language Interfaces to Databases (NLIDB) has been a well-studied
research discipline since 1970’s when i.e. Rendezvous system (Codd, 1974)
or Ladder system (Hendrix, Sacerdoti, Sagalowicz, & Slocum, 1978) were
developed. Both systems were tailored to a specific domain and were based
upon hand-written semantic grammars. After gaining popularity in 80’s (e.g.
Chat-80 (Warren & Pereira, 1982) or Janus (Weischedel, 1989), both based
upon predicate logic and lambda calculus), in 90’s NLIDBs were slightly
loosing attention (Androutsopoulos, Ritchie, & Thanisch, 1995). However,
some recent systems such as Precise (Popescu, Etzioni, & Kautz, 2003)
or LingoLogic (Thompson, Pazandak, & Tennant, 2005) continued in the
NLIDB development by incorporating recent methods and also by redefining
expectations from such a system.

A brief description of NLIDB systems follows: The user writes a NL ques-
tion, the system translates it into an SQL query, executes the query via the
database engine and returns the result.

Since the research in NLIDB area has moved towards the Semantic Web
during the past decade (Damljanović & Bontcheva, 2009), we will focus on
that area in the next section.

2.2 Semantic Web and Ontologies

One of the key ideas of the Semantic Web is that semantic data can be shared
among computers in the form of ontologies which would enable to create a
kind of a global database (Berners-Lee, Hendler, & Lassila, 2001). Since its
introduction a decade ago, Semantic Web has emerged into a set of standards
and technologies (e.g. RDF, OWL, SPARQL—will be explained later in

10

more details), software tools (e.g. Semantic Web search engines, semantic
repositories, and knowledge bases), and techniques and design concepts (e.g.
domain modeling using ontologies).

The term ontology has many definitions in computer science varying from
a quite abstract definition “Ontology is an explicit specification of a con-
ceptualization” by (Gruber, 1993) to concrete ones, e.g. “Ontologies are
(meta)data schemas providing a controlled vocabulary of concepts, each
with an explicitly defined and machine processable semantics.” (Maedche
& Staab, 2001). From the SW perspective, the term ontology has been
established as something with the following features (Spanos, Stavrou, &
Mitrou, 2012):

• a set of strings that describe lexical entries for concepts and relations,

• a taxonomy of concepts with multiple inheritance,

• a set of non-taxonomic relations—described by their domain and range
restrictions,

• a hierarchy of relations, i.e. a set of taxonomic relations,

• a set of axioms that describe additional constraints on the ontology
and allow to make implicit facts explicit.

From a practical perspective, ontology refers to various levels of formal se-
mantic description, from e.g. a glossary or a class taxonomy to a domain
class model or even to a model with formal logic constraints populated by
instances and their relations. See e.g. (Lassila & McGuinness, 2001) for a
good introduction to ontologies.

As the Semantic Web area has developed from the a abstract idea, a few stan-
dards and technologies for dealing with ontologies have been created. First,
the RDF (Resource Description Framework2) is a basic building block of
the SW technology stack. The RDF model is a directed labelled graph con-
sisting of triplets (or statements). Each triplet contains a predicate (which
describes a relation and acts as an edge in the RDF graph) and a subject
and an object (which are nodes of the graph). Both the subject and the ob-
ject can be seen as a real-world entity and a good practice is to denote them
using a URI3. The RDF has various exchange formats, e.g. XML-based RD-
F/XML. However, the RDF itself has no other special functionality—“RDF
provides a way to express simple statements about resources, using named
properties and values” (Manola & Miller, 2004).

2http://www.w3.org/RDF/
3Unified Resource Identifier

11

In order to provide a type system on the top of the RDF, the RDF Schema
(RDFS) was proposed. It brings facilities for describing classes and proper-
ties. Both classes and properties are inheritable, thus they can form a taxon-
omy. Furthermore, RDFS allows to enrich property definition by constraints,
cardinality and transitivity. Moreover, different classes can represent the
same class, two classes can be disjoint or combined (using intersection or
union). For details see http://www.w3.org/TR/rdf-schema/.

Adapting the advanced features of the RDFS, the Ontology Web Language
(OWL) is built upon it. It further extends the abilities for capturing seman-
tics, by e.g. introducing individuals (instances of classes), distinguishing
between datatype and object properties, etc. There exist three OWL di-
alects distinguished by its expressivity4:

• OWL Lite supports hierarchical classification and constraint features.

• OWL DL supports all OWL language constructs, e.g. type separation.

• OWL Full is the most expressive dialect.

The key feature of OWL Lite and OWL DL is that it is based upon De-
scription Logic (DL) and thus allows semantic reasoning (Horrocks, Patel-
Schneider, & Harmelen, 2003). From a practical point of view, OWL is a
de-facto standard for ontologies in the Semantic Web environment.

2.3 Architecture of NLISW

This section deals with a general architecture of NLI systems on the Semantic
Web (NLISW). Despite some patterns in the architecture of existing systems
can be found, many systems are very unique and follow such an architecture
quite loosely or even not at all. Thus the classification of the NLISW sys-
tems can be seen from different perspectives. A schema in (Gao, Liu, Zhong,
Chen, & Liu, 2011) demonstrates various kinds of NLISW systems according
to their approaches to semantic processing instead of trying to put all sys-
tems into one architecture and discuss each component separately. However,
we will keep a structure according to the particual processing modules. We
will first discuss the ontology as a knowledge base for NLISW systems.

2.3.1 Knowledge Base and Ontologies

Basically, the main difference between general Question Answering (QA)
and NLISW is the presence of a structured knowledge base with precisely

4Consult http://www.w3.org/TR/owl-features/ for details.

12

described semantics in the latter one. Whereas QA must find an answer in
a collection of unstructured data (typically text documents), NLISW has
not only the ability to find the facts in the knowledge base but also the
ability to inference new facts using semantic reasoning. As the main vehicle
for knowledge base, ontologies are used widely (Damljanović & Bontcheva,
2009).

Let’s show an example question “How many five-star hotels are there in
Prague downtown?”. Even if the KB does not contain this particular in-
formation, it can be answered using an inference mechanism. On the other
hand, most of the open-domain QA systems rely on a large set of documents
that (probably) contain the desired answer in some textual form and thus
it would be rather impossible to answer this example question.

Given the above mentioned distinction, the main field of using the NLISW
is question answering on closed domains. Thus the essential requirement of
any NLISW application is not only the presence of an ontology but also its
quality. In this context, quality can mean, for example, completeness (i.e.
how much knowledge of the particular domain is covered by the ontology),
validity (i.e. whether the ontology instances fulfill the semantic constraints
of that ontology) or uniqueness of entities (i.e. whether the same real-world
object share the same instance in the ontology), among others. These quality
flaws can be avoided when the ontology is created from scratch but many
real-world applications either reuse existing data sources or merge various
ontologies and thus the ontology quality must be taken into account. See
e.g. (Frank et al., 2007).

2.3.2 Question Understanding

Generally, almost every existing NLISW system uses a unique combination
of NLP tools and techniques, that will be discussed later. However, tokeniza-
tion, NER, or syntactic parsing belong to the set of widely used methods.
Many of the depicted system follows the traditional processing chain con-
sisting of preprocessing, syntactic parsing, and semantic processing as shown
in e.g. (Allen, 1995).

In the preprocessing step, the popular NLP toolkit GATE5 is used by FreyA
(Damljanovic, Agatonovic, & Cunningham, 2010), AquaLog (Lopez, Uren,
Motta, & Pasin, 2007), or PowerAqua (Lopez, Fernández, Motta, & Stieler,
2011). GATE provides tools for tokenization and entity matching (the so-
called OntoRoot Gazetter used in i.e. FreyA). It also comes with a framework
for context-free grammars called JAPE grammars that are used in AquaLog
and PowerAqua. Moreover, stemming can be found in Precise (Popescu et

5http://gate.ac.uk

13

Tagging:

I/PRP need/VBP a/DT cheap/JJ accommodation/NN in/IN Boston/NNP downtown/NN ./.

Parse:

(ROOT

(S

(NP (PRP I))

(VP (VBP need)

(NP

(NP (DT a) (JJ cheap) (NN accommodation))

(PP (IN in)

(NP (NNP Boston) (NN downtown)))))

(. .)))

Typed dependencies: Typed dependencies, collapsed:

nsubj(need-2, I-1) nsubj(need-2, I-1)

root(ROOT-0, need-2) root(ROOT-0, need-2)

det(accommodation-5, a-3) det(accommodation-5, a-3)

amod(accommodation-5, cheap-4) amod(accommodation-5, cheap-4)

dobj(need-2, accommodation-5) dobj(need-2, accommodation-5)

prep(accommodation-5, in-6) nn(downtown-8, Boston-7)

nn(downtown-8, Boston-7) prep_in(accommodation-5, downtown-8)

pobj(in-6, downtown-8)

Figure 2.1: An example output produced by Stanford parser for input sen-
tence ”I need a cheap accommodation in Boston downtown.”

al., 2003) or NLP-reduce (Kaufmann, Bernstein, & Fischer, 2007).

Many systems depend on a syntactic parser, namely FreyA, Orakel (Cimiano,
Haase, Heizmann, Mantel, & Studer, 2008), Panto (C. Wang, Xiong, Zhou,
& Yu, 2007), Precise, or the system introduced in (Frank et al., 2007). Two
commonly used parsers are the Charniak parser (Charniak, 2000) and the
Stanford parser (Klein & Manning, 2003). Figure 2.1 shows an example
output from the Stanford parser given the testing sentence ”I need a cheap
accommodation in Boston downtown.”

The need of syntax preprocessing makes the adaptation of the systems
harder, especially to languages that lack state-of-the-art tools for syntactic
analysis or that are primarily too complex for even processing their syntax
automatically with reasonable results.

Models for Capturing Question Semantics

After preprocessing and/or parsing, the step of creating a semantic repre-
sentation usually follows. The formalism for describing the semantics of the
question is rather unique for each system as well as the algorithms creating
such a representation. However, there are some common patterns in the
used approaches.

14

Heuristic rules are a common approach for transforming the output of
the previous step (e.g. a parse tree) to the semantic representation
like in e.g. PANTO, AquaLog, PowerAqua, NLP-reduce, and FreyA.

Ontology concepts or triplets as a framework for capturing the ques-
tion semantics like in e.g. FreyA, PANTO, AquaLog, and PowerAqua.

2.3.3 Knowledge Base Querying and Answer Representation

Once the semantic formalisation of the input question is obtained, it can
be transformed into a particular query language and then executed against
the KB. Two popular query languages in the Semantic Web are SPARQL
(Prud’hommeaux & Seaborne, 2008) and ReSQL (Broekstra & Kampman,
2003). The transformation into the query language is quite straightforward
in many NLISW systems and it is mostly rule-based.

The result of querying the KB is a sub-graph of the ontology RDF graph
(Prud’hommeaux & Seaborne, 2008). This means that the required infor-
mation is stored in the triplet form and it should be transformed into a more
human-readable output. However, this step is system-specific and depends
on the desired usability of a particular system—the answer can vary from
simple triplet representation to a full-sentence answer.

2.4 Evaluation Metrics and Testing Datasets

Whereas in established NLP branches (e.g. ASR or NER, among others)
a standard testing datasets together with evaluation criteria are available,
there is a lack of such dataset in the NLISW field. This is a fundamen-
tal issue since it is not possible to compare the performance of various
systems. A deep exploration of the existing systems and their evaluation
uncovers large inconsistencies in the performance evaluation. As pointed
out by (Damljanović & Bontcheva, 2009), more attention should be paid
to creating a standard evaluation set. Two typical problems related to the
evaluation are:

• There is no widely accepted agreement on what is a good result. This
is a very vague expression as it stands for e.g. a recall of correct
questions (in Orakel), a number of answered questions (in Aqualog),
or even a number of queries generated as an output (in Panto).

• Each system operates on different ontology and the ontologies vary in
their size and complexity.

15

One of the widely used ontologies for the NLISW evaluation is the Mooney:
geography. A deep quantitative analysis of this dataset was performed by
(Cimiano & Minock, 2010). The dataset contains information about the
U. S. geography, such as cities, rivers, mountains, countries, etc. Originally,
the dataset was in Prolog (consisting of about 1000 Prolog facts), later it was
converted into OWL by (Cimiano & Minock, 2010). The question corpus
consists of 880 user questions with relation to the U. S. geography and it was
collected from undergraduate students of the authors of (Tang & Mooney,
2001).

Although many NLISW systems used this corpus for the evaluation (e.g.
Panto, Querix, NLP-reduce), the authors of (Cimiano et al., 2008) point
out some interesting real-world issues. First, many systems ‘cheated’ in the
evaluation on this dataset by hard-coding the meaning of adjectives and
superlatives. Second, many systems claim to be portable but they require
at least a hand-crafted lexicon to map the queries to the ontology.

2.5 Overview of Existing Systems

This section sketches an overview of some existing NLISW systems. The
list is not intended to be exhaustive. Basically, it is focused on systems that
have a significant impact in the field given their relevance as found in the
literature.

2.5.1 PowerAqua and AquaLog

A very recent system called PowerAqua (Lopez et al., 2011) is a state-
of-the-art ontology-based QA system which overcomes traditional NLISW
systems by managing multiple ontology sources and scalability. Since its
NL processing module remains the same as in the previous system AquaLog
(Lopez et al., 2007), we will further discuss the AquaLog system.

AquaLog claims to be a portable NLISW system which handles user queries
in a natural language (English) and returns answers inferred from a knowl-
edge base. It consists of various components, namely: a linguistic component
for transforming the natural language input into query triplets, a relation
similarity service for generating ontology-compliant triplets, and a learning
component to improve the system capabilities over time and incorporate a
particular user-specific jargon. The architecture can be characterised as a
cascade model where each component is fed with the output of the previous
one. Basically, AquaLog provides portability on different domains which is
only limited by the given ontology. Its authors suggest that only a little
tuning must be performed before adapting the system to another domain.

16

However, an examination of the system uncovers many practical limitations.
Firstly, the linguistic component is heavily dependent on syntax. The in-
put query is processed by the GATE libraries, namely the tokenizer, the
sentence splitter, the POS tagger, and the VP chunker. Furthermore, the
question types are recognized by a set of hand-written JAPE grammars,
that are based upon regular expressions. The principal disadvantage of us-
ing the JAPE grammars is that they can deal only with a subset of a natural
language and, thus, complicate porting of the system.

Secondly, the relation of terms and their corresponding ontology concepts
must be defined manually in advance. Practically, this means that the terms
“who”, “where” and “when” correspond to ontology terms “person/organi-
sation”, “location” and “timeposition”, respectively. Furthermore, the so-
called pretty names, that are alternatives of an instance, must be also listed.
A textual (or WordNet) similarity between the query terms and the ontology
is also assumed.

Thirdly, the transformation of query-triplets into ontology-triplets is based
upon hard-coded heuristic rules. Furthermore, AguaLog can only deal with
questions that generate a maximum of two triplets.

2.5.2 ORAKEL

ORAKEL (Cimiano et al., 2008) is an ontology-based question answering
system. It accepts English factoid questions and translates them into first-
order logic forms. This conversion uses full syntax parsing and a composi-
tional semantics approach. ORAKEL can be ported into another domain
but such a porting requires a domain expert to create a domain-dependent
lexicon. The lexicon is used for an exact mapping from natural language
constructs onto ontology entities.

A big drawback of ORAKEL’s approach is the necessity of creating the
lexicon manually. Another one is that the system can neither handle un-
grammatical questions nor deal with unknown words. This makes the system
unusable in any real-world environment.

2.5.3 FREyA

The FREyA system (Damljanovic et al., 2010) is a NLISW system that
combines syntactic parsing with ontology reasoning. It derives parse trees
of English input questions and uses heuristic rules to find a set of potential
ontology concepts (for mapping from question terms onto ontology concepts)
using GATE and OntoRoot Gazetteer (Cunningham et al., 2011). The pri-
mary source for the question understanding is the ontology itself. If the

17

system encounters ambiguities, a clarification dialogue is offered to the user.
The potential ontology concepts retrieved from the question analysis are
then transformed into SPARQL (presumably using some rules, this step is
not described clearly). The system has been tested on Mooney: Geography
dataset of 250 questions with results comparable to other systems evaluated
on this domain.

2.5.4 PANTO

A portable QA system called PANTO (C. Wang et al., 2007) is based upon
the off-the-shelf statistical parser StandfordParser and integrates tools like
WordNet and various metrics algorithms to map the NL question terms to
an intermediate representation called QueryTriplets. This semantic descrip-
tion is then mapped onto the so-called OntoTriplets that are connected to
entities from the underlying ontology. This step involves a set of 11 heuristic
mapping rules. Finally, OntoTriplets are represented as SPARQL queries.
The PANTO architecture also contains a Lexicon which helps with matching
NL words to ontology classes, relations, and instances.

The main idea of transforming a NL question into triplets in PANTO is
based upon the author’s observation that two nominal phrases from a parse
tree are expected to be mapped onto a triplet in the ontology.

The system was evaluated on the Mooney dataset. The output of PANTO
was compared to the manually generated SPARQL queries. One of the
drawbacks of the system is its dependence on the full syntax parsing.

2.5.5 QACID

The ontology-based QA system called QACID introduced in (Ferrández,
Izquierdo, Ferrández, & Vicedo, 2009) covers a cinema/movie domain and
its target language is Spanish. It consists of two main components, the
user query formulation database, and textual-entailment engine. Whereas
the former component serves mainly for development and system training
purposes, the latter one is intended for an unknown query processing. As
a KB, an OWL cinema ontology was used. This ontology consists of a few
classes and relations and it has been later populated with instances. This
populated ontology served as a source for creating a lexicon (which is, in fact,
a simple mapping between terms and their ontology concepts, e.g. “Real
movie name” and “[MOVIE CLASS]”). The core of the QACID system is a
database of query formulations. The database contains a set of 54 clusters,
each cluster represents one type of question and it has a representative query
pattern which was derived from a set of training data. Each cluster is also
associated to one SPARQL query.

18

When processing an unknown question, the system replaces all words that
appear both in the sentence and in the lexicon with their ontology concepts.
Then the textual entailment module tries to match the input question to
a particular cluster from the query formulation database (this is actually
a classification of the question). In this task, the question is treated as
a bag-of-words and various lexical metrics are used for this classification.
The entailment module also takes into account ontological attributes and
relations of concepts identified in the question.

As pointed out in the QACID evaluation, the system is not able to answer
unknown ontology concepts. In other words, if the user poses a question
using terms that are not present in the lexicon, the system fails. Another
errors are encountered when the query formulation database does not contain
an appropriate cluster for the given question (this is a problem similar to out-
of-coverage questions). Moreover, all the given question examples contain
only one semantic concept and thus it is not clear whether the system is able
to cope with more difficult questions with more ontology relations (see e.g.
Mooney Geography on page 14 for examples of such questions). We suspect
that the approach based upon the bag-of-words textual entailment would
fail in this task. Finally, the system is not capable of handling temporal
questions which is, from our point of view, somewhat startling in the case
of a QA system on the cinema domain (definitely this would be a handicap
when deploying this system to the real-world usage).

2.5.6 QUETAL QA

A domain-restricted QA system called QUETAL (Frank et al., 2007) expoits
a robust semantic analysis on a hybrid NLP architecture. The system was
developed to answer NL questions on two domains: the Nobel prizes and
information about Language Technology Institute. For these two domains,
the ontologies were converted from existing ontologies and merged with other
more general ontologies (e.g. SUMO for the Nobel prizes). Unfortunately,
the article shows only some concepts from the ontologies and presents them
in a textual way thus it is not possible to uncover the complexity of the
ontologies. The authors also admit that the source LT ontology did not
respect domain and range properties.

Question analysis is performed by the HPSG (Head-driven Phrase Structure
Grammar; see e.g. (Pollard & Sag, 1988) or (Pollard & Sag, 1994)) syntac-
tic and semantic parser with a support of the Heart of Gold architecture6

which provides shallow NER. The HPSG parser uses grammars for English
and German and the output of the parser is a formalism called Minimal

6Heart of Gold (HoG) is an open source middleware for combining shallow and deep
NLP components (last release from 2008), http://heartofgold.dfki.de/

19

Recursion Semantics which is a flat, non-recursive semantic representation
format (Copestake, Flickinger, Pollard, & Sag, 2005). This question rep-
resentation is then transformed into the so-called proto queries that are
suitable for querying a particular KB. The system was evaluated on a set of
100 English questions in the Nobel prize domain only.

There is one notable limitation of the system. To adapt it to another lan-
guage there must exist a wide-coverage HPSG grammar for that language

2.5.7 Other related work

QUICK: Instead of supporting full NL questions, QUery Intent Construc-
tor for Keywords (QUICK) system guides the users in constructing a se-
mantic query from keywords (Zenz, Zhou, Minack, Siberski, & Nejdl, 2009).
After typing the keywords, the system analyses them according to the un-
derlying ontology and it allows the user to choose the required semantic
query in a clarification dialogue. The performance was tested using two on-
tologies (a movie database and a song database) and 175 queries consisting
of 2-5 keywords. Although QUICK is not a fully-fledged NLI system, it can
be viewed as a trade-off between the simple keyword search and the NL
question systems.

A good overview of other state-of-the art keyword based semantic search
systems is shown in (Fazzinga & Lukasiewicz, 2010).

CINDI: The system in (Stratica, Kosseim, & Desai, 2005) translates En-
glish questions into SQL queries and it is based upon syntactic analysis and
simple hand-written templates. It was tested on a digital library domain
but the authors provide very poor evaluation.

An example of the controlled language NLIDB is introduced in (Hallett,
2006). This system does not require (which means, actually, does not allow)
the user to input NL questions but it assists in composing the query, start-
ing with editing a basic query frame; the frames are automatically inferred
from the database structure. The system was tested using GEOBASE with
average results.

Chapter 3

Statistical Methods for
Natural Language
Understanding∗

One of the key components of any system dealing with a natural language
input is a Natural Language Understanding (NLU) component. This chapter
explores the state of the art of NLU as viewed primarily from the Spoken
Language Understanding (SLU) perspective.

Chapter Outline

• Section 3.2 focuses on sequential models for semantic analysis. These
models use a non-hierarchical representation of semantics.

• Models capturing hierarchical semantic dependencies are discussed in
section 3.3, followed by some other approaches to semantic parsing in
section 3.4.

• Section 3.5 describes the evaluation of semantic analysis systems.

• An overview of existing systems and corpora is provided in section 3.6.

NLU on the Semantic Web. It is worth mentioning that NLU and
Semantic Web have emerged from different historical and technical back-
ground. While NLU has played a crucial role since the first human-computer
dialogue applications, the main idea of Semantic Web was to enable a for-
malised exchange of the web data and to make it accessible both for humans

∗This chapter is an edited and updated version of author’s previous technical report
(Habernal, 2009).

20

21

automatic
speech

recognition

semantic
analysis

acoustic signal

text
Lorem ipsum dolor sit amet

lorem ipsum dolor sit amet
consectetur adipisicing elit
sed do eiusmod tempor
incididunt ut labor sequi

lattice

semantic frame

frame
 slot: lorem
 slot: ipsum
 slot: dolor

semantic tree

or

or

Figure 3.1: A schema of a SLU system.

and computers. Nevertheless, many recent Semantic Web applications re-
quire some sort of semantic understanding of the user question in order to
return an answer from a knowledge base.

Before we present a thorough overview of the existing NLU techniques, we
will draw one important conclusion. Although NLISW requires almost the
same functionality in terms of understanding the question, many of the state-
of-the-art NLISW systems are based upon approaches from the 1990’s—
namely syntax or hand-written heuristic rules (as shown in section 2.3.2).
However, the research in the NLU field has made a tremendous movement
towards statistical or hybrid methods and machine learning approaches in
the past decade.

3.1 Introduction to NLU

The goal of a Natural Language Understanding system (NLU) is to extract
the meaning from a natural speech. Although there is a difference between
SLU and NLU in the sense of the input (an audio signal for SLU systems,
a text for NLU systems), we will not distinguish between these terms so
strictly. The main reason is that many of the discussed approaches and
systems are originally focused on the whole SLU system, even though they
deal with semantic analysis and assume a textual representation as the input.
See also the terminology discussion in Section 1.2. A schematic example of
a SLU system is in Fig. 3.1.

3.1.1 Basic Approaches

Early NLU systems were mostly based upon an expert approach, which
means that the system was written entirely by a system designer (an ex-
pert). The syntax-driven semantic analysis (Allen, 1995) uses a hand-

22

written context-free grammar (CFG) for syntactic analysis. The first-order
predicate calculus (FOPC) is used for meaning representation. Later, se-
mantic grammars (Jurafsky & Martin, 2008) were based upon CFGs and
described the semantic hierarchy rather than the language syntax.

However, the expert-based systems have a lot of limitations. The first disad-
vantage is a very high cost of creating such a system because the grammars
must be written by an expert. Such system can also cover a limited domain
and it lacks portability.1 Although expert-based systems are still being used,
recently the research has moved towards systems based upon machine learn-
ing and statistical models. The main advantage of such systems is an ability
to learn from data.

3.1.2 Semantic Representation

The output of a NLU system is a context-independent2 semantic represen-
tation. A commonly used representation of the semantics is the frame based
representation.

In the frame-based NLU system, the semantic representation of an applica-
tion domain can be defined in terms of semantic frames. Each frame contains
several components called slots. The NLU system fills the slots with appro-
priate content. The meaning of an input sentence is an instantiation of the
semantic frame. Some NLU systems do not allow a hierarchy of the slots.
In such case, the semantic representation is a flat concept representation (or
attribute-value pairs).

Since the flat concept representation is simpler and it may result in simpler
statistical model, the hierarchical representation (tree-based representation)
is more expressive and it can deal with long dependencies.

3.2 Sequential models

3.2.1 Hidden understanding model

The Hidden understanding model (HUM) (Schwartz, Miller, Stallard, &
Makhoul, 1997) was motivated by Hidden Markov Models (HMM), that have
been successful in speech recognition. Because of differences between speech
recognition and language understanding, significant changes are required in
the HMM methodology. (Miller, Bobrow, Ingria, & Schwartz, 1994) proposes
the following requirements for the HUM-based systems:

1Porting means adapting the system to different domain.
2Does not depend either on the history or on the context.

23

• A system for expressing the meaning.

• A statistical system which is capable to capture associations between
words and their meaning.

• A training algorithm for estimating the parameters of the model from
an annotated data.

• An algorithm for performing the search for the most-likely meaning
given a word sequence.

The key requirement for a hidden understanding model are the properties
of the meaning representation. It should be both precise and appropriate
for automatic learning techniques. (Miller et al., 1994) requires a meaning
representation which is:

Expressive. For all sentences that appear in the application, the formalism
must be able to express the meaning.

Annotable. It must be possible to create annotations of a large corpus with
low human effort.

Trainable. The system must be able to train the parameters from anno-
tated training examples.

Tractable. There must be an efficient algorithm for performing the search
over the meaning space.

Statistical HUM

Let M be the meaning space, V the vocabulary, and W = (w1, . . . , wT)
the word sequence where wt ∈ V . Then the problem of understanding can
be viewed as recovering the most likely meaning structure M ∈M given a
sequence of words W ∈ V :

M̂ = argmax
M

P (M |W) (3.1)

Using Bayes rule, P (M |W) can be rewritten into

P (M |W) = P (W |M)P (M)
P (W) (3.2)

where P (M |W) is the lexical realization model and P (M) is the semantic
language model. Since P (W) does not depend on M , it can be ignored in
computing the maximal probability P (M |W). There is an analogy with
HMM because only words can be observed and the internal states of each
of the two models are unseen and must be inferred from the words.

24

3.2.2 Flat-concept parsing

A semantic decoding approach inspired by HUM (section 3.2.1) is the Finite
State Tagger (He & Young, 2005) (or flat-concept model in (Young, 2002)).
It assumes that each word w from the sentence is labelled with a semantic
concept c. For example the sentence “What will be the weather in Pilsen
tomorrow morning?” might be decoded in bracket notation as:

WEATHERREQ(weather) PLACE(Pilsen) DATE(tomorrow) TIME(morning)

Irrelevant words are labelled with a dummy concept and later discarded from
the semantic annotation. The formal definition of the model follows.

Given the semantic concept space T , we can assume that each word wt
is tagged with one semantic label concept ct and the whole sequence is
C = (c1, . . . , ct), where ct ∈ T . The FST model can then be described as
follows:

P (W |C)P (C) =
T∏
t=1

P (wt|wt−1 . . . w1, ct)
T∏
t=1

P (ct|ct−1 . . . ct) (3.3)

where P (W |C) is the probability of generating word wt given the word
history wt−1 . . . w1 and corresponding current concept ct. It is called a lexical
model (or a lexical realization model in HUM). The semantic model P (C)
is the probability of generating current concept ct given the concept history
ct−1 . . . c1.

This model uses an unlimited history of words and concepts. In practical
applications, the history is truncated to a limited size n and m. The model
is now approximated by the following formula:

P (W |C)P (C) ≈
T∏
t=1

P (wt|wt−1 . . . wt−n+1, ct)
T∏
t=1

P (ct|ct−1 . . . ct−m+1)

(3.4)

For the special cases n = 1 and m = 2, we can rewrite the formula as:

P (W |C)P (C) =
T∏
t=1

P (wt|ct)
T∏
t=1

P (ct|ct−1)

which becomes a conventional first order Markov model, where the state
transitions are modeled as concept bigram probabilities and the words are
modeled as unigrams conditioned by the concept ct.

An example of the model is shown in Fig. 3.2.

25

At what time does the last train go from Pilsen to Prague?

DESTTYPE ORIGINTIMEREQ __ __

Figure 3.2: Discrete Markov model representation of semantics

3.2.3 Conditional Random Fields

The NLU problem can be also stated as a sequential supervised learning
problem (Nguyen, Shimazu, & Phan, 2006). The result of the classifier is a
semantic label sequence which can be transformed into the slot/value pairs.
In such sequential processing, the hierarchy of the semantic representation
can be defined by the slot description. For example a two-level hierarchical
slot can be considered as one flattened slot simply by concatenating two
concepts.

Let D = {Xi, Y i}i=1,...,N be a set of N training examples where each exam-
ple is a pair of sequences (Xi, Y i). The Xi = 〈xi1, . . . , xiTi

〉 features vector
sequence and Y i = 〈yi1, . . . , yiTi

〉 is a label sequence. For example, X can be
a sequence of words and Y can be the sequence of corresponding semantic
labels. We also assume that X and Y are of the same size. The goal of a
classifier h is to find the most probable semantic class sequence given the
input vector:

Ŷ = argmax
Y

h(Y,X,Λ), (3.5)

where Λ = 〈λ1 . . . λK〉 denotes the parameter vector of size K.

Linear-chain Conditional Random Fiels (CRFs) are conditional probabil-
ity distributions over label sequences that are conditioned by an input se-
quence (Y.-Y. Wang, Deng, & Acero, 2005), (C. Raymond & Riccardi, 2007),
(Nguyen et al., 2006). Formally, linear-chain CRFs are defined as follows:

pΛ(Y |X) = 1
Z(X)

T∏
t=1

Ψt(yt, yt−1, X), (3.6)

where X is the random vector that is observed, Y is the vector we want to
predict and Ψ is a local potential ((Jeong & Lee, 2008), also called a feature
function in (Sha & Pereira, 2003)). Z(X) is a normalization function which
ensures that the probabilities of all state sequences sum up to one. Typically,
Ψ consist of a set of feature functions fk.

26

In general, the feature function fk(yt, yt−1, X) is an arbitrary linguistic func-
tion. In most cases a feature depends on the inputs around the given position
i, although they may also depend on global properties of the input (Jeong &
Lee, 2008). Formally, the feature can encode any aspect of a state transition
fk(yt−1, yt) and the observation fk(yt, xt), centered at the position t.

For example, the feature function fk(yt, xt) can be a binary function which
yields 1 if yt = ’TOLOC.CITY NAME-B’ and the current word is ’chicago’.
For higher values of λk the event occurs more likely.

3.3 Stochastic Semantic Parsing

3.3.1 Preprocessing

Most of the stochastic semantic parsers, that are introduced in this chap-
ter, need a preprocessing step (He & Young, 2006b), (Pla, Molina, Sanchis,
Segarra, & Garćıa, 2001), (Wong & Mooney, 2006). Since the terminology
for this task is not stable, the problem can be called shallow semantic parsing
(Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2004), lexical class analysis
(Konoṕık & Habernal, 2009), named entity recognition (Tjong Kim Sang &
De Meulder, 2003) or NP-chunking (Nguyen et al., 2006). In fact, these
methods attempt to identify semantically meaningful units (words or word
groups) in an input sentence and assign semantic labels to them. This defini-
tion of semantic classes of words is necessary in order to obtain high coverage
models from a given data (Pla et al., 2001). There is a strong parallelism
with the stochastic approach applied to the problem of text tagging. De-
pending on the approach, the results of this step may vary from a set of
lexical classes to a lattice, where the semantic labels are assigned to the
words with some probability.

Some algorithms dealing with this problem were described in the previous
chapter. Namely, the finite state tagger (FST) in section 3.2.2 or the condi-
tional random fields (CRF) in section 3.2.3.

3.3.2 Probabilistic semantic grammars

The flat-concept parser described in section 3.2.2 has some limitations on
its expression ability. The most important drawback is that the model does
not allow to capture any hierarchical structure which groups corresponding
concepts into a covering semantic concept. The long-distance dependency
problems (see Fig. 3.3) also cannot be well described by the FST model.
One possible solution is to use a more complex model, which can be e.g. the
probabilistic context-free grammar (PCFG) model.

27

... fly from Madrid to Prague on monday ...

return.day

depart.day

... return from Madrid to Prague on monday ...

Figure 3.3: An illustration of the long-distance dependency problem of flat
models using limited history.

The lexical model P (C|W) can be obtained by using the above mentioned
FST model (or by the other models from section 3.2). However, the prob-
abilities of the semantic model P (C|Ss) are computed recursively and they
are complex.

Let C be the decoded semantic tree, P (c, i, j) be a probability that the
concept c covers sub-concepts (preterminal nodes) from indices i to j. For N
preterminal concepts c1 . . . cN , the probability is P (C) = P (s, 1, N), where
s is the root concept of the semantic tree. Let a P (c → c1 . . . cQ) be the
probability that the concept c directly generates the sequence of concepts
c1 . . . cQ. Then the inside-outside probability is recursively formulated as:

P (c, i, j) =
∑

Q≤j−i+1

∑
CQ

1 ∈{c∗}

∑
IQ

0 ∈{(i...j)∗}

P (c→ c1 . . . cQ)
Q∏

q=1
P (c, I(q − 1), I(q))

(3.7)

where IQ0 represents a set of Q integers that split the sequence ci . . . cj into
Q sub-sequences such that I(0) = i and I(Q) = j. The previous formula
can be applied to any unrestricted branching, however, in the case of binary
branching it is considerably simplified to:

P (c, i, j) =
∑
cl,cr

i−1∑
t=1

P (c→ clcr)P (cl, i, t)P (cr, t+ 1, j) (3.8)

Now, the formula 3.8 is the inside probability of the Inside-Outside algo-
rithm which is a modification of the EM algorithm for parameter estimation.
However, the PCFG models suffer from a variety of theoretical and practical
problems, such as normalization problems. Also, the recursive nature makes
them computationally intractable (Young, 2002).

28

At what time does the last train go from Pilsen to Prague?

TRAVELREQ

DESTTYPE ORIGIN

TIMEREQ

CTY CTYFROM TOVRBTIMEAT WHAT THE LAST TR VRB

CITYTRAIN CITY

TRAVELREQ TRAVELREQ
TIMEREQ

TRAVELREQ TRAVELREQ
TYPE

TRAVELREQ
TYPE
TRAIN

TRAVELREQ TRAVELREQ
ORIGIN

TRAVELREQ
ORIGIN

CITY

TRAVELREQ
DEST

TRAVELREQ
DEST
CITY

Figure 3.4: A vector-state model and its equivalent tree representation

3.3.3 Vector-state Markov model

The 1st order Markov model in FST was described in section 3.2.2. Although
this model is mathematically simple and easy to train, its major disadvan-
tage is a lack of ability to capture the hierarchy of semantics. This may lead
to long dependence problems, etc. On the other hand, the PCFG intro-
duced in the previous section seems to be a too complex model, especially
for training and estimation of the probabilities.

To improve the simple 1st order model, the vector-state Markov model is
proposed in (He & Young, 2005). It is still a discrete HMM but each state
is actually a stack of push-down automata with a limited size. This stack
consists of semantic concepts. Thus, there is an equivalence between the
PCFG and the vector-state Markov model with an unlimited stack depth.
It is shown in Fig. 3.4. This model is a right branching. It means that the
branches of the semantic tree grow in left-to-right direction.

The probability of a semantic parse tree C (which is actually a set of stacks
of concepts) given the input sentence W can be formalised as follows:

P (N,C,W) =
T∏
t=1
P (nt|W1...t−1,C1...t−1) · P (ct[1]|W1...t−1,C1...t−1, nt)·

· P (wt|W1...t−1,C1...t),
(3.9)

where

29

• W1...t−1 is the word history up to t− 1,

• C1...t denotes the history of concepts (c1 . . . ct). Each vector state ct at
position t is a vector (or a stack) of Dt semantic concept labels where
Dt is the stack depth. In more detail, ct = (ct[1], ct[2], . . . , ct[Dt])
where ct[Dt] is the root concept and ct[1] is the preterminal concept
(the concept immediately above the word wt),

• nt is the number of stack pop operations and gains values in the range
of 〈0, . . . , Dt−1〉,

• W1...t−1,C1...t−1 denotes the previous parse up to position t− 1,

• ct[1] is the new preterminal semantic concept at position t assigned to
the word wt.

Each transition of the model is restricted to the following operations that
correspond with the probabilities from Eq. 3.9: (i) pop nt concept labels
from the stack, (ii) generate a new preterminal concept, and (iii) generate a
word. Having the nt which defines the number of semantic concepts popped
out of the stack, the transition from position t−1 to t given the preterminal
concept cwt for the word wt can be described as:

• pushing the concept onto the stack

ct[1] = cwt , (3.10)

• copying the previous stack to the current stack, skipping nt concepts
that have been popped out at the position t

ct[2 . . . Dt] = ct−1[(nt + 1) . . . Dt−1], (3.11)

• adjusting the stack depth at position t

Dt = Dt−1 + 1− nt (3.12)

Depending on the value of nt, the stack can grow as follows. For nt = 0
the stack grows by one semantic concept (no concept has been popped out).
The case nt = 1 corresponds to replacing a preterminal concept with a new
concept. And for nt > 1 the stack reduces its size by popping out more
concepts.

The general model, described in Eq. 3.9, depends on unlimited history of
concepts and words. In (He & Young, 2005) the history is truncated—only
the previous semantic concept stack is used and the word history is ignored.
The equations are then approximated by

30

At what time does the last train go from Pilsen to Prague?

TRAVELREQ TRAVELREQ
TIMEREQ

TRAVELREQ TRAVELREQ
TYPE

TRAVELREQ
TYPE
TRAIN

TRAVELREQ TRAVELREQ
ORIGIN

TRAVELREQ
ORIGIN

CITY

TRAVELREQ
DEST

TRAVELREQ
DEST
CITY

Figure 3.5: A vector-state Markov model

P (nt|W1...t−1,C1...t−1) ≈ P (nt|ct−1) (3.13)

P (ct[1]|W1...t−1,C1...t−1, nt) ≈ P (ct[1]|ct[2 . . . Dt]) (3.14)

P (wt|W1...t−1,C1...t) ≈ P (wt|ct). (3.15)

The vector-state Markov model is shown in Fig. 3.5.

3.3.4 Hidden Vector-state Markov model

In the previous section, the basic vector-state Markov model was introduced.
For training such model, a fully annotated corpus with aligned preterminal
concepts is required. Then the training is simply a matter of counting events
and smoothing the model. The hidden vector-state Markov model is based
only upon an unaligned abstract annotation. It means that each training
sentence is annotated with a semantic concept hierarchy but the association
between the preterminal concept layer and the words is not captured (this
is, actually, an equivalent of HMM in ASR where the observations are seen
but the states of the model are hidden).

In the next section, two approaches to train such model are introduced. The
first one is based upon MLE3 and the model parameters are estimated using
the Expectation-Maximization (EM) algorithm. The second one uses dis-
criminative training. However, there are some prerequisites for both meth-
ods. First, there must be a sort of a priori knowledge of the domain—the
lexical classes (see section 3.3.1). Second, an abstract semantic annotation
must be provided for each sentence. These annotations are made by human
annotators.

MLE training of the HVS model. The purpose of training the HVS-
based parser is to find the model parameter set λ = {C, N} which will result
in maximum likelihood of the training data. This is done by maximizing
some objective function R(λ). Most commonly used parameter estimation

3Maximum Likelihood Estimation.

31

is maximum likelihood estimation (MLE). MLE makes numbers of assump-
tions that cannot be reached in practice: the global likelihood maximum can
be found, the observations are from a known family of distributions, and the
training data is unlimited. Thus, it is not guaranteed that the MLE-trained
model will yield optimal results.

Discriminative training of the HVS model. As described earlier, the
MLE is used for generative statistical training where only the correct models
are taken into account during parameter estimation. (D. Zhou & He, 2009)
proposes a method for training of the generative model using a discriminative
optimization criterion. That means that not only the likelihood of correct
models should be increased but also the likelihood of incorrect models should
be decreased as well.

In discriminative HVS model training, the model is trained to separate the
correct parse from the incorrect parses. The trained model is then used
to parse the training sentences again and the training procedure repeats.
This approach is based upon the generalized probabilistic descend algorithm
(D. Zhou & He, 2009).

Extended HVS parser

(Jurč́ıček, 2007) introduced some extensions to the basic HVS semantic
parser, namely the left-right-branching parsing and the input parametriza-
tion.

Left-right-branching parsing. The original semantic model of the HVS
parser (see Eq. 3.9) allows to push only one concept ct[1] onto the stack.
To enable either pushing one concept or no concept, a new hidden variable
push is inserted into the model.

Another modification of the basic HVS model described in (Jurč́ıček, 2007)
is the possibility of pushing two concepts at the same time. It has been
experimentally verified that pushing more than two concepts does not affect
the results significantly. Moreover, this limitation keeps the model simple.

Input Parametrization. In the basic HVS model, the input W is in a
form of a word sequence. However, (Svec, Jurč́ıček, & Müller, 2007) pro-
posed to extend the input with some additional information such as lemma
or morphological tags.

Using the lemmatized input means that the input word wi is replaced by
its lemma. The reduction of the vocabulary consequently reduces the num-

32

ber of parameters to be estimated and it improves the model robustness.
Nevertheless, the discrimination ability of such model decreases.

3.3.5 Context-based Stochastic Parser

The semantic parser proposed in (Konoṕık, 2009) is a hybrid stochastic
semantic parser. The training data consists of annotated sentences, where
the preterminal concepts (or lexical classes) are aligned to the input words
(this annotation methodology is similar to the vector-state parser introduced
in section 3.3.3). The model parameters are then estimated using MLE:

P (N → α|N) = Count(N → α)∑
γ Count(N → γ) (3.16)

where N → α means that in the data, the non-terminal N is rewritten to
α. Moreover, a word context of each tree node is taken into account. The
context is defined as the words before and the words after the span of a sub-
tree. Then the probability of the context given a non-terminal is estimated
by MLE as:

P (w|N) = Count(w,N) + λ∑
i Count(wi, N) + λV

(3.17)

where w is the current context word of non-terminal N , wi are all context
words, λ is a smoothing constant and V is an estimate of the vocabulary
size. For an estimate of the theme probability (in this model the theme is
the root concept of the semantic tree), there is an additional formula:

P (w|S) = Count(w, S) + κ∑
i Count(wi, S) + κV

(3.18)

where S is the root concept (the theme), wi are the words of the sentence
and κ is a smoothing constant.

Once the model is trained, the parser performs two steps. First, the shallow
parsing algorithms (see section 3.3.1) are used to identify lexical classes. In
this system, the shallow parser is based upon CFG for generic lexical classes
such as dates, time, numbers, etc., and upon the vocabulary methods for
proper names, etc. Second, a stochastic bottom-up chart parser is used to
create parse trees and to compute probabilities as follows:

P (T) =
∑
i

P (wi|N)P (N → A1 . . . Ak|N)
∏
j

P (Tj), (3.19)

33

where N is a top non-terminal of the sub-tree T , A1 . . . Ak are terminals or
non-terminals that are expanded from N and Tj is a sub-tree having the
non-terminal Ai on the top.

Then the best parse is selected using the highest probability:

P (T̂) = argmax
i

P (Si)
∏
j

P (wj |S)P (Tj) (3.20)

where Si is the starting symbol of the parse tree Ti, and wj are the words
of the analysed sentence.

3.4 Other approaches to semantic parsing

Clustering approach

A novel algorithm for semantic decoding in SLU systems was proposed in
(He & Young, 2006a). This approach differs from either rule-based or purely
statistical systems mentioned previously. Both systems treat semantic de-
coding as a classical parsing problem. An alternative would be to treat the
decoding as a straightforward pattern recognition problem.

This approach requires relatively small training data (less then the HVS
model, sec. 3.3.3) and the data is annotated only at sentence level. The key
idea is to cluster sentences into classes and then assign to a single semantic
annotation to each class. In the decoding process, the input sentence is
assigned to the class to which it most closely matches. The detailed model
description can be found in (He & Young, 2006a).

Kernel-based statistical methods

In traditional machine learning methods, the input is represented as a set
of features (feature vector). But some more complicated input structures,
such as trees, cannot be easily expressed by such feature vectors because the
structural relations are lost when the data is reduced to a set of features.
To avoid this, all possible sequences of features must be taken into account,
which makes the algorithm computationally expensive.

An alternative to the feature-based methods are the kernel-based methods
(Kate & Mooney, 2006). A kernel is a similarity function K over the domain
X which maps a pair of objects x, y ∈ X to their similarity score K(x, y),
ranging from 0 to ∞. (Kate, 2009) defines a kernel between two strings as
the amount of their common sub-sequences.

34

Semantic parsing is then performed by using the notion of a semantic deriva-
tion of a NL sentence. In (Kate, 2009), the task is described as finding the
most probable semantic derivation of a NL sentence which is determined
using an extended version of Earley’s algorithm for context-free grammar
parsing. The kernel-based SVM (support vector machines) are used as clas-
sifiers for computing the probability of the parse tree derivation.

3.5 Evaluation of NLU Systems

Although the SLU/NLU systems mostly do not appear as standalone ap-
plications as they are incorporated into e.g. dialogue systems, there is a
reasonable need for an independent evaluation of the system itself. Having
a semantically annotated corpus made by human annotators, we can com-
pare it to the results obtained from a semantic analysis system using some
criteria. Therefore, various types of measures are introduced in this section.

3.5.1 Exact match

The simplest criterion is the exact match criterion. Let CR be the reference
parse tree (made by a human annotator) and let CP be the tree produced
by the parser. Then the exact match criterion is a binary function returning
1 if the CP matches exactly the CR and 0 otherwise. The exact match
means that both trees have the same structure and labels of concepts and
the preterminal concepts cover the same positions of words in the input
sentence.

Since the output of the parser can differ only in e.g. one concept or even
in preterminal concept positions, such tree is automatically discarded with
0. Therefore we need a finer measure which would penalize the output
depending on its distance from the reference parse tree.

3.5.2 PARSEVAL

The standard measures used in PARSEVAL are precision (P), recall (R)
and F-measure (F). Let the correct concept be a concept which spans over
the same words in both the reference and the hypothesis tree. Then the
values are computed as follows:

P = # of correct concepts in CP
of concepts in CP

(3.21)

35

R = # of correct concepts in CP
of concepts in CR

(3.22)

F =
(
α

P
+ 1− α

R

)−1
(3.23)

The parameter α ∈ 〈0, 1〉 is used to distribute the preference between the
recall and the precision.

3.5.3 Tree edit distance

The tree edit distance algorithm computes a minimum number of substitu-
tions, insertions and deletions required to transform one tree into another.
For semantic analysis system outputs it is possible to measure only the dis-
tance between abstract semantic trees without the relation to the words
of the input sentence (therefore it is called concept accuracy in (Jurč́ıček,
2007)). The accuracy is then defined as:

CAcc = N − S −D − I
N

(3.24)

where N is a number of concepts in the reference semantic tree, S is the
number of substitutions, D is the number of deletions, and I is the number
of insertions.

3.6 Existing corpora

In this section, an overview of existing NLU systems and corpora is pre-
sented. Instead of a comprehensive survey, some well documented and com-
monly referenced data sets and systems have been chosen.

3.6.1 ATIS

The ATIS (Air Travel Information Service) corpus contains a travel informa-
tion data. There are more versions of the ATIS corpus: ATIS-2 and ATIS-
3. Originally, these corpora contained only transcriptions from spoken lan-
guage. The abstract semantic annotations were derived semi-automatically
using SQL queries provided in ATIS-3. A set of 30 domain-specific lexical
classes were extracted from the ATIS database. For creating the test set, a
post-processing was required to extract relevant slots/values and transform
them into a compatible format (He & Young, 2006b).

36

Although ATIS has been used for development and evaluation in many SLU
systems, it is now over twenty years old (Price, 1990). There are several
important issues that raise a question whether ATIS is a corpus suitable for
evaluating a modern SLU application. For example, as pointed out by (Tur,
Hakkani-Tur, & Heck, 2010), “ATIS corpus is highly artificial and utterances
are mostly grammatical and without disfluencies”. Furthermore, many in-
consistencies in the ATIS testing data set were discovered by (Habernal &
Konoṕık, 2010).

3.6.2 DARPA

The DARPA Communication data contains utterance transcriptions and
semantic parse results from the rule-based Phoenix parser (Ward & Issar,
1994). The abstract semantic annotations produced by the parser were
hand-corrected. The data consists of 38408 utterances in total. After re-
moving context dependent utterances such as “Yes”, “No, thank you”, etc.,
the final set consists of 12702 utterances. The corpus is publicly available
without the semantic annotations.

3.6.3 Other corpora

The LUNA project is an attempt to create a multilingual spoken language
understanding module. The corpus contains semantic annotation for three
languages (French, Italian, and Polish). The Polish corpus was collected
from the Warsaw City Transportation information center where people can
get various information related to routes and timetables of public trans-
port, etc. An automatic annotation process of this corpus is described
in (Mykowiecka, Marciniak, & Glowińska, 2008). The Italian part of this
project consists of spontaneous dialogues recorded in the call center of the
help desk facility of the Consortium for Information Systems of Piemont
(CSI Piemonte), thus its domain is focused on computer related dialogues.
The so-called active annotation of this corpus is described in (C. Raymond,
Rodriguez, & Riccardi, 2008).

The MEDIA project aims to evaluate SLU approaches to French language.
The domain is targeted at hotel room booking and related tourist infor-
mation. The corpus was recorded using a WOZ4 system simulation. The
semantic annotation procedure is described in (Bonneau-Maynard, Rosset,
Ayache, Kuhn, & Mostefa, 2005).

4WOZ = Wizard-Of-Oz. In this way, the user/speaker believes he or she is talking to
a machine, whereas in fact he or she is talking to a human who simulates the behaviour
of the dialogue server.

37

3.7 Existing systems

3.7.1 HVS Parser

A hidden vector-state model (see section 3.3.3) was presented in (He &
Young, 2005). The system was tested on the ATIS and the DARPA corpora,
recently the system was also used for semantic extraction from the bioinfor-
matics corpus Genia (D. Zhou & He, 2009). The first model training was
based upon MLE (see section 3.3.4), however, a discriminative training has
been also proposed.

An extension of the basic HVS Parser was developed in the work of (Jurč́ıček,
2007). The improvement is achieved by extending the lexical model and by
allowing left-branching. The system was tested on a Czech human-human
train timetable corpus.

3.7.2 Scissor

Scissor (Semantic Composition that Integrates Syntax and Semantics to get
Optimal Representations) is another system which uses a syntactic parser
enriched with semantic tags, generating a semantically augmented parse
tree. It uses the state-of-the-art syntactic parser for English, the Collins
parser (Collins, 1997). The parse tree consists of syntactic nodes augmented
with semantic concepts. Some concepts (referred to as predicates) take an
ordered list of arguments from sub-concepts. Null concepts, that do not
correspond to any semantic information, are introduced as well.

The training of the system is performed in the following steps. First, the
corpus is parsed by Collins parser. Then the semantic labels for individual
words are added to the POS nodes in the tree. Finally, the rest of semantic
concepts is added in a bottom-up manner. This semantic annotation must be
done manually and heavily depends on the domain knowledge and requires
a robust syntactic parser. The system is described in detail in e.g. (Ge &
Mooney, 2005), (R. G. Raymond & Mooney, 2006) or (Mooney, 2007).

3.7.3 Wasp

Wasp (Word Alignment-based Semantic Parsing) is based upon statistical
machine translation (SMT). The method is trained on corpora consisting of a
natural language data and an appropriate meaning representation language
(MRL). Wasp requires no prior knowledge of the natural language syntax,
although it assumes that an unambiguous, context-free grammar (CFG) of
the target MRL is available (Wong & Mooney, 2006). First, the words are
aligned to corresponding semantic concepts using the GIZA++ system (Och

38

& Ney, 2003). Then a probabilistic parser and a synchronous CFG are used
to create the parse tree.

3.7.4 Krisp

Krisp (Kernel-based Robust Interpretation for Semantic Parsing) uses sup-
port vector machines with string kernels to build semantic parsers that are
more robust in the presence of noisy training data. The string kernels are in-
troduced in section 3.4. In particular, Krisp uses the string kernel to classify
sub-strings in a natural language sentence. Like Wasp, it uses production
rules in the MRL grammar to represent semantic concepts. Learning the
parameters of the system is an iterative process, in each step positive and
negative examples are collected to train the SVM. During semantic parsing,
Krisp uses these classifiers to find the most probable semantic derivation of
a sentence (Kate & Mooney, 2006).

3.7.5 Other systems

Another system for stochastic semantic analysis introduced in (Beuschel,
Minker, & Bühler, 2005) uses a scheduling data corpus, the English Sponta-
neous Speech Task (ESST). This is an appointment scheduling task where
two people speaking different languages try to schedule a meeting. This ap-
proach is very similar to the flat-concept parser (see section 3.2.2) because
it uses the first-order HMM but the training stage depends again on a rule-
based parser. However, a more general method for context definition was
proposed in this approach. Instead of introducing data-dependent context
classes, contextual observations are introduced.

In (Y.-Y. Wang et al., 2005), a generative HMM/CFG composite model is
used to reduce the SLU slot error rate on the ATIS data. Also a simple
approach to encode the long-distance dependence is proposed. The core of
the system is based upon conditional random fields (CRF) and the previous
slot context is used to capture non-local dependence. This is an effective and
simple heuristics but the system requires a set of rules to determine whether
the previous slot word is a filler or a preamble. Thus, it is difficult to port
the system to other domain.

Part III

Natural Language-Based
Semantic Web Search System

39

Chapter 4

Target Domain

This chapter describes the domain on which the SWSNL (Semantic Web
Search using Natural Language) system was developed and tested. It starts
with a discussion of the domain selection, continues with describing the
process of obtaining data from users and concludes with testing data prepa-
ration.

4.1 Domain Requirements

As mentioned in section 3.1, portability plays a crucial role in the develop-
ment of SWSNL system. A high degree of portability positively affects the
costs required for adapting the system to another domain. On the contrary,
if the system is tailored to a particular domain, it tends to perform better.

Our SWSNL system is domain independent.1 Nevertheless, in order to de-
velop and evaluate a full end-to-end system, an appropriate domain must
be chosen.

The target domain should meet the following requirements:

• There must be a knowledge base (in any form) that contains the desired
domain information.

• A testing corpus of natural language questions must exist for the par-
ticular domain.2

• For each question from the corpus, correct“answers”from the KB must
be known.

1To a certain degree; see Chapter 7 dealing with semantic interpretation.
2In our SWSNL system the corpus is used for training as well; see chapter 6.

40

41

Obviously, these requirements are not exclusive to our SWSNL system. They
can be applied to the evaluation of any NLISW system as discussed in sec-
tions 2.4 and 2.5. Furthermore, in order to prove the usability of the SWSNL
system in a real-world scenario, we added few more requirements.

• There must be a promising commercial potential. It makes no sense
to deal with simple or artificial domains or domains that have already
been successfully deployed into commercial sector.

• The domain is currently accessible mainly via a form-based search.
Users would benefit from a NL search.

• The NL question corpus must be as close to the real-world scenario as
possible.

We also decided to focus on the Czech language at the first place. Due
to its high degree of inflection and relatively free word order, it makes the
task more challenging. However, it should be easy to adapt the system to
English.

In sections 2.4 and 2.5 various corpora of NL questions and ontologies were
introduced. Unfortunately, none of the existing corpora and KB meets our
requirements as stated above:

• Lack of commercial potential or even solving non-existing problems
(e.g. systems tested on wine ontology, Nobel prize ontology, digital
library domain).

• Unrealistic NL question corpus (i.e. Mooney Geoquery3).

• Some domains are already parts of commercial solutions (e.g. public
transportation domains).

• The vast majority of NL question corpora is in English.

The impossibility to re-use an existing KB/corpus has two effects. The dis-
advantage is that the performance of our SWSNL system cannot be directly
compared with other existing systems. However, a brand new corpus/KB
allows to explore new possibilities in SWSNL and thus go beyond the state
of the art.

Finally, the accommodation domain was chosen. First, searching for a suit-
able accommodation is still far from being solved in any NLI system. Thus,

3In author’s opinion, in a real-world search system users would not search for an in-
formation like “What is the largest city in states that border California?” or “What is the
highest point in the state with the capital Des Moines?”.

42

it has a good commercial potential (comparing to other domains discussed
earlier; this is the author’s opinion). Second, the domain is not trivial and
a fully functional end-to-end system must deal with many practical issues,
that are sometimes ignored in the existing systems but that are essential in
any real-world application.

In the rest of this chapter, the process of collecting a NL question corpus
and creating a KB will be depicted.

4.2 Natural Language Question Corpus

This section describes a process of collecting a corpus consisting of NL ques-
tions in the Czech language on the accommodation domain. Whereas all
existing NLI/QA systems expect the question to be a single sentence, we
decided to go beyond the state of the art by allowing the users to ask their
questions using one or more sentences to formulate their needs more pre-
cisely.

We gathered the user questions using a Facebook page4. The motivation was
based upon our previous experience with obtaining data for NLI systems
(Habernal & Konoṕık, 2009). It showed us that asking only i.e. students
from a certain course can negatively affect the data. We observed that first
few questions from one student were “real” questions—such questions are
on-topic and they ask for some real data (i.e. train connections, train types,
etc. in the train domain or, i.e. cheap accommodation in certain city in
the accommodation domain). Starting with the 4th or 5th quesion from
the same student, the quality of questions decreased and became poor for
further usage in the corpus. The student mostly posed off-topic or simply
silly questions (i.e. whether some hotel serves a certain type of beer, etc.).
We think that even if the assignment for devising the questions was clear,
at some point the students decided to test the abilities of the NLI system
by asking “hard” questions instead of trying to find some real and useful
information.

Thus, we claim that it is very important to choose a proper way of obtaining
the NL corpus for an evaluation. Table 4.1 lists few corpora from the related
work. Given this statistics, we suspect that many systems may suffer from
the similar problem as we did and that their evaluation datasets are likely
to be artificial.

We started the Facebook campaign with a clear description of the “virtual”
SWSNL system. In other words, it says: “There is a search engine that
operates on accommodation domain in the Czech Republic. Try to find an

4http://www.facebook.com/pages/Vyhledávánı́-v-přirozeném-

jazyce/112739178813727

43

Corpus Source and quantity

(Ruiz-Mart́ınez et al., 2009) 4 Ph.D. students, 20 questions each

(Gao et al., 2011) students (93 questions); manually cre-
ated questions (77 questions)

(Ferrández et al., 2009) 10 unspecified users, total 540 ques-
tions; 10 user (high school students,
administrative assistants), 10 ques-
tions each

(Frank et al., 2007) 100 questions, system developers

(Cimiano et al., 2008) 24 users (computer scientists from
academic and industry), 10 questions
each

(Tang & Mooney, 2001) 1000 questions from undergraduate
students from the authors’ depart-
ment

Table 4.1: Sources of the evaluation questions in the related work.

accommodation that you really want by describing it using natural language
instead of keywords. You are not limited to a single sentence. Just keep in
mind that a human must be able to find the accommodation for you.” A few
diverse examples followed. At that time, we had no back-end database nor
knowledge base thus we did not limit the users to ask questions that can be
found in any existing accommodation search portal. To avoid poor quality
of the corpus, as described previously, we asked each user to pose one to
three questions.

After two weeks of quite intensive Facebook sharing and recommending to
other people via “friends”, we gathered 72 questions. This was less than we
had expected but the whole campaign was based upon spontaneity and we
didn’t want to push anyone to participate in it. After discarding three really
off-topic questions we had a corpus consisting of 69 questions.

Note that the participants were not asked for finding any answer to their
questions. The main goal was to collect just the questions at this step.

4.2.1 NL Question Corpus Statistics

Table 4.2 shows the distribution of question lengths in terms of number of
sentences used. Although there was no limit to the question length, most of
the users asked using a single sentence only.

In the table 4.3, some interesting statistics follow. The average number
of questions per user might be an important variable affecting the corpus
quality, see the beginning of this section. Also the average question length

44

1 sentence 2 sentences 3 sentences

number of questions 38 23 8

Table 4.2: Number of sentences per question.

Questions with missing diacritics 3

Average question length (words) 24.9

Number of unique participating users 42
Average number of questions per user 1.54

Table 4.3: Various NL question corpus statistics.

shows that the questions are relatively long.

The length of the questions is also important from an another point of
view. The questions contain lot of information (see the examples in the
next section). This makes the corpus very atypical, compared to the existing
corpora (section 3.6).

4.2.2 Question Examples

Here are few examples of the NL questions in Czech with their English
translation5.

• Ráda bych se ubytovala v Karľstejně s výhledem na hrad a královské
vinice, nejlépe s polopenźı, parkováńım a úschovnou kol, pro 2 lidi od
pátku do neděle. — I’d like to have an accommodation for two people
in Karľstejn with a good view of the castle, including half board, a
parking lot, and a bike rental from Friday till Sunday.

• Jsme dva a chceme strávit jarńı prázdniny v malebném hotýlku nebo
apartmánu v Beskydech, bĺızko modré sjezdovky, předpokládáme ly-
žárnu, vyžadujeme polopenzi. Bazén, pingpong, wellness a podobné
legrácky potěš́ı, ale nejsou nezbytné. — Two persons want to spend
the spring holidays in a cute hotel or apartment in the Beskydy moun-
tains. We require a ski-locker room and full board. Swimming pool, a
ping-pong table and some wellness will be a pro but that’s not neces-
sary.

• Hledám levné v́ıkendové ubytováńı pro 3 odoby v Jindřichově Hradci
nebo bĺızkém okoĺı, v bĺızkosti p̊ujčovny j́ızdńıch kol nebo s možnost́ı
uskladněńı vlastńıch, pokoj nejlépe s krbem a možnost́ı připojeńı na
internet, vlastńı sociálńı zař́ızeńı podmı́nkou. — I’m looking for a

5The translation is not 100% precise.

45

cheap weekend accommodation for 3 persons in the area of Jindřich̊uv
Hradec, near to a bike-rental store or with a bike locker-room. Room
including a fireplace, internet and a private bathroom.

• Hledám hotel na pořádáńı mezinárodńı konference dne 25.10.. Hotel
muśı mı́t sál pro minimálně 100 lid́ı, wifi pokryt́ı, možnost uspořádáńı
večeře, a minimálně 10 dv̊ujl̊užkových pokoj̊u. Upřednostňuji hotel s
vlastńı prezentačńı technikou — I’m looking for a hotel suitable for
hosting an international conference on October 25. We require a large
hall (100 people at least), wifi, banquet, conference equipment. 10
double-bed rooms are minimum.

4.3 Knowledge Base and Domain Ontology

In order to develop a fully functional SWSNL prototype application, the
underlying KB is essential. As already pointed out in section 2.3.1, the KB
is a module that stores the complete knowledge about the covered domain.
In the Semantic Web, ontologies are the main vehicle for domain modeling.

In our experiment on the accommodation domain, we had no such ontology
during collecting the testing NL question corpus (see the previous section).
On one hand, we did not restrict the user questions to comply with a struc-
ture or content of a particular domain model. On the other hand, there
was a risk that the KB would not contain the answers to the collected NL
questions.

After few unsuccessfull attempts to cooperate with companies running com-
mercial accommodation web search portals, it became obvious that there is
no easy way of obtaining an accommodation database (at least in the Czech
Republic). This problem will be also discussed in section 9.1.5. The only
way how to get a real database with accommodation possibilites was to use
web data mining techniques.

4.3.1 Pattern-based Web Information Extraction

As a source website for data mining, the portal hotelypenziony.cz was
chosen. The site provides a large database of various types of accommoda-
tion (from cottages to luxury hotels). All entries are categorised in one or
more sections (by accommodation type or by tourist region) denoted by a
URL prefix. Unfortunately, due to an inappropriate web structure, the same
accommodation can appear at various URLs. Almost all entries have some
location information, such as GPS coordinates or an exact address. Further-
more, each accommodation page contains some information about facilities,

46

prices, etc. but these fields are not mandatory. Some entries are enhanced
with textual descriptions, like e.g. a site or a restaurant description.

Apparently, the website has a relational database on the back-end. How-
ever, we decided to put the extracted information into an ontology. The
motivation was the following.

1. Ontology can be searched using a reasoner which can infer some facts
that are not expressed explicitly.

2. Ontology can capture both the domain model and data instances.

3. Ontologies are an essential feature of Semantic Web and thus we
wanted to test it in a real-world scenario.

The first point cannot be easily achieved using a standard relational data-
base. An ontology, consisting of triplets, can contain e.g. symmetrical or
transitional properties forming an unconstrained graph structure. Moreover,
for example transitive closures cannot be defined in SQL6 (Libkin & Wong,
1997). The second reason follows the basic idea of Semantic Web that data
can be shared using ontologies with well-defined semantics and an easy-to-
follow domain model for both computers and humans.

Crawling. The entire site was downloaded using an in-house crawler writ-
ten in Groovy. Traditional crawlers failed due to a bad site structure design
which caused an infinite link generation (the so-called traps).

Information extraction. A pattern-based information extraction tool
was developed in order to extract the structured content from the crawled
web pages. The extracted data were then transformed into the corresponding
ontology instances and properties.

4.3.2 Domain Ontology

The domain ontology structure was designed according to the extracted
information, see Figure 4.1.

The ontology structure is more or less “flat”. It has one important class
Accommodation with many object and data properties. The reason for this
design comes from the structure of the website (the information source),
where one accommodation page is equivalent to one instance of the ontology
class Accommodation.

6Although Oracle RDBMS supports CONNECT BY clause which can be also ported to
IBM DB2 database.

47

Figure 4.1: Structure of the accommodation ontology.

48

Some domain structure details are explained below:

• The Accommodation ontology class has several sub-types (e.g. Hotel,
Private, Apartment, etc.) according to the type determined from the
website section. The sub-classes are disjoint which means that a single
accommodation instance cannot be i.e. both Hotel and Spa.

• The hasRoomType predicate has an unlimited cardinality. Each accom-
modation instance can contain multiple room types with appropriate
prices and availability. Needless to say, RoomType instances are unique
for each accommodation instance (they are not shared among all ac-
commodations). This is very important for modeling e.g. number of
rooms or room prices of a particular accommodation instance.7

• Similar to the previous point, the Facility instances have a certain
type (e.g. SportActivity or HotelFacility). The Facility in-
stances are shared among all accommodations, i.e. there is only one
instance of HotelFacility called facInternetConnection which is
linked to all accommodation instances with an internet connection. In
the other words, there is only one type of internet connection which is
the same for all accommodation instances.

• There is an important functional8 object property hasGPSCoordi-

nates. This links an accommodation instance to its unique GPSCo-

ordinates instance. This will be discussed in the next paragraph.

Location hierarchy

During creating the KB from the website data, an essential requirement was
stated—each accommodation must have its exact location. Without such
information, it would be impossible to find any result when asking for an
accommodation in a certain area or a city.

Figure 4.1 depicts a transitional relation isSubpartOf. This relation allows
to capture a hierarchy of Location instances, e.g. Street is a sub-part
of City, etc. However, the property is not functional thus it is possible
that one location is sub-part of more than one other location. Typically,
this is the case of <c isSubpartOf a> & <c isSubpartOf t> where c is
an instance of City, a is an instance of District and t is an instance of

7For example, an accommodation instance someHotelInst is connected to an instance
someHotelPrivateDoubleInst via the hasRoomType predicate and the someHotelPrivate-
DoubleInst contains a property price. This means that the room price is valid only for
that particular accommodation instance.

8A functional property is an property in OWL which can have only one (unique) value
y for each instance x, (Dean & Schreiber, 2004)

49

TouristRegion. An interesting task was to create such hierarchy only from
the given address and the GPS coordinates.

Exact location extraction. Each accommodation page from the source
website contained both an address and a GPS location. We discovered
that most of the GPS locations were invalid (they did not correspond to
the written addresses). We considered it as a big obstacle for a real-world
application so we decided to discard the original GPS locations and tried to
recreate them from the given textual addresses. We used the mobile user
interface of Mapy.cz at http://m.mapy.cz and parsed the GPS coordinates
from the retrieved text content.

4.3.3 Qualitative Analysis of the Knowledge Base

This section is dedicated to a deep analysis of the quality of the created
KB. This analysis is necessary for further determination of possible system
bottlenecks.

The total number of all instances (individuals) in the KB is 32.990 and the
total number of all triplets is 281.686. The total number of instances of the
Accommodation class9 is 8641.

Statistics of Properties of Accommodation Instances

An accommodation basically contains two types of properties. We will dis-
tinguish them as text properties and structured properties10.

Structured properties. These properties are both datatype and object
properties (in OWL terminology) with exactly specified semantics.
This kind of property basically contains a structured information, such
as number values (e.g. various capacities or prices) or facilities (e.g.
room facilities, sport activities).

Text properties. Text properties are four datatype properties (in OWL
terminology), namely accommDesc, siteDesc, conferenceDesc and re-
staurant. These properties are mostly long text fields extracted from
the accommodation website. They contain an unstructured descrip-
tion of the accommodation, e.g. restaurant information, description
of the site, etc. Furthermore, these properties do not have an exactly
specified semantic meaning, in opposite to structured properties.

9For the rest of this chapter, we will use simply accommodation.
10These properties are not the same types of properties as datatype and object properties

in OWL; see section 2.2.

50

Figure 4.2: Distribution of text and structured properties.

Figure 4.3: Statistics of the four text property types. None represents ac-
commodations without text properties.

The structured properties are crucial for searching using a query language.
On the contrary, if a piece of information is available only in text proper-
ties, it can be hardly searched using a query language. Figure 4.2 shows the
distribution of the text properties and the structured properties over the
accommodations in the KB. This figure captures one of the most important
statistics. It says that about 60% of all accommodations has no additional
property, except for the obligatory address. This means that we cannot say
anything specific about these accommodations. The system only knows that
a certain accommodation exists on a certain place but no additional informa-
tion is offered. However, almost all the user questions presented in section
4.2.2 relate to a more specific type of accommodation, with e.g. certain
properties, prices, room types, etc. This causes that almost 40% of accom-
modations cannot be found when users ask for additional accommodation
requirements.

However, the text properties can contain a lot of unstructured information
and the system can benefit from a combined search over the text and struc-
tured properties. Figure 4.3 depicts statistics of the four text property types.

Another important statistics outlines how many accommodation instances
have a certain type of property. Again, this can later give an explanation of
some search results. The statistics is shown in Table 4.4.

51

Property name i (in %)
distanceFromSubway 182 2.1 restaurant 1632 18.9
distanceFromAirport 369 4.3 totalBedCount 1645 19.0
conferenceDesc 398 4.6 hasRoomType 2169 25.1
hallCapacity 430 5.0 accommDesc 2295 26.6
conferenceRoomCapacity 430 5.0 hasFacility 2614 30.3
parkingLotCapacity 765 8.9 fax* 3490 40.4
restaurantCapacity 768 8.9 www* 6401 74.1
distanceFromDowntown 790 9.1 tel* 6798 78.7
siteDesc 938 10.9 email* 7071 81.8
distanceFromTrain 941 10.9 title 8641 100.0
distanceFromBus 1124 13.0 address 8641 100.0
stars 1284 14.9 shortName 8641 100.0

Table 4.4: Number of accommodations (i) that contain a particular prop-
erty (data property or object property). Cardinality of the properties is
not taken into account, e.g. an accommodation instance can have multiple
hasFacility properties. Thus, this table shows how many accommodation
instances have at least one property of each type. Note: Star (*) denotes
obligatory properties—each accommodation must have at least one of those
properties.

Facilities. Important structured properties are instances of the Facility
class connected to accommodation via the hasFacility predicate. This kind
of property is one of the most important to satisfy user needs since it repre-
sents services, facilities and activities offered by a particular accommodation.
Figure 4.4 lists how many accommodation instances have a certain number
of facilities. This statistics does not say anything about the types of the fa-
cilities, however, it shows that most of the accommodation has about three
facilities.

Figure 4.4: Number of accommodations with a certain number of facilities.

52

4.3.4 Semantic Inconsistencies Causing Practical Issues

The main advantage of a well-designed ontology is its precise semantics. It
allows to use complex semantic constructs in order to infer new facts and
query the KB using a query language.

In reality, systems must often deal with existing data since the amount of
work to create and populate an ontology from scratch would be tremendous.
Also our KB is almost completely created from the existing data. As the
original data was not designed to respect a precise domain semantics, a sort
of semantic inconsistency was transferred into the KB. This can later result
in semantic ambiguity.

Our KB contains a few examples of semantic inconsistencies. We reveal
some of them in the following list. Note that we had to leave all the data
unchanged because it was not feasible to check and correct all the inconsis-
tencies manually.

• The accommodation types are quite ambiguous. There is no clear
difference between e.g. Hut and Cottage, among others.

• Lot of facilities are duplicated in some sense. For example, the KB con-
tains four similar instances of a parking lot (namely parkingLot, park-
ingLogWithLights, parkingGarage, and securedParkingGarage). Ap-
parently, the meaning of these different instances overlaps a lot.

• Some accommodations have total number of beds but the information
about room types is missing (and vice versa).

• Moreover, prices of some accommodations are set to 1 CZK which is
definitely a fake price.

There are two possible solutions how to deal with these inconsistencies.
First, after the KB is created from the crawled data, it can be manually
checked and altered in order to avoid such semantic inconsistencies. We can
call it a KB post-processing. Second, the KB is left as-is and an attention
must be paid when querying the KB. We decided to use the latter approach.
For example, in our case if the system constructs a SPARQL query to retrieve
all accommodations with a parking lot, all the four instances of parking lot
must be taken into account when creating the SPARQL query.

Transitive Object Properties

As mentioned in section 4.3.2, the ontology contains one important transi-
tive object property isSubpartOf and the location hierarchy is constructed

53

Instance of TouristRegion No. of relations
1. hlavni-mesto-praha 841
2. krkonose 678
3. zapadoceske-lazne 466
4. oblast-sumava 339
5. jizerske-hory 317
...

42. kralicky-sneznik 10
43. kokorinsko 7
44. hana 3
45. orlik 2
46. blansky-les 2
47. ceska-kanada 1

Table 4.5: Number of direct relations <Street, isLocatedIn, TouristRegion>

automatically. In most of the cases, the accommodation is connected to its
GPSCoordinates (i.e. <accommInst, hasGPSCoordinates, gpsCoordInst>)
and further to the location hierarchy (i.e. <gpsCoordInst, isLocatedIn,
streetInst>, <streetInst, isSubpartOf, cityInst>, <cityInst, isSubpartOf, dis-
trictInst>, <districtInst, isSubpartOf, RegionInst>).

Nevertheless, the source website is also categorised by tourist regions. These
regions are not explicitly defined and some of them overlap with existing
cities (this is the case of the Czech capital Prague—on the website, Prague
is both a tourist region and a city). This brings a kind of inconsistency to
the data and makes the search according to a certain place or region much
harder. Table 4.5 depicts such accommodations whose address (Street) is
associated directly with a tourist region and does not belong to the above
mentioned hierarchy (City-District-Region).

4.4 Test Data Preparation

For an evaluation of a search system, a test set of questions with answers
is required. In other words, each question from the testing corpus must
be associated with correct answers from the KB. In our case, the correct
answers are instances of accommodations that satisfy user requirements,
expressed by natural language questions. This will be the test data for our
evaluation11.

11We will also use the terms gold results or gold data.

54

Expression Interpretation
in the vicinity of a city all places in the district

in which the city is located
close to (subway/downtown/train) the distance is smaller than 1 km
cheap any room of the accommodation

has price lower than 1.000 CZK
cheapest returns only one cheapest

accommodation

Table 4.6: Semantic interpretation of some NL expressions

4.4.1 Search Results

The most important problem is to decide what is a correct answer for a par-
ticular NL question. As mentioned above, users look for an accommodation
and thus a set of accommodation instances is considered as the search result.
Each item from the search result must be a valid answer. In other words,
the valid answer is when a human can treat the returned accommodation as
“This is exactly what the user wants to find.”

4.4.2 Semantic Interpretation

Many NL questions contain a sort of vague expressions, e.g. “cheap”, “nice”,
“close to something”, etc. It is necessary to decide in advance how to inter-
pret these expressions consistently. The same interpretation must be used
also later by the SWSNL system.

Table 4.6 presents some examples of the semantic interpretation. The values
(prices and distances) were set after a consensus in our research team, how-
ever, this interpretation definitely depends on each user’s point of view. We
deal only with such expressions that can be quantified or expressed using
the KB semantics.

4.4.3 Assigning the Correct Results

The only proper way how to create a perfect test set is to take each NL
question, go through all accommodations and decide whether a particular
accommodation is a correct answer to the question. Having the corpus of 69
questions and 8641 accommodations it is impossible to do this task manually.
For this task we combined a structured search and a fulltext search.

Structured search. For each NL question a corresponding SPARQL query
was manually constructed. We put as much constraints from the ques-
tion as possible into the query. For example, if the user asks for par-

55

Figure 4.5: Distribution of properties in the gold data set.

ticular facilities (e.g. parking, internet), we add all of them into the
SPARQL query. This ensures that only the accommodations that sat-
isfy the constraints are selected from the KB (see the first paragraph
from section 4.4.1). However, adding such strict criteria has two ef-
fects. First, the results that partially satisfy the requirements are
simply ignored. At the moment, no ranking of results is involved. Sec-
ond, if the accommodation has no structured properties (see section
4.3.3), it is also ignored by the structured search in principle.

Fulltext search. As presented in section 4.3.3, each accommodation can
have a few text descriptions (labels). Such a description usually con-
tains information which might be available in the structured properties
as well (e.g. description of hotel facilities in the text and then again as
structured properties). These text fields can be indexed and searched
through using a fulltext search.

Finally, the whole process of assigning the correct results to each NL question
was performed as follows:

• If the question can be completely expressed using SPARQL, create
such a query and add the results to the correct results.

• If the question contains other requirements that cannot be expressed
using SPARQL, filter the structured search results with a fulltext
search and check the returned results manually.

• Create the least restrictive SPARQL query (only with location and
accommodation type) and filter the results using a fulltext search.
The fulltext keywords are manually selected according to the question
requirements. The results must be checked manually.

In author’s opinion, this whole process gives the best approximation of the
correct test data. Needless to say, it took few weeks of tremendous manual
work to create such a data set.

56

Figure 4.5 illustrates some statistics of properties of the gold data. Given
this statistics, we can draw the following conslusion. The users want to
find accommodations with particular properties such as facilities, prices,
etc. These properties are stored in the structured properties and the text
properties. Furthermore, the statistics shows that the gold data contains
just a few results that are accommodations without any properties (the first
column in Figure 4.5). However, as outlined in Figure 4.2 the KB contains
almost 60% of accommodations that have no additional properties. This
illustrates an imbalance between what the KB contains and what the users
ask for.

Chapter 5

Semantic Annotation of NL
Questions

5.1 Describing NL Question Semantics

Our formalism for describing the semantics of natural language questions
exploits the idea of Semantic Web and ontologies. Since an ontology allows
to define semantics very precisely (see section 2.2.), it also seems to be a
suitable vehicle for capturing semantics of NL questions.

The first part of this thesis explored various approaches how the NL seman-
tics can be expressed. Some of them are e.g. frames, FOPL (first-order
predicate logic) or semantic trees, among others. Our previous research
(Habernal & Konoṕık, 2009) and (Habernal & Konoṕık, 2010), based upon
semantic trees, showed that describing semantics of NL questions should
follow a particular structure, e.g. using a schema for adding constraints to
semantic trees. Ontologies offer such a mechanism by allowing to define pre-
cise semantic relations between entities. Therefore, ontologies were chosen
as a main vehicle for capturing NL question semantics.

We will now discuss the term semantic annotation. In the Semantic Web,
this term has multiple meanings, e.g. webpages are annotated according to
a particular ontology (taxonomy) or named entities can be annotated with
related instances from an ontology. Our usage comes from NLU research
where sentences (or questions) can be annotated with some additional se-
mantic information. Henceforth, the term semantic annotation will be used
in the sense of a semantic description of a NL question1.

1Recall that a question can be expressed using a single sentence or a whole paragraph
in our corpus, see section 4.2.

57

58

Figure 5.1: A schema of the two layer annotation of NL questions.

5.1.1 Domain Ontology versus NL Question Ontology

Ontologies for storing a domain information (Knowledge Base – KB) were
already thoroughly discussed in section 2.2 and 4.3. However, in our proposal
the semantic annotation of NL questions based upon ontologies has no direct
relation to the ontologies for storing a domain information (KB). This means
that our semantic annotation is completely independent of a particular KB.
Our semantic annotation uses ontologies exclusively for describing question
semantics.

This kind of independence allows to separate the KB and the semantic de-
scription of NL questions in our SWSNL system. Thus, it is possible to e.g.
switch the KB from an ontology to a relational database without affecting
the semantic annotation of NL questions.

5.1.2 Two-Layer Annotation Approach

Figure 5.1 summarises our annotation approach in a schematic overview.
The semantic annotation consists of two layers. The bottom layer is a do-
main independent layer with a domain independent sentence ontology. The
upper layer is then constructed according to a domain-dependent ontology of
NL questions. Both layers will be explained in more details in the following
sections.

5.1.3 Ontology of NL Question

The domain-independent question ontology is shown in Figure 5.2. Each
word is represented as an instance of the Word class2 with some additional

2Note that classes and instances are seen from the Semantic Web/OWL perspective
in this context. There is no direct relation to any particular implementation using an
object-oriented programming language.

59

Figure 5.2: Sentence ontology.

morphological properties and its position within the sentence. An instance
of the Sentence class covers a particular question.

The ontology has also a built-in support for marking named entities. An
instance of NamedEntity is directly connected to the words. Furthermore,
named entities form a taxonomy of classes. The basic sentence ontology
contains few general types of named entities, such as numbers, places, etc.
This taxonomy can be extended in the ontology for a particular domain (i.e.
more precise places in our accommodation domain, etc.). In most cases,
named entities are used to label expressions with a special meaning (e.g.
cities, persons, countries, etc.). We extended the range of named entities to
all words/word groups that carry an important semantic information. For
example, we added the following domain named entities: relative location
(covering e.g. “near”, “in the center”, etc.), relative price (e.g. “cheap”), or
additional requirements (e.g. “fitness”, “internet”, etc.), among others.

The semantic annotation of a question is an instance of the SentenceAn-
notation class and it depends on the domain in which the questions are
annotated. An example of a question described by the question ontology
is depicted in Figure 5.3. This simplified example shows only the triplet
structure of the sentence annotation. The datatype properties are shown in
the boxes connected to the ontology instances.

All ontologies are stored in OWL format and they were developed using
Protégé3.

3Protégé is a free, open source ontology editor and knowledge-base framework.
http://protege.stanford.edu/

60

Figure 5.3: The triplet representation of a NL question. Only the first few
words are shown.

Ontology for Semantic Annotation of Accommodation Questions

For each question, instances of the domain-dependent question ontology
classes (triplets) are created. Those triples are then associated with the
sentence. Due to its complexity the diagram of the complete triplet seman-
tic annotation is not shown. Figure 5.5 depicts the semantic annotation of
the previous example from Figure 5.3. Some words are omitted as well as
the relation hasNextWord between the words and the datatype properties
of the words.

Advantages of our Semantic Annotation Approach

We will conclude this section by a brief list of the main advantages we see
in the ontology-based semantic annotation.

• Our semantic formalism does not depend on the structure of the KB.

• It uses Semantic Web standards: The sentence and its annotation is
completely expressed in triplets. It can be processed using any OWL
tool (e.g. Protégé).

• The semantic annotation has a strong semantic formalism. For exam-
ple, inheritance, semantic relation between slots, or long dependencies
can be captured. This is possible in frames too but no standardised
formalism exists.

61

Figure 5.4: Annotation ontology for questions in the accommodation do-
main. The dashed lines represent the is-a relation.

Figure 5.5: An example of semantic annotation. Simplified by omitting
unrelated word instances and relations.

62

5.2 NL Question Corpus Annotation

To provide a complete training/test set for our SWSNL system evaluation,
the NL question corpus from section 4.2 was annotated. As explained pre-
viously in this chapter, the semantic annotation based upon the accommo-
dation domain ontology was created for each question from the corpus.

Since the complete corpus and its annotations are stored in the OWL for-
mat, the annotation can be created using any tool for ontology authoring.
However, none of the existing tools (i.e. Protégé) was suitable for such a
task. The semantic annotation formalism is fairly complicated (as shown in
Figure 5.3 and 5.5) and the existing tools are not intended to create such
complicated graph structures with lots of instances. Thus, we had to develop
a new annotation editor.

Our Ontology-based Semantic Annotation Editor provides a balanced trade-
off between usability and robustness. The editor hides the complexity of
the underlying triplets and the sentence ontology by adding another layer
between the user interface and the inner semantic annotation interpretation.
Some important features are:

• Creating new instances and relations in a semantic annotation is con-
strained by the domain question ontology. It means that e.g. an in-
stance of Place can have only one outgoing edge hasRelativeLocation-
Requirement, according to the accommodation ontology (see Figure
5.4).

• The content words of named entities can be easily selected from a
pop-up list.

The whole corpus was annotated by one human annotator and then manually
checked by another one. The inter-annotation agreement was not measured
because of the small corpus size. An example screenshot of the editor is
shown in Figure 5.6.

63

Figure 5.6: A screenshot of the ontology-based semantic annotation editor.

Chapter 6

Semantic Analysis of Natural
Language Questions

This chapter describes our statistical model for a semantic analysis of NL
questions. The main task of the semantic analysis component is to create a
semantic description of previously unseen NL questions. More specifically,
given a NL question from the covered domain (i.e. the accommodation, see
section 4.2), the goal is to create an ontology-based semantic annotation (see
section 5.1).

Various state-of-the-art NLU approaches were presented in section 2.3.2 and
chapter 3. Although these systems provide acceptable results in many NLU
applications, the algorithms cannot be adapted for our system because a
different semantic formalism is used.

6.1 Semantic Analysis Model Overview

The semantic analysis component is based upon a statistical model and su-
pervised learning. An annotated corpus is required for the model training.
Furthermore, the component uses both off-the-shelf and newly developed
preprocessing tools, such as tokenizer, morphological tagger and named en-
tity recognition (NER).

Training. The model parameters are statistically estimated from a fully
annotated corpus (see section 5.2).

Testing. Given a previously unseen NL question, the following steps are
performed:

64

65

1. Preprocessing—The question is tokenized and tagged with lemmas and
morphological categories. Currently, we use Prague Dependency Tree-
bank tokenizer and morphological tagger (Hajič et al., 2006).

2. NER—Named entities are recognized (this will be discussed in more
detail later in section 6.4).

3. Semantic analysis—Using the trained model, the most likely semantic
annotation of the sentence is created.

The formal properties of the semantic model are proposed in the following
section.

6.2 Formal Definition of Semantic Annotation

Let S = w1 . . . wW be a sentence S (a question) consisting of W words w1...W
and let T (Subj, Pred,Obj) be a triplet of a subject, a predicate and an
object. Then the semantic annotation Sem of a sentence S is an unordered
set of M triplets

Sem(S) = {T1, T2, . . . TM}. (6.1)

Within Sem(S), the triplets can be connected. Formally, two triplets

Tx(Subj1, P red1, Obj1), Ty(Subj2, P red2, Obj2) (6.2)

can share their subjects or objects, so that Obj1 = Subj2 or Subj1 = Subj2,
forming de facto a directed graph.

Named Entities. Let N τ be a Named Entity (NE) instance with type τ .
Then

N τ
j,k = N τ

span(wj . . . wk) (6.3)

is NE of type τ which spans the words wj to wk, where 1 ≤ j < k ≤ W . It
means that NE is associated with the words from the sentence. Let C be a
semantic concept. C is not associated with any words.

Both N τ and C can be parts of a triplet so that each triplet has one of the
following forms:

66

T (Subj, Pred,Obj) =


T (C,Pred,N τ

j,k) if subj is C and obj is NE

T (N τ1
j,k, P red,N

τ2
o,p) if subj and obj are NE

T (N τ
j,k, P red, C) if subj is NE and obj is C

T (Ca, P red, Cb) if subj and obj are C
(6.4)

where j, k, o, p are the NE spans, a, b are used to determine possibly different
concepts C and τ1, τ2 can be different NE types.

6.3 Statistical model

Using the above mentioned formalism, the task of a semantic analysis is to
find an appropriate semantic annotation Sem(S) given a sentence S. Using
probability, we can formulate the problem as follows:

P (Sem(S)|S) = P (T1, T2, . . . TM |S). (6.5)

Let’s assume that the triplets are independent, thus

P (T1, T2, . . . TM |S) ≈
M∏
P (Tm|S) (6.6)

where
P (Tm|S) = P (Tm(Subj, Pred,Obj)|w1 . . . wW). (6.7)

Furthermore, we limit our model to the first two triplet types from Equation
6.4. It means that all triplet objects are NE and some triplet subjects
are NE, formally T = T (C,Pred,N τ) and T = T (N τ1 , P red,N τ2). This
limitation is based upon our observation that the other two types of triplets
are not currently present in the corpus.

In our model the triplet probabilities can be approximated as

P (T (C,Pred,N τ)|S) ≈ P (T (C,Pred,N τ)|N τ
j,k) · P (N τ

j,k|S) (6.8)

and

P (T (N τ1, P red,N τ2)|S) ≈ P (T (N τ1, P red,N τ2)|N τ1
j,k, N

τ2
o,p) (6.9)

·P (N τ1
j,k|S) · P (N τ2

o,p|S)

67

Model parameter estimation. Given a training corpus S of sentences
and their annotations S = {Sn, Sem(Sn)}, the probabilities are estimated
using MLE1. The triplet probability from Equation 6.8 can be estimated
from the corpus as

P (T (C,Pred,N τ)|N τ) = Cnt(T (C,Pred,N τ))
Cnt(N τ) (6.10)

and

P (T (N τ1
j,k, P red,N

τ2
o,p)|N τ1

j,k, N
τ2
o,p) =

Cnt(T (N τ1
j,k, P red,N

τ2
o,p), N τ1

j,k, N
τ2
o,p)

Cnt(N τ1
j,k, N

τ2
o,p)

(6.11)

The NE probabilities P (N τ
j,k|S) are calculated by a Named Entity Recog-

nizer (NER).

Improving the model using a context. The presented model does not
take into account any context of the recognized NE. To improve the esti-
mated triplet probabilities, we incorporated a context of NE. The Equations
6.8 and 6.9 will then change into the following:

P (T (C,Pred,N τ)|S) ≈ P (T (C,Pred,N τ)|N τ
j,k, wj−1) · P (N τ

j,k|S) (6.12)

and

P (T (N τ1, P red,N τ2)|S) ≈ (6.13)

P (T (N τ1
j,k, P red,N

τ2
o,p)|N τ1

j,k, N
τ2
o,p, wj−1, wo−1)

·P (N τ1
j,k|S) · P (N τ2

o,p|S)

The model training is then analogous to Equations 6.10 and 6.11, respec-
tively. The model uses the lemma as the context of the previous word wj−1.

6.4 Named Entity Recognition

The named entity recognition is a crucial part of the question preprocess-
ing. To achieve reasonable performance, we incorporate three various NER
approaches.

1Maximum Likelihood Estimation

68

6.4.1 Maximum Entropy NER

The maximum entropy-based NER (MaxEntNER) introduced in (Konkol &
Konoṕık, 2011) was later extended and trained on a corpus from the Czech
News Agency. The parameters of the corpus is very different from our NL
question corpus since the Czech News Agency corpus consists of newspaper
articles. However, the MaxEntNER is used to identify few general named
entities, such as Place and City.

6.4.2 LINGVOParser

A shallow semantic parser based upon handwritten grammars LINGVOParser
(Habernal & Konoṕık, 2008) is used to identify named entities with com-
plex structure, such as Date, Currency or Number. The tool has proven to
be efficient in such a task, as demonstrated in e.g. (Konoṕık & Habernal,
2009).

6.4.3 String Similarity Matching

This NER approach (called WordSimilarityTrainableNER) was used as an
ad-hoc tool to deal with the remaining named entities that are not recognized
by the two previous NERs. Recall that in our semantic annotation, the set
of named entity types is much broader than in general NER because we
use the named entities to cover all semantically important word groups (e.g.
named entities like AdditionalRequirements or AccommodationType).

6.4.4 OntologyNER

For evaluation purposes we developed another NER called OntologyNER.
Whereas all the previous NER types do not depend on the KB, this NER
uses the KB instances for string similarity matching. Our assumption was
that this type of NER would be suitable for recognizing e.g. places or various
facilities. However, by incorporating this NER the Semantic Analysis system
is no longer independent of the particular back-end KB.

Chapter 7

Semantic Interpretation

In the previous chapters, the domain KB, the NL question corpus, and the
semantic analysis model were depicted. To make the SWSNL system work-
ing end-to-end, a module responsible for the semantic interpretation and
the semantic search is required. This chapter focuses on various approaches
dealing with such task. First, it presents a transformation from a domain-
independent semantic annotation of a NL question to the target KB query
language. It also involves e.g. mapping from named entities to ontology
instances or semantic interpretation of named entities covering numbers or
dates. Second, it deals with the semantic reasoning over the KB.

7.1 Transformation of Semantic Annotation into
Query Language

After the NL question is automatically annotated with its semantic descrip-
tion, it must be interpreted in order to find the desired answer. Our semantic
representation of a NL question, as introduced in section 5.1, is independent
of a particular KB. Thus, in order to perform a search in the KB represented
by an OWL ontology, the semantic representation must be transformed into
an ontology query language. In our system, SPARQL is used.

Therefore, the transformation algorithm depends on the particular “back-
end” KB. In our SWSNL the transformation consists of a set of heuristic
rules. As an input, a semantic annotation of a NL question is given. As an
output, a SPARQL query for the back-end KB is produced.

In our accommodation scenario (having the KB from section 4.3), the output
SPARQL skeleton is shown in Listing 7.1. Each triplet from the semantic
annotation is transformed into one or more SPARQL query statements that
are inserted into the WHERE clause.

69

70

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX p: <http://www.semanticweb.org/ontologies/2011accomm−cz.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 SELECT DISTINCT ?Accommodation WHERE {
5 ...
6 }

Listing 7.1: SPARQL skeleton produced by the transformer.

Example. If the semantic annotation contains a triplet <Accommodation,
hasAdditionalReq, AdditionalRequirements> where AdditionalRequirements
is a sub-type of NamedEntity and it contains word ’internet’, it is interpreted
as ’?Accommodation p:hasFacility p:facInternet-connection .’.

Apparently, this is an easy and straightforward example. Nevertheless, it
points out practical issues regarding proper semantic interpretation of the
named entities.

7.1.1 Semantic Interpretation of Named Entities

The named entities, as a part of the semantic annotation of NL questions,
only span over word(s). The named entity has only its type but no semantic
meaning is specified. In order to incorporate the named entities into the
search process properly, it is necessary to interpret their content.

Matching Proper Names to Ontology Instances

As shown in the previous example, most of the named entities should have
some relation to the underlying KB. In our case, entities such as City or
Place somehow relate to the instances of the ontology classes expressing
locations, etc.

The mapping between the KB instances and the named entities is based
upon string similarity. Only a selected subset of the named entity types is
matched using this technique.

In order to select the best string similarity (or string distance) we created
a small subset of the ontology instances paired with the named entities and
measured the accuracy of various types of string metrics. The best accuracy
was achieved with the Jaro-Winkler distance (Winkler, 1990). Detailed
results will be shown later in the evaluation part since as present the accuracy
of matching the named entities to the ontology instances.

71

Interpretation of Named Entities with Numbers and Dates

Other types of the named entities that must be interpreted as well, are the
named entities Number and Date. Apparently, these entities are not related
to any ontological instances (they do not directly represent any instance from
the KB), however, they appear mostly as a constraint in the NL questions.

The LINGVOParser tool used to recognize this type of named entities (see
section 6.4.2) has also a built-in support for the semantic interpretation of
the content of the named entities. Having numbers, dates and currency
expressed in NL, the tool is able to translate them into a computer repre-
sentation (e.g. integers or dates). This allows to integrate interpretations of
these entities into the resulting SPARQL query quite easily.

7.2 Practical Issues of Semantic Interpretation

The issue of using vague expressions to express the user needs in NL ques-
tions was already pointed out in section 4.4.2 where the correct results from
the KB were assigned to the NL questions. In the phase of deciding whether
the particular result really“answers”the particular question, the human“an-
notator” can treat the task from his or her subjective perspective. However,
this decision must be precisely formalised for a computer system.

Thus we applied the same decision rules as in the process of creating the
testing data. These rules are automatically expressed as SPARQL state-
ments.

Transformation example. Let us have a question asking for a “cheap-
est” accommodation. Then the semantic annotation of that NL question
will contain the following triplet <Accommodation, hasPriceRequirement,
RelativePrice>. The RelativePrice subject is the named entity and its se-
mantic content is “cheapest”. Using the heuristic transformation rules, the
output SPARQL query will be extended to the snippet from Listing 7.2. We
can see the transformation as a mapping from the semantic annotation to
the SPARQL query. This example also demonstrates that the NL question
ontology is different from the KB ontology.

Non-trivial transformation example. A much more complicated situ-
ation arises when the semantic annotation contains relative location require-
ments. This typically means that the NL question contains a phrase like
“places near City” etc.1 The listing 7.3 depicts a construct which is used

1As mentioned earlier in Table 4.6 on page 54, we decided to interpret these constraints
using the location hierarchy. Another option would be to use the GPS coordinates and

72

1 [...]
2 SELECT DISTINCT ?Accommodation WHERE {
3 ...
4 ?Accommodation p:hasRoomType ?roomType .
5 ?roomType p:pricePerNight ?price
6 } ORDER BY ASC(?price) LIMIT 1

Listing 7.2: A SPARQL snippet with the interpretation of the ’cheapest’
named entity from the semantic annotation.

1 [...]
2 SELECT DISTINCT ?Accommodation WHERE {
3 ?Accommodation p:hasGPSCoordinates ?gps .
4 p:cityInstance p:isSubPartOf ?district .
5 ?district rdf:type p:District
6 {
7 ?loc p:isSubPartOf ?District .
8 ?gps p:isLocatedIn ?loc
9 } UNION {

10 ?gps p:isLocatedIn p:cityInstance
11 }
12 [...]
13 }

Listing 7.3: An example of dealing with relative location requirements.

for transforming the semantic annotation containing the following triplets:
<Accommodation, isLocatedIn, City>, <City, hasRelativeLocationReq, Rel-
ativeLocationRequirements> where the RelativeLocationRequirements is the
named entity containing “near”.

This (rather complicated) example demonstrates that a lot of attention must
be paid to many details if the SWSNL system is intended to be deployed
into a real-world use.

7.3 Semantic Reasoning and Result Representa-
tion

Given all the mechanisms introduced in the previous sections, it is possible
to formulate the SPARQL query very precisely. Once the query is created,
it can be passed to an ontology reasoner.

compute distances between the particular city and the possible places around but this
brings even more complicated tasks, such as how to get a GPS coordinates of a city, what
is the distance for “near”, etc.

73

Reasoner class Found instances Total time

PelletReasoner 206 15 min, 14 sec
OWL DL MEM 12 11 sec
RDFSRuleReasoner 12 16 sec
OWL LITE MEM 12 12 sec
OWLFBRuleReasoner 206 5 h, 15 min, 26 sec
TransitiveReasoner 12 11 sec
OWLMicroReasoner 206 55 min, 5 sec

Table 7.1: Comparison of abilities and performance of various OWL reason-
ers.

Reasoner Performance Comparison. Currently, various OWL reasoner
implementations are available. They also vary in their OWL expressivity
which means what subset of the OWL semantics they can handle (see sec-
tion 2.2). To select the suitable reasoner for our system, a simple test was
carried out. The most important OWL feature we use is the transitivity
among locations. Thus, a simple SPARQL query was executed to obtain all
instances in a particular location and its sub-locations. Table 7.1 outlines
the results of this test. We tested reasoners from Jena package as well as
the Pellet reasoner. Some reasoners do not support transitive properties
(they returned less than 206 instances in our test) so they were disqualified.
Given the measured performance among reasoners, the Pellet reasoner was
selected for our system. The performance of the reasoners will be discussed
later in chapter 9.

Presenting Search Results. As already mentioned, in our domain the
result of the semantic search is a set of accommodation instances (in fact,
a set of instance URLs). To present the complete information to the user,
a listing of all properties of the returned accommodation instances is shown
in our system prototype.

Chapter 8

Evaluation

In this chapter, an evaluation of the complete SWSNL system is presented.
We focus on the evaluation of the individual parts of the system as well as
the complete end-to-end performance. Since there exists no widely accepted
standards for evaluation of SWSNL/NLISW systems (see section 2.4), we
use standard evaluation metrics for IR, namely the accuracy :

Acc = Number of correct classifications

Total number of test cases
(8.1)

and the precision (p), the recall (r) and the F-measure (Fm):

p = tp

tp+ fp
, r = tp

tp+ fn
, Fm = 2pr

p+ r
, (8.2)

where tp are true positives, fp are false positives, and fn are false negatives
(Manning et al., 2008). Unless otherwise stated, for the corpus-based tasks
we use the leave-one-out cross-validation (Liu, 2011) due to small size of our
corpus.

8.1 Semantic Analysis Evaluation

The ontology-based statistical model for the semantic analysis was outlined
in chapter 6. Since it consists of two steps, the Named Entity Recognition
and the Semantic Analysis, its evaluation will be split into two sections too.

8.1.1 Evaluation of NER

The system uses four types of NER, namely the MaxEntNER, the Word-
SimilarityTrainableNER, the LINGVOParser, and the OntologyNER (see
section 6.4).

74

75

NER type p r Fm
WordSimilarityTrainableNER 0.7056 0.4279 0.5327
MaxEntCZNER 0.2614 0.1143 0.1590
OntologyNER 0.8137 0.0244 0.0475
LingvoParserNER 0.4118 0.0125 0.0243

Table 8.1: Overall results of various NER on the accommodation corpus.

When measuring the NER performance, the good result (true positive) is
when the named entity from the annotated corpus exactly matches the entity
returned by NER, taking into account both the NE type and the word span.

Explanation of the results. As can be seen in Table 8.1, the best Fm
is obtained from the WordSimilarityTrainableNER. The results of the Max-
EntNER are poor in this overall evaluation. The very high precision of the
OntologyNER has probably the following reason. If the KB contains a place
or a city, it is very likely to be a place or a city in the testing sentence, too.
On the other hand, only a small amount of named entities from the question
corpus are stored in the KB which causes very low recall.

NER Performance by Entity Type

In order to explain the performance of NERs in more detail, we measured
the performance determined by the named entity type. Figure 8.1 outlines
Fm of the above mentioned NERs on different named entity types. Given
these results, it is apparent that the MaxEntNER outperforms the other
NERs in NE City almost by 100% relatively. This validates our assumption
that the MaxEntNER, even though it is trained on a completely different
corpus, yields acceptable results for general named entities, such as cities or
places. Furthermore, the LINGVOParser performs well for numbers.

CombinedNER

Inspired by these results, we developed the CombinedNER which is a combi-
nation of the existing NERs. For each entity type, the NER giving the best
result is chosen. The overall results of the CombinedNER are p = 0.5218, r =
0.4891, Fm = 0.5049. This NER gives slighly smaller Fm than the Word-
SimilarityTrainableNER (Fm = 0.5327, see table 8.1). However, we ex-
pected that the CombinedNER would perform reasonably on different cor-
pora. We assume that the WordSimilarityTrainableNER works well for iden-
tifying domain-specific named entities that are lexically close, whereas the
MaxEntNER is suitable for recognising more general domain-independent
named entities. This will be shown later in this chapter.

76

Figure 8.1: Performance of the NERs on different NE types.

8.1.2 Evaluation of the Semantic Analysis Model

Evaluation metrics. Although the result of the semantic analysis is a
rather complex semantic annotation, there are few possible techniques how
to measure the performance. Measuring the accuracy based upon the exact
match of the returned result and the gold annotation1 is, in our opinion,
unreasonably strict. The tree edit distance (see section 3.5.3) is also not ap-
plicable because the semantic annotation can form a directed graph instead
of a bare tree.

Thus, a good approximation of the quality of the analysed annotation seems
to be the number of matching triplets. Recall that our semantic annotation
can be also seen as a set of connected triplets. This allows us to measure
the precision and the recall. A true positive result triplet is such a triplet
that it matches the gold triplet as follows:

• The predicates are the same.

• The objects/subjects have the same ontology class, i.e. <City, pred,
obj> and <City, pred, obj> match while <City, pred, obj> and <Place,
pred, obj> do not.

1We use the term gold annotation/triplet for the correct manual annotations from the
corpus.

77

Figure 8.2: The semantic model performance depending on the training set
size.

• Furthermore, if the objects/subjects are named entities, their positions
in the sentence and their contents are the same, i.e. <subj, pred,
City(Velké1, Popovice2)> and <subj, pred, City(Popovice2)> do not
match.

Simulation of a perfect NER – MockNER.

As mentioned before, the statistical semantic analysis model heavily depends
on two inputs. First, a preprocessing and a NER are crucial for its func-
tionality. Second, it requires an annotated corpus to train the model. To
evaluate the model without influencing it by errors from NER, we performed
tests with the so-called MockNER. This NER recognizes all entities in the
sentence correctly because it uses the annotated data.

First experiment in Figure 8.2 shows how much the model performance
depends on the training corpus size. For this experiment we used the Mock-
NER and our statistical context-dependent semantic model (see section 6.3).
Recall that leave-one-out cross-validation was used.

Discussion of the results achieved with MockNER. Given these
results, we can draw the following conclusion. Even with a small training
data, all returned triplets are correct (p→ 1). However, to find all triplets,
a larger training set is probably required (r is growing slower). To validate

78

this conclusion, results on other corpora will be shown later in this chapter.

Results with CombinedNER

The real results (achieved by incorporating the CombinedNER into the se-
mantic analyser) are shown in Table 8.2. Since the results might seem poor
at the first glance, we will try to uncover the reasons thoroughly. First,
the criteria for comparing the triplets, as shown earlier in section 8.1.2, are
very strict from our point of view. This is mostly the case of incorrectly
recognized named entities with mismatching types (e.g. City vs. Place) or
NE content words. Second, the corpus of questions is very small to train the
model properly. The very important part of the CombinedNER for recogniz-
ing non-general named entities (WordSimilarityTrainableNER) is completely
trained from the data. This negatively affects the semantic model perfor-
mance. However, to prove the qualities of our semantic analysis model, we
will show results from a different corpus later in this chapter.

p r Fm
CombinedNER+ContextSM 0.6627 0.3398 0.4492

Table 8.2: The results of the semantic analysis with the CombinedNER

8.2 Matching Named Entities to KB Instances

As described in section 7.1.1, some NEs are mapped onto their correspond-
ing instances from the KB. This step is essential for creating the a SPARQL
query. For the mapping a string similarity metrics is used. We tested various
types of metrics on a set of 50 named entities and their manually assigned
KB instances. Figure 8.3 shows accuracy of the mapping for various types
of metrics. The best results were obtained by using the Jaro-Winkler met-
rics. Also we experimentally found the best similarity threshold for deciding
whether a NE matches to an instance or not.

These results also give a slight insight into the accuracy of the NE matching
which later affects the overall performance. Even when the semantic analysis
produces correct annotation with correct named entities, the chance it will
be mapped onto the KB instance is not 100%. In the overall evaluation,
we examined several SPARQL queries produced by the system. Basically,
there are three types of errors. First, the named entity is expressed in such
a way that the string similarity between the words and the instance is very
low. Second, the desired named entity has no corresponding instance in the
KB. These two types of errors are quite obvious. The third type of error
is caused by the inconsistence of the KB where two very similar instances

79

Figure 8.3: Various string metrics testing.

have a very similar description. For example, the KB contains more than 30
instances with Praha in their labels (referring to e.g. District, City or a city
part). The reason of this inconsistence is given by the fact, that the KB was
constructed automatically from existing data (see sections 4.3.2 and 4.3.3).

8.3 End-to-end Performance Evaluation

Each question from our NL question corpus has its corresponding set of
correct search results (gold results), as described in section 4.4.3. It allows
us to evaluate the performance of the complete SWSNL system.

Evaluation metrics. For each question the system returns a set of ac-
commodations. There is no ranking of the results because the KB querying
is purely boolean. Thus, we compute the precision and the recall of the
returned set comparing to the gold set.

8.3.1 Fulltext Search

As a baseline for the end-to-end evaluation we used the fulltext search.
First, the content of the KB was transformed into “text documents”. More
precisely, each accommodation instance with all its properties was treated
as a single document. The documents were indexed using Apache Lucene

80

with the best Czech stemmer available (Dolamic & Savoy, 2009). In this
experiment, the question was treated as a bag of words with stop-words
removed. The overall results are shown in table 8.3.

p r Fm
Fulltext 0.0159 0.4229 0.0306

Table 8.3: The end-to-end results of the fulltext search.

The results show very clearly that the keyword-based search performs poorly
for such complicated tasks. However, this might serve as an approximation of
results that would be returned by the current state-of-the-art search engines.

8.3.2 Simulation of End-to-end Performance With Correct
Semantic Annotation

Another interesting and important experiment was performed by measuring
the results returned when using the correct (gold) semantic annotation for
each NL question. These results also set the limits for our semantic model
approach because the gold semantic annotation is the best semantic anno-
tation possible. In the other words, it simulates a scenario in which the
semantic model reaches 100% accuracy.

p r Fm
GoldSemAnnot 0.7310 0.8432 0.7831

Table 8.4: The end-to-end results of the search using the gold semantic
annotations.

The results (table 8.4) not only illustrate the influence of the semantic inter-
pretation and the named-entity to ontology matching (see Chapter 7) but
also confirm that some answers cannot be found by purely structured search.
This topic was already discussed in section 4.4 where the process of creating
the gold results was presented.

8.3.3 The end-to-end results of SWSNL system

Table 8.5 shows the overall results of the the SWSNL system. The table also
contains the best baseline keyword search as well as the simulation with the
gold semantic annotation.

Discussion of the results. The most important conclusion, given these
results, is that our semantic web search significantly outperforms the fulltext
search. Whereas the fulltext-based search simply fails in this complex search
task, our SWSNL system is able to yield acceptable results.

81

p r Fm
SWSNL 0.2493 0.6955 0.3671
Fulltext 0.0159 0.4229 0.0306
GoldSemAnnot 0.7310 0.8432 0.7831

Table 8.5: The end-to-end results of our SWSNL system.

The results are very promising. In order to prove the qualities of our ap-
proach using the semantic analysis model, we conducted more tests. They
are presented in the following section.

8.4 Evaluation on Other Domains and Languages

In the following section, only the semantic analysis module is evaluated as
there exist no databases/KBs for these datasets. Thus, it is impossible to
evaluate the end-to-end performance.

8.4.1 ConnectionsCZ Corpus

The ConnectionsCZ corpus is another NL question corpus in the Czech
language. It contains 238 questions in the public transportation domain.
Most of the utterances ask for a certain connection from one place to another,
for train types, travel times, etc. The corpus is a subset of a larger corpus
used in (Habernal & Konoṕık, 2009).

This type of corpus follows the fashion of corpora for SLU or human-com-
puter spoken dialogue, such as ATIS, etc. Since our current work deals with
the search and the Semantic Web technologies, we are not convinced that
our SWSNL system would be the best approach for this domain and task.
Nevertheless, this evaluation serves as a proof that our semantic model is
domain independent and it can perform well if a larger training corpus was
available.

Originally, the questions were annotated with semantic trees. In order to
port the corpus into our system, we created an ontology for a NL question in
this particular domain (see chapter 5). The domain-dependent question on-
tology is shown in Figure 8.4. The questions were then annotated according
to the ontology.

NER performance. We used the same set of the NERs as in the accom-
modation domain. The results for each entity type are depicted in Figure
8.5. It shows that the LINGVOParser performs well on this task (com-
pared to the results on the accommodation). Finally, we incorporated the

82

Figure 8.4: The ontology of the questions in the connection domain.

CombinedNER into the semantic analysis module.

Semantic Analysis performance. In our two experiments, we used
again the MockNER to simulate 100% accuracy of the NER. Figure 8.6
(the left-hand side) illustrates the improvement of the semantic analysis as
the training set size grows. The same figure (the right-hand side) contains
also the results when the CombinedNER was used. The improvement in
the performance is caused by larger training size for both the NER and the
semantic model. Note that in the first scenario (with the MockNER) we
run the test for every training data size (1, 2, . . . N), whereas in the second
scenario (with the CombinedNER) the training data size was increased by
adding ten sentences each run (1, 11, 21, . . . N).

8.4.2 ATIS Corpus Subset

The English ATIS corpus (already introduced in section 3.6) has been widely
used in NLU research. We extracted only a small subset of the corpus (348
sentences) and annotated them using the same question ontology as for the
czech ConnectionsCZ corpus, see Figure 8.4. Since our NER components
are focused on the Czech language, we performed only one test on the ATIS
corpus to evaluate the performance of our semantic model on a different
language. The results with the MockNER are shown in Figure 8.7.

Discussion of results. We decided to test our system on the ATIS corpus
just to get an insight into the possibilities of porting the semantic model to
another language. This should not serve as a comparison with other state-

83

Figure 8.5: The NER results by the entity type on the ConnectionsCZ cor-
pus.

Figure 8.6: The evaluation of the semantic analysis on the ConnectionsCZ
corpus using different training set sizes.

84

Figure 8.7: The evaluation of the semantic analysis on the ATIS corpus
using different training set sizes.

of-the-art semantic parsers, basically for two reasons. First, our semantic
annotation is different from the original frame-based ATIS annotation. Sec-
ond, we use a small subset of the whole corpus which also negatively affects
the performance. The complete corpus was not used because a manual an-
notation according to our semantic represenation was required and it was
not feasible to annotate the complete corpus.

The obtained results illustrate that our semantic analysis model can be used
across different languages. No tweaking is required to adapt the system to
English. The achieved performance (about 0.73 F-measure) is satisfactory,
given the fact that the system was primarily developed on a different domain
and language.

Chapter 9

Conclusion

This final chapter outlines the major contributions of this thesis as well as
open issues and a future work. The Semantic Web Search using Natural
Language is, beyond all doubt, a challenging task and many theoretical and
practical problems must be solved in order to develop a real-world system.
We will examine these issues from many perspectives and also propose so-
lutions to some of them.

9.1 Open Issues

9.1.1 Performance Issues

One of the most critical issues which actually prevents our system from
being tested in the real Web environment is the performance of the ontology
reasoning. As already shown in Table 7.1 on page 73, we tested several OWL
reasoners and their ability to deal with transitive properties.

The Pellet reasoner requires approximately 15 minutes on average to answer
a single SPARQL query with transitive relations. We suspect that the reason
is the size of our KB (281.686 triplets, see section 4.3.3). However, to our
best knowledge, there is no room for improvement without changing the
back-end Semantic Web tools completely.

Possible solutions. First, another ontology storage engine can be used,
e.g. Sesame1. Second, the back-end can be completely switched to a rela-
tional database which would, however, disable reasoning capabilities of the
system.

1http://www.openrdf.org/

85

86

9.1.2 Deployment and Development

Whereas relational databases provide stable, scalable, robust, and flexible
solution for storing large-scale data, many Semantic Web technologies are
still far from being suitable for deployment in the commercial sector. Al-
though the Semantic Web vision is now more than ten years old, many of
the software tools are intended only for basic research and are impractical
for any real work. This is the case of e.g. Protégé which is one of the most
popular ontology designer, yet, it still has very poor usability.

Moreover, there is a lack of good guidelines for developers who are new to the
Semantic Web field. After reading e.g. (Hebeler, Fisher, Blace, Perez-Lopez,
& Dean, 2009) or (Segaran, Taylor, & Evans, 2009), developers get an idea
how the Semantic Web should work in an ideal case but the programming
experience is then very different. Developers must often rely on a small user
base, obsolete or non-existing documentation, or reading the source code of
libraries.

9.1.3 Problems Caused by Real Web Data

Many practical issues related to the structure and the content of the KB was
pointed out in section 4.3.3. The most important problem is the missing
structured data. In the other words, the data from the source Web site are
incomplete. However, this will be the case of most of the systems that use
public Web sources for populating their KBs. It is not feasible either to
check or even to correct the data manually.

Another problem is caused by the inconsistent source data. In our scenario,
various KB instances have the same label which makes the mapping from
the named entities to ontology instances much harder (see section 7.1.1).

Possible solutions. A better data post-processing after the information
extraction step. Nevertheless, a huge manual effort would be required.

9.1.4 Research-related Issues

Since the developed SWSNL system is unique in many ways, it is not possible
to compare its results with any other system. However, this is not the case
of our system only. As pointed out in section 2.4 on page 14, the whole
research of NLISW or NLIDB suffers from the lack of standard test sets and
performance measures.

87

Possible solutions. A sort of consensus in the Semantic Web community
is necessary to formulate the goals of the Semantic Web search more pre-
cisely. Furthermore, a dataset should be provided, together with clear and
reasonable evaluation criteria.

9.1.5 Use in the Business Sector

This thesis presents a proof-of-concept of an interesting and promising tech-
nology with a good commercial potential. However, before the system is
used in the business sector, a lot of questions must be answered.

The main problems are the quality and the source of the domain data. While
the data can be carefully prepared for a proof-of-concept development, this
is not feasible for a system dealing with various sources and operating on
different domains.

In the others words, the ontology, the KB or the database (anything, where
the domain data is stored) is the most valuable commodity for the Web
portals. If a company runs a business by e.g. providing a Web portal
in the accommodation domain, it profits from presenting the data on its
website, including advertisements, hot-deals, etc. By providing a data access
to third parties, this business model fails. In our opinion, no company will
provide highly valuable and high-quality domain KB for free. The idea about
interchanging information using ontologies in the Semantic Web misses its
business model aim.

9.2 Future Work

Basically, there are four directions that are worth further exploring:

• Larger NL question corpus. The main limitation of our current seman-
tic model performance is the small size of the corpus. Thus, it would
be beneficial to obtain more data in e.g. a bootstrapping manner when
the prototype is deployed on a testing server and open to the public
access.

• Better Named Entity Recognition. The results definitely show that the
NER component is crucial in the semantic search. The better the NER
is, the better the semantic model performs and the the more precise
the search results are.

• Performance Improvement. Replacing the back-end with more scalable
Semantic Web tools or with a relational database.

88

• Integrating the fulltext search. The combination of the structured
search and the fulltext search is a promising future work, based upon
our preliminary research.

9.3 Final Conclusion

This thesis describes a complete end-to-end system for the Semantic Web
search using a Natural Language. The work is put into the context of the
state-of-the-art systems for Natural Language Understanding and Natural
Language Interfaces to Semantic Web. It presents a complete work-flow
including a data preparation, a natural language corpus, an ontology design,
an annotation, a semantic model and a search. It contains very detailed
evaluation with promising results.

9.3.1 Major Contributions

• The ontology-based question semantics independent of the ontology
for storing the domain knowledge.

• The statistical model for the semantic analysis based upon supervised
training.

• The evaluation of the fully functional end-to-end system with a real
Web data and real user queries.

9.3.2 Review of Aims of Ph.D. thesis

The following tasks are taken from author’s Ph.D. thesis exposé (Habernal,
2009).

• Continue in the work of (Konoṕık, 2009), study the system, obtain
additional semantically annotated data and measure the performance
of the system.

• Compare the system to another existing systems. Explore the possi-
bilities to obtain a standard semantic corpus (e.g. ATIS) and evaluate
the system using this data.

These two goals were accomplished successfully, see Appendix A. The se-
mantic analysis system from (Konoṕık, 2009) was evaluated on the ATIS
corpus with encouraging results that were published in the proceedings of the
international conference Advanced Data Mining and Applications 2010.

89

• Propose and evaluate novel methods in order to improve the semantic
analysis system. Focus on robust processing of a faulty data. Consider
specific properties of the Czech language.

• Experiment with the use of the developed system for the semantic web
search using a natural language.

These two goals are covered in the main content of this thesis and they were
fulfilled completely. First, a new formalism for describing the semantics of
natural language questions was introduced. Second, a statistical semantic
analysis model based upon supervised learning was proposed. Third, a com-
plete end-to-end Semantic Web search system using a natural language was
developed. Finally, the system was thoroughly evaluated on a real Web data
with very promising results.

Appendix A

Hybrid Semantic Analysis
System – ATIS Data
Evaluation∗

Abstract In this article we show a novel method of semantic parsing. The
method deals with two main issues. First, it is developed to be reliable and
easy to use. It uses a simple tree-based semantic annotation and it learns
from data. Second, it is designed to be used in practical applications by
incorporating a method for data formalization into the system. The system
uses a novel parser that extends a general probabilistic context-free parser
by using context for better probability estimation. The semantic parser
was originally developed for Czech data and for written questions. In this
article we show an evaluation of the method on a very different domain –
ATIS corpus. The achieved results are very encouraging considering the
difficulties connected with the ATIS corpus.

∗This appendix is the author’s conference paper (Habernal & Konoṕık, 2010). As
outlined on page 88, one of the thesis goal was to ”[...] Explore the possibilites to obtain a
standard semantic corpus (ie. ATIS) and evaluate the system using this data.”. This task
was successfully fulfilled resulting into the following conference paper. However, there
are two reasons why this achievement is not presented in the main part of the thesis.
First, the semantic analysis system used in this paper is based on a work of (Konoṕık
& Habernal, 2009) and it is not related to the semantic analysis system developed in
this thesis. Secondly, the semantic annotation of ATIS corpus uses a tree representation,
whereas the main semantic framework in this thesis is based on ontologies and Semantic
Web technology. The conference paper is left without editing to demonstrate that one of
the thesis goals was accomplished successfully.

90

91

A.1 Introduction

Recent achievements in the area of automatic speech recognition started
the development of speech-enabled applications. Currently it starts to be
insufficient to merely recognize an utterance. The applications demand to
understand the meaning. Semantic analysis is a process whereby the com-
puter representation of the sentence meaning is automatically assigned to
an analyzed sentence.

Our approach to semantic analysis is based upon a combination of expert
methods and stochastic methods (that is why we call our approach a hybrid
semantic analysis). We show that a robust system for semantic analysis can
be created in this way. During the development of the system an original
algorithm for semantic parsing was created. The developed algorithm ex-
tends the chart parsing method and context-free grammars. Our approach
is based upon the ideas from the Chronus system (Pieraccini et al., 1992)
and the HVS model (He & Young, 2005).

At first the hybrid semantic analysis method is described in this article.
Then we test how the method can be adapted to a domain (ATIS corpus,
English data, spoken transcriptions) which is very different from the original
data (LINGVOSemantics corpus, Czech data, written questions). The last
part of the article shows the results achieved on both domains and it com-
pares our results with a state-of-the-art semantic analysis system (D. Zhou
& He, 2009).

A.2 Related Work

A significant system for stochastic semantic analysis is based on HVS model
(hidden vector-state model) (He & Young, 2005). The system was tested
on the ATIS and DARPA corpora, recently the system was also used for se-
mantic extraction from bioinformatics corpus Genia. The first model traning
was based on MLE (maximum likelihood estimation), however, the discrim-
inative training has also been proposed. According to our knowledge, the
system presented in (D. Zhou & He, 2009) achieved the state-of-the-art per-
formance on the ATIS corpus.

An extension of the basic HVS Parser has been developed in the work of
(Jurč́ıček, 2007). The improvement is achieved by extending the lexical
model and by allowing left-branching. The system was tested on Czech
human-human train timetable corpus and it is public available.

Scissor (Semantic Composition that Integrates Syntax and Semantics to
get Optimal Representations) is another system which uses the syntactic
parser enriched with semantic tags, generating a semantically augmented

92

Figure A.1: An example of a semantic annotation tree.

parse tree. Since it uses the state-of-art syntactic parser for English, the
Collin’s parser, we suppose, that it can not be easily adapted to other lan-
guages.

In (Y.-Y. Wang et al., 2005), the generative HMM/CFG composite model
is used to reduce the SLU slot error rate on ATIS data. Also a simple
approach to encoding the long-distance dependency is proposed. The core
of the system is based conditional random fields (CRF) and the previous
slot context is used to capture non-local dependency. This is an effective
and simple heuristic but the system requires a set of rules to determine
whether the previous slot word is a filler or a preamble. Thus, it is difficult
to port the system to other domain.

A.3 Semantic Representation

There are several ways how to represent semantic information contained in
a sentence. In our work we use tree structures (see Figure A.1) with the so-
called concepts and lexical classes. The theme of the sentence is placed on the
top of the tree. The inner nodes are called concepts. The concepts describe
some portion of the semantic information contained in the sentence. They
can contain other sub-concepts that specify the semantic information more
precisely or they can contain the so-called lexical classes. Lexical classes are
the leaves of the tree. A lexical class covers certain phrases that contain the
same type of information. For example a lexical class “date” covers phrases
“tomorrow”, “Monday”, “next week” or “25th December” etc.

The described semantic representation formalism uses the same principle as
it was originally described in (He & Young, 2005). The formalism is very
advantageous since it does not require annotation of all words of a sentence.
It makes it suitable for practical applications where the provision of large
scale annotation training data is always complicated.

93

A.4 Data

This section describes two corpora used for training and testing. The Czech
corpus (LINGVOSemantics corpus) was used at the beginning for the de-
velopment of the method. The English corpus (ATIS) was used to find out
whether the designed method is universal and can be successfully used for a
different corpus. The second reason for using the ATIS corpus is to compare
our method with the state-of-the-art system that has been also tested on
the ATIS corpus.

A.4.1 LINGVOSemantics corpus

The data used during the development are questions to an intelligent Inter-
net search engine. The questions are in the form of whole sentences because
the engine can operate on whole sentences rather than just on keywords as
usual. The questions were obtained during a system simulation. We asked
users to put some questions into a system that looked like a real system. In
this way we obtained 20 292 unique sentences. The sentences were anno-
tated with the aforementioned semantic representation (Section A.3). More
information about the data can be found in (Konoṕık, 2009).

An example of the data follows (How warm will it be the day after tomor-
row?):

WEATHER(Jaká EVENT(teplota) vzduchu bude DATETIME(DATE(po-
źıtř́ı))?)

A.4.2 ATIS corpus

One of the commonly used corpora for testing of semantic analysis systems in
English is the ATIS corpus. It was used for evaluation in e.g. (He & Young,
2005), (Iosif & Potamianos, 2007), (Jeong & Lee, 2008) and (C. Raymond
& Riccardi, 2007). The original ATIS corpus is divided into several parts:
ATIS2 train, ATIS3 train, two test sets etc. (Dahl et al., 1995).

The two testing sets NOV93 (448 sentences) and DEC94 (445 sentences)
contain the annotation in the semantic frame format. This representation
has the same semantic expressive ability as the aforementioned semantic tree
representation (Section A.3). Each sentence is labeled with a goal name and
slot names with associated content.

The corpus does not contain any fixed training set. Originally in (He &
Young, 2005), 4978 utterances were selected from the context indepen-
dent training data in the ATIS2 and ATIS3 corpora and abstract semantics
for each training utterance were derived semi-automatically from the SQL

94

queries provided in ATIS3.

At this point we have to thank Y. He for sharing their data. It allowed us
to test our system on the same testing data that uses their state-of-the-art
system for semantic analysis. However, deep exploration revealed that the
training data are specially tailored for the HVS model. The data were in the
form of HVS model stacks and the conversion from stacks to proper trees
was ambiguous and difficult. However, we still were able to use the test
data (the test data are stored in the semantic frame format) and the plain
sentences from the training data.

Instead of trying to convert the training data from HVS stacks or obtaining
the original SQL queries and converting them we decided to annotate a part
of the ATIS corpus using the abstract semantic annotation (see section A.3).
Using the methodology described in (Habernal & Konoṕık, 2009) we have
initially created an annotation scheme1 from the test data. In the first step,
100 sentences from ATIS2 train set were manually annotated. Thereafter
the system was trained using this data. Another set of sentences was auto-
matically annotated and then hand-corrected (this incremental methodology
of annotation is called bootstrapping). In total, we annotated 1400 random
sentences from both ATIS2 and ATIS3 training set.

A.5 System Description

The system consists of three main blocks (see Figure A.2). The preprocess-
ing phase prepares the system for semantic analysis. It involves sentence
normalization, tokenization and morphological processing. The lexical class
analysis is explained in Section A.5.1 and the probabilistic parsing is ex-
plained in Section A.5.2.

A.5.1 Lexical Class Identification

The lexical class identification is the first phase of the semantic analysis.
During this phase the lexical classes (see Section A.3) are being found in the
input sentence.

The lexical class identification consists of two stages. First, several dedicated
parsers are run in parallel. During this stage a set of lexical classes are found.
In the second stage the lexical classes are stored in a lattice. Then the lattice

1An annotation scheme is a hierarchical structure (a tree) that defines a dominance
relationship among concepts, themes and lexical classes. It says which concepts can be
associated with which super-concepts, which lexical classes belong to which concepts and
so on. More in (Habernal & Konoṕık, 2009).

95

Input Sentence

Preprocessing

Tokenization &

Normalization

Text

Morphological

processing

Lexical Class Identification

MWE detection Shallow Parsing

LCs* LCs*

Lattice Sequences

Sentences with LCs*

Semantic Parsing

Word / Lemma / Tags tokens

Context Parser

Stochastic Parser
Parse Tree

Semantic

Information

Semantic Analysis

System

* LCs = Lexical Classes

Modified Context Parser

Figure A.2: The structure of our semantic analysis system.

is converted into possible sequences of lexical classes. Only the sequences
that contain no overlapping classes are created.

During the first step the lexical classes are being found as individual units.
We found in our data two groups of lexical classes:

1. Proper names, multi-word expressions, enumerations.

2. Structures (date, time, postal addresses, ...).

To analyze the first group we created a database of proper names and enu-
merations (cities, names of stations, types of means of transport etc). Since
a lexical class can consist of more than one word it is necessary to look for
multiple word expressions (MWEs). To solve the search problem effectively
a specialized searching algorithm was developed.

The main ideas of the searching algorithm are organizing the lexical classes in
the trie structure (Knuth, 1997) and using parallel searching. The algorithm
ensures that all lexical classes (possibly consisting of more words) are found
during one pass with a linear complexity O(n) (where n is the number of
letters of the sentence). The algorithm is explained in (Konoṕık & Habernal,
2009) in details.

For the analysis of complicated phrases, such as dates, numbers, time, etc.,
the LINGVOParser (Habernal & Konoṕık, 2008) was developed. It is an
implementation of a context-free grammar parser. The parser has some fea-
tures suitable for semantic analysis. It uses the so-called active tags. Active
tags contain processing instructions for extracting semantic information (for
more information see (Habernal & Konoṕık, 2008)).

96

Another feature of the LINGVOParser is the one we call partial parsing.
Turning the partial parsing on causes the parser to scan the input sentence
and build the partial parse trees wherever possible (a standard parser usually
requires to parse the whole input from the start to the end). Partial trees do
not need to cover whole sentences and they are used to localize the lexical
classes described by a grammar.

During the second stage the lexical classes found in the first stage are put
into a lattice. Then the lattice is walked through and the sequences of lexical
classes that do not overlap are created. The result of the algorithm is the
sequences of lexical classes. The algorithm uses the dynamic programming
to build the sequences effectively.

The active tags used in the LINGVOParser allow the system to formalize
the content of lexical classes. By formalizing we mean for example the
transformation of date time information into one unified format. We can
also transform spoken number into their written forms etc. This step is
crucial for practical applications where it is required to express the same
type of information in the same way (Konoṕık & Habernal, 2009).

A.5.2 Semantic Parsing

In the previous section the process of finding lexical classes was described.
In this section we will presume that the lexical classes are known and the
semantic tree is being built. The structure of the tree is shown in Figure
A.1. The task of the parsers described here is to create the same trees as in
the training data.

Stochastic Parser

The parser works in two modes: training and analysis. The training phase
requires annotated training data (see Section A.4). During the training
the annotation trees are transformed to context free grammar rules in the
following way. Every node is transformed to one rule. The node name makes
the left side of the rule and the children of the node make the right side of the
rule (for example see node “Place” in Figure A.1, this node is transformed
into the rule Place -> City). In this way all the nodes of the annotation
tree are processed and transformed into grammar rules. Naturally, identical
rules are created during this process. The rules are counted and conditional
probabilities of rule transcriptions are estimated:

P (N → α|N) = Count(N → α)∑
γ Count(N → γ) , (A.1)

97

where N is a nonterminal, α and γ are strings of terminal and nonterminal
symbols.

The analysis phase is in no way different from standard stochastic context-
free parsing. The sentence is passed to the parsing algorithm. The stochastic
variant of the active chart parsing algorithm (see e.g. (Allen, 1995)) is used.
The lexical classes identified in the sentence are treated as terminal symbols.
The words that are not members of any lexical class are ignored. The result
of parsing – the parse tree – is directly in the form of the result tree we need.

During parsing the probability of the so far created tree P (T) is computed
by:

P (T) = P (N → A1A2...Ak|N)
∏
i

P (Ti) , (A.2)

where N is the top nonterminal of the subtree T , Ai are the terminals or
non-terminals to which the N is being transcribed and Ti is the subtree
having the Ai nonterminal on the top.

When the parsing is finished a probability is assigned to all resulting parse
trees. The probability is then weighted by the prior probability of the theme
and the maximum probability is chosen as the result:

T̂ = argmax
i

P (Si)P (Ti) , (A.3)

where T̂ is the most likely parse tree and P (Si) is the probability of the
starting symbol of the parse tree Ti.

Context Parser

The context parser looks at other words of the sentence rather than looking
at lexical classes only. For this purpose it was necessary to extend both the
training algorithm and the analysis algorithm.

The training phase shares the same steps with the training of the previous
parser in Section A.5.2. The node is thus transformed into the grammar
rule and the frequency of the rule occurrence is counted. However, instead
of going to the next node, the context of the node is examined. Every node
that is not a leaf has a subtree beneath. The subtree spans across some
terminals. The context of the node is defined as the words before and after
the span of the subtree. During training the frequency of the context and a
nonterminal (Count(word, nonterminal)) are counted. The probability of a
context given a nonterminal is computed via MLE as follows:

P (w|N) = Count(w,N) + λ∑
i Count(wi, N) + λV

, (A.4)

98

where λ is the smoothing constant, V is the estimate of the vocabulary size,
w is the actual context word and wi are all the context words of nonterminal
N .

Additionally, to improve the estimate of the prior probability of the theme
(the root node of the annotation) we add words to the estimate as well:

P (w|S) = Count(w, S) + κ∑
i Count(wi, S) + κV

, (A.5)

where κ is the smoothing constant, wi are the words of the sentence and
S is the theme of the sentence (the theme constitutes the starting symbol
after annotation tree transformation).

The analysis algorithm is the same as in the previous parser but the proba-
bility from formula A.2 is reformulated to consider the context:

P (T) =
∑
i

P (wi|N)P (N → A1A2...Ak|N)
∏
j

P (Tj) . (A.6)

Then the best parse is selected using context sensitive prior probability:

P (T̂) = argmax
i

P (Si)
∏
j

(P (wj |S)P (Ti) , (A.7)

where Si is the starting symbol of the parse tree Ti and wj are the words of
the analyzed sentence.

Modifications for Morphologically Rich Languages

We tried to further improve the performance of parsing algorithms by in-
corporating features that consider the specific properties of the Czech lan-
guage. The Czech language is a morphologically rich language (Grepl &
Karĺık, 1998) and it has also a more flexible word order than for example
English or German. To deal with specific properties of the Czech language
lemmatization and ignoring word order features were incorporated to the
Context Parser.

A.6 Performance Tests

A.6.1 Results on the LINGVOSemantics corpus

Figure A.3 shows the results for the LINGVOSemantics corpus (Section
A.4.1). The figure shows performance of the base line parser (Stochastic
Parser – section A.5.2), the novel parser (Context Parser – section A.5.2)
and the modifications of the Context Parser (section A.5.2).

99

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

SP CP C+L C+O

F
-m

e
a

s
u

re

Parser type

0.70

0.78
0.79

0.77

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

SP CP C+L C+O

A
c
cu

ra
cy

Parser type

0.63

0.70
0.71

0.68

Figure A.3: Results of Semantic Parsers. SP = Stochastic Parser, CP =
Context Parser, C+L = Context + Lemma, C+O = Context + word Order.
Confidence intervals are computed at confidence level: α = 95%.

The results are measured in the accuracy and f-measure metrics. Both the
metrics use the slot-value pairs for computation. The slot is the name of
a slot and its path in the slot hierarchy and the value is the value of the
slot. Accuracy and F-measure are standard metrics for multiple outputs
(one semantic tree or semantic frame consists of more slot-value pairs) and
the formulas are defined in (He & Young, 2005). We use the same metrics
as in (He & Young, 2005) for sake of mutual comparison of our results and
the results in (He & Young, 2005).

A.6.2 Results on the ATIS corpus

The adaptation of the system to the ATIS corpus consisted of two steps.
First, an appropriate English context-free grammar covering the date, time
and numbers was created for the LINGVOParser (see section A.5.1). Adi-
tionally, the multiword expression identificator was re-trained using the data
from ATIS *.tab files that contain cities, airports, etc. Second, the semantic
parser was trained using the training set described in section A.4.2.

Figure A.4 shows the results on the ATIS corpus depending on training data
size. The training sentences were chosen randomly, ten times from each set.
The best result achieved on 1400 training sentences was 85.76%. When com-
pared to (He & Young, 2005) (89.28%) or (D. Zhou & He, 2009) (91.11%),
we must consider that in (He & Young, 2005) and in (D. Zhou & He, 2009)
their systems were trained on a larger training set (4978 utterances). The
reasons that we used a smaller set are explained in section A.4.2.

However, we have discovered a significant amount of inconsistencies in the
ATIS test set. It contains ambiguities in semantic representation (e.g. two
same slots for one sentence), multiple goals, or interpreted data in slots (e.g.
airport names which do not appear in the sentence at all).2 Thus, we think

2The examples are shown at http://liks.fav.zcu.cz/mediawiki/
index.php/Interspeech 2010 Paper Attachment

Bibliography 100

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400

%

Number of sentences in the training set

System performance on ATIS corpus depending on the training set size

F-measure

74.98

77.56

80.13 80.64
81.88 81.91

83.07 83.44
84.40 84.98 85.30 85.47 85.52 85.76

Accuracy

51.33

56.25

61.56 62.16
63.77 63.90

65.19 65.83
67.02 67.61 67.88 68.43 68.37 68.78

Figure A.4: System performance on the ATIS corpus with various amount
of training data. Confidence intervals are computed at confidence level:
α = 95%.

that the performance testing on this corpus is affected by the testing set
inconsistency and the objectivity of the evaluation is compromised.

A.7 Conclusions

This article described the hybrid semantic parsing approach. The tests per-
formed on ATIS data show that we almost reached the performance of the
state-of-the-art system on a reduced training data set. It is probable that by
fine-tuning the system and by annotating the full training set, the system
could be capable of reaching the state-of-the-art performance. We, however,
consider the results sufficient to prove that the hybrid approach with the
context parser is worth of further development.

To compare our system with a very similar system (described in (D. Zhou
& He, 2009)) it can be concluded that a significant progress was made in
two areas. Firstly, the annotation methodology was improved. It is is now
faster and more fault-proof. Secondly, our system is prepared to be used
in practical applications by using data formalization. In (D. Zhou & He,
2009) the lexical classes are automatically learned without the possibility
of data formalization. We however use a hybrid approach where the data
formalization is used. In the near future we are going to publish papers on
the results achieved under real conditions.

Bibliography

Allen, J. (1995). Natural language understanding (2nd ed.). Redwood City,
CA, USA: Benjamin-Cummings Publishing Co., Inc.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural lan-
guage interfaces to databases – an introduction. Natural Language
Engineering , 1 , 29–81.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web.
Scientific American, 284 (5), 34-43.

Beuschel, C., Minker, W., & Bühler, D. (2005). Hidden markov modeling for
semantic analysis – on the combination of different decoding strategies.
Internation Journal of Speech Technology , 8 (3), 295–305.

Bonneau-Maynard, H., Rosset, S., Ayache, C., Kuhn, A., & Mostefa, D.
(2005). Semantic annotation of the french media dialog corpus. In
Interspeech 2005 - eurospeech, 9th european conference on speech com-
munication and technology (p. 3457-3460). ISCA.

Broekstra, J., & Kampman, A. (2003). SeRQL: A second generation RDF
query language. In SWAD-Europe workshop on semantic web storage
and retrieval.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings
of the 1st north american chapter of the association for computational
linguistics conference (pp. 132–139). Stroudsburg, PA, USA: Associa-
tion for Computational Linguistics.

Cimiano, P., Haase, P., Heizmann, J., Mantel, M., & Studer, R. (2008).
Towards portable natural language interfaces to knowledge bases – the
case of the orakel system. Data and Knowledge Engineering , 65 (2),
325 - 354.

Cimiano, P., & Minock, M. (2010). Natural language interfaces: What is
the problem? – a data-driven quantitative analysis. In H. Horacek,
E. Métais, R. Muñoz, & M. Wolska (Eds.), Natural language processing
and information systems (p. 192-206). Springer Berlin / Heidelberg.

Codd, E. F. (1974). Seven steps to rendezvous with the casual user. In Ifip
working conference data base management (p. 179-200).

Collins, M. (1997). Three generative, lexicalised models for statistical pars-
ing. In Proceedings of the 35th annual meeting of the association for

101

Bibliography 102

computational linguistics (pp. 16–23).
Copestake, A., Flickinger, D., Pollard, C., & Sag, I. (2005). Minimal recur-

sion semantics: An introduction. Research on Language and Compu-
tation, 3 , 281-332.

Cunningham et al. (2011, April). Text processing with gate (version 6)
[Computer software manual]. (University of Sheffield Department of
Computer Science)

Dahl, D., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett,
D., et al. (1995). ATIS3 Test Data. (Linguistic Data Consortium,
Philadelphia)

Damljanovic, D., Agatonovic, M., & Cunningham, H. (2010). Natural
language interfaces to ontologies: Combining syntactic analysis and
ontology-based lookup through the user interaction. In L. Aroyo et
al. (Eds.), The semantic web: Research and applications (p. 106-120).
Springer Berlin / Heidelberg.

Damljanović, D., & Bontcheva, K. (2009). Towards enhanced usability of
natural language interfaces to knowledge bases. In V. Devedžić &
D. Gašević (Eds.), Web 2.0 & semantic web (p. 105-133). Springer
US.

Dean, M., & Schreiber, G. (2004). OWL web ontology language reference
(W3C Recommendation). W3C.

Dolamic, L., & Savoy, J. (2009). Indexing and stemming approaches for the
czech language. Information Processing & Management , 45 (6), 714 -
720.

Fazzinga, B., & Lukasiewicz, T. (2010). Semantic search on the web. Se-
mantic Web, 1 (1-2), 89-96.

Ferrández Óscar, Izquierdo, R., Ferrández, S., & Vicedo, J. L. (2009). Ad-
dressing ontology-based question answering with collections of user
queries. Information Processing & Management , 45 (2), 175 - 188.

Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg, B.,
et al. (2007). Question answering from structured knowledge sources.
Journal of Applied Logic, 5 (1), 20 - 48.

Gao, M., Liu, J., Zhong, N., Chen, F., & Liu, C. (2011). Semantic map-
ping from natural language questions to OWL queries. Computational
Intelligence, 27 (2), 280–314.

Ge, R., & Mooney, R. J. (2005, June). A statistical semantic parser that
integrates syntax and semantics. In Proceedings of the ninth conference
on computational natural language learning (pp. 9–16).

Grepl, M., & Karĺık, P. (1998). Skladba češtiny (1st ed.). Olomouc, Czech
Republic: Votobia.

Gruber, T. R. (1993). A translation approach to portable ontology specifi-
cations. Knowledge Acquisition., 5 (2), 199–220.

Habernal, I. (2009, May). Stochastic semantic analysis (Technical Report

Bibliography 103

No. DCSE/TR-2009-04). Department of Computer Science and Engi-
neering, University of West Bohemia. (PhD Study Report)

Habernal, I., & Konoṕık, M. (2008). Active tags for semantic analysis. In
Proceedings of the 11th international conference on text, speech and
dialogue (pp. 69–76). Berlin, Heidelberg: Springer-Verlag.

Habernal, I., & Konoṕık, M. (2009). Semantic annotation for the lingvose-
mantics project. In Proceedings of the 12th international conference on
text, speech and dialogue (pp. 299–306). Berlin, Heidelberg: Springer-
Verlag.

Habernal, I., & Konoṕık, M. (2010). Hybrid semantic analysis system - ATIS
data evaluation. In Proceedings of the 6th international conference on
advanced data mining and applications - volume part ii (pp. 376–386).
Berlin, Heidelberg: Springer-Verlag.

Habernal, I., Konoṕık, M., & Rohĺık, O. (2012, May). Question Answering.
In C. Jouis, I. Biskri, J.-G. Ganascia, & M. Roux (Eds.), Next gener-
ation search engines: Advanced models for information retrieval. IGI
Global. (in press)

Habernal, I., & Konoṕık, M. (2010). On the way towards standardized
semantic corpora for development of semantic analysis systems. In
Semapro 2010: The fourth international conference on advances in
semantic processing (pp. 96–99). IARIA.

Hajič, J., Panevová, J., Hajičová, E., Panevová, J., Sgall, P., Pajas, P., et al.
(2006). Prague dependency treebank 2.0. (Linguistic Data Consortium,
Philadelphia)

Hallett, C. (2006). Generic querying of relational databases using natural
language generation techniques. In Proceedings of the fourth interna-
tional natural language generation conference (pp. 95–102). Strouds-
burg, PA, USA: Association for Computational Linguistics.

He, Y., & Young, S. (2005). Semantic processing using the hidden vector
state model. Computer Speech & Language, 19 (1), 85-106.

He, Y., & Young, S. (2006a, Sept). A clustering approach to semantic de-
coding. In 9th international conferennce on spoken language processig
(interspeech 2006 — icslp) (pp. 17–21). Pittsburgh, USA.

He, Y., & Young, S. (2006b). Spoken language understanding using the
hidden vector state model. Speech Communication, 48 (3-4), 262-275.

Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A., & Dean, M. (2009).
Semantic web programming. Indianapolis, IN: Wiley.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., & Slocum, J. (1978, June).
Developing a natural language interface to complex data. ACM Trans.
Database Syst., 3 , 105–147.

Horrocks, I., Patel-Schneider, P. F., & Harmelen, F. van. (2003). From
SHIQ and RDF to OWL: the making of a web ontology language.
Web Semantics, 1 (1), 7 - 26.

Iosif, E., & Potamianos, A. (2007, August). A soft-clustering algorithm

Bibliography 104

for automatic induction of semantic classes. In Interspeech-07 (pp.
1609–1612). Antwerp, Belgium.

Jeong, M., & Lee, G. G. (2008, April). Practical use of non-local features
for statistical spoken language understanding. Computer Speech and
Language, 22 (2), 148–170.

Jurafsky, D., & Martin, J. H. (2008). Speech and language processing: an
introduction to natural language processing, computational linguistics,
and speech recognition (2nd ed.). Upper Saddle River, NJ, USA: Pren-
tice Hall.

Jurč́ıček, F. (2007). Statistical approach to the semantic analysis of spo-
ken dialogues. Unpublished doctoral dissertation, University of West
Bohemia, Faculty of Applied Sciences.

Kate, R. J. (2009). Learning for semantic parsing with kernels under various
forms of supervision. Unpublished doctoral dissertation, Department
of Computer Sciences, University of Texas at Austin.

Kate, R. J., & Mooney, R. J. (2006). Using string-kernels for learning seman-
tic parsers. In Acl-44: Proceedings of the 21st international conference
on computational linguistics and the 44th annual meeting of the asso-
ciation for computational linguistics (pp. 913–920). Morristown, NJ,
USA: Association for Computational Linguistics.

Kaufmann, E., & Bernstein, A. (2007). How useful are natural language
interfaces to the semantic web for casual end-users? In Proceedings
of the 6th international the semantic web and 2nd asian conference
on asian semantic web conference (pp. 281–294). Berlin, Heidelberg:
Springer-Verlag.

Kaufmann, E., Bernstein, A., & Fischer, L. (2007, November). NLP-Reduce:
A ”näıve” but Domain-independent Natural Language Interface for
Querying Ontologies. In 4th european semantic web conference (eswc
2007) (p. 1-2).

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In
Proceedings of the 41st annual meeting on association for computa-
tional linguistics - volume 1 (pp. 423–430). Stroudsburg, PA, USA:
Association for Computational Linguistics.

Knuth, D. (1997). The art of computer programming, volume 3: Sorting
and searching, second edition. Addison-Wesley.

Konkol, M., & Konoṕık, M. (2011). Maximum entropy named entity recog-
nition for czech language. In Proceedings of the 14th international
conference on text, speech and dialogue (pp. 203–210). Berlin, Heidel-
berg: Springer-Verlag.

Konoṕık, M. (2009). Hybrid semantic analysis. Unpublished doctoral dis-
sertation, University of West Bohemia, Faculty of Applied Sciences.

Konoṕık, M., & Habernal, I. (2009). Hybrid semantic analysis. In Proceed-
ings of the 12th international conference on text, speech and dialogue
(pp. 307–314). Berlin, Heidelberg: Springer-Verlag.

Bibliography 105

Lassila, O., & McGuinness, D. (2001). The role of frame-based representa-
tion on the semantic web. In Linköping electronic articles in computer
and information science (Vol. 6).

Libkin, L., & Wong, L. (1997). Query languages for bags and aggregate
functions. Journal of Computer and System Sciences, 55 (2), 241 -
272.

Liu, B. (2011). Web data mining: Exploring hyperlinks, contents, and usage
data (2nd ed.). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Lopez, V., Fernández, M., Motta, E., & Stieler, N. (2011). PowerAqua: Sup-
porting users in querying and exploring the Semantic Web. Semantic
Web, 1–17.

Lopez, V., Uren, V., Motta, E., & Pasin, M. (2007). AquaLog: An
ontology-driven question answering system for organizational semantic
intranets. Web Semantics, 5 (2), 72 - 105.

Maedche, A., & Staab, S. (2001, March). Ontology learning for the semantic
web. IEEE Intelligent Systems, 16 (2), 72–79.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to
information retrieval. New York, NY, USA: Cambridge University
Press.

Manola, F., & Miller, E. (Eds.). (2004). RDF Primer. W3C.
(http://www.w3.org/TR/rdf-primer/)

Miller, S., Bobrow, R., Ingria, R., & Schwartz, R. (1994). Hidden under-
standing models of natural language. In Proceedings of the 32nd an-
nual meeting on association for computational linguistics (pp. 25–32).
Morristown, NJ, USA: Association for Computational Linguistics.

Mooney, R. J. (2007, February). Learning for semantic parsing. In Com-
putational linguistics and intelligent text processing: Proceedings of
the 8th international conference, cicling 2007 (pp. 311–324). Berlin,
Germany: Springer.

Mykowiecka, A., Marciniak, M., & Glowińska, K. (2008). Automatic se-
mantic annotation of polish dialogue corpus. In Tsd ’08: Proceedings
of the 11th international conference on text, speech and dialogue (pp.
625–632). Berlin, Heidelberg: Springer-Verlag.

Nguyen, L.-M., Shimazu, A., & Phan, X.-H. (2006). Semantic parsing
with structured svm ensemble classification models. In Proceedings
of the coling/acl on main conference poster sessions (pp. 619–626).
Morristown, NJ, USA: Association for Computational Linguistics.

Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical
alignment models. Computational Linguistics, 29 (1), 19–51.

Pieraccini, R., Tzoukermann, E., Gorelov, Z., Levin, E., Lee, C.-H., & Gau-
vain, J.-L. (1992). Progress report on the chronus system: Atis bench-
mark results. In Proceedings of the workshop on speech and natural
language (pp. 67–71). Stroudsburg, PA, USA: Association for Com-
putational Linguistics.

Bibliography 106

Pla, F., Molina, A., Sanchis, E., Segarra, E., & Garćıa, F. (2001). Language
understanding using two-level stochastic models with pos and semantic
units. In Tsd ’01: Proceedings of the 4th international conference on
text, speech and dialogue (pp. 403–409). London, UK: Springer-Verlag.

Pollard, C., & Sag, I. A. (1988). Information-based syntax and semantics:
Vol. 1: fundamentals. Stanford, CA, USA: Center for the Study of
Language and Information.

Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar.
studies in contemporary linguistics. Chicago, IL/London: The Univer-
sity of Chicago Press.

Popescu, A.-M., Etzioni, O., & Kautz, H. (2003). Towards a theory of
natural language interfaces to databases. In Proceedings of the 8th
international conference on intelligent user interfaces (pp. 149–157).
New York, NY, USA: ACM.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., & Jurafsky, D. (2004).
Shallow semantic parsing using support vector machines. In Pro-
ceedings of the human language technology conference/north ameri-
can chapter of the association of computational linguistics (hlt/naacl).
Boston, MA.

Price, P. J. (1990). Evaluation of spoken language systems: the atis do-
main. In Proceedings of the workshop on speech and natural language
(pp. 91–95). Stroudsburg, PA, USA: Association for Computational
Linguistics.

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for
RDF. W3C Recommendation.

Raymond, C., & Riccardi, G. (2007, August). Generative and discriminative
algorithms for spoken language understanding. In Interspeech-07 (pp.
1605–1608). Antwerp, Belgium.

Raymond, C., Rodriguez, K. J., & Riccardi, G. (2008, May). Active an-
notation in the luna italian corpus of spontaneous dialogues. In Pro-
ceedings of the sixth international language resources and evaluation
(lrec’08). Marrakech, Morocco: European Language Resources Asso-
ciation (ELRA).

Raymond, R. G., & Mooney, J. (2006). Discriminative reranking for seman-
tic parsing. In Proceedings of the coling/acl (pp. 263–270). Morristown,
NJ, USA: Association for Computational Linguistics.

Ruiz-Mart́ınez, J., Castellanos-Nieves, D., Valencia-Garćıa, R., Fernández-
Breis, J., Garćıa-Sánchez, F., Vivancos-Vicente, P., et al. (2009). Ac-
cessing touristic knowledge bases through a natural language inter-
face. In D. Richards & B.-H. Kang (Eds.), Knowledge acquisition: Ap-
proaches, algorithms and applications (Vol. 5465, p. 147-160). Springer
Berlin / Heidelberg.

Schwartz, R., Miller, S., Stallard, D., & Makhoul, J. (1997). Hidden un-
derstanding models for statistical sentence understanding. In Icassp

Bibliography 107

’97: Proceedings of the 1997 ieee international conference on acoustics,
speech, and signal processing (icassp ’97)-volume 2 (p. 1479). Wash-
ington, DC, USA: IEEE Computer Society.

Schwitter, R. (2010). Creating and querying formal ontologies via controlled
natural language. Applied Artificial Intelligence, 24 (1-2), 149–174.

Segaran, T., Taylor, J., & Evans, C. (2009). Programming the semantic
web. Cambridge, MA: O’Reilly.

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random
fields. In Naacl ’03: Proceedings of the 2003 conference of the north
american chapter of the association for computational linguistics on
human language technology (pp. 134–141). Morristown, NJ, USA: As-
sociation for Computational Linguistics.

Spanos, D.-E., Stavrou, P., & Mitrou, N. (2012). Bringing relational
databases into the semantic web: A survey. Semantic Web Journal .
(to appear)

Stratica, N., Kosseim, L., & Desai, B. C. (2005). Using semantic templates
for a natural language interface to the CINDI virtual library. Data &
Knowledge Engineering , 55 (1), 4 - 19.

Svec, J., Jurč́ıček, F., & Müller, L. (2007). Input parameterization of the
hvs semantic parser. Lecture Notes in Artificial Intelligence, 415-422.

Tang, L. R., & Mooney, R. J. (2001). Using multiple clause constructors
in inductive logic programming for semantic parsing. In Proceedings
of the 12th european conference on machine learning (pp. 466–477).
London, UK: Springer-Verlag.

Thompson, C. W., Pazandak, P., & Tennant, H. R. (2005, November). Talk
to your semantic web. IEEE Internet Computing , 9 (6), 75–78.

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the
CoNLL-2003 shared task: Language-independent named entity recog-
nition. In W. Daelemans & M. Osborne (Eds.), Proceedings of conll-
2003 (pp. 142–147). Edmonton, Canada.

Tur, G., Hakkani-Tur, D., & Heck, L. (2010). What is left to be understood
in atis? In Spoken language technology workshop (slt), 2010 ieee (p. 19
-24).

Wang, C., Xiong, M., Zhou, Q., & Yu, Y. (2007). Panto: A portable
natural language interface to ontologies. In Proceedings of the 4th
european conference on the semantic web: Research and applications
(pp. 473–487). Berlin, Heidelberg: Springer-Verlag.

Wang, Y.-Y., Deng, L., & Acero, A. (2005). An introduction to statistical
spoken language understanding. IEEE Signal Processing Magazine,
22 (5), 16–31.

Ward, W., & Issar, S. (1994). Recent improvements in the cmu spoken lan-
guage understanding system. In Hlt ’94: Proceedings of the workshop
on human language technology (pp. 213–216). Morristown, NJ, USA:
Association for Computational Linguistics.

Bibliography 108

Warren, D. H. D., & Pereira, F. C. N. (1982, July). An efficient easily adapt-
able system for interpreting natural language queries. Computational
Linguistics, 8 (3-4), 110–122.

Weischedel, R. M. (1989). A hybrid approach to representation in the
janus natural language processor. In Proceedings of the 27th annual
meeting on association for computational linguistics (pp. 193–202).
Stroudsburg, PA, USA: Association for Computational Linguistics.

Winkler, W. E. (1990). String comparator metrics and enhanced decision
rules in the Fellegi-Sunter model of record linkage. In Proceedings of
the section on survey research (american statistical association) (pp.
354–359).

Wong, Y. W., & Mooney, R. J. (2006). Learning for semantic parsing with
statistical machine translation. In Proceedings of the main confer-
ence on human language technology conference of the north american
chapter of the association of computational linguistics (pp. 439–446).
Morristown, NJ, USA: Association for Computational Linguistics.

Young, S. (2002). The statistical approach to the design of spoken dialogue
systems (Tech. Rep.). Cambridge, UK: University of Cambridge: De-
partment of Engineering.

Zenz, G., Zhou, X., Minack, E., Siberski, W., & Nejdl, W. (2009). From
keywords to semantic queries–incremental query construction on the
semantic web. Web Semantics, 7 (3), 166 - 176.

Zhou, D., & He, Y. (2009). Discriminative training of the hidden vector
state model for semantic parsing. IEEE Trans. on Knowl. and Data
Eng., 21 (1), 66–77.

Zhou, G., & Su, J. (2005). Machine learning-based named entity recogni-
tion via effective integration of various evidences. Natural Language
Engineering , 11 (2), 189–206.

List of Published Articles

Book Chapters

• Habernal, I., Konoṕık, M., Rohĺık, O. Question Answering. In C.
Jouis, B. Ismail, G. Jean-Gabriel, & R. Magali (Eds.), Next generation
search engines: Advanced models for information retrieval. March,
2012. IGI Global Selected Conference Papers

Journal Articles

• Habernal, I., Konoṕık, M. SWSNL: Semantic Search Using Natural
Language. Manuscript submitted to Journal of Web Semantics in May
2012.

Selected Conference Papers

• Habernal, I., Konoṕık, M. Hybrid Semantic Analysis System - ATIS
Data Evaluation. In Advanced Data Mining and Applications - Part
II., ADMA2010, Chongqing, China. Berlin: Springer, 2010. s. 376-
386. ISBN: 978-3-642-17312-7

• Habernal, I., Konoṕık, M. On the Way towards Standardized Semantic
Corpora for Development of Semantic Analysis Systems. In SEMAPRO
2010. Florence, Italy: IARIA, 2010. s. 96-99. ISBN: 978-1-61208-000-
0

• Konoṕık, M., Habernal, I. Hybrid Semantic Analysis. In Text, Speech
and Dialogue. Berlin: Springer, 2009. s. 307-314. ISBN: 978-3-642-
04207-2

• Habernal, I., Konoṕık, M. Semantic Annotation for the LingvoSeman-
tics Project. In Text, Speech and Dialogue. Berlin: Springer, 2009. s.
299-306. ISBN: 978-3-642-04207-2

• Habernal, I., Konoṕık, M. Active Tags for Semantic Analysis. Lecture
Notes in Artificial Intelligence, 2008, 5246, s. 69-76. ISSN: 0302-9743

• Habernal, I., Konoṕık, M. JAAE: The Java Abstract Annotation Edi-
tor. In Proceedings of Interspeech 2007. Bonn: ISCA, 2007. s. 1973-
1976. ISBN: 978-1-60560-316-2

