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ABSTRACT
Learning sign language has many advantages ranging from being able to communicate with millions of hearing
impaired people, to improving cognitive function and communication skills. Sign language is recognised as an
official language in 74 countries, including Germany, Japan, and the UK. Despite that only a small percentage of
people attempt to learn sign language.
In this research we investigate how virtual reality and gamification can be used to make learning sign language more
enjoyable and motivating. We present JengASL, a gamified approach using 3D hand models, gesture recognition,
and interactive gameplay in Virtual Reality to teach American Sign Language. We evaluate this system with a pilot
study using eight participants and found that while it is less effective for sign memorisation than traditional 2D
image-based learning methods, learning is more, but not significantly more, enjoyable and motivating.
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1 INTRODUCTION
Learning sign language has numerous advantages
ranging from being able to communicate with
millions of people suffering from hearing diffi-
culties [MV14] (an estimated 15-20% in America
and New Zealand [BLC14, SFB+13]) to improv-
ing cognitive function and reasoning, memory,
attention span, creativity, and communication
skills [CCRV98, MLS06, CCP07].

Despite that sign language is not widely used and most
people willing to learn it do so using books, videos,
or through community-hosted events [MV14]. How-
ever, such teaching media might not always be avail-
able and/or provide little or no formative feedback. Fur-
thermore, signs can be viewed differently depending on
the angle at which they are observed, and 2D teach-
ing materials cannot provide students with changes in
depth and perspective. Virtual Reality overcomes some
of these difficulties. By implementing 3D representa-
tions of hand gestures in a VR environment such as in
[AVCA06], the user will be able to see different per-
spectives by tilting their head or walking to a different
position.

The learning process is often inhibited by a lack of
ongoing motivation. Learning a language takes time
and effort. Gamification and Serious Games offer sig-
nificant potential for improving motivation and persis-
tence by combining the learning process with a more
enjoyable gameplay activity, that also allows for more
avenues of feedback and self-assessment through skill

performance influencing performance in the gameplay
tasks. Gamification has the potential to improve both
user engagement and learning performance [ORCV17,
SWL18].

Our research question is thus: Can we improve sign lan-
guage learning using gamification in a Virtual Reality
Environment?

2 RELATED WORK
2.1 Teaching Strategies
Teaching methods have been classified broadly into di-
rect instruction, peer-teaching, and interactive teach-
ing [MR17]. Interactive teaching is based on the idea
that students need practical application to fully com-
prehend study material, motivating students to partic-
ipate in teaching content and maintain concentration
for longer. It also helps teachers to assess how well
the student is actually learning the material. Feedback,
in particular constructive feedback, is another factor in
providing effective interactive learning [Sen18]. Good
constructive feedback should be systematic, relevant
and encouraging in order to achieve successful teach-
ing [Ova91], and has been associated with increased
student confidence and motivation [CR08]. Numer-
ous papers and several systematic reviews have demon-
strated the potential of VR, including gamification, in
education [KLRWP17].

While numerous games exist for teaching sign lan-
guage, few of them use VR or evaluate the effectiveness
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of the approach. “CopyCat” is an educational adventure
game to help deaf children improve their language and
memory abilities [ZBP+11]. The player interacts with
the game’s main character using sign language and can
use a virtual tutor to learn the correct signs. The re-
search focus of the paper is on the sign recognition sys-
tem developed as part of the research and no evaluation
of the game is provided.

“Sign my World” is a mobile video game for teaching
Australian Sign Language (Auslan). The game uses a
2D cartoon like interface and interactive cards which
associate words with videos of the Auslan sign for that
word [KPN12].

Bouzid et al. developed a memory game where users
have to match cards containing words and sign writ-
ing notation, which are interpreted by a 3D avatar using
gestures [BKEJ16]. The authors performed a user study
with 9 participants and report that based on video anal-
ysis the majority of users were engaged and enjoyed the
game.

2.2 Gesture Recognition for Sign Lan-
guage Applications

A crucial aspect of any system teaching sign language
is the recognition of the sign language gestures in order
to assess users’ performance. Accurate gesture recog-
nition can also enable a system to provide construc-
tive feedback that targets a specific part of the user’s
movements as suggested in SignTutor [AAA+09]. Pre-
viously developed technologies for gesture recognition
can be split into two categories:

Glove-Based gesture recognition involves the user
wearing a glove with markers or sensors. The Cyber-
Glove is one such tool, which measures the angles of
hand joints and the position of the hand, which can
then be used to train a neural network for recognising
gestures [WS99, PMS+09, SLC15].

Camera-Based gesture recognition methods use cam-
eras or other optical sensors to gain data from the
user by computing gestures using a visual representa-
tion of the hands. This includes first determining what
needs to be examined, e.g., the hands, and then track-
ing their movements to determine the gesture being
signed [LWLD11, FHA+22].

2.2.1 Object Segmentation
The first step of many tracking methods is foreground/
background segmentation. Holden et al. use image
sequences from a single colour camera to recognize
Australian Sign Language (Auslan) using skin colour
detection and active contour models [HLO05]. Ob-
ject segmentation can be effected by variations in sur-
rounding colours and lighting [HLO05]. SignTutor re-
quires users to wear different coloured gloves to coun-
teract changes in background and lighting conditions

and helping with segmentation if fingers/hands over-
lap [AAA+09]. Keskin et al. used two camera images
and non-skin-coloured gloves as markers to separate the
hands from complex backgrounds [KEA03].

Depth cameras are often less sensitive to changes in
lighting and background. Mo and Neumann used the
Canesta camera to estimate the pose of the hands with
the assumption that it is the closest object to the cam-
era within the depth threshold, based on finger bound-
aries that are also calculated from depth values [MN06].
The method failed with non-frontal poses and poses that
cannot be modelled due to noise or positioning. Li and
Jarvis tried to remove some of the noise that comes with
depth mapping using Median filtering and segmenting
the hand using a depth histogram method [LJ09]. His-
togram binning is also used in SignTutor to determine
hand regions, although rather than using depth data it
uses the HSV colourspace [AAA+09].

The Leap Motion sensor computes the 3D positions of
hands within a certain range of the sensor, but instead
of a depth map it dynamically computes a set of hand
points (palm, finger positions, hand orientation). This
was used by Chuan et al. to recognize 26 letters of the
American Sign language alphabet by extracting the po-
sition and length the fingers as well as the pose of the
palm [CRG14].

2.2.2 Gesture Classification

Gesture classification is usually achieved using Ma-
chine Learning. Keskin et al. use a Hidden Markov
Models (HMMs) and a 3D Kalman filter to reduce
noise [KEA03]. SignTutor uses two Kalman filters, one
on each hand to reduce segmentation noise and predict
hand trajectories [AAA+09]. Chuan et al. used a k-
Nearest Neighbour and Support Vector Machine for al-
phabet recognition, however, gestures that looked simi-
lar were often misclassified, possibly due to mislabelled
data in the Leap Motion sensor [CRG14].

Chai et al. used an interesting approach to build a trans-
lation application for Chinese Sign Language using Mi-
crosoft Kinect [CLL+13]. In their algorithm, the move-
ment trajectory of each word is first aligned to the same
sampling point. A match is then performed with exist-
ing libraries to determine the gesture. Since movements
were tracked in this algorithm, it is possible to deter-
mine dynamic gestures and account for varying hand
motion speeds between different signers.

More recent work has used deep learning. For exam-
ple, Kothadiya et al. use two deep learning models for
Indian Sign Language to achieve 97% recognition accu-
racy over 11 signs [KBS+22]. Al-Qurishi et al. present
a review of deep learning-based approaches for sign
language recognition [AQKS21]. The authors conclude
that the presented models are relatively effective for a
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range of tasks, but none currently possess the necessary
generalization potential for commercial deployment.

The majority of papers we found focused on sign recog-
nition [ABA21]. SignTutor does perform teaching and
assesses users accuracy, but is limited by using a 2D
display and not having gamification, which means that
users must be intrinsically motivated to use the appli-
cation [AAA+09]. Hence our design will focus on the
gamification of sign language learning.

3 DESIGN
Based on the above literature, constructive feedback
and interaction plays a large part in whether or not stu-
dents can effectively learn. JengASL’s Design can be
split into several components as illustrated in Figure
1, providing both teaching and feedback via Gesture
Recognition.

Figure 1: JengASL system architecture overview.

Cameras are accessed from within the JengaASL ap-
plication to record the users hand gestures. Photos are
then parsed in-game into a format suitable for gesture
recognition, and data is passed to the gesture recogni-
tion system via a web-service.

3.1 JengASL
In order to make learning more interesting and interac-
tive, we have integrated gamification into our VR teach-
ing system. Our game consists of wooden blocks that
are stacked as in the well known game “Jenga”, each
with letters attached to them. Jenga was chosen as a
popular game that is both simple and can be played
alone or with multiple players. A point system is used
to keep track of how well the user is performing, and
the game ends once the tower falls.

The user interacts with the system by first selecting a
block with an associated letter, as seen in Figure 2. The
user then sees an indication of the associated sign and
is prompted to replicate it for the camera.

Figure 2: Selecting a block in the game environment.

One of our key contributions to ASL learning is the
ability of users to view the gesture at different angles,
helping them to learn the gesture as well as assisting
them in being able to recognise the gesture in real life
applications. When users choose a block they want to
move, models of the hand gesture corresponding to the
letter on the block are displayed in front of the user. The
user is then able to walk around to look at the hand ges-
ture from different view points. To make it easier for
the user to see from both the perspective of the signer
and signee without having to walk all the way around,
both the front and back views of the gesture are shown
(Figure 3).

Figure 3: In-game sign demonstration.
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In order to effectively teach users, we use active teach-
ing to allow them to practice what they learn. In or-
der to move a block in JengASL, the user must perform
the sign language gesture corresponding to the letter on
the block. The gesture is captured using a web cam
and immediate feedback is given by use of the ges-
ture recognition system, which returns letter/likelihood
pairs. For example, the following returned data - ‘(A,
0.8), (B,0.3), (C,0.5)...’ - would indicate that the ges-
ture had an 80% probability of being the letter ‘A’ and
0.3% probability of being the letter ‘B’, and so on. The
letter with the highest likelihood is shown to the user
and they are given an option to try again if it is not the
one they intended. In order to motivate users to achieve
greater accuracy in their gesturing, a point system is
used. Each time a block is removed from the tower,
points P are added, with an amount determined by the
following equation:

AttemptsLe f t = MaxAttempts−Attempts

P = 100∗ |di f f iculty−accuracy| ∗AttemptsLe f t
(1)

Accuracy is obtained from the gesture recognition sys-
tem as the percentage likelihood of the gesture being
the specified letter. Due to it being highly unlikely that
any user will ever achieve 100% recognition accuracy
for a gesture, we implement a percentage accuracy dif-
ficulty level as a cap, which can be modified. In this
case, the user only has to achieve, e.g., a 80% gesture
accuracy to achieve full points, and higher difficulties
would have a higher cap. Doing so can also encourage
players to set goals and improve their gesture accuracy,
and discourage them from settling for an incorrect ges-
ture to remove the block. Similarly, to motivate the user
to become more accurate, the more times the user de-
cides to perform the selected gesture, the fewer points
they will be awarded.

An important aspect of game design is to reward the
user for doing well, and provide consequences if they
do not. In our case the user is rewarded by gaining
more points, and penalties are applied by reducing the
smoothness with which blocks are removed from the
tower. “Jitter” is added to blocks’ movement as ran-
dom vertical shaking. The jitter motion is inversely
correlated with gesture accuracy. The height of a block
within the tower is taken into consideration as shaking
in at the bottom of the tower has a higher chance of top-
pling it over. The jitter factor is a modifiable constant
that depends on the difficulty of the game. If too much
jitter occurs (causing instability), the tower will topple
over and the game will end. We use a physics system
for the jitter, such that if a block is removed with jit-
ter but the tower does not fall, the jitter will have still

nudged other blocks in the tower, potentially reducing
its stability. This both replicates the real-world version
of Jenga and incentivises accuracy on every sign. Even
if a given sign is not inaccurate enough to knock the
tower over, consistently making mistakes will dramati-
cally increase the risk to loose the game. Using prob-
abilities rather than yes/no decisions also adds excite-
ment to the game since, as with real Jenga, the player
can never be sure what will happen.

3.1.1 Gesture Recognition
In order to provide correct feedback, we must be able
to recognise the accuracy of the users’ gestures. Ideally,
we would like to provide precise feedback about which
finger positions are incorrect. However, this proved
difficult with existing technologies such as leap mo-
tion, which struggled with capturing motions where fin-
gers overlap. We instead opted for using webcam input
and machine learning (CNNs). While we used a very
simple model and small training data set, recent publi-
cations show that the technology is advancing rapidly
and capable of providing increasingly accurate recog-
nition [AQKS21].

In order to reduce size and memory overheads associ-
ated with integrating a large trained CNN model into a
game engine, we decided to implement a web-service
which will be queried in game when the user performs
a gesture. The web-service runs the model and returns
the result to the game client, which will then parse it
into a format suitable for use within the game.

4 IMPLEMENTATION
4.1 JengASL
Our game is implemented using Unity to host the
JengASL application. Unity provides in-built Virtual
Reality support, and also comes with many assets
and game objects which can be used with our game,
allowing us to reduce time spent on building the VR
environment. The game was built based on the publicly
available JengaVR [Ngi17], which implemented the
physics required for the blocks to interact with each
other or fall, however it had to be extended to include
menus, gaze-interaction, webcam access, and the point
system. Since we use an older head-mounted display
without eye-tracking, gaze interaction uses the user’s
viewing direction obtained by the HMDs orientation.

A webcam was used in our work to capture users’ ges-
ture information by clicking a button in game. Block se-
lection was done using gaze interaction to increase im-
mersion, allowing users to have both hands free as they
do their gestures. Communication between the game
and the gesture recognition system is done through a
TCP connection. During our study the web service for
gesture recognition was hosted locally to mimise la-
tency.
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Learning Method Mean Std. Dev.
Traditional 89.06 20.20
JengASL 66.30 25.68

Table 1: Correctness Rate of the traditional and
JengASL learning method (in %)

4.2 Gesture Recognition

For gesture recognition, we used a pre-trained VGG 16
model from Python’s Keras library, with 16 total layers
including input and output, and configured to classify
ASL alphabets.

The dataset chosen for training provided 3000 images
for each letter of the ASL alphabet. In this work we
chose to use the 8 letters that the model was able to
recognise with the highest accuracy.

5 EVALUATION

We conducted a small pilot study with 8 users aged 18–
33 to test the effectiveness of our VR learning system,
collecting both qualitative and quantitative data. 7 out
of 8 users had no experience with ASL, and 6 had no
experience with VR. Each user tested both the VR sys-
tem, as well as the traditional method of looking at ASL
gesture images. Demographic information of the users
were collected at the beginning of each trial, before they
were invited to complete two learning sessions of 8 ges-
tures:

1. Session 1: 2D images of 8 different gestures rep-
resenting characters different from session 2 (dura-
tion: 3 minutes)

2. Session 2: JengASL with 8 different gestures rep-
resenting characters different from session 1 (dura-
tion: 5 minutes)

The additional time given to the VR game was to ac-
commodate for in-game loading times and minor delays
associated with interacting via the hardware.

The rate of gesture retention of participants was mea-
sured by asking users to perform each of the gestures
that they learnt in the preceding session, and recording
the correctness.

Data for qualitative analysis was collected using
the Intrinsic Motivation Inventory (IMI) ques-
tionnaire [RD06, CSD22], with 3 sub-scales -
Interest/Enjoyment, Effort/Importance, and Pres-
sure/Tension. Users were asked 17 questions from
these sub-scales with a rating from 1 to 7, and for
all subscales the average score for its questions was
recorded.

6 RESULTS
Table 6 gives the retention rates for both conditions. All
users attempted 8 gestures for the traditional method
and an average of 7 for the VR method, with the lowest
being 4. The performance of users in VR had a moder-
ately strong correlation with their performance in the
Traditional method tests (Pearson’s r = 0.47). From
our data, JengASL performs worse than the traditional
method, with a lower mean correctness rate. The differ-
ences in correctness is shown to be statistically signifi-
cant using a two-tailed paired t-test (p < 0.05).

Table 2 shows participant responses to the IMI
questionnaire subscales. Pressure/tension showed a
strong positive correlation to correctness for the VR
environment (r = 0.60), and only a weak correlation
for traditional (r = 0.28). Effort/importance showed
a weak negative correlation for traditional (r=-0.18)
but a moderate positive correlation for VR (r = 0.40).
Interestingly however, in traditional and VR methods
there is a moderate positive correlation between ef-
fort/importance and correctness (r = 0.41 and r = 0.50
respectively). In both cases, interest/enjoyment had a
moderate negative correlation with gesture correctness.

We can see that on average, users enjoyed the VR
method more than the traditional method, made a sim-
ilar effort for learning, and felt more pressure since a
wrong sign could mean loosing the game. However, a
two-tailed paired t-test showed no statistically signifi-
cant difference between the two methods for all sub-
scales.

7 DISCUSSION
JengASL was able to increase user interest and effort,
although not at a statistically significant level. The in-
crease in enjoyment was unsurprising, however at a
lesser degree as expected. This may have been be-
cause although a gamified VR learning environment is
a fresh and interesting idea, enjoyment is dependent on
the game. Our gesture recognition system required a
controlled environment (implemented in this case by
placing a black screen behind the user’s hand during
recognition), and may have made it more awkward or
difficult for users to play the game. The amount of jitter
implemented in the game also needed to be optimised
through user feedback.

Our system failed to increase the retention rate of ges-
tures compared to the baseline. The most likely rea-
son for this is the time restraint implemented during
our evaluation: while looking at an image (traditional
method), the user is likely to spend the whole time fo-
cusing on the image and attempting to memorise the
gestures. However, in the VR system gestures are dis-
played when a block is clicked, and users have only
until it disappears to look at and copy the gesture, lead-
ing to less time in total to memorise. This means that it
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Traditional Learning Learning using JengASL
Sub-Scale Mean Trad. Std. Dev. Mean Std. Dev.

Interest/Enjoyment 4.09 1.61 4.70 1.17
Effort/Importance 3.3 1.2 3.325 0.93
Pressure/Tension 4.45 1.14 5.325 1.08

Table 2: IMI Results with scores on a 5-level Likert scale from 1 (strongly disagree) to 5 (strongly agree) for
traditional learning and learning using our VR tool JengASL.

could take longer to learn gestures using JengASL com-
pared to traditional methods. Note however that taking
more time to memorise does not mean our system is
less effective, as increased enjoyment means users are
likely to be more motivated to put in more time to play
the game, or even more motivated to begin learning in
the first place.

7.1 Limitations
Our study suffers from order effects since condition 1
(2D images) was always performed first. The reason for
this was that we believe that combining three new expe-
riences at once (sign language, game, and VR) might be
too demanding. Since we used different sets of charac-
ters for each condition, we believe that learning charac-
ters for condition 1 should have limited effects on learn-
ing characters for condition 2. Some effects might still
exits such as getting exhausted or bored after complet-
ing condition 2. This might be an additional explana-
tion for the lower retention rates with the VR condi-
tions.

The fact that we used different character sets for each
condition might create another problem. The CNN for
sign recognition had different accuracies for different
characters and we hence chose the 8 characters with the
highest accuracy. This meant that for the 2D image con-
dition we had to choose randomly 8 from the remaining
characters. The characters used in one condition might
be more difficult to learn or more difficult to form using
hand gestures, which would effect retention rates and
recognition accuracy. For example, the letter “C” is rel-
atively easy to learn and form since it involves making
a “C” shape with the hand.

Other limitations are the small size of the user study
(n=8) and self-selection bias since participants volun-
teered and we might have only got students with an in-
terest in research, sign language, or games.

7.2 Design Considerations
Despite the negative results in terms of performance,
this work has revealed several key considerations and
barriers to be considered when designing tools such as
this one for teaching gesture based skills.

One key consideration is the method by which the user
interacts with the non-skill elements of the virtual envi-
ronment. In particular, if the skill requires both hands

as in the case of New Zealand Sign Language. In Jen-
gASL, users were required to use a controller to iden-
tify the Jenga block to be removed from the tower. This
was motivated by previous research [ADWW19] and
our own observations that gesture-based input with the
available technologies was not accurate enough. While
it is certainly possible for the user to use the controller
to interact with the environment then put it down to per-
form gestures with both hands, this is an interruption to
their activity and a barrier to usability. For this reason,
even had training data availability not been a concern,
JengASL would still be better suited for teaching Amer-
ican Sign Language (a one-handed language), than New
Zealand Sign Language.

Another barrier to use is the availability of training data.
While there is training data widely available for the sub-
set of sign language signs that is the alphabet (for many
languages), acquiring a dataset that is representative of
the larger vocabulary of the language is difficult, not to
mention the practical concerns around training a model
with high accuracy for a large number of signs.

We also raise the key consideration of feedback and as-
sessment with respect to precision as something to con-
sider when developing a training tool. In JengASL, we
provide feedback on accuracy in the form of score and
the jitter mechanic. This is important to avoid sloppy
use of the taught skill - particularly in the case where
the skill in question is for communication and may have
many very similar signs.

A final barrier to use for some sign languages is the
presence of non-hand gestures in signs. In the exam-
ple of NZSL, some signs can also include motion (e.g.
the sign for “H”), touching the head (e.g. the sign for
“Deaf”), and mouthing the associated word. While this
is not the case for all sign languages, it is a limiting fac-
tor to what signs can be taught with a purely gesture-
based system.

We did not have any problems with cybersickness and
refer readers to design considerations listed by Shaw et
al. [SWL+15] and Yin et al. [YBH+21] (section 3.6)
in order to reduce cybersickness and make VR experi-
ences safe.

8 CONCLUSIONS
In this paper, we have presented a tool that integrates
sign language teaching into an immersive VR game.
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One of the main contributions of our work is to al-
low learners of sign language to see various gestures
from different angles, for easier learning of the differ-
ent signs. While our system was not able to increase
the retention rate of users’ sign knowledge, our model
does show potential in being more enjoyable, and thus
more motivating than learning gestures using traditional
methods.

At present there are several significant barriers to the
use of VR tools and gesture recognition models for
teaching sign language. Some of these can be mitigated
with appropriate training data for the gesture recogni-
tion system, but the nature of signs in some sign lan-
guages and the large possible vocabulary makes such
tools currently only suitable for supplementary learn-
ing and practice. Further research and development is
necessary before these tools are suitable for standalone
teaching.

Costs are also a factor for widespread adaption of VR
training tools. Our solution uses a simple web cam (20
US$) and a head-mounted display connected to a desk-
top computer (we used an old Oculus Rift 2, second-
hand about 200 US$).

8.1 Future Work

In future work we would like to develop/use more accu-
rate neural networks for sign recognition and test them
for different sign languages (ASL, NZSL, Auslan).

We would like to improve the teaching quality of the
tool by enabling users to see hand gestures for longer
and by providing more informative feedback. For ex-
ample, a virtual model could be overlayed on the user’s
hand and the user then has to modify his/her hand ges-
ture to precisely match the model.

Learning is most effective if the material is challenging,
but not too difficult. Ideally we would like to measure
cognitive load during the learning process [ABC+22]
and then either adjust difficulty or provide feedback or
visual hints in order to match task difficulty with the
learners capabilities. Concepts used in intelligent tu-
toring systems would also be useful to increase learn-
ing [CLW18].

Finally, we would like to make a more extensive user
study using randomly assigned characters for each con-
dition with more participants, a longer training phase,
and testing both short-term and long-term retention.

In using Jenga, we have taken a game that is tradition-
ally played in a multiplayer form and used it as a solo
teaching tool. It would be interesting to investigate how
competition and competitiveness factor into motivation,
enjoyment, and skill retention in a multiplayer gamified
learning environment.
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