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ABSTRACT
In this paper, we propose a new gasket fractal constructed in a deterministic iterated function system
(IFS) way by means of interacting ball and square sets in R2. The gasket consists of the ball sets generated
by the IFS, possessing also exact self-similarity. All this leads to a direct deduction of other properties
and a clear construction methodology, including a dynamic geometry procedure with an open-source
construction protocol. We also develop an extended version of the fractal in Rn. Some resulting config-
urations consisting of stacked 2D-fractals are plotted. We discuss about potential applications of them
in some areas of science, focusing mainly on percolation models. Guidelines for future work are also
provided.

Keywords
gasket fractal, n-sphere, iterated function systems, box-counting dimension, dynamical geometry, per-
colation

1 INTRODUCTION: BACKGROUND
AND NOTATION

Fractals are geometrical shapes made up of
smaller and smaller elements than add roughness
to the entire shape. Talking about its length is not
clear since there will always be something finer
that will escape the sensitivity of the instrument
used, increasing or decreasing this measurement.
Then, they should be measured by borders, poly-
gons, balls, boxes or new concepts that go beyond
classical geometric concepts.

In other words, when we measure any shape by
choosing different measurement scales, power law
relationships written by N = sD are fulfilled, with
N as the number of segmented figures, s the sim-
ilarity dimension, and D the fractal dimension. If
the shape satisfies the above relation with D as a

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

non-entire number, we are dealing with a fractal
[B.B83]. Among those structures, gasket fractals
are defined such as those ones that are constructed
by joints of sets.

Gasket fractals have become a source of inspira-
tion for the design of several digital and physi-
cal structures [Gua18, AHHN21, Rao21, FFSS22].
Some of the most popular fractals within this kind
are generated by applying an iterated function
system (IFS) to a deterministic formulation, such
as the Koch snowflake [Koc04], the Sierpinski tri-
angle [Sie15], the T-square [DJW16], the Cantor
dust [Can70, Can71], and its two-dimensional and
three-dimensional versions: the Sierpinski carpet
[Sie16] and the Menger sponge [Edg04], respec-
tively.

Our fractal design belongs to the the above sub-
kind of construction. It is defined in an Euclidean
space in R2. Two types of sets are the basis of the
generating IFS: on the one hand, B(c,r) refers, as
usual, to a closed ball with radius r that is cen-
tered at c, r ∈ R, c ∈ R2; on the other hand, we re-
fer by S(c,r) to the set composed by all the points
inside and on the borderline of a square, a “closed-
square”, with side 2r that is centered at c. In this
way, both kind of sets B and S, are defined by
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their center position and radius of the maximum
circumscribed circle inside the square. The paper
is structured as follows: fractal’s definition and its
main properties are introduced in Section 2, for 2D
and higher dimensions; the method of construc-
tion, both pseudo-code and procedure by dynam-
ical geometry using open-source software, is de-
tailed in Section 3; Section 4 exemplifies the poten-
tial applications of some resulting fractal arrange-
ments and discuss about other potential uses; fi-
nally, concluding remarks and guidelines for fu-
ture works are discussed in Section 5.

2 MODELING THE FRACTAL
Let the initial set S(κ0,ρ0) and its largest circum-
scribed ball B(κ0,ρ0) ≡ F0, κ0 ∈ R2, ρ0 ∈ R. At
the first iteration, S(κ0,ρ0) is divided into the four
largest squares S(κi,ρ1), i = 1,2,3,4, each of them
intersecting B(κ0,ρ0) in only one point xi ∈ R2,⋂4

i=1 xi = ∅. The couples of parameters defining
each generated i-th square are obtained by the ful-
fillment of the following constraints:

κi ∈ S(κ0,ρ0), κi /∈ B(κ0,ρ0),
4⋂

i=1

ki =∅ (1)

ρ1 =
1
2

sup
{

δ :
(

S(κi,δ )⊂ S(κ0,ρ0),

S(κi,δ )
⋂

B(κ0,ρ0) = xi

)}
, ∀δ > 0. (2)

Due to symmetry, all the generated squares
S(κi,ρ1), i = 1,2,3,4, have the same radius length
ρ1, and are equidistant to the center of their
generator square S(κ0,ρ0) in direction to its
vertices, going through its respective xi, see the
representation in Fig. 1. So, the sub-index for
the radius length goes with the iteration number.
All this leads to the respective generated balls
B(κi,ρ1), i = 1,2,3,4, which make up F1.

Now, this function system is extended to the m-
th iteration, m ≥ 1, by substituting S(κ0,ρ0) with
each j-th square generated at the (m− 1)-th itera-
tion, and applying Eqs. (1) and (2) to them. Since
each new ball becomes a generator of four balls
of lower size but possessing the property of ex-
act self-similarity, we can easily calculate that gen-
erated number of balls Nm = 4m balls with radius
ρm = ρ0um, with u =

(
1−

√
2/2
)
/2, at the m−th it-

eration. Those power-law behaviors are shown in
a logarithmic view in Fig. 2.

m = 0

m = 1

m = 2

m = 3

Figure 1: Top-right view of the fractal, the first
three iterations are shown. The initial (m = 0)
circumscribed gray ball B(k0,ρ0) generates four
squares as described in the text, each of which
leads a new level (m= 1) of circumscribed red balls
B(k1:4,ρ1). Each red ball generates a new level
(m = 2) of squares with their respective circum-
scribed green balls B(k5:20,ρ2). The process contin-
ues taking the green balls as generators, four blue
balls (m = 3) generates for each green ball, and so
on.

Other properties, such as the cumulative area Am
and the fractality D of the gasket can be directly
calculated from ρm and Nm. Namely:

Am =
m

∑
i=0

Niπ (ρi)
2 = π (ρ0)

2
m

∑
i=0

4iu2i, (3)

being the last expression in terms of the initial ra-
dius ρ0. Then, taking m → ∞ and normalizing Eq.
(3) with respect to S(κ0,ρ0), it becomes

A =

(
1

(2ρ0)
2 lim

m→∞
Am

)
×100% ≈ 86%. (4)

In turn, since our gasket is deterministic and ex-
act self-similar, the fractal dimension can be com-
puted by a simple formula related to the box-
counting formulation [Fal90]:

D =
lnv
ln 1

u

=
ln4

ln 2
1−

√
2/2

= 0.72, (5)

where v takes its value from the number of balls
generated per square. In this way, the fractal-
ity of our gasket is lower than other known 2D
self-similar gaskets, such as the Sierpinski trian-
gle (DST = 1.59), the Sierpinski carpet (DSC = 1.89),
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the T-square (DT−square = 1.58), and the Koch curve
(DKoch = 1.26). Indeed, it has a fractal dimension
about the 1D Cantor dust (DCantor = 0.63).

Definition. Let Fm,q, the q-th ball generated at the
m-th iteration of the IFS described above, then

Fm =
4m⋃

q=1

Fm,q (6)

and the ball-gasket fractal consists of

F = lim
m→∞

Fm. (7)
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Figure 2: In red- logarithm on the radius ρm of the
circumscribed balls as a function of the number of
iterations m, assuming ρ0 = 1. In blue- logarithm
of the number of generated balls Nm in each itera-
tion m.

Extension to Rn

The construction method of F allows to formulate
it for an euclidean space in Rn. The first step is
to extend our definitions for squares and balls to
Sn(c,r) and Bn(c,r), in which they refer to the set
of points inside an n-cube and an n-sphere, respec-
tively, centered at c ∈ Rn and having radius r ∈ R,
i.e., the nomenclature for the original case in R2

would be S2(c,r) and B2(c,r).

Then, the number of the generated n-spheres de-
pends on the number of vertices of the n-cubes: 2n

for the n-dimensional case [Cox74], so that a to-
tal of Nn

m = 2nm balls are generated at the m-th it-
eration, each one with different intersection point
xi ∈ Rn,

⋂2n

i=1 xi =∅, and Eq. (1) becoming

κi ∈ S(κ0,ρ0), κi /∈ B(κ0,ρ0),
2n⋂

i=1

ki =∅. (8)

Thus, our n-dimensional ball-gasket fractal is de-
noted by

Fn = lim
m→∞

Fn
m, (9)

where

Fn
m =

2nm⋃
q=1

Fn
m,q, (10)

and Fn
m,q represents q-th ball generated at the m-th

iteration.

Finally, since the number of generated balls per it-
eration changes with n but not the ball radius, the
properties of the fractal must be also re-calculated
for the n-dimensional case:

An
m =

m

∑
i=0

Nn
i

πn/2 (ρi)
n

Γ(n/2+1)
=

πn/2 (ρ0)
n

Γ(n/2+1)

m

∑
i=0

2niuni, (11)

where Γ(·) is the Euler’s gamma function, and the
second factor in the sum computes the area of an
n-sphere [NIS]. In turn, the box-counting dimen-
sion for the n-dimensional case (Dn) changes with
the number of generated n-sphere per each n-cube
(vn), so that

Dn =
lnvn

ln 1
u

=
ln2n

ln 2
1−

√
2/2

. (12)

3 METHODOLOGY FOR 2D CON-
STRUCTION

The pseudo-code for the F2’s construction is
shown in Algorithm 1, according to the defini-
tion introduced in Section 2. The algorithm is
designed in such a way that it not only draws the
fractal (line 19) but saves the information of each
generated circle, such as its radius (line 10), center
(lines 15:18), and area (lines 6,21-22). Then, the
outputs are the fractal F2, its parameters κ0:index,
ρ0:m, and the normalized cumulative area A.

In turn, Algorithm 2 presents a set of steps to gen-
erate F2

1 , up to the 1-st iteration, based on dynamic
geometry via the open-source software Geogebra
[HBA+13]. This way of construction could be
reached with using only the eight buttons shown
in Fig. 3, so that it is useful for educational pur-
poses. Fig. 4 also illustrates the fractal up to m = 1,
while the reader could refer to the Supplementary
material for the construction protocol to generate
it up to the 3-th iteration, taking ρ0 = 1 units and
κ0 = (0,0).
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Algorithm 1 Pseudo-code for F2

1: procedure GENERATOR OF F2(κ0,ρ0)
2: System Initialization ▷ Set m
3: Read the entry values
4: newBalls=1 ▷ Balls at m = 0
5: index=newBalls ▷ cumulative count
6: A = 1 ▷ Initialize the norm. cum. area
7: for i in 1:m do ▷ Start the iterations
8: lastBalls=newBalls ▷ Generators
9: newBalls=4i ▷ To generate
10: ρi = ρ0ui

11: for j in 1:lastBalls do ▷ Start to generate
12: G=index-lastBalls+ j
13: k =index+4( j−1)
14: δ = ρi−1 −ρi
15: κx

k+1 = κx
G +δ ; κ

y
k+1 = κ

y
G +δ

16: κx
k+2 = κx

G −δ ; κ
y
k+2 = κ

y
G +δ

17: κx
k+3 = κx

G −δ ; κ
y
k+3 = κ

y
G −δ

18: κx
k+4 = κx

G +δ ; κ
y
k+4 = κ

y
G −δ

19: Draw B(κk+l ,ρi) ▷ for l = 1 : 4
20: index=index+newBalls
21: A = A+4iu2i ▷ Computing with Eq. (3)
22: A = πA

4 ×100% ▷ Normalizing with Eq. (4)
23: output: F2,κ0:index,ρ0:m,A

Figure 3: Table of buttons used for the geometrical
construction in Geogebra.

Algorithm 2 Construction of F2
1 in GeoGebra.

1: procedure GENERATOR OF F2
1 (κ0,ρ0)

2: System Initialization ▷ Use
the command SetAxesRatio(1,1) in order
to fix a scale 1:1

3: Draw a square centered at κ0 with side 2ρ0,
using button a) ▷
Generating the points (−ρ0,ρ0)+κ0, (ρ0,ρ0)+
κ0, (ρ0,−ρ0)+κ0, (−ρ0,−ρ0)+κ0

4: Draw a polygon using button b) ▷
By joining all the previous points, starting and
ending at the same point

5: Find a midpoint of any side of the square
with button c)

6: Using button d), draw a circle with κ0 as its
center, and the radius of the midpoint found
previously

7: Draw the diagonals of the square with but-
ton e) ▷ At this step, the resulting picture is
shown in Fig. 4 (a)

8: Find the intersections of the circle with the
diagonals with button f)

9: Draw the perpendicular bisectors between
the corners of the square and the intersections
of the diagonal with the circle by means of but-
ton g)

10: Find the intersections of the sides of the
square with the perpendicular bisectors using
button f)

11: Reflect the square corresponding to the 1st
quadrant up to generate the rest of the new
squares with button h). ▷ The resulting
picture is shown in Fig. 4 (b).

12: Note: To continue up to the i−th iteration,
repeat steps 4 to 10 for the generated circles,
substituting κ0 and ρ0 with the correspond-
ing center and radius of each generated circle.
Then continue to Step 11.

4 RESULTING CONFIGURATIONS
AND POTENTIAL APPLICATIONS

Although the objective of this work is not to delve
into a direct application of the fractal, in this sec-
tion we provide the reader some potential lines of
research in which it could be used.

4.1 Stacked sets for percolation
Since its squared delimitation, diverse structured
configurations or arrangements can be obtained
from stacking F2 sets. Fig. 5 (a) shows the most
basic stack, which consists of an intersected struc-
tured in multiple scales. Indeed, each main gener-
ator ball B(κ0,ρ0) touches its four-nearest similar
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Figure 4: Geometrical construction in Geogebra.
(a) Steps up to m = 0. (b) Steps up to m = 1.

neighbors; for the i-th iteration, i > 0, the gener-
ated balls in a corner of its main generator square
(S′ (κ0,ρ0)) touch their two-nearest similar neigh-
bors from their corresponding main generators; in
turn, the generated balls that are in contact with
the border of its generator square, without being
in a corner, touch only one similar neighbor.

In percolation terms, picture in Fig. 5 (a) defines
a 2D slice of a porous but not-permeable struc-
ture (in the shown 2D slice) at different scales. In-
tact granite is a rock example that approximates
to those characteristics [SBN05]. In the same line,
Fig. 5 (b) shows an alternative configuration con-
sisting of an overlapping of the fractals of Fig. 5
(a), by matching their nearest corners at their 1-
st iteration. This also reduces porosity, because of
the contraction of the stack, allowing variation in
the modelling.

 

 

 

(a)

 

 

 

(b)

Figure 5: Porous and non-permeable stacks of
fractals plotted with random colors up to the 3-rd
iteration. (a) Most basic configuration. (b) Imple-
menting an overlapping at the 1-st iteration.

Now, permeability could be introduced under the
same reasoning by:

• adding a translation (φ ) to interspersed lines of
the stack, like that with φ = ρ0/2 in upward di-
rection shown in Fig. 6 (a). Different from pic-
tures in Fig. 5, this configuration only allows
connected with two neighbors between main
generators, while the rest of the balls do not
touch each other, leading to a low permeability
in mainly one direction but remaining the filled
area in 86%. Similar structures are found in
cracked crystalline rocks [NM14], and clay sed-
iments making non-permeable beds [Car39].
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• randomly selecting some balls not to draw.
This leads to unknown paths of interconnected
porous, reducing the filling area in dependence
on the probability of drawing (p). Fig. 6
(b) shows an implementation of that kind of
configuration with p = 0.5, which could be
adaptable to make several shapes according
to the geological structure to simulate or
characterize. It could be useful for the case of
sandstone, whose permeability depends of its
relative composition [ZSDL15].

• a combination of the techniques mentioned
previously.

In contrast to similar fractal models, like the space-
filling packing from inversion of circles/spheres,
that leave no porosity on the limit of infinitesi-
mally small spheres [Ley05, SH18], our original
fractal is a porous structure even in the limit, and
can be easily modified to adjust the level of poros-
ity.

Based on the above, our fractal would serve as a
basis model for 2D or 3D rendering of rocks with
a similar structure and/or fractal dimension, ap-
plying it as a direct modeling after the character-
ization of the rock [LWXY+22]. That methodol-
ogy has been implemented previously to construct
tessellations from iterative rules but not involving
fractals [NM14, LMH10]. So, it could be a novel
variation to improve that methodology, expect-
ing some advantages such as the quick construc-
tion, and easy and deterministic control of the
minimum-maximum size (by the iterations num-
ber). Nevertheless there are some limitations such
as the fixed location and size of new circles, at the
current version of our fractal, without modifying
it or adding noise.

Figs. 5 and 6 were drawn by implementing the
pseudo-code of Algorithm 1 in Rstatistics software
[R C21].

4.2 Potential uses
In practice, the fractal dimension can also be de-
termined by using the square side instead of the
ball radius in Eqs. (5) and (12), leading to D = 1.13
and D = 1.69 for an extension to 3D. In this section
we mention some similar dimensions and possi-
ble uses of our fractal. It is interesting that our
fractal dimension is close to the value obtained
(D = 1.08±15) by [Nos93], who indicates that the
reason of the power-law form of the radio emis-
sion spectrum can be due to the fractal nature
of the spatial distribution of radiating electrons;
the value is also close to the fractal dimension
of the perimeter (D ∼ 1.35) of molecular clouds

 

 

 

(a)

 

 

 

(b)

Figure 6: Porous and permeable stacks of fractals
plotted with random colors up to the 3-rd itera-
tion. (a) Structured modification applying a trans-
lation of φ = ρ0/2 in upward direction to inter-
spersed lines. (b) Random modification by adding
a probability of drawing p = 0.5 to each ball.

from two-dimension maps, see [SAP05] and ref-
erences therein. These similarities on the fractal
dimension suggest a similar level of roughness or
sponginess, fact that could be useful to set condi-
tions for modeling the phenomenon in the corre-
sponding parameter space.

On the other hand, the relative low value of our
dimension fractal is close to value, D ∼ 1.0− 1.1,
for the corrosion-induced cracks in reinforced con-
crete (see, [JJZ+20]). In this case, variants of our
fractal, as these in previous section, can have po-
tential use to model different types of coarse ag-
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gregate distribution to analyze (or even prevent)
crack patterns. Last, but not least important is that
our fractal could be taken as basis to generate gar-
ment geometrical patterns for clothing fabrics as
in [Lam17] and [WZYW19]; furthermore, the 3D
version could be used as an scene, like the sphere-
flake used by [KML16], to test rendering meth-
ods. Here it is important to mention the existence
of meshes based on fractals, some of them imple-
mented in methodologies like the Delaunay trian-
gulation using the Sierpińsky triangle [BC92], and
other ones exploring how phenomena occur with
the developed fractal array, based on the Cantor
set [SIK17]. In this sense, our fractal is more re-
lated to the latter one, due to the gaps in the filling
space.
Finally, let the above mentioned potential uses, it
is important to mention two particular character-
istics of the fractal:

• It is difficult to appreciate the aesthetics of the
fractal because the radius decreases almost one
order in magnitude per iteration, see Fig. 2,
so that the generated balls quickly disappear to
the human-eye.

• the entire space is not fully filled, A = 86%, this
could be an advantage or disadvantage accord-
ing to its use, and also contrast to others fractals
involving a ball construction, such as the Apol-
lonian fractal [Bou06].

5 CONCLUSIONS AND FUTURE
WORK

We introduced a new gasket fractal consisting
of 2D-balls embedded in squared sets, and con-
structed by means of a deterministic IFS. The
fractal is exact-self similar, with a normalized
cumulative area of 86%, and a box-counting
dimension of D = 0.72, which differs from several
well-known 2D fractals. Additionally, the gasket
has the property of extend itself to Rn while
preserving a similar formulation to calculate its
properties.
Beyond its limitations, our fractal possesses use-
ful features that allow to apply it to diverse areas.
In this way, we recommend to explore its fitting
to represent percolation models and other topics
inside numerical computational geometry.
Additionally to its applications, our gasket
construction lays the basis for the definition of
square-shaped fractals that are involved in the IFS
of this work. A fractal composed of the generator
squares, and two more based on the centers κi and
in the intersection points xi, are some examples of
possible future lines of research.
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Z. Kovács, S. Lizelfelner, B. Parisse,
and G. Sturr. GeoGebra 4.4, Decem-
ber 2013. http://www.geogebra.
org.

[JJZ+20] Haodong Ji, Haoyu Jiang, Ruoyi
Zhao, Ye Tian, Xianyu Jin, Nanguo
Jin, and Jing Tong. Fractal charac-
teristics of corrosion-induced cracks
in reinforced concrete. Materials,
13:3715, 08 2020.

[KML16] Kevin Keul, Stefan Müller, and Paul
Lemke. Accelerating spatial data
structures in ray tracing through pre-
computed line space visibility. In
WSCG 2016 - 24th Conference on Com-
puter Graphics, Visualization and Com-
puter Vision 2016, pages 17–25, 2016.

[Koc04] H.V. Koch. Sur une courbe continue
sans tangente, obtenue par une con-
struction géométrique élémentaire.
Arkiv for Matematik, Astronomi och
Fysik, 1:681–704, 1904.

[Lam17] Artde Donald Kin-Tak Lam. A study
on fractal patterns for the textile de-
sign of the fashion design. In 2017 In-
ternational Conference on Applied Sys-
tem Innovation (ICASI), pages 676–
678, 2017.

[Ley05] Jos Leys. Sphere inversion fractals.
Computers & Graphics, 29(3):463–466,
2005.

[LMH10] Hengxing Lan, C. Derek Martin, and
Bo Hu. Effect of heterogeneity of brit-

tle rock on micromechanical extensile
behavior during compression load-
ing. Journal of Geophysical Research:
Solid Earth, 115(B1), 2010.

[LWXY+22] Wei Lin, Zhenkai Li Wu, Zhengming
Xizhe Yang, Mingyi Hu, Denglin
Han, Chenchen Wang, and Jizhen
Zhang. Digital characterization and
fractal quantification of the pore
structures of tight sandstone at mul-
tiple scales. Journal of Petroleum Ex-
ploration and Production Technology,
12:2565–2575, 2022.

[NIS] NIST Digital Library of Mathemati-
cal Functions. 5.19 mathematical ap-
plications. Accessed: December 27,
2022.

[NM14] M. Nicksiar and C.D. Martin. Fac-
tors affecting crack initiation in low
porosity crystalline rocks. Rock Me-
chanics and Rock Engineering, 47:1165–
1181, 2014.

[Nos93] M. D. Noskov. Influence of the fractal
nature of the spatial distribution of
radiating electrons on a cosmic radio
emission spectrum. Astronomy Re-
ports, 37(5):565–566, September 1993.

[R C21] R Core Team. R: A Language and En-
vironment for Statistical Computing. R
Foundation for Statistical Comput-
ing, Vienna, Austria, 2021.

[Rao21] Nukala Srinivasa Rao. Design and
analysis of koch snowflake geometry
with enclosing ring multiband patch
antenna covering s and l band appli-
cations. In Vijay Nath and J.K. Man-
dal, editors, Nanoelectronics, Circuits
and Communication Systems, pages
167–176, Singapore, 2021. Springer
Singapore.

[SAP05] Néstor Sánchez, Emilio J. Alfaro, and
Enrique Pérez. The fractal dimension
of projected clouds. The Astrophysical
Journal, 625(2):849, jun 2005.

[SBN05] A. Selvadurai, M. Boulon, and
T. Nguyen. The permeability of an
intact granite. Pure and Applied Geo-
physics, 162:373–407, 2005.

[SH18] D. V. STÄGER and H. J. HER-
RMANN. Self-similar space-filling
sphere packings in three and four di-
mensions. Fractals, 26(03):1850022,
2018.

[Sie15] Wacław Sierpiński. Sur une courbe
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