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1. Introduction
Deep learning approaches became very popular in recent years. In terms of computational effec-
tivity and time required for the learning process, number of degrees of freedom in the proposed
neural network plays significant role. Thus, an apriori information about the appropriate neural
network size for a given problem could be very promising tool in machine learning tasks.

In the contrast to the standard machine learning approaches aimed to deep learning, present
contribution deals with shallow higher order neural networks. A comparison of the ability to
capture more demanding engineering task using different neural networks is presented and basic
idea of the neural network size estimation for the task is discussed.

2. Objective statement

Natural convection phenomenon, governed by
system of Navier-Stokes equations, in the an-
nular section representing a part of the aircraft
engine where turbines are housed, was selected
as the engineering complex training task. The
goal is to find a neural operator N (•) that is
able to approximate temperature distribution
on the outer tube TD2 with permissible error
and the simplest architecture as possible. In
order to obtain training data set for neural net-
work and replace experimental measurement,
various numerical simulations with different
geometrical setups, specifically D1/D2 ratios,
thickness of the outer tube t2 and temperature
TD1 as boundary condition on the inner tube
were performed as described in detail in [5].
There is a sketch of the computational domain
in Fig. 1. Based on the theoretical and exper-
imental knowledge [4], it is necessary to as-
sume that temperature distribution on the outer
tube is also function of the angle denoted by ϕ.
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Fig. 1. Sketch of the computational domain
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3. Neural networks
Referring to previous considerations, the desired function is assumed in the form

TD2 = N (•) = f(D1/D2, t2, TD1 , ϕ). (1)

Neural output of the neural unit is consisted of two different operations as it is shown in Fig. 2
(left). Product of the somatic operation ỹ, in general, can be expressed as [2]

ỹ = σ(s). (2)

Let us assume N -th order neural unit, then product of synaptic operation can be written as [2]

s = w0x0 +
n∑

i=1

wixi +
n∑

i=1
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j=i

wijxixj + · · ·+
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· · ·
n∑
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wi1i2...inxi1xi2 . . . xin , (3)

where x0 = 1 denotes threshold and n stands for length of input feature vector.
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Fig. 2. Neural network: single neural unit (left); shallow neural network (right)

For clarity, let us introduce the labelling of neural networks as it is described in expression
(4). It is consisted of network depth L, i.e., number of layers XL and additional parameters
which stand for size of individual layers S, i.e., number of neurons in each layer XS, YS , order
of somatic operation and activation function used in individual layers.

NameANN = LXL SXSYS OXOYO (4)

It is obvious that number of adaptable weight is dependent on number of neurons in the
previous layer but it is also strongly dependent on the order of synaptic operation used in the
neurons. Total number of optimizable parameters can be obtained as [1]

N∑

j=0

(
n+ j − 1

j

)
=

N∑

j=0

(n+ j − 1)!

j!(n− 1)!
, (5)

where N denotes maximal order of synaptic operation. In Fig. 3, there is a dependency of
DoFs based on the designed neural network architecture. Only shallow two layered networks
are assumed, as it is indicated in Fig. 2 (right), with maximal thickness in the first layer equals
to five neurons. In the output layer, there is a single neuron in all cases. Higher orders up to
third only are considered.
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Fig. 3. Proposed neural network architectures: degrees of freedom comparison

4. Results
In Fig. 4, there are results of the learning performed on the training data set with different
neural network architectures. Learning rate was set to µ = 0.2 and total number of epochs to
1e3 in all cases. Pareto front of conflicting criteria, accuracy and number of degrees of freedom,
was found and as it can be seen, not all more complex compounding necessarily lead to better
performance in sense of testing error value.

Four neural network architectures were found in the Pareto front. In the case of three sim-
plest networks in this set, i.e., architectures L2 S11 O11, L2 S21 O12 and L2 S31 O13, ex-
pected behaviour is observed. As the number of DoFs is increased, the training error is by half

Fig. 4. Proposed neural network architectures: results of the learning
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an order of magnitude lower as it is listed in Ta-
ble 1. Different behaviour can be seen in case
of the last architecture on the Pareto front. Ar-
chitecture L2 S31 O33 is more than threefold
more complex but the improvement of the re-
sult accuracy is almost negligible.

Table 1. Networks in the Pareto front

Network DoFs Error

L2 S11 O11 7 3.41e-4

L2 S21 O12 16 6.94e-5

L2 S31 O13 35 1.42e-5

L2 S31 O33 125 1.28e-5

5. Conclusions
Learning of the real engineering task using different neural network architectures was presented.
It turns out that a more complex neural network does not necessarily better approximate the
given problem. Although formula for the apriori estimation of the network complexity was not
found, it turned out that more than threefold simpler neural network can approximate the task
almost similarly accurate.

It should be noticed that quality of the approximation is strongly dependent on the quality
of the training data set. Especially in cases related to CFD simulations where the error can be
estimated [6], a bound of permissible error and appropriate network size can be chosen.

More complex formula for the apriori estimation of required neural network complexity
based on the complexity of the approximated task should be aim of further research. Thumbling
stone of this topic is a method how the complexity of desired pattern can be quantified or if there
is a relation between non-linear patterns and approximation using even or odd orders of neurons.
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