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ABSTRACT
Understanding shapes is an organic process for us (humans) as this is fundamental to our interaction with the
surrounding world. However, it is daunting for the machines. Any shape analysis task, particularly non-rigid shape
correspondence is challenging due to the ever-increasing resolution of datasets available. Shape Correspondence
refers to finding a mapping among various shape elements. The functional map framework deals with this problem
efficiently by not processing the shapes directly but rather specifying an additional structure on each shape and
then performing analysis in the spectral domain of the shapes. To determine the domain, the Laplace-Beltrami
operator has been utilized generally due to its capability of capturing the global geometry of the shape. However,
it tends to smoothen out high-frequency features of shape, which results in failure to capture fine details and
sharp features of shape for the analysis. To capture such high-frequency sharp features of the shape, this work
proposes to utilize a Hamiltonian operator with gaussian curvature as an intrinsic potential function to identify the
domain. Computationally it is defined at no additional cost, keeps global structural information of the shape intact
and preserves sharp details of the shape in order to compute a better point-to-point correspondence map between
shapes.
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1 INTRODUCTION
Shapes in computational context refers to digital
representation of any real world object such as hu-
mans, chairs, etc. These digital representations can
be meshes, point clouds or voxel grids. With ever
increasing technological advancements, the accuracy
with which these digital representations are being
captured has transformed the field of shape analysis.
Particularly, shape matching is quite an interesting
area enticing researchers across multiple domains
from Computer Graphics, Image processing, Geom-
etry Processing and Computer Vision. A sub-area
focusses on the fundamental task of computing shape
correspondences, where rather than just specifying if
two shapes match, a mapping is also desired between
various elements of given shapes. Major applications
constitute object reconstruction, attribute transfer, Sta-
tistical modelling, Shape Interpolation and morphing,
etc.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Reconstructed hand from human mesh via
(left) 150 Laplace-Beltrami eigenfunctions (right); 150
Hamiltonian eigenfunctions

Based on how shapes can deform, varied approaches
have been suggested [VKZHCO11]. Rigid shapes un-
dergo transformations that preserve extrinsic features
i.e. euclidean distances remain intact while non-rigid
shapes deform anyhow [BBK07]. Rigid deformation
tends to transform the shape without changing its ge-
ometry or topology via rotation or translation. Non-
rigid involves changing in geometry as well as topology
via stretching or bending. Finding correspondences for
rigid shapes has plethora of efficient solutions. How-
ever, due to the vast space of deformations for non-rigid
shapes, it is an interesting area to work. Another con-
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Figure 2: Laplace-Beltrami Eigenfunctions (top row);
Hamiltonian Eigenfunctions (bottom row) arranged ac-
cording to ascending order of eigenvalues respectively

sideration would be to establish a mapping either be-
tween all the elements of the shape or a partial subset
of the elements of shape leading to determining full and
partial correspondences respectively [RCB+17]. The
field’s vastness and complexity are evident from these
aspects.

In this work, the analysis is restricted to Isometric
deformations of triangulated meshes where distances
along the surface are invariant, when deformed without
any stretching or tearing of the surface. The proposed
research aims to investigate whether utilizing the sharp
features of two given triangle meshes can improve the
point-to-point correspondence mapping between the re-
spective shape by using a functional framework.

2 RELATED WORK
Shape matching can be broadly categorized into two
approaches: geometric transformation-based and
descriptor-based. Geometric transformation-based ap-
proaches involve finding the geometric transformation
that aligns two shapes and then establishing correspon-
dences based on proximity [GMGP05]. This approach
typically involves minimizing the distance between
corresponding points or features in the two shapes.
Descriptor-based approaches, on the other hand, do not
require the shapes to be aligned. Instead, correspon-
dences are established based on similarities between
shape descriptors or feature vectors [CCFM08]. This
approach is often used when the shapes have different
topologies or geometry. A hybrid approach can also
be used, where the alignment and computation of cor-
respondences are alternated and iteratively improved
[Ale02]. This approach can be effective in cases where
the shapes undergo non-rigid deformations, where the
geometric transformation-based approach may not be
suitable.

For rigid shapes, Iterative Closest Point, ICP algorithm
[BM92] is the celebrated technique that iteratively finds

shape correspondence by aligning the shapes first by
finding the optimal geometric transformation consisting
of rotations and translations, then by utilizing Nearest
Neighbour approach to find the closest points for the
computed alignment [RL01]. Other methods for rigid
shapes are surveyed in [BSBW14].

For non-rigid shapes, to allow any kind of mathemat-
ical analysis is to restrict the deformation to an isom-
etry, wherein the distances between pair of points are
preserved along the surface, while the shape is under-
going isometric deformation. Computing a map for
high quality meshes with large number of vertices is
computationally quite intensive. To cater different met-
ric spaces, [EK03] introduced the idea of isometrically
embedding the shapes into a canonical domain to allow
any kind of shape analysis task. Shapes can also be em-
bedded spectrally [ZVKD10] by utilizing eigenmodes
of linear operators defined on the shape.

The current work is inspired by functional map frame-
work [OBCS+12] developed to efficiently compute a
mapping from the function space of one shape to an-
other and subsequently determining point-to-point cor-
respondences between them. Shape features are pro-
jected onto functional basis to reduce computation time
during analysis and capture geometry along with other
properties of shape effectively. Further, a map is com-
puted between shapes by setting up an optimization
problem, which then is refined to obtain point-to-point
correspondences. Refer section 3 for more details on
Functional Maps.

Identification of good basis is crucial for the functional
map framework to output point-to-point correspon-
dences. [OBCS+12] proposed to use Laplace-Beltrami
eigenfunctions as functional basis. To capture high-
frequency information on the shape, [NVT+14]
proposed compressed manifold modes that are sparse
basis with local support upto sign flip and ordering.
By explicitly controlling the region of localization,
[MRCB18] introduced localized manifold harmonics
(LMH). These properties quickly become challenging
to adopt when dealing with multiple meshes together
as in case of shape correspondence, pose transfer, etc.
Though [KBB+13] and [EKB+15] take into account
multiple meshes and obtained basis incorporating the
geometric information of all the meshes, it still fails to
capture high-frequency information of the shapes.

3 BACKGROUND
Functional map is a promising framework for non-rigid
shape matching that finds a map between the two func-
tion spaces defined on shapes rather than a map between
shapes directly. Consider two shapes M and N which
are represented as triangular meshes. A point-to-point
map between M and N is given as T : M → N ,
where for any point p ∈ M =⇒ T (p) ∈ N . If the

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.36 324



number of points are same on both the shapes, then a
bijection is desired where T −1 exists.

3.1 Functional Maps
Functional map framework works by defining spaces
of scalar valued functions F (M ,R) and F (N ,R)
on shapes M and N respectively. It aims at com-
puting a linear mapping between these function spaces
TF : F (M ,R)→F (N ,R). Map TF which associate
values of f : M → R and g : N → R can be repre-
sented as a matrix C ∈ Rk1×k2 with φM and φN are re-
spective basis such that |φM |= k1 and |φN |= k2. The
framework pipeline consists of following steps:

1 For each shape compute invariant feature descriptors
say F and G with respect to isometric deformation

2 Choose basis φM and φN for both the shapes

3 Create function preservation constraints by project-
ing feature descriptors F and G, computed in step 1
onto respective basis as A and B

3 Set up other constraints like operator commutativity
or regularization constraint

4 Compute optimal functional map C by minimizing
the following energy:

E(C) = ||CA−B||2 +∥S N
F C−CS M

F ∥2

5 Refine C further and compute point-to-point map by
using ICP like algorithm

Note that S M
F and S N

F are operators mentioned in
Step 3. TF acts linearly between function spaces and is
sufficient to compute T . Idea is to add a structure on
the shape and work on that rather than directly on the
shapes. Functional maps, due to its efficiency in dealing
with high-resolution shapes by reducing the dimension
where shape analysis is done, works well particularly
for shape matching.

3.2 Laplace-Beltrami Operator (LBO)
The self-adjoint Laplace-Beltrami Operator on mani-
fold M is specified as ∆M : F (M ,R) → F (M ,R)
which via spectral theorem, admits an eigen-
decomposition with non-negative eigenvalues λ

and orthonormal eigenfunctions φ popularly known as
manifold harmonics ∆M φ = λφ [VL08]. For mesh M
with n vertices, a popular discrete [MDSB03] cotan-
gent Laplace-Beltrami Operator matrix LM ∈ Rn×n

is defined in terms of a sparse matrix WM ∈ Rn×n

containing cotangent weights and a lumped mass
matrix AM ∈ Rn×n containing vertex areas as

LM = A−1
M WM . The eigendecomposition (refer Fig.

2) of such a Laplace-Beltrami operator can be posed as
an optimization problem:

min
Φ

tr(ΦT WM Φ) s.t. Φ
T AM Φ = I (1)

where Φ ∈ Rn×n is the eigenvector matrix as
Φ = (φ1,φ2, ...,φn) with eigenfunction φi arranged
as columns according to increasing eigenvalues. Equa-
tion (1) is also equivalent to the generalized eigenvalue
problem

WM Φ = AM ΦΛ

where Λ = (λ1,λ2, ...,λn) is the respective diagonal
eigenvalue matrix. Refer [LZ10] for extensive details
on spectral analysis via Laplace-Beltrami eigenfunc-
tions.

3.3 Hamiltonian Operator

Hamiltonian operator H is a classical operator from
quantum mechanics, that appears in Schrodinger’s
equation describing the wave motion of a particle. On a
manifold mesh M , Hamiltonian operator is described
as the extension of Laplace-Beltrami operator LM :

HM ( f ) = LM ( f )+µ VS ( f )

with parameter µ ∈ R and VM : M → R+ a potential
function on M [CSBK18]. Since Hamiltonian opera-
tor is the sum of two self-adjoint operators, it is also
self-adjoint and hence, admits an eigendecomposition
with real eigenvalues ζ and orthonormal eigenfunction
ψ as Hψ = ζ ψ where ζ denotes particle energy at sta-
tionary eigenstate ψ . Refer Fig. 2 for first few Hamil-
tonian Eigenfunctions on the shape sorted according to
increasing eigenvalues. Note that ψ(x) i.e. eigenstate
at point x on manifold represents the wave function of a
particle where |ψ(x)|2 specifies the probability of find-
ing the particle at x. The generalized eigenvalue prob-
lem for Hamiltonian operator is specified as

(WM +µ AM diag(v)) Ψ = AM ΨΘ

, where Ψ∈Rn×n is the orthonormal eigenvector matrix
as Ψ = (ψ1,ψ2, ...,ψn) with eigenfunctions ψi arranged
as columns, v is an n-dimensional potential vector and
Θ= (ζ1,ζ2, ...,ζn) is the respective diagonal eigenvalue
matrix. Parameter µ controls the trade-off between
global and local support of eigenbasis. [CSBK18] in-
troduced Hamiltonian operator to shape analysis do-
main.
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Figure 3: Gaussian Curvature visualized on wolf shape

4 MOTIVATION
Since functional map is a flexible framework, there is
an opportunity to make improvements at any step of
the discussed pipeline (ref. sec.3.1). Though various
attempts have been made to update functional maps
by modifying it at various stages, basis selection re-
mains a crucial step in the framework since it charac-
terizes the domain in which the analysis is going to
take place. Moreover, the basis should reduce repre-
sentation complexity, be stable and compact. Laplace-
Beltrami Eigenfunctions [Lev06] have mainly been uti-
lized as basis to compute the desired mapping due to
multi-scale property and invariance to isometric defor-
mations of shapes. Though Laplacian eigenfunctions
are compact and stable, it tends to smoothen out sharp
features on the shape, which hampers the analysis. Also
global nature of these eigenfunctions make it sensi-
tive to topological changes. However, when dealing
with challenging datasets, information regarding local-
ized and detailed features of shape become significant,
which Laplace-Beltrami eigenfunctions fail to capture.
This work is motivated by proposing a basis that better
captures the shape geometry by picking up sharp fea-
tures of the shape and be computationally viable.

5 CONTRIBUTION
For Hamiltonian operator defined on shapes, the poten-
tial function is responsible for localizing the region so
that Hamiltonian eigenfunctions capture high frequency
information along with preserving the properties cap-
tured by Laplace-Beltrami eigenfunctions. From com-
puting perspective, since discrete potential function is
described as a diagonal matrix it amounts to no addi-
tional computation for basis over Laplace-Beltrami ba-
sis (ref sec. 3.3).

Since Gaussian curvature (K) fully characterizes the ge-
ometry of the shape [Ale02] and is given as the product

of the principal curvatures K = k1∗k2, it picks up the re-
gions with negative and positive curvatures i.e. regions
where sharp features of the shape appear. Refer Fig.3
for visualizing gaussian curvature on the shape where
positive curvature regions are marked with yellow such
as paws, while negative curvature regions are marked
with red such as inside of the ear. Hence justifies the
selection as a potential function.

In this work, the contribution is to suggest to use gaus-
sian curvature as potential function to determine Hamil-
tonian basis, as it better captures the shape geometry
which leads to better point-to-point correspondences,
without any additional cost. Refer fig. 1 where shape
signal was first projected onto each Laplace-Beltrami
and Hamiltonian basis respectively and subsequently
reconstructed via 150 of each set of bases. Note that
Hamiltonian basis capture sharp features where fingers
are also identified, while Laplace-Beltrami basis has
smoothen out these details via utilizing same number
of respective basis.

6 IMPLEMENTATION
6.1 Dataset
TOSCA dataset [BBK08] consisting of hi-resolution
non-rigid shapes in a variety of poses have been uti-
lized. The database contains a total of 80 objects, in-
cluding 11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs,
4 gorillas, 12 female figures, and two different male
figures, containing 7 and 20 poses. Each object is a
triangulated mesh with vertices, edges and triangular
faces. Ground truth vertex-to-vertex correspondences
are also provided, which are utilized to evaluate the per-
formance of proposed technique.

6.2 Methodology
In this work, wolf meshes are considered to illustrate
implementation details - wolf0 and wolf1. Functional
framework to compute vertex-to-vertex correspon-
dences between two triangular meshes is utilized,
each mesh depicting a different pose of wolf shape
from TOSCA dataset. Refer section 3.1 for the steps
involved to determine correspondences via functional
map.

First step is to compute feature descriptors for both the
meshes, hence heat kernel signatures (HKS) [SOG09]
and wave kernel signatures (WKS) [ASC11] are uti-
lized which are defined via Laplace-Beltrami eigenval-
ues. Next step is to identify the bases for the shapes.
For this Hamiltonian operator is selected as via poten-
tial function, bases can be enhanced to incorporate bet-
ter shape geometry. Various potential functions with
intrinsic features like gaussian curvature, gaussian cur-
vature with absolute values and with extrinsic features
like mean curvature and others were tried out with var-
ied values of parameter µ (ref. Sect.3.3). Finally µ is
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Figure 4: Functional map (pre and post refinement) via
Laplace-Beltrami basis (top row); via Hamiltonian ba-
sis (bottom row) for wolf Mesh

takes as 5000 empirically and gaussian curvature was
selected as the potential function to determine Hamil-
tonian operator. First 100 Hamiltonian eigenfunctions
were considered as basis for the function spaces of
shapes, arranged according to increasing eigenvalues
for the next step.

Then function descriptors computed earlier were
projected onto these chosen basis, so as to reduce
the complexity of further shape processing. Along
with Laplacian commutativity constraint the energy
functional as discussed in section 3.1 is minimised
via gradient-descent approach to get an optimal
functional map. Procedure depicted in Section 6.2 of
[OBCS+12] is utilized to refine the obtained functional
map and also compute point-to-point correspondences
simultaneously.

Refer Fig. 4 top row, that specifies functional map with
100 basis functions; previous to and post the refinement
step via Laplace-Beltrami basis and Fig 4 bottom row
for Hamiltonian basis. Note that Laplace-Beltrami ba-
sis picks up the low frequency features while Hamil-
tonian picks up high frequency features in the initial
optimal map before refining the map.

To verify if the utilized approach performs better, ac-
curacy of obtained point-to-point correspondence map
needs to be established. For that, geodesic error is com-
puted by summing up all geodesic distances from com-
puted mapping of points to ground-truth mapping. For
a vertex p in source mesh, let the obtained correspond-
ing vertex in target mesh is q and the ground-truth es-
tablishes vertex r in target mesh as the corresponding

vertex for vertex p from source mesh, then the geodesic
error at vertex p is the geodesic distance between ver-
tices q and r on target mesh. Summing up geodesic
error for each vertex on source mesh is represented as
geodesic error for the obtained mapping.

Obtained results are compared with the existing ap-
proaches of Laplace-Beltrami basis [OBCS+12] and
compressed manifold modes [NVT+14] as it claims to
pick sharp details from the shapes.

With allowed normalized geodesic error threshold of
0.1, results are provided in Table 1 to compare re-
sults for wolf and Human meshes in different poses
from TOSCA dataset. It shows that proposed basis per-
forms better empirically over Laplace-Beltrami basis
and wins over from compressed manifold modes by a
very good margin. Refer Fig. 5 for obtained accuracy
of point-to-point correspondences in terms of percent-
age of correct correspondences computed with respect
to total number of vertices (or points) on the shapes,
via Laplace-Beltarmi basis, proposed Hamiltonian ba-
sis and via compressed manifold modes. Note that pro-
posed basis give similar exact error i.e. percentage of
point-to-point correspondence map with zero error to
that of Laplace-Beltrami basis. However, with mini-
mal error allowed proposed basis perform much better
than other two. To enhance the empirical validity of our
proposed work, accuracy of point-to-point correspon-
dences for Human meshes from the same dataset are
presented in the table, which justifies the use of pro-
posed basis over existing ones.

Basis Type Accuracy with less than 0.1 geodesic error

Wolf Human
LBO Eigenfunctions 84.7% 64.09%

CMM 14.73% 12.6%
Proposed basis 98.6% 72.23%

Table 1: Different basis were utilized to determine
functional space to compute point-to-point correspon-
dences

For visualization purpose refer Fig.7 for wolf meshes,
to see geodesic error plot as heat map on the shape itself
in case of proposed and Laplace-Beltrami basis respec-
tively. In case of Hamiltonian basis, at the very end of
tail the error is high and rest of the shape has minimal
error. However, for Laplace-Beltrami basis the error is
scattered over the shape and particularly present at all
regions with sharp features like paws, ears, etc. Com-
pressed manifold modes performed quite poorly, hence
excluded from this visualization. Similar to the wolf
meshes, human meshes (refer Fig 8) also show similar
result, wherein the geodesic error induced via Laplace-
Beltrami bases is scattered while for Hamiltonian bases
similarly show the localized error as depicted in wolf
case.
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Figure 5: Accuracy of point-to-point correspondences;
via Laplace-Beltrami basis(green line-diamond mark-
ers); via Hamiltonian basis (blue line-circular markers);
via compressed manifold modes (red line-square mark-
ers) in the functional map framework for wolf mesh

Application
Texture mapping is considered as application for the
computed correspondences via proposed basis. Refer
Fig.6 for texture is transferred from wolf0 shape to
wolf1, where particularly lower body of wolf is shown
to highlight problematic areas.

7 DISCUSSION
In this work, the effect of selecting an intrinsic potential
function, particularly Gaussian curvature, to describe
Hamiltonian operator with respect to functional map
framework has been studied. Due to modulations in
manifold harmonics via an intrinsic potential function,
Hamiltonian basis picked sharper features as compared
to Laplace-Beltrami basis. These sharp features helped
improve overall accuracy of point-to-point correspon-
dences computed via functional framework consider-
ing Hamiltonian eigenfunctions as basis. Compressed
manifold modes are localized basis which also aims at
picking up the high frequency details, but fails to work
for non-rigid shape matching because of the induced
sparseness along with absence of global information
determining the shape geometry. Proposed basis over-
comes both these issues by being able to capture global
information along with sharper features of the shape,
hence fared well.
Based on empirical evidence gathered from testing mul-
tiple shape pairs in our study, it has been observed
that introducing sharp feature information into the basis
leads to an improved representation of shape geometry.
This, in turn, enhances the ability of the basis to cap-
ture the geometric features of the shape. However, error
localization is a phenomenon that is seen across multi-
ple meshes, which might be due to Gaussian curvature
picking up high curvature regions while not picking up
no curvature zones or flat regions of the shape.

8 FUTURE SCOPE
The potential function proposed to compute Hamilto-
nian eigenfunctions is specified as an intrinsic feature of

Figure 6: Texture mapping specified from wolf0 to
wolf1 shape via computed correspondences; via Hamil-
tonian basis (top); via ground-truth (middle); via
Laplace-Beltrami basis (bottom)

the shape which is fixed for each shape before the anal-
ysis initiates, be it some intrinsic invariant or any step
function specifying a particular region on the shape.
Along with its fixed nature, it shows error localization
possibly due to Gaussian curvature not picking up no
curvature zones. An interesting future prospect would
be to compute a potential function that adapts itself such
that it automatically picks those regions that are critical
to both shapes considered together and in-turn enhances
point-to-point correspondences too.

A potential avenue for future research is to investigate
shape correspondences in non-rigid shapes that per-
mit stretching and other deformations beyond isomet-
ric ones. This would present a greater challenge in the
analysis, thereby providing an opportunity to explore
new methods and approaches in this area.
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Figure 7: Geodesic Error Plot visualized as heat map
on the shape itself; via Hamiltonian basis (top); via
Laplace-Beltrami basis (bottom) for wolf mesh

9 ACKNOWLEDGEMENTS
This work was financially supported by Visvesvaraya
PhD Scheme, MeitY, Government of India under Grant
MEITY-PHD-1090.

10 REFERENCES
[Ale02] Marc Alexa. Recent advances in mesh morph-

ing. In Computer graphics forum, volume 21, pages
173–198. Wiley Online Library, 2002.

[ASC11] Mathieu Aubry, Ulrich Schlickewei, and
Daniel Cremers. The wave kernel signature: A quan-
tum mechanical approach to shape analysis. In 2011
IEEE international conference on computer vision
workshops (ICCV workshops), pages 1626–1633.
IEEE, 2011.

[BBK07] Alexander M Bronstein, Michael M Bron-
stein, and Ron Kimmel. Rock, paper, and scis-
sors: extrinsic vs. intrinsic similarity of non-rigid
shapes. In 2007 IEEE 11th International Conference
on Computer Vision, pages 1–6. IEEE, 2007.

[BBK08] Alexander M Bronstein, Michael M Bron-
stein, and Ron Kimmel. Numerical geometry of non-

rigid shapes. Springer Science & Business Media,
2008.

[BM92] Paul J Besl and Neil D McKay. Method for
registration of 3-d shapes. In Sensor Fusion IV: Con-
trol Paradigms and Data Structures, volume 1611,
pages 586–607. International Society for Optics and
Photonics, 1992.

[BSBW14] Ben Bellekens, Vincent Spruyt, Rafael
Berkvens, and Maarten Weyn. A survey of rigid
3d pointcloud registration algorithms. In AMBIENT
2014: the Fourth International Conference on Ambi-
ent Computing, Applications, Services and Technolo-
gies, August 24-28, 2014, Rome, Italy, pages 8–13,
2014.

[CCFM08] Umberto Castellani, Marco Cristani, Si-
mone Fantoni, and Vittorio Murino. Sparse points
matching by combining 3d mesh saliency with sta-
tistical descriptors. In Computer Graphics Forum,
volume 27, pages 643–652. Wiley Online Library,
2008.

[CSBK18] Yoni Choukroun, Alon Shtern, Alex M
Bronstein, and Ron Kimmel. Hamiltonian operator
for spectral shape analysis. IEEE transactions on
visualization and computer graphics, 2018.

[EK03] Asi Elad and Ron Kimmel. On bending
invariant signatures for surfaces. IEEE Transac-
tions on pattern analysis and machine intelligence,
25(10):1285–1295, 2003.

[EKB+15] Davide Eynard, Artiom Kovnatsky,
Michael M Bronstein, Klaus Glashoff, and Alexan-
der M Bronstein. Multimodal manifold analysis by
simultaneous diagonalization of laplacians. IEEE
transactions on pattern analysis and machine intelli-
gence, 37(12):2505–2517, 2015.

[GMGP05] Natasha Gelfand, Niloy J Mitra,
Leonidas J Guibas, and Helmut Pottmann. Robust
global registration. In Symposium on geometry pro-
cessing, volume 2, page 5. Vienna, Austria, 2005.

[KBB+13] Artiom Kovnatsky, Michael M Bronstein,
Alexander M Bronstein, Klaus Glashoff, and Ron
Kimmel. Coupled quasi-harmonic bases. In Com-
puter Graphics Forum, volume 32, pages 439–448.
Wiley Online Library, 2013.

[Lev06] Bruno Levy. Laplace-beltrami eigenfunctions
towards an algorithm that" understands" geometry.
In IEEE International Conference on Shape Model-
ing and Applications 2006 (SMI’06), pages 13–13.
IEEE, 2006.

[LZ10] Bruno Levy and Richard Hao Zhang. Spectral
geometry processing. In ACM SIGGRAPH Course
Notes, 2010.

[MDSB03] Mark Meyer, Mathieu Desbrun, Peter
Schröder, and Alan H Barr. Discrete differential-
geometry operators for triangulated 2-manifolds.

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.36 329



In Visualization and mathematics III, pages 35–57.
Springer, 2003.

[MRCB18] Simone Melzi, Emanuele Rodolà, Um-
berto Castellani, and Michael M Bronstein. Local-
ized manifold harmonics for spectral shape analysis.
In Computer Graphics Forum, volume 37, pages 20–
34. Wiley Online Library, 2018.

[NVT+14] Thomas Neumann, Kiran Varanasi, Chris-
tian Theobalt, Marcus Magnor, and Markus Wacker.
Compressed manifold modes for mesh processing. In
Computer Graphics Forum, volume 33, pages 35–44.
Wiley Online Library, 2014.

[OBCS+12] Maks Ovsjanikov, Mirela Ben-Chen,
Justin Solomon, Adrian Butscher, and Leonidas
Guibas. Functional maps: a flexible representa-
tion of maps between shapes. ACM Transactions on
Graphics (TOG), 31(4):1–11, 2012.

[RCB+17] Emanuele Rodolà, Luca Cosmo,
Michael M Bronstein, Andrea Torsello, and Daniel
Cremers. Partial functional correspondence. In Com-
puter graphics forum, volume 36, pages 222–236.
Wiley Online Library, 2017.

[RL01] Szymon Rusinkiewicz and Marc Levoy. Ef-
ficient variants of the icp algorithm. In 3-D Digital
Imaging and Modeling, 2001. Proceedings. Third In-
ternational Conference on, pages 145–152. IEEE,
2001.

[SOG09] Jian Sun, Maks Ovsjanikov, and Leonidas
Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. In Computer
graphics forum, volume 28, pages 1383–1392. Wiley
Online Library, 2009.

[VKZHCO11] Oliver Van Kaick, Hao Zhang, Ghas-
san Hamarneh, and Daniel Cohen-Or. A survey on
shape correspondence. In Computer Graphics Fo-
rum, volume 30, pages 1681–1707. Wiley Online
Library, 2011.

[VL08] Bruno Vallet and Bruno Lévy. Spectral geom-
etry processing with manifold harmonics. In Com-
puter Graphics Forum, volume 27, pages 251–260.
Wiley Online Library, 2008.

[ZVKD10] Hao Zhang, Oliver Van Kaick, and Ram-
say Dyer. Spectral mesh processing. In Computer
graphics forum, volume 29, pages 1865–1894. Wiley
Online Library, 2010.

Figure 8: Geodesic Error Plot visualized as heat map
on the shape itself; via Hamiltonian basis (left); via
Laplace-Beltrami basis (right) for Human mesh
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