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1. Introduction
In microfluidic devices, nonlinear acoustic phenomena, namely the acoustic radiation, acoustic
streaming are employed to manipulate particles and actuate fluid flow. These principles have at-
tracted much interest of the research focused on developing new tissue engineering technologies
since the acoustic wave are highly biocompatible, providing a non-contact controlable handle
to manipulate bioparticles, or cells.

This paper deals with the acoustic streaming (AS) in periodic poroelastic media, see [2]
where the AS in a bulk fluid was studied in response to vibrating walls of a channel. The fluid-
structure interaction problem is imposed in elastic scaffolds. To capture the acoustic streaming
phenomenon in response to propagating acoustic wave, nonlinearities originating in the diver-
gence of the Reynolds stress, the advection acceleration term in the Navier Stokes equation, and
the nonlinearity generated by deforming pore geometry must be retained. The perturbation with
respect to a small parameter proportional to the inverse Strouhal number is applied. This yields
the first and the second order sub-problem enabling to linearize the Navier-Stokes equations
governing the barotropic viscous fluid dynamics in deforming scaffolds. Subsequent treatment
by the asymptotic homogenization leads to a two scale problem where the macroscopic model
provides the vibro-acoustic analysis in the Biot-type medium. It yields the AS source term for
the second order problem which attains the form of the Darcy flow.

2. Micromodel of the heterogeneous structure
Flow of the barotropic viscous fluid (parameterized by the 1st and the 2nd viscosities, µf and ηf ,
and the reference sound speed c0) is described by the velocity, pressure and density (vf , p, ρf )
satisfying the Navier-Stokes equations in the pores Ωf . The fluid interacts with the deforming
solid skeleton Ωs, such that its displacement field u is governed by the elastodynamic (wave)
equation involving the elasticity tensor IDs and the density ρs. A nonlinear problem is consti-
tuted by the following system of equations:

ρs∂
2
ttu −∇ · IDse(u) = 0 in ΩS ,

ρf
(
∂tvf + vf · ∇vf

)
= −∇p+∇ · IDf∇vf + f f in Ωf ,

∂tρf +∇ · (ρvf ) = 0 in Ωf

(1)

with the state equation p = c20ρf + c0c
′
0(ρf )

2 and the standard continuity of the stress tractions
and velocities considered on the interface Γfs ,

u̇ = vf , and n · IDse(u) = n · (IDfe(vf )− pI) on Γfs . (2)
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It is of advantage to introduce a smooth extension ũf of the solid displacements to Ωf , such that

vf can be expressed using the seepage w, as follows: vf = w + ˜̇uf
, whereby w = 0 on Γfs .

Following the approach suggested by Nyborg [1] based on the successive approximations,
the nonlinear problem represented by (1)–(2) can be decomposed into 2 subproblems:

• 1st order: Fast time–periodic dynamics: acoustic waves propagating in the two-phase
medium, (u,w1, p1) satisfy (with boundary conditions imposing an incident acoustic wave;
recall the “tilde” notation denoting the displacement extension to Ωf )

ρs∂
2
ttu −∇ · IDse(u) = 0 in Ωs,

∂tρ1 + ρ0∇ · (w1 + ˜̇u
f
) = 0 in Ωf ,

ρ0(∂tw + ∂t˜̇u
f
) +∇p1 − [µ∇2 + (µ/3 + η)∇(∇·)](w1 + ˜̇u

f
) = 0 in Ωf ,

p1 = c20ρ1 in Ωf .

(3)

• 2nd order: Slow flow streaming in Ωf described by (w2, p2.ρ2) with given v1 := w1 + ˜̇u
f
,

∂tρ̄2 + ρ0∇ · w̄2 = −∇ · (ρ1v1),
ρ0∂tw̄2 +∇p̄2 − µ∇2w̄2 + (µ/3 + η)∇(∇ · w̄2) = −ρ0

(
(v1 · ∇)v1 + v1(∇ · v1)

)
,

p̄2 = c20ρ̄2 + c0c
′
0(ρ1)

2,

(4)

where all the “over-bar” designates the time-average over the time period of the acoustic
waves described by the 1st order problem.

3. Homogenized model
We consider periodic porous structures, such that the characteristic pore scale is proportional
to a small parameter ε = ℓ/L defined by the ratio of the micro- and macroscopic characteristic
lengths, denoted by ℓ and L, respectively. The periodic structures of the poroelastic medium
are generated by the so-called representative periodic cell (RPC) Y = Ys ∪ Yf ∪ ΓY

fs which
consists of the solid and fluid parts correspondingly to the decomposition of Ω, see Fig. 1.
The homogenization procedure applied to derive an effective model of the two-phase medium
consists in the asymptotic analysis ε → 0 of the micro-models (3) and (4) presented above,
where all the unknowns and model parameters depending on the scale ε. Homogenization of
(3) yields the standard Biot model of the poro-elastodynamics, cf. [3] For a given frequency ω,
the acoustic waves are represented by the amplitudes (u0

1,w0
1, p

0
1) which satisfy the following

fluid

solid

deformed
position

Fig. 1. The representative cells Y for the case of solid skeleton Ys constituting a connected domain Ωε
s

(left) and the case of suspended particles Ys which can be rigid (right). In the latter case, the “suspension”
can be realized due to a very thin (negligible) elastic network
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set of equations which hold in Ω:

−ω2r̂u0
1 + iωw0

1 −∇ ·
(
ÎD

H
ex(u0

1)− p01B̂
H
)
= 0,

iωB̂
H
: ex(u0

1) +∇ · w0
1 + iωM̂Hp01 = 0,

w0
1 + ◦̂K(∇xp

0
1 − ω2ω2u0

1) = 0.

The effective coefficients ÎD
H
, B̂

H
, M̂H and ◦K are computed using the characteristic responses

of the so-called cell problems solved in Ys and Yf . The dynamic permeability ◦̂K depending on
ω can be expressed in terms of eigenvalues {ηr}r and eigenfunctions {wr}r of the Stokes flow
problem in Yf .

In order to evaluate the AS source (force), the fluid velocity must be reconstructed at the
microscopic level (for any x ∈ Ω). For this, the decomposition using the extended velocity of
the solid and the fluid seepage are employed, as follows

vmic
1 = ŵ1 +

˜̇umic
1

f

in the fluid Yf × Ω,

u̇mic
1 = u̇1

1 +Πrsexrs(u̇
0
1) in the solid Ys × Ω

with u̇1
1 = χrsexrs(u̇

0
1) + χP ṗ01 ,

where u̇1
1 is the solid velocity corrector (the two-scale function defined in Ys×Ω,being expressed

in terms of χrs and χP , the characteristic responses of the microstructure, i.e., the skeleton
displacements with respect to the unit strain modes and the unit pore pressure, respectively.
Further, Πrsexrs(u0

1) provides the affine displacement in Y due to the macroscopic strain exrs(u0
1).

Then, the seepage velocity is expressed using the convolution integral with the kernel associated
with the dynamic permeability through the eigenpairs {ηk,wk}k and βk denoting the mean of
wk in Yf , so that

ŵ1(t, y, x) = −
∑

k

ρ−1
0

∫ t

0

α̂kwk(y)⊗ βk exp{−ηk(t− τ)}pdyn
1 (τ, x)dτ in fluid

with pdyn
1 = ∇xṗ

0
1 − ρsü0

1 .

The streaming source S (also called the “acoustic force”) is defined by virtue of the 2nd ordered
problem (4)

S(vmic
1 ) = (ŵ1 +

˜̇umic
1

f

) · ∇y(ŵ1 +
˜̇umic
1

f

) + (∇y · ˜̇umic
1

f

)(ŵ1 +
˜̇umic
1

f

) .

Thus, in the limit, S(vmic
1 ) depends on the characteristic responses Ξ of the fluid and solid

parts of the microstructure, and on the 1st order macroscopic response — the acoustic waves
described by U(x, t) := (ü0

1, e
x
rs(u̇0

1), ṗ
0
1,∇xṗ

0
1). In general, the streaming force (acceleration)

is defined by the mapping FAS : (Ξ,U) 7→ S.
Homogenization of the 2nd order problem describing the AS in the fluid (obviously, no

streaming in the solid) leads to the same result as the one obtained for the case of a rigid solid.
Micro-response in Yf is presented by the couple (w2, p

1
2) satisfying

− ρ0
∂

∂t
w2 +∇y · (µ̄∇y ⊗ w2)−∇yp

1
2 = ∇xp

0
2 + ρ0S∗(vmic

1 ),

∇y · w2 = 0 in Yf , w2 = 0 on Γfs .
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This problem can be solved using the spectral decomposition, which leads to the same spectral
problem as the one solved to solve the the 1st order problem. It enables to express the macro-
scopic “streaming source”, velocity wAS which constitutes the driving force in the AS equation
governing the pressure field p̄02,

−∇x ·K∇xp̄
0
2 = ∇x · wAS in Ω.

As for the boundary conditions for p̄02 on ∂Ω, clearly a fixed wall Γw of a waveguide yields
n · K∇xp̄

0
2 = 0, whereas p̄02 = 0 can be considered on the open surfaces Γo = ∂Ω \ Γw.

In Fig. 2, the AS induced flow around the suspended rigid obstacles is reconstructed at two
macroscopic positions x ∈ Ω of the waveguide.

Fig. 2. Illustration of the AS in response to the acoustic waves in the fluid saturating rigid scaffolds
(periodically distributed droplet-shaped obstacles). The AS flow is displayed in terms of streamlines
(arrows) and |w2| (color) at two macroscopic position x ∈ Ω
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