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Abstract
Until now, it has been impossible to imagine industrial manual assembly without humans due to their flexibility
and adaptability. But the assembly process does not always benefit from human intervention. The error-proneness
of the assembler due to disturbance, distraction or inattention requires intelligent support of the employee and
is ideally suited for deep learning approaches because of the permanently occurring and repetitive data patterns.
However, there is the problem that the labels of the data are not always sufficiently available. In this work, a
spatio-temporal transformer model approach is used to address the circumstances of few labels in an industrial
setting. A pseudo-labeling method from the field of semi-supervised transfer learning is applied for model training,
and the entire architecture is adapted to the fine-grained recognition of human hand actions in assembly. This
implementation significantly improves the generalization of the model during the training process over different
variations of strong and weak classes from the ground truth and proves that it is possible to work with deep
learning technologies in an industrial setting, even with few labels. In addition to the main goal of improving
the generalization capabilities of the model by using less data during training and exploring different variations
of appropriate ground truth and new classes, the recognition capabilities of the model are improved by adding
convolution to the temporal embedding layer, which increases the test accuracy by over 5% compared to a similar
predecessor model.
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1 INTRODUCTION

The full automation of production processes in indus-
trial production lines has shown that the contribution
of humans cannot be completely replaced by machines,
yet. This adapted attitude toward full automation is pri-
marily due to monetary reasons, such as increased fixed
costs due to the maintenance of the machines used in
the process, but also to reasons such as lower social
acceptance due to the elimination of certain occupa-
tional groups. The advantages resulting from and uti-
lized by humans compared to today’s machines are pri-
marily evident in manual assembly work. Humans are
able to process a high product variance, to adapt to new
or optimized processes without additional technical ef-
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fort, and to recognize and adjust to unexpected prob-
lems and assemble components very accurately and
precisely. However, the increasing variance of products
and shorter time-to-market for companies is becoming
a disadvantage for people due to the increase in work-
load. This workload leads to a higher error rate, es-
pecially when it comes to assembling products. The
main reason for this is lack of concentration, especially
due to long work shifts, as well as inattention or dis-
traction. In addition, the assembly worker needs more
and more in-depth knowledge to assemble the products
correctly and has less time for training and instruction.
These circumstances lead to a lack of expertise and re-
duce positive human flexibility. The errors in assembly,
which initially go undetected, then continue through the
entire production process until they are noticed during
quality control or, in the worst case, during operation
of the product. The consequences are inconvenience to
production, an increased number of defective products
or damage to the company’s image because of the low
quality. One possible solution to avoid the aforemen-
tioned problems in assembly without affecting the eco-
nomic parameters are assistance systems for the worker.
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These assistance systems guide the employee through
the assembly process and point out errors. In addition
to detecting the objects used, such as tools and com-
ponents, the first step in this observation of assembly
tasks is to observe the fine-grained human actions per-
formed by the hands of the assemblers. For the recog-
nition and description of these fine-granular hand ac-
tions, a stacked deep-learning architecture is used. This
deep-learning model architecture consists of an existing
feature extractor for hand detection and tracking and
subsequent classification of the sequences by an exist-
ing for this specific use case adapted spatio-temporal
transformer model based on the findings of [Liu+21].
Beside the presentation of the architecture and usage
of an available dataset for fine-grained human hand ac-
tions in industrial environment, [Stu+23] the main fo-
cus of this paper is the semi-supervised model training
procedure dealing with the general problem in an in-
dustrial environment with lots of data but few labels.
This circumstance is a relevant point at the latest when
the trained basic application needs to be adapted to a
new real world use case in order to check the scalability
of the model. Especially in an industrial environment,
this must be done as quickly and cost-effectively as
possible and, without time-consuming labelling effort,
as is the case with traditional deep learning methods.
In this work, pseudo-labelling transfer learning experi-
ments are therefore investigated to improve the stability
of each class and the overall performance and general-
ization possibilities of the model. A base model trained
supervised on different combinations of assembly tasks
with the highest F1-Score[GBV20] from the "Industrial
Hand Action Dataset V1"[Stu+23] is pretrained to pro-
vide these weights as initialization for an industrial real
world use case from a laboratory environment. For the
subsequent real world use case, it is assumed that par-
tial labels based on the job description and example as-
sembly steps for training new employees exist, which
are in this case a combination of novel classes from the
"Industrial Hand Action Dataset V1". The pretrained
weights are transferred to a new classifier architecture,
which is subsequently fine-tuned on the novel classes
in a semi-supervised procedure by using at first the la-
beled example data from the customer and initialize the
model for the training on unlabeled data. Afterward,
the pseudo-labeling approach follows. This procedure
shows how this method of semi-supervised training can
positively affect the classification results in an indus-
trial environment. It provides more stability and gen-
eralizability compared to supervised approaches for an
industrial real world use case and is based on a spatio-
temporal transformer network for fine-grained human
hand actions. In the following Sections, the training
data set is introduced in Section 2 followed by the
stacked model architecture in Section 3 existing of the
hand detector in Section 3.1 and the spatio-temporal

transformer model for the classification task in Section
3.2. The related work 4 of pseudo-labeling a method
of semi-supervised learning is presented in Section 4.1
and the shown approaches are revisited under consider-
ation of the usability in this specific industrial human
hand action recognition approach in Section 4.2, before
the experiments are examined in Section 5 and finally
evaluated, compared and concluded in Section 6 and
Section 7.

2 INDUSTRIAL DATASET
The "Industrial Hand Action Dataset V1", a vision
based industrial hand assembly dataset introduced in
[Stu+23] consists of 12 fine-grained hand action classes
for industrial assembly. With 459,180 frames in the
basic version and 2,295,900 frames after spatial aug-
mentation, uneven distributed it belongs to one of the
larger datasets. It is the first dataset of its kind to
tackle the real world issues which occur in an indus-
trial environment. Compared to other freely available
datasets tested in [Stu+23], it has an above-average du-
ration and, in addition, meets the technical and legal re-
quirements for industrial assembly lines. Furthermore,
the dataset contains occlusions, hand-object interaction,
and various fine-grained human hand actions for indus-
trial assembly tasks that were not found in combination
in similar examined datasets [Stu+23]. The recorded
ground truth assembly classes are selected after exten-
sive observation of real-world use cases. The usabil-
ity of the dataset for training sequential deep learning
models was confirmed in [Stu+23] with a test accuracy
of 86.25% before hyperparameter tuning. The architec-
ture is based on an adapted version of the gated trans-
former network model of [Liu+21], presented in more
detail in section 3.2.

3 MODEL ARCHITECTURE
The processing of full image sequences is a very re-
source intensive task when it comes to deep learning
model training. Since the focus of the model architec-
ture in the described industrial use case is on the hands,
the decision was made to apply a skeleton-based human
hand action recognition approach. Hand coordinates
are extracted from frames to get a reduced feature space
data sequences. This lowers the computational effort
for the subsequent classification task by providing to
the model 2.5 dimensional coordinates per frame with-
out any noise from tools, unnecessary objects or other
assemblers. This can be seen in Figure 2, or for the clas-
sification of unnecessary information of the in indus-
trial environment usual static background, see Figure 1.
Subsequently, for the classification of the performed as-
sembly task of the hands, the sequences of coordinates
per frame are provided to the adapted Gated Trans-
former Network by [Liu+21]. They achieved good re-
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sults on the initial work on the dataset in [Stu+23] and
on comparable datasets in [Liu+21].

Figure 1: Static Background in Industrial Environment

Figure 2: Feature Space for Sequential Model Training

3.1 Hand Keypoint Extractor
The keypoint extraction is based on an approach similar
to the architecture of Google’s MediaPipe Hands solu-
tion, with a palm detection model and a hand feature
detector on top [Zha+20a]. The output of this model
architecture is able to provide 21 2.5D coordinates for
different landmarks, which are used as pre-extracted
features or keypoints for the subsequent transformer
model architecture. The keypoint extractor starts with
a palm detector network, which is a single shot detec-
tor optimized for mobile real-time usage [Zha+20a]. It
takes advantage of first recognizing the palms through
a bounding box, which is a more stable approach for
the model than first recognizing the entire hands with
fingers due to its square shape. Further, an encoder-
decoder feature extractor similar to a Feature Pyramid
Network [Lin+16] is used to detect the palm across a

large range of scales. Focal Loss [Lin+17] is used as the
loss function, since it handles the imbalance between
background segment detections and actual palm detec-
tions better by reducing the influence of background de-
tections during training [Zha+20a]. Once a palm has
been detected, a cropped image is generated based on
the mentioned detection. This includes more image
data than the palm bounding box itself in order to con-
tain the entire hand. This cropped image is then pro-
vided to a second network consisting of a convolutional
neural network to detect the hand landmarks and out-
puts the 21 hand landmarks with 2.5D coordinates. The
values consist of x, y values which are calculated by the
size of the frame and a depth value relative to the wrist
landmark. Furthermore, a probability of a hand being
present and the handedness is provided. Based on the
detected landmarks, a new crop area is calculated to try
to keep the hand within this area. The next image in
the sequence is then cropped to this new value straight
away, without the single-shot detector running again.
Only if the probability of a hand being present is below
a certain threshold, the single-shot detector runs again
on the entire image [Zha+20a]. Since the convolutional
neural network has to run only on a smaller cropped
image and the single-shot detector only has to scan the
entire image if a hand has been lost, the number of com-
pute cycles required during inferencing is reduced.

3.2 ConvGTN
The output of the hand keypoint extractor leads to the
second part of the architecture. This part classifies the
temporal and sequential correlation of the previously
extracted time series of keypoints by a gated trans-
former network from [Liu+21] which is adapted to this
use case, see Figure 3. [Liu+21] achieved state-of-
the-art results on 13 multivariate time series classifi-
cation tasks in the domain of Natural Language Pro-
cessing (NLP), but also human action recognition tasks
which are comparable to this use case[Liu+21]. The ar-
chitecture is based on a two-tower transformer, where
the encoder in each tower capture time-step-wise and
spatial-channel-wise attention. To merge the encoded
feature of the two towers, a learnable weighted concate-
nation is used as a gate before the final fully connected
layers. This gate decides which tower of the network
provides more important features for the final classifi-
cation during backpropagation. For the improvement
of the prediction results of the model, an additional
Conv1D1 with kernel size of 5 is implemented. This
additional convolution helps the model to find better
correlation between the hand keypoints [21*3*2] [key-
points per hand*xyz coordinates*hands], in the tempo-
ral embedding of the model and leads to better gradients

1 https://pytorch.org/docs/stable/generate
d/torch.nn.Conv1d.html
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in the temporal tower at each time step of the input data,
[8,126,100] [batch size, features, sequence length]. The
convolutional layer is followed by a linear layer with
512 input and 512 output features and leaky rectified
linear unit (LeakyRelu) as activation function [Xu+15],
which is added to the temporal embedding layer for bet-
ter generalization performance, see Figure 3.

Figure 3: ConvGTN Model Architecture
4 RELATED WORK
The choice of a semi-supervised training method for
the presented model architecture is based on the large
amount of recurring patterns in the data generated by
industrial processes and the precise instructions given
to assemblers before starting an assembly task. In the
process, the employee is first shown assembly tasks as
ground truth via training videos, which he or she is then
expected to perform. When performing the assembly
steps, a wide variety of tasks occur, especially by dif-
ferent employees. In addition, there are also tasks that
are similar but must be performed differently due to the
variance of the components. However, these have the
same specifications in the task description and can thus
cause a high variance and positive influence on the gen-
eralizability of the model to be trained. The approach
envisaged for this is to train a ground truth on a com-
mon specification and use it as a basis to transfer, rec-
ognize, and learn the recognition of new or similar as-
sembly steps faster. For this purpose, a base model is
first trained on labeled data, and this knowledge is then
used as base initialization knowledge for new classes.
This is done by replacing and re-training the final clas-
sification layers trough fine-tuning [Far+21]. In order
to remain appropriate to the real condition in the pro-
duction, only a small portion of marked data is initially
used. The unlabeled new data is then iteratively labeled
by the model, and the entire model is re-trained from the
transferred state to fine tune parts of the model on the
new knowledge. For this purpose, a method of semi-
supervised self-training [GB04] is used, more specif-

ically pseudo-labeling. The labeled data set is aug-
mented by self-training to detect better relationships in
the data through self-supervised learning in the unsu-
pervised domain [Zho+18].

4.1 Self-Training for Classification Tasks
Most of the work in the subcategory of self-training,
pseudo-labeling, concentrate on image classification
[Yan+21][Wen+21]. Especially in this use case of
fine-grained human hand action recognition or skeleton
based human action, very few studies exists whether
it is based on videos nor previously extracted features
[Xu+21][ITP14][Xia+21]. The difference between a
training approach with labels and without labels like
in this case is that the algorithm uses the model’s
own trusted predictions to create the pseudo-labels
for unlabeled data and can add more training data by
using existing optimally self-labeled data to predict
the labels of the unlabeled data [Ami+22]. The firstly
proposed approach of pseudo-labeling by [Lee13] uses
a small set of labeled data to iteratively train a model in
combination with a large set of unlabeled data. A small
set of labeled data is used to iteratively train a model in
combination with a large set of unlabeled data. Using
cross entropy loss, this involves training a base model,
which is then used to make a prediction on a batch of
unlabeled data. These predicted labels are then added
to the labeled data set, the model is trained again on the
data set, and the next batches are predicted until, in the
optimal case, there is no unlabeled data left. The loss
function is defined as follows, see Equation 1 [Lee13].

L =
1
n

n

∑
m=1

C

∑
i=1

L(ym
i , f m

i )+α(t)
1
n′

n
′

∑
m=1

C

∑
i=1

L(y
′m
i , f

′m
i )

(1)
In this equation, n defines the number of mini-batches
in labeled data for stochastic gradient descent (SGD)
and n

′
the number of mini-batches for unlabeled data.

f m
i is the output unit of m samples in labeled data, and

ym
i is the label of the samples. f

′m
i is a sample as well,

just for unlabeled data, and y
′m
i is the pseudo-label of

that. α(t) is a coefficient balancing the supervised and
unsupervised loss terms by increasing the influence of
the unsupervised loss per each iteration. In general,
the pseudo-label approach takes entropy minimization
to get the pseudo labels with the highest confidence as
the ground truth for unlabeled data [Lee13]. An im-
proved version of the traditional pseudo-labeling is the
Meta Pseudo-Labeling (MPL) [Pha+20]. In this ap-
proach, a teacher model assigns distributions to the in-
puts and thus trains the student model. While training
the student, the teacher observes the student’s perfor-
mance on a validation set and learns to generate target
distributions so that when the student learns from such
distributions, the student performs well in validation.
The MPL training procedure consists of two alternating
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processes. The teacher generates the conditional class
distribution for the student’s training. This pair is then
fed into the student network to update its parameters
based on the cross entropy loss. After the student net-
work updates its parameters, the model evaluates the
new parameters based on the samples from the valida-
tion dataset. Since the student’s new parameters depend
on the teacher, the gradient of loss can be calculated
based on the dependence to update the teacher’s pa-
rameters. Similar to this two model approach is Cross-
Model Pseudo-Labeling, which focuses on the problem
of having less labeled data where a single model is not
able to provide good enough pseudo labels [Xu+21].
As shown in their experiments, a deeper model can
find better spatial correlations, while a smaller model
is better at detecting temporal correlations sequentially.
This leads to the result that two models that are dif-
ferent sizes can be used for pseudo-labeling to bet-
ter distinguish their found labels. The models predict
each other’s pseudo-labels and use them to train or,
more precisely, subsequently back propagate the un-
supervised loss through themselves to improve perfor-
mance. [Xia+21] made the same results for spatial and
temporal correlations, but in video-based action recog-
nition, especially in cases with fewer data. They im-
proved performance with a blockwise dense alignment
strategy and cross modal contrastive learning, focus-
ing the model on the temporal dynamics of videos by
computing a temporal gradient. These methodologies
shown so far are used in many approaches to pseudo-
labeling and require that the training parameters of the
model be set to optimal values to achieve optimal per-
formance. The problem with these approaches is that
there must be confidence in the model to successfully
generate pseudo-labels. This means that the model
must generate the correct labels, otherwise incorrect la-
bels are generated, the model subsequently learns these
self-generated incorrect labels, and predicts incorrectly
again due to worse overall performance by iteratively
adding noise to itself to the training process. To avoid
these problems, [Ber+19] uses a method called MixUp
which guesses low-entropy labels for augmenting un-
labeled examples in each batch, and then mixes aug-
mented labeled and unlabeled data together by using
traditional regularization methods. The augmentation
is made by consistency regularization within the unla-
beled and labeled data, and afterward the cross entropy
loss is used to minimize the loss between the guessed
labels and the unlabeled data. FixMatch, a state-of-the-
art method, uses a combination of consistency regular-
ization and pseudo-labeling, by requiring that the pre-
dictions of strongly augmented data can be paired with
the predictions of weakly augmented data to create a
labeled sample [Soh+20]. Beside this approach to pre-
vent wrong labels by augmenting and compare the data,
which is in this case not possible since the data is un-

known, the wrong label prediction can be avoided by
adding something similar to a threshold like in the case
of curriculum labeling [Cas+20]. In this approach, self-
paced curriculum principles are applied and addition-
ally, to avoid concept drift [Lu+20], the model param-
eters before each pseudo-labeling cycle are reinitial-
ized from scratch. [Cas+20] uses successful curriculum
learning approaches from [Ben+09], where a model is
first trained with simple examples and then iteratively
progresses to more difficult examples. As described,
the difficulty is to create a curriculum that goes not too
fast but also not too slow over the initially simple ex-
amples. To successfully learn the general features and
to iteratively store the knowledge of the weights, a per-
centile is used. [Ber+22] uses a similar curriculum ap-
proaches for pseudo-labeling of NLP tasks by tracking
the generalization and overfitting progress. Regarding
their findings, especially in fewer data cases, pseudo-
labeling is not successful because of overfitting in an
early stage of pretraining with labeled data. The recom-
mendation is to start the semi-supervised training very
early in the training process by dynamically controlling
the pseudo-labels with curriculum to avoid overfitting
and stabilize the model.

4.2 Revisiting Self-Training Methods
Several approaches in the semi-supervised self-
training domain of pseudo-labeling exist [Ami+22].
However, many are based on a prior spatial
augmentation approach, which is relatively
easy to implement when images are available
[Soh+20][Ber+19][Wen+21][Yan+21]. Since in
this showed use case for human hand action recogni-
tion in industrial assembly lines, where the features
to be used have already been extracted, this is not
directly possible at the image level. Furthermore,
after the first feature extraction it is necessary to
maintain the structure of the hand keypoints, which is
why the individual keypoints may not be augmented
without further ado. This shows that there is little
experience in the described methods that focus on
this particular method for an industrial use case and
employ it in combination with a transformer encoder
model like the ConvGTN from Section 3. [Pha+20],
[Xu+21] and [Xia+21] show that it helps to work with
separate models on the spatial and temporal part with
different focus like it is already in this model structure
and seems like a promising approach. But with this
teacher student approach one needs to keep track of the
confirmation bias which restricts the performance of
the student by the teaching performance of the teacher
[Ara+19]. Moreover, especially in the approach of
this work, no standard pseudo-labeling method can be
applied, because due to the many parameters, of the
ConvGTN, in this case over 18M., it cannot be assumed
that the correct settings of the hyperparameters can be
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applied at the training. [Cas+20] and [Ber+22] proved
that it helps to converge in the semi-supervised search
space faster by using a threshold as well as curriculum
and percentile. The focus of the experiments on
these methods was based on the described approaches
to self-training for fine-grained human hand action
recognition in industrial assembly.

5 SELF-TRAINING EXPERIMENTS
Data split for Experiments
For the experiments, a transfer pseudo-labeling ap-
proach with curriculum is implemented and compared
with several combinations of base and novel data,
always under consideration of 7 base and 4 novel class
data distribution.2 The decision for this partitioning
is made to have a strong pretrained model, for weight
initialization of the base classes under consideration
of just a few examples of novel classes as it is recom-
mended by [Zha+20b]. Besides, it was recognized, if
the novel classes are reduced by one class, not enough
data is provided for the semi-supervised training and
vice versa for a base model pretraining with good
performance. Since there are 35 different distribution
possibilities for the 7/4 split, five distributions were
selected from [Stu+23] depending on the F1 score of
the ground truth results of the supervised training on
all 11 classes. The selection was based on the best
matching classes to these specific industrial conditions,
see table 1. The ground truth supervised model training
with the new created class Assembly_Step7 is
added as experiment 1 for comparison.

Supervised Pretraining & Weight Transfer
After the data split, a full ConvGTN model from
Section 3.2 is supervised pretrained on several combi-
nations of 7 base classes with a seed of 42, a batch size
of 6 and a learning rate of 1e-4. These model weights
are transferred supervised to 10% of the 4 novel classes
by freezing the whole model with all layers of the
encoder but the feedforward of the encoders and the
final classifier after the gate, see for comparison Figure
3. The learning rate in the transfer process is set per
layer in the Adam optimizer to 1e-3 in the encoder,
1e-4 in the classifier and is tracked for minimization

2 During preprocessing, a too similar distribution between
Assembly_Step7 and Assembly_Step8 was detected,
which was caused by the augmentation of the augmented
standard dataset and could therefore not be clearly sep-
arated from each other. Therefore, Assembly_Step7
and Assembly_Step8 were merged to one class,
Assembly_Step7. The now appearing majority of the
class compared to the other classes was compensated after-
ward by weight balancing and by combining only each second
example of both classes to Assembly_Step7.

by a ReduceLRonPlateau3 scheduler which tracks
the learning rate by patience of 7, factor of 0.1 and
minimal decay of learning rate of 1e-9. These new
weight initialization of the feed forward layers of the
encoder and the classifier helps afterward the curricu-
lum pseudo-labeling approach to converge faster and
was trained in 40 epochs by a batch size of 8.

Pseudo-labeling Based Self-Training
The difference in the semi-supervised self-training
to the initial setting is that only one of four layers
of the encoder of the model is frozen completely.
A similar approach as a method that applies higher
learning rates to top layers and lower learning rates
to bottom layers is used. This procedure took place
since existing experiments using similar encoder
architectures like BERT [Dev+18] showed that using
the complete network for transfer was not always the
most effective choice, because transferring the top
pre-trained layers can slow down learning and decrease
the performance [Zha+20b]. This can be explained
as different layers in transformer structures usually
capture different kinds of information. Bottom layers
often encode more common, general, and broad-based
information, while the top layer closer to the output
encodes information more localized and specific to
the task on hand [Zha+20b]. This procedure is partly
accomplished by setting manually the learning rate of
the top layer and using a multiplicative decay rate to
decrease the learning rate layer-by-layer from top to
bottom [HR18]. For these experiments, the learning
rate per layer was set to 1e-3 in the embedding layers,
1e-2 in the gate, and 1e-3 in the final classifier, see
Figure 3 for comparison of the layers. The encoder
part was trained further than the other layers during
pre-training and fine-tuning, therefore the learning rate
was set to 0.5e-3. In contrast, to the recommendation
to use SGD for semi-supervised learning approaches,
Adam optimizer is used to adapt the optimizer to
the transformer architecture as it has proven to be
a successful optimizer approach in attention models
[Zha+19]. Additionally, L2 regularization is used to
avoid that the pre-trained target weights deviate too
much from the initial weights. For the same reason,
the scheduler patience was reduced to 5. After the pre-
trained weight transfer to the 10% novel classes, a first
initial iteration is used to predict pseudo-labels on the
unlabeled dataset. Therefore, a bottom to top approach
is used. First, all the unlabeled data is shown to the
model with low threshold more precise a percentile,
which is computed in a 0.2 step to find widespread
patterns over all the data in 150 epochs per iteration.

3 \https://pytorch.org/docs/stable/generat
ed/torch.optim.lr_scheduler.ReduceLROnPl
ateau.html
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After an iteration the predicted labels are added to the
dataset, removed from the unlabeled dataset and the
model weights are reset to the initial weights from
the fine-tuning with again a completely new classifier.
The following iterations are done by freezing the
convolutional layer and both embedding layers in the
first transformer layer, and unfreeze and train all the
other layers that are left, see Figure 3 [LTL19]. This
procedure is repeated until the percentile reached 100%
and the model is confident to predict the right labels
to the data. For the final validation, the best model
of the last iteration is used because this model had
access to most of the data. The complete self-training
architecture with curriculum pseudo-labeling can be
seen in Figure 4.

5.1 Experimental Setup
The improved ground truth results of the ConvGTN
from Section 3.2 are taken as a base for these exper-
iments, especially the test accuracy and F1-Score per
class is therefore under deeper consideration. The 7/4
data split was done as shown in Table 1. Additionally,

Exp. Class Split 7 Base Assembly_Step 4 Novel Assembly_Step
1 0Best & 4Worst 1,2,3,4,5,7,12 6,9,10,11
2 1Best & 3Worst 1,2,3,4,5,7,9 6,10,11,12
3 2Best & 2Worst 2,3,4,5,7,9,10 1,6,11,12
4 3Best & 1Worst 2,3,4,6,7,9,10 1,5,11,12
5 4Best & 0Worst 3,4,6,7,9,10,11 1,2,5,12

Table 1: Dataset Split for Experiments

to the F1-Score comes the observation which combi-
nation of base and novel assembly tasks from [Stu+23]
works best for the semi-supervised fine-tuning with cur-
riculum learning approach. It is also assumed that not
all classes can provide unique features for generaliza-
tion and lead to good performance of the model when
generalizability is considered.

5.2 Model Training Environment
The model architecture was created in PyTorch and
stacked on top of Googles framework MediaPipe
Hands. The training and hyperparameter tuning was
done in Microsoft Azure on a STANDARD_NC6 with
6 vCPUs and 56 GiB Memory. The final model training
was done on a GPU which corresponds to half a K80
card with 12 GiB, and a maximum of 24 data disks
and 1 NCiS in a duration of 2 hours and 24 minutes up
to 4 hours for the pretrained model and 4 hours and 5
minutes up to 6 hours for the self-trained model both
depending on the split of the classes.

6 COMPARISON & RESULTS
For a better comparison of the overall results in Table
3, the ground truth F1-Score of each class by training
supervised on 100% of the data is provided in Table 2.
With this initial supervised training method, the Con-

vGTN reached an overall ground truth test accuracy of
91.18% on the "Industrial Hand Action Dataset V1"
[Stu+23]. This result is 5% higher as the test accuracy
without the convolutional layer in [Stu+23]. For the
following experiments, these target classes of the
dataset are split, into 7 base classes for pretraining and
4 novel classes for the downstream tasks. It can also
be assumed from previous literature reviews in Section
4 that a strong base model has a positive effect during
training on novel models. The split into base and novel
classes depends on the results of the F1 score per class
from table 2 by dividing the classes into high (best) and
low (worst) F1-scores for the novel downstream task.
For the exact class split per experiment, see Figure
1.The final results per experiment are presented in table
3 showing each data split per experiment by column
and within each column always 3 different training
runs with the F1 score results per sub-column. Training
on only 10% labeled data is presented in sub-column
"10% Sup" for the comparison that semi-supervised
training helps. Sub-column "PreTrained + 10% Sup"
showing that pre-trained weights help fine-tune to
10% of new data, and the final target, pre-training on
baseline data and fine-tuning to 10% of new data as
initial weights, followed by 90% curriculum learning
in the sub-column "PreTrained + 10% Sup + 90%
SemiSup". As additional information in the last row
of the table, the overall test accuracy is presented to
compare the overall performance over the different
combinations of classes depending on best to worst
F1-scores of the novel classes after each training exper-
iment. The goal over all experiments is to reach nearly
the same F1-Score with the semi-supervised approach,
as with 100% labeled data. These results help to see
how the pseudo-labeling improves the scores in the
experiments. Additionally, only the F1-Scores of the
novel classes of each of the experiments are added to
the split classes, since only there an improvement helps
for making a final result for providing deeper insides
into the proof of scalability in deep learning models in
industrial environments.

Effect of Pretraining
Compared to the supervised training on only 10% of
labeled data, the additional pretraining of the model on
the base classes shows as expected in Table 3 an im-
provement in the overall test accuracy in all variations
of the novel classes and experiments. It is also visible,
that with a better F1-Score in the novel class, not only
the "Test Acc." improves but also the F1-Score in each
experiment. Only some small outliers are visible in
Assembly_Step12, with a reduction from 0.91 to
0.89 in the second experiment and from 1.00 to 0.80 in
the fifth experiment, which can in both cases be traced
back to bad features in base and novel training. These
bad features could lead to negative transfer learning,
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Figure 4: Self-Training Architecture

Assembly_Step 1 2 3 4 5 6 7 9 10 11 12 Total Acc.
F1-Score 0.94 0.93 0.91 0.92 0.93 0.87 0.92 0.91 0.90 0.86 1.00 91.18%

Table 2: Ground Truth Results

like it is experienced beside these experiments in
[Wan+18], [PY10] and [Ros+05]. This behavior during
model training needs to be examined deeper in future
experiments. Nevertheless, the result can be made as
expected that robustness of a pre-trained model and
amount of data that is used for fine-tuning matters for
the overall model performances.

Effect of Pretraining with Curriculum Self-Training
By adding the semi-supervised curriculum learning
approach with 90% of unlabeled data, the experiments
showed that this procedure gives nearly all models an
increase in "Test Acc." by almost reaching the ground
truth test acc. over all classes in the last experiment
with 86.07% compared to the initial ground truth
of 91.18%. The overall test accuracy of different
variations of novel classes trained with 90% unlabeled
data in the self-training method is always higher than
the training on 10% labeled data and adding pretrained
model results. Since more data helps in fine-tuning
and semi-supervised learning approaches beside the
increase of the number of best F1-Score classes in
the novel classes. In experiment 5 of the self-training
method, the performance increased by 18.32% from
67.75% to 86.07% when compared to experiment
3 with the 4 worst novel classes. But even in these
experiments with more data, negative transfer learning
is visible. Especially in the cases of experiment 3
and 5 where weak F1-Score classes are added to
the novel classes. This is especially the case for class
Assembly_Step6 where the F1-Score dropped from
a 0.55 to 0.54 score and from 0.78 to 0.75 score which
also affects the final test acc. with 1.4% less. Since
this behavior has happened in experiment 5 in 3 out
of 4 experiments, the negative transfer learning needs
to be further evaluated in the semi-supervised learning
approach as well. Additionally, it can not be excluded
that the combination of 2 best and 2 worst novel classes
leads to bad results in model training because of the
possible close relation and similar movements in the
actions of the classes.

7 CONCLUSION & OUTLOOK
This approach shows, first, that adding a convolutional
layer in the investigation by a spatial tower improves the
performance of a spatio-temporal transformer model.
Secondly, the main findings in this work are that fine-
grained human hand action recognition on a limited
amount of novel data can indeed be improved by pre-
training of a base model and subsequent usage of a
self-training approach based on curriculum labeling to
raise the final evaluation results and generalization pos-
sibilities of the model. Therefore, it is also important
which classes are part of the base model training and
how strong and obvious novel classes need to be for
the model. Which means having a strong pretrained
model helps to improve the results, but also strong
novel classes can help if enough data is available. It
was also shown that a stable model can be trained even
with a small amount of labeled data. This confirms that
industrial environments are ideal for scaling deep learn-
ing approaches and gives deeper insights for the cre-
ation of a pretrained model to prove the scalability in
industrial environment. Besides, it shows how the fine-
tuning in transformer models needs to happen by freez-
ing only specific layers of the transformer architecture
but also use different learning rates per layers. In ad-
dition, compared to the traditional methods of using an
SGD optimizer in semi-supervised training, Adam was
used. Since a lot of human fine-grained hand actions
look similar, negative transfer learning was experienced
probably because of the similar movements from base
to novel classes which will be further evaluated in the
following experiments, by investigating approaches to
prevent negative learning and to improve the general-
izability of the model, by self-attention approaches for
the recognition of fine-grained human hand actions in
industrial assembly.
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