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1. Introduction 

Geometrically nonlinear problems of structural mechanics are typically solved by a fully 

nonlinear (NL) algorithm utilizing the total or updated Lagrangian formulation. However, in 

cases where the large displacements result mainly from the rigid body motion and induce only 

small strains, using the co-rotational (CR) algorithm is advantageous. Such an algorithm utilizes 

the CR formulation which yields a faster pseudolinear solution compared to its fully NL 

counterpart. 

This paper aims to demonstrate the capabilities of the implemented CR algorithm on a 

practical example of an orthopaedic shoe insole. However, the purpose is not the strength 

analysis of the insole.  

The previously published CR algorithm [3] is extended by incorporating the tetrahedral 

element, and strain and stress post-processing. Firstly, the CR and NL algorithm are 

theoretically compared, as they were implemented in MATLAB. Secondly, both the 

implemented algorithms are practically tested in a static analysis of the orthopaedic shoe insole 

discretized with tetrahedral elements. The resulting displacements, strains, and stresses are 

verified with finite element commercial software results.  

2. Description of the CR and NL algorithm 

This section provides a comparative theoretical description of two algorithms utilizing the finite 

element method to solve geometrically nonlinear static analysis with small strains. The CR 

algorithm implemented according to [2] utilizes the CR formulation, whereas the NL algorithm 

implemented according to Chapter 9 in [1] utilizes the total Lagrangian formulation. Both the 

implemented algorithms are applicable to any solid finite element with linear shape functions. 

Also, when coupled with a proper time-integration scheme, the algorithms can be used for a 

transient dynamic analysis. A linear elastic material model is assumed. 

The main steps of a static analysis with the NL and CR algorithm are presented in Table 1. 

Both algorithms can be divided into two parts. Firstly, the nodal displacements 𝐮new of the 

whole model are calculated using the conventional iterative Newton-Raphson (NR) procedure. 

Secondly, the element strains and stresses are computed from the resulting displacements on a 

per-element basis. Throughout the paper, the 𝑒 subscript denotes the 𝑒-th element of the mesh. 

The exceptionality and computational efficiency of the CR algorithm come from the 

utilization of the deformational nodal displacements 𝒖𝑒𝑑, whereas the NL algorithm uses only 

the standard (i.e., total) nodal displacements 𝒖𝑒 on the element level. The deformational 

displacements are that part of displacements which causes strain, and they are extracted via the 
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polar decomposition of the deformational gradient computed in the element centroid. In the 

case of geometrically nonlinear problems with small strains, the large displacements are mainly 

caused by the rigid body motions. Therefore, the extracted deformational displacements are 

small, which enables linear calculation on the element level. 

In the case of the NL algorithm, only the constitutional matrix 𝐂 can be precomputed. Then, 

in each load step and each NR iteration inside of it, the NL formulation computes the element 

tangent stiffness matrix 𝑲𝑡𝑒 and the element internal force vector 𝒇i𝑒 using the Gauss 

quadrature integration. The integration procedure starts from the known constitutional matrix, 

initial element coordinates 𝒙0𝑒 and the current nodal displacements 𝒖𝑒 , and it utilizes the 

deformation gradient, the Green-Lagrange strain tensor, and the second Piola-Kirchhoff stress 

tensor. 

Whereas, in the case of the CR algorithm, the linear element stiffness matrix 𝑲𝑒  can be 

precomputed for each element. Then, during the NR iterations, they are just modified inside the 

CR formulation onto 𝑲𝑡𝑒. The modification contains mainly a both-sided multiplication of 𝑲𝑒  

with an orthogonal rotation matrix. The rotation matrix is obtained from the polar 

decomposition of the deformational gradient computed at the element centroid, and it represents 

the rigid body rotation of the element with respect to its initial coordinates. 

Table 1. Main steps of a static analysis with the NL and CR algorithm 

NL algorithm CR algorithm 

Prepare constitutional matrix 𝑪 Compute linear element stiffness matrices 𝑲𝑒   

Start load steps loop, inside of it start NR iterations 

 
(𝑪, 𝒙0𝑒 , 𝒖𝑒 )

NL formulation
→           (𝑲𝑡𝑒, 𝒇𝑖𝑒)   

 
(𝑲𝑒 , 𝒙0𝑒, 𝒖𝑒 )

CR formulation
→           (𝑲𝑡𝑒 , 𝒇𝑖𝑒 , 𝒖𝑒𝑑)  

 Assemble global tangent stiffness matrix 𝑲𝑡 from 𝐊te and global internal forces 𝒇𝑖𝑛𝑡 from 𝒇𝑖𝑒 and apply 

boundary conditions 

 Compute vector of residual forces 𝒓 = 𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡 

 NR iterations of displacements: 𝒖𝑛𝑒𝑤 = 𝒖𝑜𝑙𝑑 + 𝑲𝑡
−1𝒓 

Exit NR iterations if ‖𝒓‖/‖𝒇𝑒𝑥𝑡‖ is smaller than predefined NR tolerance 

Increase external forces 𝒇𝑒𝑥𝑡  up to full load and then exit load steps loop 

Extract element displacements 𝒖𝑒 from 𝒖𝑛𝑒𝑤 Use element deformational displacements 𝒖𝑒𝑑 

Compute deformational gradient: 𝑭𝑒 =
𝜕(𝒙0𝑒+𝒖𝑒)

𝜕𝒙0𝑒
 Compute linear strain-displacement matrix: 𝑩𝒆 

Compute Green-Lagrange strain tensor:  

𝜠𝑒 = 1/2(𝑭𝑒
𝑇𝑭𝑒 − 𝑰),  rewrite into vector 𝜺𝑒 

Compute infinitesimal strain vector:  
𝜺𝑒 = 𝑩𝑒  𝒖𝑒𝑑 

Compute element stress vector: 𝝈𝑒 = 𝑪 𝜺𝑒 

 

In the second part of the NL algorithm, firstly, the element Green-Lagrange strain tensor 𝜠𝑒 
is computed from the element deformational gradient 𝑭𝑒. Then, the element strain tensor 

components are rewritten to a vector form 𝜺𝑒 using the Voigt notation. The identity matrix 𝑰 
has dimensions 3 × 3 for 3-dimensional solid elements or 2 × 2 for 2-dimensional solid 

elements. 

On the other hand, the CR algorithm is able to compute directly the element infinitesimal 

strain tensor components in a vector form 𝜺𝑒 linearly from the known deformational 

displacements 𝒖𝑒𝑑. The linear strain-displacement matrix 𝑩𝑒 contains derivatives of shape 

functions with respect to the initial nodal coordinates. 
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Once the element strain tensor components are known, the element stress tensor components 

𝝈𝑒, with respect to the initial configuration, are obtained easily by multiplying with 𝑪. This, of 

course, applies only to the linear elastic material model. 

Both the implemented algorithms compute its derivative quantity, 𝑭𝑒 or 𝑩𝑒, only in the 

element centroid, not in Gauss points. This is precise only for tetrahedral or triangular solid 

finite elements with linear shape functions because they have constant strain distribution 

through the whole element. However, based on the author’s tests with hexahedral elements, this 

procedure gives satisfactorily precise results for other solid elements with linear shape 

functions, if a model contains relatively many small elements. 

The equivalent strain and stress and all the other derived quantities on the element level are 

standardly computed from the element strain or stress tensor components. Optionally, the 

element strain and stress quantities can be averaged in nodes. 

3. Numerical tests on an orthopaedic shoe insole undergoing large displacements 

The orthopaedic shoe insole is discretized by 39595 tetrahedral elements with linear shape 

functions. The computational model contains 8896 nodes, and it is depicted in Fig. 1. The nodes 

marked by blue colour are fixed and 21 nodes marked by the red arrows are loaded in the 

direction of the z-axis. The loading force of 20 N is evenly distributed onto the loaded nodes. 

A linear elastic material model with Young's modulus of 1250 MPa and Poisson's ratio of 0.29 

is assumed in the whole range of strains. 

  

Fig. 1. Computational model: fixed nodes (blue), 

forced nodes (red) 

Fig. 2. Equivalent element strain (-) from commercial 

software 

The geometrically nonlinear static analysis of the insole was performed using 3 different 

algorithms: the implemented CR, the implemented NL, and the one from commercial software 

which utilizes the updated Lagrangian formulation. The resulting maximal total displacements, 

maximal equivalent element strains and maximal equivalent element stresses are comparatively 

presented in Table 2, where the commercial software results are taken as a reference. The CR 

and NL algorithm results are almost identical and differ from the commercial software results 

by less than 2 %. To avoid the influence of the different nodal averaging techniques, the element 

(i.e., unaveraged) strains and stresses are compared. These are the results which directly come 

from the constant-strain tetrahedral finite elements. However, they are significantly higher than 

the nodal (i.e., averaged) results which are typically used for the strength evaluation. 

Both the implemented algorithms required only one load step to reach the specified NR 

tolerance of 10−7. Although, the NL algorithm used fewer NR iterations than the CR one, 

computation with the CR algorithm was about 1.2 times faster, because the CR formulation 

calculations are computationally less demanding. In terms of computational time, the 

algorithms implemented in MATLAB cannot compete with the optimized implementation in 

commercial software. 

In Figs. 2 and 3, the distributions of equivalent element strains are displayed on a deflected 

insole in a true scale. The distributions obtained by different algorithms are visually 

indistinguishable. Although the maximal equivalent strain is almost 8 %, such high strains 
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appear only locally on a few elements. In most elements, the equivalent strain is lower than 

3 %, which can be considered a small strain. Therefore, the CR algorithm provides very similar 

results to the NL one. 

 

Fig. 3. Equivalent element strain (-) by NL (left) and CR (right) algorithm   

Table 2. Comparison of the CR and NL algorithm results and verification with commercial software results 

Algorithm NL CR Commercial 

Max. total displacement [m] 0.043170 0.043135 0.042643 

Displacement relative error [%] 1.24 1.15 - 

Max. eqv. element strain [-] 0.075667 0.075170 0.074267 

Eqv. strain relative error [%] 1.89 1.22 - 

Max. eqv. element stress [MPa] 94.583 93.963 92.834 

Eqv. stress relative error [%] 1.88 1.22 - 

Computational time [s] 1748 1475 (11) 

Number of NR iterations [-] 9 10 (7) 

4. Conclusion 

The CR and NL algorithm were implemented and numerically tested on a practical example of 

an orthopaedic shoe insole undergoing large displacements. The insole was discretized by 

tetrahedral finite elements with linear shape functions. The resulting CR and NL displacements, 

element strains and stresses are almost the same, and they differ from the commercial software 

results by less than 2 %. The CR algorithm is faster than the NL one because it contains less 

computationally demanding mathematical operations. Although the CR formulation is 

generally limited by a small strain, it was demonstrated that the large local strain over a few 

elements does not noticeably damage the results, because the large local strains do not influence 

the final deflected shape significantly. 
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