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ABSTRACT
Interactive real-time rigid body simulation is a crucial tool in any modern game engine or 3D authoring tool. The
quest for fast, robust and accurate simulations is ever evolving. PBRBD (Position Based Rigid Body Dynamics),
a recent expansion of PBD (Position Based Dynamics), is a novel approach for this issue. This work aims at
providing a comprehensible state-of-the art comparison between Position Based methods and other real-time sim-
ulation methods used for rigid body dynamics using a custom 3D physics engine for benchmarking and comparing
PBRBD (Position Based Rigid Body Dynamics), and some variants, with state-of-the-art simulators commonly
used in the gaming industry, PhysX and Havok. Showing that PBRBD can produce simulations that are accurate
and stable, excelling at maintaining consistent energy levels, and allowing for a variety of constraints, but is limited
in its handling of stable stacks of rigid bodies due to the propagation of rotational error.
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1 INTRODUCTION
Physical Simulation is a wide field within computer
graphics and animation, being crucial for modern ani-
mation effects and interactive simulations such as those
found in video games. The demand for reliable physical
simulation has grown with the popularization of virtual
reality, since users interact with everyday objects within
simulated environments in more ways than ever before.
Physical simulators are usually measured along three
metrics: robustness, accuracy and time efficiency. Sci-
entific simulations usually trade efficiency for accuracy,
but for interactive applications, prioritizing fast solu-
tions is key. Rather than true physical accuracy, real
time simulations just need enough to maintain visual
plausibility. Most of the time this means finding ap-
proximate solutions as fast as possible in a robust way.

A large body of works exists on how to speed up
simulations and finding solutions for a vast range of
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physical phenomena and materials [BET14, BMM17,
NMK+06]. PBD (Position Based Dynamics) is one of
these methods, and it stands out from the crowd due to
its robustness, visual accuracy, and speed [BMM17], as
well as its ability to handle over and under constrained
environments gracefully [MMC+20]. Its most com-
mon applications are the simulation of particle systems
which are unable to efficiently simulate rigid bodies.
Due to this limitation particle systems, and rigid bodies
are often simulated in different physics engines mean-
ing that interaction between both will be heavily lim-
ited.

Recently, PBD was expanded upon, creating Position
Based Rigid Body Dynamics (PBRBD) which allows
rigid bodies and particles to coexist and interact im-
plicitly while remaining fast, robust and stable. This
method was first shown alongside a collection of demos
showcasing its capabilities and strengths. These demos
however did not contain any comparison to other sim-
ulators available [MMC+20]. Making it a challenge to
determine how this method compares in terms of accu-
racy, speed and robustness to any current methods.

The work will focus on exploring the limits and bench-
marking and comparing PBRBD to other methods for
rigid body simulation helping future researchers and in-
dustry professionals to assess whether they should im-
plement or perform further testing using PBRBD.
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In order to benchmark PBRBD a package was de-
veloped containing an implementation of the physics
engine that can be used within the unity game engine.
Benchmarking software was also developed that is
capable of creating equivalent scenarios across three
different independent physics engines, the custom
PBRBD implementation, Unity’s default physics
system PhysX and Havok. This software also acquires
benchmarking data for the three engines.

2 RELATED WORK
Rigid body dynamics simulation methods fall under
three general categories, force, velocity and position
based methods[BET14]. Force methods solve colli-
sions using virtual springs to enact forces on bodies
and maintain any constraints. Since virtual springs act
as natural forces some consider these methods to be
more realistic.[BML+14]. The most common types
of force based method are penalty methods. When a
collision is detected a spring is created at the contact
point that pushes the bodies into non-colliding posi-
tions [MW88]. To simulate friction a spring is created
between the contact point that opposes tangential move-
ment [XZB14]. Common issues with this methodology
are that resting contacts may suffer from oscillations
from the springs [Dru07], and collisions between fast
moving or heavy bodies require strong springs to sepa-
rate them which can lead to numeric instability [Dru07].

Velocity based methods solve collisions by changing
velocities directly, Impulse methods do so via the ap-
plication of impulses which are instantaneous acceler-
ations acting during a single instant [TBV12, MC95].
These methods might require resting contacts to be han-
dled differently as the impulses used for separating ob-
jects can lead to jittering.

Position based methods where originally used for parti-
cle systems. These methods work on positions directly
projecting objects currently colliding into the nearest
collision free position using a Gauss-Seidel step to it-
erate and solve all collisions and constraints. The orig-
inal Position Based Dynamics method [MHHR07], al-
though fast, robust and simple, had shortcomings that
made it harder to work with. The stiffness of con-
straints was time step dependant. This made arriving
at a suitable stiffness parameter and substep count a
challenge. The algorithm also had no direct correspon-
dence to real world elastic and dissipation energy po-
tentials [MMC16, BML+14] making it hard to simu-
late real world scenarios. The original method’s short-
comings were eventually solved by XPBD (Extended
Position Based Dynamics) [MMC16]. Currently, the
term PBD is usually interchangeable with XPBD. The
extension managed to decouple stiffness from substep
count by replacing the concept with compliance, the in-
verse of stiffness. It also made the method more ro-

bust at handling hard constraints, since they were es-
sentially infinitely stiff. Using compliance, a hard con-
straint has a compliance of value one, and a fully com-
pliant constraint has a value of zero [MMC16]. It was
also extended to receive physical quantities and intro-
duced Lagrange multipliers to its equations, which of-
fers the previously mentioned constraints a force esti-
mate value. This method still had some shortcomings,
it is derived from an implicit time stepping scheme and
as such suffers from energy dissipation [MMC16]. It
has also been stated that Gauss-Seidel solvers can oscil-
late between solutions rather than converge given non-
feasible sets [BML+14]. The most recent iteration of
PBD extends the method to handle rigid body dynam-
ics. PBRBD (Position Based Rigid Body Dynamics)
adds steps to XPBD’s algorithm in order to handle ori-
entation and angular velocity, as well as adding angular
constraints [MMC+20]. It has also been shown that for
position based methods it is more efficient and accurate
to break down the temporal window of each simulation
step and simulate more steps per second handling, even
at the expense of only performing one Gauss-Seidel
iteration[MSL+19].

3 IMPLEMENTATION

3.1 Environment
In order to test and benchmark our approach, we needed
to have a development environment providing physics
engines to serve as comparison as well as offering ren-
dering, profiling and debugging tools. As such, Unity’s
game engine using C# scripts to run the simulation was
deemed the better option. Since PBRBD requires dou-
ble precision floating points and most math capabilities
provided by the engine only support single precision
floating points none of Unity’s math classes containing
vectors, quaternions and matrixes could be used cre-
ating a fully independent package that handles all the
simulation and then simply updates the positions Unity
uses.

3.2 Simulation loop

Algorithm 1 Simulation Step

BroadCollisionDetection()
h← ∆time/numSubsteps
for numSubsteps do

PositionalU pdate()
ConstraintSolve()
VelocityU pdate()
NarrowCollisionDetection()
VelocitySolve()

end for
U pdateEnginePositions()
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The implemented simulation loop is executed once per
frame and simulates as many substeps as numSubsteps.
Increasing this value decreases the size of the temporal
window, which has been shown to be the most efficient
way of increasing accuracy [MSL+19]. The rigid bod-
ies and particles used by the simulation are independent
entities from the ones used by the game engine for ren-
dering. As such, one final step is necessary to update
the positions and orientations of the simulated bodies.

3.3 Bodies
Particles are defined as a mass, position and velocity.
A rigid body on the other hand, also has orientation
defined as a quaternion, angular velocity and external
torque parameters defined as vectors. In order to prop-
erly apply realistic rotations, rigid bodies also require
an inertia tensor which refers to mass in rotational terms
[MMC+20], a 3x3 matrix that contains information re-
garding the moment of inertia of a rotation along the
bodies’ principle axes. Since shape and consequent
mass distribution of a body has an impact on its rota-
tion. The Inertia tensor is dependent on the orientation
of the body, to avoid recalculation the tensor is always
defined in local coordinates and any rotation that is ap-
plied to the body need to be converted to self coordi-
nates, multiplied by the tensor and converted back to
world coordinates.

3.4 Positional Update
The first step within the algorithm’s internal loop per-
forms the time integration of the current positions and
velocities according to the current velocity and acceler-
ation. During this step the previous position and orien-
tations are updated. The new position and velocity of a
body is updated by applying one Euler step [MSL+19]:

x = x+V⃗ ·h
V⃗ = V⃗ + F⃗ ·h

(1)

Where x, V⃗ and F⃗ are the position, velocity and exter-
nal force vectors respectively, and h is the time interval
being simulated. The above update is sufficient for sim-
ulating particles, for rigid bodies the following steps are
also required [MMC+20]:

WQ = [0,W⃗ .x,W⃗ .y,W⃗ .z]

Q = Q+0.5 ·WQ ·Q ·h
Q = |Q|

(2)

W⃗ = W⃗ +h · I−1 · (T⃗ − (W⃗ × (I ·W⃗ ))) (3)

Where q and W⃗ and T⃗ are the orientation quaternion,
angular velocity in self coordinates and external torque
vectors respectively, I represents the inertia tensor. An-
gular velocity is converted into a quaternion and trans-
formed into world coordinates and scaled by the time h.

Note that since the angular velocity W⃗ is stored in self
coordinates, there is no need to perform any coordinate
conversion before applying the tensor.

3.5 Constraints
It is possible to create constraints that simulate a va-
riety of physical effects, the Nonlinear Gauss-Seidel
solver is capable of processing different types of con-
straints since all are solved in the same generalized
manner, with positional and angular constraints requir-
ing slightly different approaches.

Constraints vary in how the error and its gradient ∆C is
calculated. The gradient is a vector that points in the
direction with most impact to the error value and with
magnitude proportional to the impact moving the object
will have on the error value calculated by C(x). The
Lagrange multiplier used to solve the constraint by cal-
culating the positional correction ∆x is calculated using
the error value and the inverse mass values wi of bodies
affected by it [MMC16].

∆x = λwi∆C (4)

λ =
C(x)

∑wi∆C2
i +α/h2 (5)

Constraints use the value of inverse mass to distribute
the correction between constrained bodies, as seen in 5
and 4. In practice, a body with twice the mass will suf-
fer half the effect of the constraint’s correction, while
the lighter body will experience double. Using inverse
mass is useful for having infinitely heavy objects that
cannot be moved by any correction simply by setting
its value to zero. Compliance α determines how rigid
a constraint should act. A compliance value of zero
corresponds to a rigid constraint where error is fully
corrected. More compliant constraints only correct a
fraction of the error, leading to a spring like behaviour.

For positional constraints, the Lagrange multiplier cal-
culations are as shown in 5 and applied as in 4. Some
positional constraints might not act on the center of
mass of the body, in those cases a vector R⃗ determines
the offset from the acted on position and centre of mass,
in self coordinates. Furthermore, the movement needs
to impact the rotation of the body Q. This is achieved
via an extra step, correcting orientation [MMC+20]:

∆X = Q−1 ·∆X

rotation = Q · (I−1 · R⃗×∆X)

Q = Q+0.5 · rotation ·Q
Q = |Q|

(6)

In order to keep energy conservation when transferring
positional kinetic energy to rotational kinetic energy, a
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different value for inverse mass is used called the gen-
eralized inverse mass w′i [MMC+20].

rotation = R⃗× (Q−1 ·∆X)

w′i = wi +(rotation · I−1) · rotation
(7)

Distance constraints take two bodies, and offsets from
the centre of mass, and ensure that the distance between
the positions with offset applied are within a certain
range. The error of a distance constraint is simply the
difference between the real distance between the points
and the desired distance. The gradient points in the di-
rection opposite to the other particle. And the magni-
tude of the gradient has a magnitude of one.
Angular constraints are solved similarly to positional
ones. Instead of using inverse mass, the inverse inertia
tensor, the rotational equivalent of mass, is used. Cor-
rections come in the form of a vector, which can be
broken down into length θ and direction ∆Wn. The new
generalized inverse mass used for calculating the La-
grange multiplier is calculated as [MMC+20]:

Wsel f = Q−1 ·∆Wn

w′i =W T
sel f I−1Wsel f

(8)

The correction of the orientations, with respect to the
Lagrange multiplier λ is done as follows:

PQ = [P.x,P.y,P.z,0]
P = ∆Wn ·λ
Psel f = Q−1 ·P
P = Q · (I−1 ·Psel f )

P = Q±0.5 ·Pq ·Q

(9)

Angular constraints are applied in relation to some axis,
defined in the body’s self coordinates, labelled an. In
certain cases, a secondary axis is needed, which takes
the form of bn. A hinge joint works by ensuring that
two axes belonging to two bodies remain aligned. The
gradient and error of this constraint can be calculated as
[MMC+20]:

∆C =
a1world×a2world

|a1world×a2world |
error = |a1world×a2world |

(10)

Ball joints work by limiting the angle between two axes
to be in a certain interval. If the angle between two axes
(σ ) exceeds the max bound (α) an error is calculated
and returned. The gradient is the same as a hinge joint,
and the error of the constraint is calculated as:

error = |a1world×a2world | · (σ −α) (11)

3.6 Collisions
In PBD collisions are handled as constraints, when a
collision is found a new constraint is initialized and cor-
rected immediately. The gradient of this constraint is

the vector that can separate the penetrating colliders in
the shortest distance coinciding with the contact nor-
mal multiplied by the penetration depth at the contact
point. To simulate correct restitution and friction, a spe-
cial step, called the velocity solve, is needed, iterating
through collisions and adjusting velocities. When a col-
lision is detected, a collision data structure containing
references to both colliders, collision point (p), pene-
tration distance (d), and contact normal (N⃗) is created.

3.7 Restitution
To achieve physically accurate conservation of momen-
tum, the velocities resulting from a collision need to
be adjusted during the velocity solve step, while taking
into account bodies’ restitution coefficients en. A body
with a restitution coefficient of zero absorbs all the en-
ergy from a collision impulse, while one with a value
of one absorbs no energy.

This step handles collision instances, that have infor-
mation on both colliders, a collision normal N⃗, and the
offsets from the colliders’ centre of mass and collision
point Rn, defined in self coordinates. The velocity solve
step begins by calculating the difference between both
velocities ∆V⃗ , the velocity normals V⃗n and tangential
velocities V⃗t [MMC+20].

∆V⃗ = N(−V⃗n +min(−(e1e2)⃗V ′n,0)) (12)

This step consist of subtracting the current velocity and
replacing it with a reflected velocity V⃗ ′n [MMC+20].
The resulting correction to velocity ∆V⃗ now needs to
be distributed by both bodies according to their masses
and distributed in terms of positional and rotational en-
ergy. This following step is used whenever a velocity is
corrected within the velocity solve [MMC+20]:

P = ∆V⃗/(w1 +w2)

V⃗1 = V⃗1 +P/m1

V⃗2 = V⃗2−P/m2

W1 =W1 + I−1(R⃗×P)

W2 =W2− I−1(R⃗×P)

(13)

3.8 Friction
Friction is a dissipative force that opposes movement
between two tangential surfaces. The strength of this
force is determined by the amount of force the bodies
are exerting on each other (usually the normal force)
and the friction coefficients, values referring to the
amount of friction produced by the body’s material.
There are two types of friction, one that acts when initi-
ating motion (static friction) and another that acts after
movement is initiated (dynamic friction).
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3.9 Static Friction
Static friction is implemented using a positional con-
straint initialized after separating the contact. It takes
the sliding bodies’ positions xn, the offsets from cen-
tre of mass to collision points R⃗n and the collision nor-
mal used for calculating the collision tangent direction.
It then ensures that no tangential movement occurs be-
tween the contact points. The force exerted by a con-
straint can be calculated as [MMC16]:

F⃗ = λ N⃗/h2

τ = λ N⃗/h2
(14)

The formula that determines if static friction is applied
in respect to the static friction coefficient µs and the
normal and friction forces is:

F⃗static <= µsF⃗normal (15)

The values of F⃗static and F⃗normal are proportional to
λstatic and λnormal respectively, as such the formula
above can be implemented as follows:

λstatic <= µsλnormal (16)

If the above condition is not met then the constraint re-
sponsible for applying static friction is discarded before
applying corrections to any bodies and marks the colli-
sion for dynamic friction to be applied during the ve-
locity Solve step.

3.10 Dynamic Friction
During the velocity solve step, collisions that have not
experienced static friction have dynamic friction ap-
plied.The force exerted cannot exceed a certain value,
determined by the dynamic friction coefficient and nor-
mal force. Using (14) and (1) it is possible to calculate
the velocity the dynamic force produces during the cur-
rent time step using the following formula:

∆V⃗ = |
µdynamic ·λdynamic

h
| (17)

3.11 Interaction
For behaviours that require input from the user such
as using the mouse to drag bodies it is necessary to
take into account that the input devices are updated at a
lesser frequency than the simulations substeps, as such
mouse positions need to be collected and interpolated
by each substep to simulate continuous movement of
the anchor point.

3.12 Soft Bodies
Soft bodies are simulated as a series of particles
connected by constraints, a mesh is then dynamically
altered so that it matches the particles’ positions

[MHTG05]. Particles are connected via distance and
also volume constrains which take four particles and
ensure that the tetrahedron formed by their points’ vol-
ume remains constant. The direction of the gradient is
different for all particles, but it is always perpendicular
to the plane defined by the three other particles.

3.13 Jacobi Solver
In order to compare the difference between using a Ja-
cobi and the default Gauss-Seidel solver, both solvers
were implemented with an option to toggle between
them. When using the Jacobi solver corrections are
stored, once a substep is finished all the corrections are
averaged and then applied to the body.

3.14 Optimizations
Collision detection can be broken down into the broad
and narrow phases. The broad phase takes all collid-
ers and tries to identify which pairs of collisions can
possibly occur during the next simulation loop, and
is executed once per step. The narrow phase iterates
through the likely collisions and checks for actual con-
tacts, and is executed once per substep. The colli-
sion detection and constraint resolution steps are imple-
mented in parallel, distributing the workload amongst
different threads. For the Gauss Seidel solver, mutual
exclusion blocks are used to ensure that no constraint
that shares a body with another is processed in parallel.

4 EVALUATION AND RESULTS
4.1 Testing Methodology
In order to properly benchmark and compare PBRBD’s
custom implementation, which will be referred to
simply as PBD, with other prominent physics engines
available in Unity, the default implementation using
PhysX which will be referred simply as Unity and
Havok’s physics package, as well as a version of PBD
using a Jacobi solver labelled as Jacobi and parallel
configurations of both versions. A variety of topics
of interest were selected, testing the engine’s along
an array of different attributes. Each topic is then
studied by proxy of simulation scenarios designed
to expose each engine’s performance in each topic
using instrumentalized versions of the algorithms and
data collectors. All tests were conducted on a Lenovo
Legion 5 laptop, using an AMD Ryzen 7 5800H
processor, 16GB of RAM, and a GeForce RTX 3060
GPU.

4.2 Momentum conservation in collisions
Conservation of momentum dictates how real world
object’s velocities are affected by a collision, ensur-
ing that no energy is gained or lost from the colli-
sion’s impulses. A commonly used mechanism for

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3301 
http://www.wscg.eu WSCG 2023 Proceedings

https://www.doi.org/10.24132/CSRN.3301.59 355



demonstrating this phenomenon is the Newton’s cradle,
a device comprising, usually, of four spheres of equal
mass suspended by wires, which, excluding dissipating
forces, can remain in perpetual motion. Simulating the
contraptions using distance constraints to simulate the
strings as in Fig. 1a shows that PBD provides the clos-
est simulation to theoretical results as shown in Fig. 1b.

(a) Simulation (b) Energy over time

Figure 1: Total energy values of Newton’s cradle us-
ing constraints to simulate string over 30 seconds. PBD
shows a stable energy loss, while Havok and Unity
show sudden drops that coincide with the times colli-
sions happen during the simulation. The reason their
energy levels stabilize is that wrongful momentum con-
servation is causing the spheres at the centre to swing,
the simulation converges to a state where all four
spheres move in tandem.

(a) Simulation (b) Energy over time

Figure 2: Energy evolution over a 10-second simula-
tion of a triple pendulum using distance constraints.
Unity provides greater energy conservation, however
it does suffer from some energy being gained which
might compromise its simulation. PBD and Havok ex-
clusively lose energy and show similar results. In com-
parison, Jacobi is very unstable, suggesting the solver
is less accurate. Only PBD’s simulation was shown in
the visual example for clarity.

4.3 Energy conservation in constraints
On the above section, the analysed energy losses were,
mostly, a by-product of several collisions in a short time
frame. While the triple pendulum (Fig. 2a) is a suit-
able test case to for the accuracy and stability of dis-
tance constraints, it does not test the impact that its cor-
rections had on orientation. In order to test a scenario
where proper simulation of the orientation of bodies is
crucial, a chain was simulated by attaching the edges
of capsules together. At the end of the chain, a heavy

sphere is attached (Fig. 3) in order to weigh the chain
down. According to Fig. 4 PBD offers the best re-
sults for simulations of 100 capsules, displaying neg-
ligible energy gains and acceptable losses. However,
when simulating 500 capsules, the simulation breaks
and massive amounts of energy are gained. This most
likely has to do with the velocity recalculation step, af-
ter a large correction was applied to a particle its ve-
locity was recalculated as a massive value leading to
unexpected and uncontrollable behaviour.

Figure 3: The simulation of a chain made up of 500 cap-
sules connected by constraints. Both PBD and Unity
exhibiting wrongful simulation towards the top of the
rope, with the latter showing the most error.

(a) 100 capsules (b) 500 capsules

Figure 4: Energy conservation when simulating a chain
comprised of a varying number of capsules connected
by constraints. All engines used 20 iteration or sub-
steps. While PBD is shown to be the most stable choice
for 100 capsules, when a scenario is too complex for
the current substep count it can diverge. Jacobi which
has been shown to be less accurate in Fig. 2b is shown
here to be more robust.

4.4 Stability
Stacks of bodies are challenging simulations because
error can quickly propagate and bring, what should in
theory be a stable stack, to collapse in on itself. To test
the stability of a stack, the energy conservation will be
analysed as well as how much the body at the top of
a stack, which should be stationary, moves (Fig. 5) in
order to capture positional error in the form of drift, a
known problem with velocity methods [MMC16]. The
movement of the top body can be analysed via the dif-
ference between the bodies’ starting and current posi-
tions throughout the simulation. In order to distinguish
between error concerning the separation of penetrating
bodies and drift, horizontal and vertical deviation from
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(a) Horizontal (b) Horizontal (c) Vertical

Figure 5: The horizontal and vertical deviation from the
top cube’s current and starting position over time in a
vertical stack. Havok’s and Unity’s simulation even-
tually collapses, seen by the large vertical deviation.
PBD and Jacobi show no drift, but they both oscillate
vertically as they struggle to keep the cubes from inter-
penetration, at worse, this could result in cubes gaining
vertical velocity and being thrown upwards.

(a) PBD (b) Jacobi (c) Unity (d) Havok

Figure 6: The simulation of 650 cubes organized in
a pyramid shape. PBD and Unity’s simulation show
wrongful behaviour leading to the eventual collapse of
the structure, the former’s error comes from rotations
within the bodies while the latter’s is due to drifting.

the starting position is analysed separately. The most
basic example of the type of system mentioned above
would be a single vertical stack of cubes (Fig. 5a),
where the forces experienced by cubes near the bot-
tom of the stack would be immense due to having to
support hundreds of other cubes on top of them. There
are many ways positional error can impact said struc-
ture. The stack may become compressed as the system
is unable to keep bodies from inter-penetrating, efforts
to separate bottom cubes may increase penetration to-
wards the top which may end up with cubes being sent
upwards instead of resting, PBD makes no distinction
between resting contacts and collisions making it more
susceptible to inter-penetration.

A more complex type of stack would be to organize the
cubes in a pyramid shape (Fig. 6). PBD suffers from
rotation being applied to cubes, this happens because
each cube has four contacts beneath it, using the Gauss-
Seidel solver means that each contact is solved and cor-
rected one at a time, when the first contact is handles,
towards one of the bottom corners of the object it ap-
plies a rotation as well as a translation, this rotation will
cause further penetration in the opposite corner which
eventually leads to an overcorrection and destabilizes
the stack. When using Jacobi the corrections are stored
and averaged together and applied all at once, meaning
that the rotations will cancel each other out leading to a
more stable stack. Jacobi also suffers from some verti-

(a) Rod Cuboid (b) Plane Cuboid

Figure 7: Cuboids with uneven axes lengths

(a) PBD (b) Jacobi (c) Unity (d) Havok

Figure 8: The energy of the systems throughout a 30-
second simulation of a plane cuboid.

cal oscillations, similar to what was shown in the pre-
vious example. Neither method achieves a stable stack
at every simulation, but Jacobi has a higher rate of suc-
cess. Unity’s simulation is vertically and rotationally
stable but suffers from horizontal drift, when the cubes
are too spread out the structure collapses. Finally, Ha-
vok provides a stable simulation and could still provide
stable results with more than five times as many ele-
ments being the strictly better choice.

4.5 Linear and Rotational Kinetic Energy
When calculating the energy values of a system, two
separate values make up the total energy value, poten-
tial energy is dependent on the height of an object, and
kinetic energy on its velocity. Kinetic energy has two
components as well, linear kinetic energy and rotational
kinetic energy. Following a collision, a falling object
might transform potential energy into kinetic energy,
and that energy needs to be properly distributed by its
linear and rotational components. This distribution is a
potential source of error for simulations. Errors in the
distribution between both types of kinetic energy are
more noticeable in objects with significantly different
moments of inertia for each primary axis, as would be
the case in a cuboid with different lengths for each axis,
as seen in Fig. 7.

PBD and Jacobi are both able to maintain stable en-
ergy levels, but show some mild signs of energy being
gained. Unity and Havok suffer from significant losses
and show energy spikes as well, although Havok’s is
able to quickly fix errors due to the use of error caches.
The errors present in both Unity and Havok’s simula-
tions seem to originate from too much rotation being
applied. Most likely originating from having to solve
the positional error and apply restitution by applying
an impulse. Unity is the most unstable out of the tested
engines since it shows energy rising continually, this er-
ror is visually apparent was well as the plane gradually
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reaches greater heights. Havok’s shows some energy
gain, but still converges into a low energy state. This
might be because Havok detects ambiguous situations
where energy gains due to rotation are likely, and al-
ways minimizes energy.

4.6 Physically Impossible Scenarios
Within the regular use of a game engine by a developer,
or during the execution of a gameplay environment, it
is likely that at some point a physically impossible sit-
uation arises, either from the developer setting up im-
possible starting conditions or the gameplay enforcing
a specific state. It is an important factor when choosing
a physics engine that it is capable of remaining stable in
these situations while minimizing physical inaccuracy.

Figure 9: Collision solve of a scenario with colliding
starting positions. The velocity based methods used by
Unity and Havok cause the collision to be resolved over
several frames rather than immediately.

While in this scenario, positional methods appear to be
superior, further testing reveals that depending on the
penetration depth and scenario they might get worse
results. Repeating the same experiment but with a
pyramid of penetration depth of 0.4 (nearly half of the
cubes’ height) shows similar results for Havok, Unity’s
top layers get a vertical velocity, PBD and Jacobi the
pyramid is dismantled within the first simulation step
with cubes belonging to the base and the middle layer
all at the same height. This happens because while the
bottom layer is being processed its members are pro-
jected vertically in order to correct the penetration with
the plane, however this correction puts them in a posi-
tion where they penetrate cubes in the middle layer. For
lesser starting penetration depths this causes no issues,
but with higher starting penetrations the resulting inter-

mediate state where the bottom and middle layer colli-
sion have so much penetration in the vertical axis that
the shortest correction distance between each colliding
cube is horizontal, leading to both layers expanding to
each side, and dismantling the structure.

4.7 Unsolvable Constrained Scenarios
In any engine dealing with constrained systems, it is
possible to create a configuration that is unsolvable due
to having constraints with mutually exclusive solution
domains. As was tested in Fig. 10. Havok provides
a stable approximation of a state that averages each
constraint in order to minimize error, the chain is still
straight, and each link remains static, being the best
option for this scenario. Jacobi manages a stable and
static simulation as well. Finally, Unity and PBD os-
cillate in their solution with Unity even showing signs
of divergence, with capsules moving to seemingly ran-
dom positions before stabilizing at an oscillatory state
switching between both positions at each step. This is
a known issue with the Gauss-Seidel solver which Ja-
cobi avoids, and it can lead to behaviour that is visually
striking. The issue can be mediated by adding some
compliance to each constraint, in which case the sys-
tem converges to a stable and error minimizing state.

Figure 10: A chain with each end attached to a static
point whose distances are greater than the chains’
length, leading to a scenario with incompatible con-
straints. Havok and Jacobi can converge at a stable
state, while Unity and PBD oscillate.

4.8 Performance
In order to test how the performance of each engine
scales, three scenarios were tested with increasing num-
ber of elements, the chain (Fig. 3) to test the impact
constraints have on performance, the pyramid (Fig. 6),
meant to test the performance impact of resting con-
tacts, and a new scenario consisting of a pile of cap-
sules which will be referred to simply as capsule. Note
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that both Havok and Unity’s physics engine are imple-
mented in C++, meanwhile our custom PBD implemen-
tation is in C# and has the overhead of being processed
as part of a Unity MonoBehaviour being at a disad-
vantage. Measuring the performance of the different
engines is further complicated by the fact it is hard to
decouple the performance of collision restitution, time
integration and constraint solving from aspects that are
independent of simulation method, such as collision de-
tection and entity systems.

(a) Rope (b) Pyramid (c) Capsules

Figure 11: Milliseconds per physics substep of simula-
tions.

While PBD and Jacobi’s simulation seem to have sim-
ilar performance to Unity when simulating constraints,
the implemented collision detection is not able to com-
pete with the one provided by Unity and Havok. The
most important factor in this analysis is that all engines
scale linearly, meaning that none is inherently more
complex. The slope of each result will be largely im-
pacted by low level optimizations, implementation lan-
guage and parallelization and not so much by the sim-
ulation method itself. When it comes to sheer perfor-
mance, Havok is unmatched in its handling of large sce-
narios.

5 DISCUSSION
After thoroughly testing all engines in different scenar-
ios, it is clear no options is strictly better than the other,
with each engine presenting unique strengths and is-
sues. Table 1 combines the observations from all sce-
narios regarding problems with each method.

Simulator
PBD Jacobi Unity Havok

Velocity transfer Accurate Accurate Inaccurate Inaccurate

Constraint error Noticeable Noticeable Very
Noticeable None

Inter-penetration Significant Very
Significant None None

Velocity drift None None Very
Significant Significant

Stacking Rotational
Error Somewhat Drifting Stable

Rotational
kinetic energy Stable Stable Increase Loss

Stable friction No No No Yes

Table 1: Physics Engine Comparisons

In terms of maintaining stable energy levels without
producing any extra energy, PBD is the most reliable

option. Along with Jacobi it is the only method ca-
pable of accurately and quickly transferring velocity
over a row of objects simulating a Newtons cradle with
ease. It is stable handling of collision contacts is fur-
ther supported by the results of (8a) being able to sim-
ulate objects with uneven axes lengths. When dealing
with constraints, it loses some energy gradually but re-
mains more stable, showing no energy being gained.
When dealing with scenarios too complex for its cur-
rent substep count (which dictates accuracy) the system
will diverge causing massive energy gains. This is be-
cause PBD is meant to excel at correcting small errors,
hence the use of substeping. When it comes to sce-
narios with stacks of bodies, PBD can allow for some
inter-penetration of bodies and suffer from rotational er-
ror destabilizing the stack.

Using a modified version of PBD to use a Jacobi solver
rather than Gauss-Seidel proves to offer little benefit,
since the method cannot produce the same kind of sta-
ble energy. The issues of inter-penetration also present
in PBD are more pronounced as well. However, in some
cases it can be a better choice, when dealing with a sce-
nario too complex for the current substep count PBD
was shown to diverge, while Jacobi managed to main-
tain a more stable simulation as shown in (4b). Jacobi
also suffers from less rotational error on resting stacks,
but it is more vulnerable to destabilization due to the
more severe interpenetration.

Unity’s PhysX based physics engine’s performance in
the tests conducted revealed itself to be similar to Ha-
vok’s. Some issues are shared by both engines, such as
velocity transfer error. Both show velocity drifting, but
Unity’s was more severe. Unity is also prone to energy
gains when tested using long cuboids (8c). The one
advantage Unity was shown to have over Havok was
better conservation of energy in constrained scenarios
without collision, being able to maintain motion for a
much longer time.

Havok’s simulation proved itself to be incredibly stable
and fast, being able to handle scenarios that were more
complex and rarely showing any signs of divergence or
overcorrection. However, it does suffer from velocity
drift and loses a lot more energy than other engines.
This is due to Havok detecting situations that could lead
to energy being gained and always chooses the option
that minimizes energy.

6 CONCLUSION
PBRBD can simulate scenarios with great accuracy
showing great conservation of momentum and no en-
ergy gains and is a solid choice for any game engine, not
only due to its accuracy but also due to being a unified
solution merging particle systems and rigid body dy-
namics in a single engine and allowing for many differ-
ent types of constraints. Its shortcomings become more
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prevalent when simulating stacks, where the Gauss-
Seidel solver struggles with rotational error. Switching
the default solver by a Jacobi solver can increase robust-
ness and handling of scenarios with mutually exclusive
constraint solution domains, but decreases the accuracy
of the simulation. In short, this novel method will facili-
tate development of scenarios mixing particle system or
destructible objects while providing accurate and stable
results while avoiding some known issues with velocity
based methods such as velocity drifting.

A C++ implementation with a focus on code optimiza-
tion and GPU parallelization to understand how per-
formant PBRBD can get could further establish it as
a solid choice for rigid body dynamics. The algorithm
requires double precision floating points, which GPUs
are not optimized to handle, leading to possible chal-
lenges. Furthermore, the parallelization of the Gauss-
Seidel step can be achieved in a variety of ways, com-
paring the impacts on performance and accuracy of dif-
ferent techniques could be a source of future work.
Due to the variety of supported constraints, PBRBD
also seems adequate to create controls such as buttons,
cranks, levers and knobs commonly seen in VR appli-
cations which could be further studied with user tests.
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