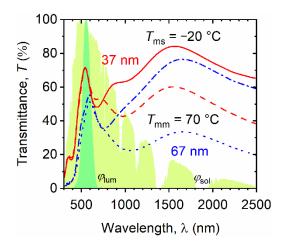
FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

High-Performance Thermochromic YSZ/V_{0.986}W_{0.014}O₂/YSZ Coatings for Energy-Saving Smart Windows


Michal Kaufman¹, Jaroslav Vlček², Jiří Houška³

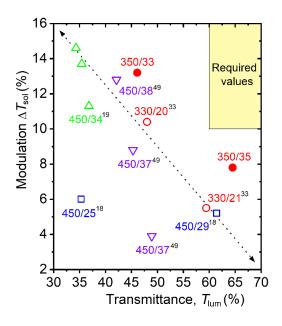
1 Introduction

The reversible semiconductor-to-metal transition of vanadium dioxide (VO₂) makes VO₂based coatings a promising candidate for thermochromic smart windows, reducing the energy consumption of buildings. We report on a scalable sputter deposition technique for fast preparation of strongly thermochromic YSZ/V_{0.986}W_{0.014}O₂/YSZ coatings, where YSZ denotes Y-stabilized ZrO₂, on conventional soda-lime glass at a relatively low substrate surface temperature (350 °C) and without any substrate bias voltage. The thermochromic V_{0.986}W_{0.014}O₂ layers and the antireflection YSZ layers were deposited using a controlled highpower impulse magnetron sputtering of a single V-W and Zr-Y target, respectively.

A coating design utilizing a second-order interference in the YSZ layers was applied to increase both the integral luminous transmittance (T_{lum}) and the modulation of the solar energy transmittance (ΔT_{sol}). The YSZ/V_{0.986}W_{0.014}O₂/YSZ coatings exhibit a transition temperature of 33-35 °C with $T_{lum} = 64.5$ % and $\Delta T_{sol} = 7.8$ % for a V_{0.986}W_{0.014}O₂ thickness of 37 nm, and $T_{lum} = 46.1$ % and $\Delta T_{sol} = 13.2$ % for a V_{0.986}W_{0.014}O₂ thickness of 67 nm. The results constitute an important step to a cost-effective and high-rate preparation of large-area thermochromic VO₂-based coatings for future smart-window applications.

2 Results

Figure 1: Spectral transmittance (*T*) for the YSZ (170 nm)/ V_{0.986}W_{0.014}O₂ (37 nm)/YSZ (179 nm) coating (full and dashed lines) and the YSZ (172 nm)/ V_{0.986}W_{0.014}O₂ (67 nm)/YSZ (182 nm) coating (dash-dotted and dotted lines) on 1 mm thick glass substrates


¹ Ph.D. student in the field of Plasma Physics and Physics of Thin Films, e-mail: mkaufman@kfy.zcu.cz

² Researcher, NTIS, VP4, Faculty of Applied Sciences, e-mail: vlcek@kfy.zcu.cz

³ Researcher, NTIS, VP4, Faculty of Applied Sciences, e-mail: jhouska@kfy.zcu.cz

The spectral transmittance of YSZ/V_{0.986}W_{0.014}O₂/YSZ coatings is shown in Figure 1, which allows one to note numerous features. First, there is the desired interference maximum in the visible, maximizing T_{lum} . Second, this second-order maximum in the visible is accompanied by a first-order maximum in the infrared (at roughly 3 times longer wavelength), leading to enhanced ΔT_{sol} . Third, there is the first fingerprint of the trade-off between T_{lum} (higher $T(\lambda)$ in the visible at h = 37 nm) and ΔT_{sol} (higher $T(\lambda)$ modulation in the infrared at h = 67 nm).

Figure 2 compares the performance of both presented sputtered coatings with that of other VO₂-based thermochromic coatings prepared by various sputtering techniques in various laboratories. Let us emphasize that the figure captures all the key criteria of success: T_{lum} , ΔT_{sol} , T_{tr} and maximum substrate temperature. It can be seen that the presented coating design and the industry-friendly low-temperature high-rate deposition technique allowed us to achieve further progress and to move the line representing the h-induced trade-off between T_{lum} and ΔT_{sol} further toward the area of required values denoted in the top right corner.

Figure 2: T_{lum} and ΔT_{sol} achieved in this work (full circles) and reported in the literature (empty symbols) for VO₂-based coatings with a transition temperature $T_{\text{tr}} \leq 38$ °C. The labels denote a maximum substrate temperature during the preparation of the coatings and their transition temperature (both in °C), with the reference number in the superscript (more specified in the article cited at the end of this page).

Acknowledgement

This work was supported by the Czech Science Foundation under Project No. 21-28277S and by the U.S. National Science Foundation under Award No. DMR-2122128.

References

Kaufman, M., Vlček, J., Houška, J., Čerstvý, R., Farrukh, S., Chargaoui, M., Haviar, S., Jiang, J.C., Meletis, E.I. and Kos, Š. (2023) High-Performance Thermochromic YSZ/V_{0.986}W_{0.014}O₂/YSZ Coatings for Energy-Savings Smart Windows. ACS Applied Materials & Interfaces (submitted)