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bNew Technologies Research Centre, University of West Bohemia, Univerzitnı́ 8, 301 14 Plzeň, Czech Republic
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The piezoelectric materials are electroactive materials often applied for real-time sensing or
structural health monitoring. Mathematical models of such structures contain several material
parameters that need to be identified from experiments. The (proportional) damping coefficients
are an example of such parameters, difficult to obtain in another way.

Our aim was to develop a computer model of a simple experiment performed in our labora-
tory [6] involving dynamics of a cantilever beam with an attached piezoelectric sensor excited
by a suddenly removed weight, see Figs. 1–2. The sensor was connected to an oscilloscope
that measured the voltage on the top side of the sensor, the bottom side was grounded. We
had been interested in correctly simulating the experiment for various materials of the beam
and/or in identifying parameters that were unknown or uncertain in advance. Preliminary simu-
lations revealed that the oscilloscope had a finite resistance, motivating us to augment the model
presented in [4]. The new model is briefly summarized below.

Let us denote by ΩE the elastic part and by ΩP the piezoelectric part of a body with Ω ⊂ R3,
see Fig. 1. The weak formulation of the model is as follows. Let V u

0 (Ω) = {u ∈ [H1(Ω)]3,u =
0 on Γu}, V ϕ

0 = {ϕ ∈ H1(Ω), ϕ = 0 on Γp0}. We seek u(t), ϕ(t), ϕ̄(t) such that
∫

Ω
ρv · ü+

∫

Ω
ε(v)TCε(u) + α

∫

Ω
ρv · u̇+ β

∫

Ω
ε(v)TCε(u̇)

−
∫

ΩP

ε(v)TeT∇ϕ−
∫

Ω
v · b = 0 ∀v ∈ V u

0 (Ω) , (1)
∫

ΩP

(∇ψ)Teε(u) +

∫

ΩP

(∇ψ)Tκ∇ϕ−
∫

ΓpQ

(κ∇ϕ) · nψ

+

∫

ΓpQ

(κ∇ψ) · n(ϕ− ϕ̄) = 0 ∀ψ ∈ V ϕ
0 (Ω) , (2)

∫

ΓpQ

(κ∇ϕ̇) · n+ ϕ̄/R = 0 , (3)

u = 0 on Γu × [0, T ] , (4)

ϕ = 0 on Γp0 × [0, T ] , (5)

u(0) = u0, u̇(0) = 0, ϕ(0) = ϕ0 in Ω , (6)

where u is the mechanical displacement vector inducing the Cauchy strain ε, ϕ is the electric
potential, ϕ̄ is the unknown potential on the top side of the sensor ΓpQ, ρ is the density. C
is the matrix of elastic properties (under constant electric field intensity in ΩP ), α, β are the
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Fig. 1. The computational mesh.
A weight is attached to the bottom side
at the pointW at time t = 0 s. Dynamic
quantities are recorded in the point L
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Fig. 2. The experimental data: (left) laser vibrometer, (right)
oscilloscope

proportional damping coefficients, e the piezoelectric modulus, κ the permittivity under con-
stant deformation and n is the unit outward normal. The structure is loaded by the self-weight
volume forces b. The initial conditions u0, ϕ0 correspond to a static loading of the body by a
localized surface force of a weight (280 g) attached, using a nylon string, at point W in Fig. 1.
The external circuit is modeled by (3) with R being the oscilloscope resistance. The last two
terms in (2) correspond to the weak enforcement of the Dirichlet boundary condition ϕ = ϕ̄(t)
on ΓpQ using the non-symmetric Nitsches method [8] without the penalty term [2].
The finite element discretization of (1)–(3) uses

u(ξ) = Nu(ξ)u , ϕ(ξ) = Nϕ(ξ)p , ϕ̄ = 1p̄ , (7)

where Nu(ξ), Nϕ(ξ) are the displacement and the potential shape functions, respectively. The
implicit second order Newmark method [7] is used to discretize the dynamical part (1), while
the central difference scheme is used for (3). Because we want to perform a sensitivity analysis
of the time-dependent system on several problem parameters, we present the discrete equations
in the extended form with the unknowns vectors u, u̇, ü, p, ṗ, p̄ of the time step n, the n − 1
time step quantities indicated by the superscript 0

Ü : Mü + Cu̇ + Ku−BTp− b = 0 , (8)

P : Bu + (D− F + FT )p− FT1p̄ = 0 , (9)

P̄ : 1TFṗ +
1

2R
(p̄+ p̄0) = 0 , (10)

U̇ : u̇− u̇0 − (1− γN)∆tü0 − γN∆tü = 0 , (11)

U : u− u0 −∆tu̇0 − (
1

2
− βN)∆t2ü0 − βN∆t2ü = 0 , (12)

Ṗ : ṗ +
1

∆t
p0 − 1

∆t
p = 0 , (13)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, B is the piezoe-
lastic coupling matrix, D is the electrostatic potential matrix and b is the volume forces vector.
The surface flux matrix F =

∫
ΓpQ

NT
ϕnκN

′
ϕ is used to impose weakly the Dirichlet boundary

condition ϕ = ϕ̄ on ΓpQ, 1, the matrix of ones, is used to sum the rows of F, performing thus
the integration of (3). The Newmark scheme is expressed by (11), (12), βN , γN are its param-
eters, the central difference scheme by (13) and the average in the second term of (10). When
computing the direct problem, u̇, u, ṗ expressed from (11)–(13) are substituted into (8)–(10),
resulting in three primary unknowns ü, p, p̄ to compute in each time step by solving a linear
system.
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The parameter identification is done by fitting a time series of measured data – in our case
the velocity component vz(t) measured by a laser vibrometer in the point L – to the corre-
sponding simulated quantity u̇z(L, t) by a nonlinear least-squares solver (least squares()
function from SciPy [10]). This solver can compute the Jacobian matrix of the objective func-
tion F numerically or use a user-supplied function returning partial sensitivities. For our linear
problem, we do not expect to achieve a faster elapsed time with a semi-analytical Jacobian
matrix (see below) than with the default 2-point finite difference scheme, because the number
of linear systems to solve is the same and computing the Jacobian analytically involves some
additional calculations. Nevertheless it allows us to test our automatically differentiated terms
based on JAX [1] and provides a proof-of-concept for future nonlinear extensions of the model.

The state problem (8)–(13) in an abstract form (see also [9]) can be written as

Φ(α,y,y0) = 0 , y ≡ [u, u̇, ü,p, ṗ, p̄]T , (14)

where α are the parameters to be identified. Our aim is to calculate the partial sensitivities
∂u̇z(L,t)
∂α

. By differentiating (14) w.r.t. α a recurrent relation

∂Φ

∂y

∂y

∂α
= −(

∂Φ

∂α
+
∂Φ

∂y0

∂y0

∂α
) (15)

is obtained allowing us to compute ∂y
∂α

in all time steps, initialized by using the initial conditions.
Then ∂u̇z(L,t)

∂α
are simply a component in ∂y

∂α
.

To briefly demonstrate the parameter identification, below we identify the parameters β (the
stiffness proportional damping parameter), E (the Young’s modulus of the beam) and u0 (a
scalar multiplier of the initial condition u0), using preliminary data for t = [0, 0.02] s with the
following (initial) material parameters:
• Steel elastic beam: ρ = 7800 kg/m3, E = 210 GPa, ν = 0.3.
• Piezoelectric disc: ρ = 7800 kg/m3, the vacuum permittivity ε0 = 8.8541878128 ·

10−12 F/m and

in Voigt notation: CP =




127.2050 80.2122 84.6702 0.0000 0.0000 0.0000
80.2122 127.2050 84.6702 0.0000 0.0000 0.0000
84.6702 84.6702 117.4360 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 22.9885 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 22.9885 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 23.4742




GPa,

e =




0.00000 0.00000 0.0000 0.0000 17.0345 0.0
0.00000 0.00000 0.0000 17.0345 0.0000 0.0
−6.62281 −6.62281 23.2403 0.0000 0.0000 0.0


 C/m2, κ = ε0




1704.4 0.0 0.0
0.0 1704.4 0.0
0.0 0.0 1433.6


 F/m .

All results were obtained using the Open Source finite element software SfePy [5, 3]. The
convergence of the identification procedure is shown in Fig. 3 (left), where the evolution of the
parameters and the l2 norm of the objective function are depicted. The initial and identified time
histories of u̇z(L, t) are shown in Fig. 3 (right), together with the experimental data. The initial
parameters correspond to reference values (a steel beam) and the attached weight loading. The
results indicate some discrepancies in the experiment: the initial deflection of the beam should
have been higher, see u0, to explain the amplitude of the data, and the elastic beam Young’s
modulus E lower to match the principal frequency of the data. Note that the decreased Young’s
modulus E does not explain the initial amplitude by itself. Based on that, new experiments
are being undertaken, where e.g. the influence on the applied initial load of cutting the nylon
string of the weight is decreased, and the material parameters of the beam are determined exper-
imentally instead of using reference material data from a data sheet. Finally, the proportional
damping coefficient was determined to be about 1.92× 10−5 s.
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Fig. 3. Parameter identification: (left) the evolution of parameters and objective function during the
objective function calls; (right) experiment, original and identified u̇z(L, t)
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