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Voice-Interactive Computer Vision on Raspberry Pi

by Martin Adamec

Artificial neural networks nowadays outperform the "classical" approaches in
the area of computer vision by a significant margin, but they come with their
own set of problems. Training an artificial neural network is an extremely
time-consuming and resource-intensive task (both in terms of necessary hard-
ware and training data), after which the network is able to recognize only
a limited collection of classes based on the training data. If a requirement
to incorporate a new class into a neural network’s recognition capabilities
arises, it is necessary to retrain the network, either from scratch, rendering
the previously computed weights and biases obsolete, or by using the so-
called "transfer learning", an approach based on utilizing the weights and
biases obtained from some previous training process, significantly reducing
the time and resources needed to achieve the required accuracy of the model.
In this bachelor thesis, such concept is utilized in an implementation of a
voice dialog system for retraining computer vision models, allowing the user
to interactively teach the system to recognize new faces and objects. The
effectiveness of the voice dialog system is evaluated through multiple experi-
ments, demonstrating its potential to improve the accuracy and adaptability
of computer vision models.

Keywords: Computer vision, Voice interaction, Rapsberry Pi, Human-in-
the-loop dialog
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Katedra Kybernetiky

Bakalář (Bc.)

Počítačové vidění s hlasovou interakcí na Raspberry Pi

Autor: Martin Adamec

Umělé neuronové sítě dnes v oblasti počítačového vidění výrazně překoná-
vají "klasické" přístupy, ale mají své vlastní problémy. Trénování umělé neu-
ronové sítě je úkol značně náročný na zdroje (jak z hlediska potřebného hard-
waru a výpočetního času, tak i z hlediska potřebných trénovacích dat), po
kterém je síť schopna na základě trénovacích dat rozpoznat pouze omezený
počet tříd. Vznikne-li požadavek na začlenění nové třídy do rozpoznávacích
schopností neuronové sítě, je nutné síť přetrénovat, a to buď od začátku,
čímž se dříve vypočtené váhy a prahy stanou irelevantními, nebo pomocí
takzvaného "transfer learningu", což je přístup založený na využití vah a
prahů získaných z nějakého předchozího trénování sítě, čímž se výrazně zre-
dukuje čas a zdroje potřebné k dosažení požadované přesnosti modelu. V
této bakalářské práci je takový koncept využit při implementaci hlasového
dialogového systému pro přetrénovávání modelů počítačového vidění, který
umožňuje uživateli interaktivně učit systém rozpoznávat nové tváře a ob-
jekty. Přesnost hlasového dialogového systému je vyhodnocena prostřed-
nictvím několika experimentů, které prokazují jeho potenciál pro zlepšení
přesnosti a adaptability modelů počítačového vidění.

Klíčová slova: Počítačové vidění, Hlasová interakce, Rapsberry Pi, Human-
in-the-loop dialog
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Chapter 1

Introduction

In the area of computer vision today, the state-of-the-art approach is to use
artificial neural networks, which have been proven to yield significantly bet-
ter results than classical methods of computer vision (classical methods refer
to computer vision approaches that do not use artificial neural networks).
Such methods can still be useful in cases where the size of the available
collection of training data is not sufficient (Sertis, 2022), as a large amount
of training data is crucial to ensure the correct results when working with
artificial neural networks.

The vast majority of those artificial neural networks mentioned above are
trained using the so-called offline learning, meaning that during the train-
ing phase, the artificial neural network is trained on a data set of sufficient
size (in case of image classification, it is common for the number of images
representing each class to range from tens of thousands to millions of indi-
vidual images). After the training phase of the artificial neural network is
finished, the network then enters the evaluation phase, in which the coeffi-
cients (weights and biases) of the network are no longer modified.

Generally speaking, this method of training artificial neural networks with-
out any previous parameter initialization (training from scratch) is very
resource-intensive, whether in terms of computational time, finances, or hu-
man labor. Although nowadays most of the training is done on computers
using graphics cards (GPU ) due to their ability to do many computations
in parallel (Towards AI, 2021), the training phase is still an extremely time-
consuming process, and the computational time needed to successfully train
a deep neural network (artificial neural network with more than one hidden
layer) can in some cases reach several weeks. The purchase of a graphics
card also means additional costs, as the prices of higher-end graphics cards
are in the tens of thousands of crowns (hundreds to thousands of dollars),
and their use also increases the overall power consumption of the computer.
However, training an artificial neural network is not only costly in terms of
the hardware required for the computation itself but also in terms of data
preparation (DataSet SHOP, 2023), since to achieve, for example, sufficient
accuracy in detecting a human face in an image, the artificial neural net-
work needs to be trained on a very large number of training images in which
human faces are photographed from as many different angles as possible, in
multiple different resolutions, and with as many kinds of data augmentation
(adding noise to the image, rotating the image, cropping the image, etc.) as
possible.
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At the same time, this approach is suitable only for tasks with a static
dataset, i.e. for tasks where the neural network is initially trained once on
an unchanging number of classes (groups of entities with similar properties)
into which it then classifies objects throughout the evaluation phase. As an
example of practical use of this approach, we can use the task of automatic
detection of bone fracture in an X-ray image (Hardalaç et al., 2022), since
these tissue damages generally have specific characteristics by which they
can be reliably recognized in the image. In such a case, after the initial
training on a substantial training dataset, the network can be easily used
in the evaluation phase, because no significant changes in the monitored
properties are expected. However, for tasks where the dataset is expected
to change repeatedly, it would not be viable to go through the resource-
demanding process of training the whole network from scratch, as the dataset
could change before the training is even finished. Therefore in such cases,
a different, faster, and less resource-intensive approach needs to be used.
Possibly the best approach for tasks with dynamically changing datasets is
the so-called online (or incremental) learning, in which the model parameters
are not trained from a random initialization, but parameters from an already
trained model are used instead, and new data are presented to the model
in small batches, which dramatically shortens both the computational time
and the size of the dataset needed for the training.

To illustrate the power of online learning and its benefits over the standard
offline approach, this thesis presents an implementation of an interactive
voice dialog system, which allows the user to interact with the computer vi-
sion models (face recognition and object detection) through voice commands
and receive real-time feedback. This system provides users with the ability
to correct classification errors and to teach the system new to recognize new
faces or objects that it has never seen before.

The contribution of this thesis to the field of machine learning is in provid-
ing a proof of concept for an interactive system, exploring the possibilities
of retraining neural networks, and modifying the performance of computer
vision algorithms after they have been trained. The findings of this research
could potentially lead to a low-cost handheld device, capable of facilitating
object recognition for visually impaired people.
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1.1 State of the Art
While the tasks of face recognition and object detection both fall in the area
of computer vision, different approaches have proven to achieve the best
results for each of those tasks. The topic of human-interactive dialog is also
a topic of high interest for research, as new possibilities of human interaction
(speech, sign language, facial expression, etc.) are becoming feasible with
newly discovered technologies.

1.1.1 Face Recognition

Face recognition is one of the most researched tasks in the field of computer
vision, as it can be utilized in security and surveillance applications. At the
time of writing, the five best methods listed on the popular machine learning
website Papers With Code 1 achieve accuracy of over 99% on the Labeled
Faces in the Wild dataset (Section 4.1), which is arguably the most popular
dataset in the field of face recognition. Each of those methods is based on
deep artificial neural networks, differing only in the specific architecture of
those networks.

1.1.2 Object Detection

The term object detection refers to the task of determining the location of
an object in an image, and then assigning a label to the localized object.
Nowadays, object detection is being dynamically developed in the auto-
motive industry in the field of autonomous vehicles, where an automatic
understanding of the vehicle’s surroundings is essential to achieve fully au-
tonomous driving. The ultimate main goal in the area of object detection
is to find the best trade-off between inference time and accuracy in order to
achieve usable results in real time. Currently, the best real-time object de-
tection model is the YOLOv7 (Wang, Bochkovskiy, and Liao, 2022) from the
YOLO (You Only Look Once) family of single-shot object detection models,
achieving average precision of 51.2% on the COCO dataset (Section 4.3)
while achieving a very impressive inference time of only 9 milliseconds on
the NVIDIA Tesla T4 2 GPU .

1.1.3 Human-in-the-loop methods

Human-in-the-loop refers to a special kind of interaction between humans
and machine learning algorithms. Generally speaking, human-in-the-loop
methods could be split into two categories depending on which side is in
charge of the interaction (Mosqueira-Rey et al., 2022):

• Active learning - the system is in control of the interaction, treating
the user as a means to annotate unlabeled data for its machine learning
algorithms

• Machine teaching - the user is in control of the interaction, choosing
what kind of data and knowledge they want to teach the machine
learning algorithms of the system

1https://paperswithcode.com/sota/face-recognition-on-lfw
2https://www.nvidia.com/en-us/data-center/tesla-t4/

https://paperswithcode.com/sota/face-recognition-on-lfw
https://www.nvidia.com/en-us/data-center/tesla-t4/
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The second group of methods is relevant for this bachelor thesis, as the de-
signed interactive system should work by responding to the stimuli from the
user. Such system should have a short response time (ideally working in real-
time), and the machine learning models should be updated incrementally,
building on top of previously obtained knowledge.

1.2 Thesis Objectives
The objectives of this thesis are:

1. to select a face recognition algorithm suitable for Raspberry Pi

2. to select an object recognition algorithm suitable for Raspberry Pi

3. to implement those algorithms on low-cost robotic platform

4. to incorporate those algorithms into a voice-interactive dialog loop

1.3 Thesis Outline
This thesis consists of 8 chapters, following the standard skeleton of scientific
publications.

Chapter 2 describes the general concepts of technologies utilized in this bach-
elor thesis, first focusing on the concept of artificial neural networks and their
applications in the area of computer vision (Section 2.1), then moving on the
tools used for the tasks of face recognition (Section 2.2) and object detec-
tion (Section 2.3) and the concept of transfer learning (Section 2.4), which
is heavily utilized in the final implementation of the solution. The rest of
Chapter 2 then explains the technologies used in the more technical aspects
of the final implementation, namely the communication protocols used for
the communication with the remote server, the Robot Operating System, on
which the interactive system (and the physical robotic entity) runs, and
the SpeechCloud platform used for the speech processing in the interactive
dialog.

Chapter 3 then details the application of those technologies in the solu-
tion presented in this bachelor thesis, while Chapter 4 briefly describes the
datasets used either for training or testing the models used in the final im-
plementation.

Chapter 5 presents the results of experiments done to justify the final de-
sign choices, and also for the evaluation of the implementation, and the
application of the proposed methods on a physical entity called Robot.v1 is
discussed in Chapter 6.

Chapter 7 comes with a discussion of the results, along with suggestions for
future work and the alternative approaches tested during the design process.
Finally, the thesis is concluded in Chapter 8.



5

Chapter 2

Tools and technologies

This chapter describes the working principles of technologies used in this
bachelor thesis. The technologies are described in such depth that the reader
is able to understand how they were utilized in this work.

2.1 Artificial neural network
Artificial neural network (ANN) is a type of machine learning (ML) model
inspired by the structure and the operating principle of the human brain.
An artificial neural network is comprised of multiple interconnected nodes,
called artificial neurons.

An artificial neuron is essentially a simplified model of the biological neuron,
having one or more inputs, which are then weighted and summed. The
product of this operation is called neuron activation, and the formula to
calculate its value can be seen in Eq. (2.1).

z =
n∑

i=1
wixi + b (2.1)

where:

• z: neuron activation value

• xi: ith input value of the neuron

• wi: ith input weight of the neuron

• b: bias (threshold) of the neuron

Because the activation value is arbitrary and unbounded, using this value
without any kind of normalization could result in numerical instability, as
the numerical values could raise above the maximum range that comput-
ers are able to store in memory (overflow errors) during computation. To
achieve such normalization, an activation function has to be used. By apply-
ing an activation function as in Eq. (2.2), the value of the neuron activation
is mapped into a finite interval whose limits depend on the activation func-
tion used. The value obtained from the activation function is called neuron
activity.
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a = f(z) (2.2)

where:

• a: neuron activity

• z: neuron activation value

• f : neuron activation function

Summation

x1

x2

xn

w1

w2

wn

a
Activation
function

b

Figure 2.1: Artificial neuron (perceptron) working princi-
ple

Artificial neurons are then organized into layers, which are essentially groups
of neurons with the same designated function. The first layer of any artificial
neural network is called an input layer, which serves as an entry point for the
network, through which it receives the data to process. The input layer is
usually a fully-connected layer, meaning it passes the inputs to each neuron
of the next layer. The last layer of an artificial neural network is called
the output layer, representing the result of the network processing. In the
context of classification, when the task involves distinguishing between only
two classes, the output layer may comprise of only a singular neuron with a
binary activation function. The activity of the neuron would then indicate
whether the processed input belongs to the first class (activation function
has a value of 1) or the second class (activation function has a value of 0). For
the case of multi-label classification, the number of neurons in the output
layer corresponds to the number of classes in the classification problem.
In these cases, so-called one-hot vector encoding could be used, where the
neuron representing the target class has a value of one, whereas the value
of every other neuron is zero. Another commonly used type of encoding is
obtained by using a special activation function in the output layer, called
the softmax function. This function converts all of the N output values into
a probability distribution with N possible outcomes, which normalizes the
output of the network, as the sum of all the probabilities is equal to one. The
softmax probability of the ith neuron can be obtained by using the formula
in Eq. (2.3)

Softmax(zi) = ezi∑N
j=1 e

zj
(2.3)

Any layer between the first (input) and last (output) layer is called a hidden
layer. If the network has more than one hidden layer, it is referred to as a
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deep neural network (DNN ). An example of a deep neural network is shown
in Fig. 2.2. Convolutional neural networks also fall into the category of deep
neural networks, and they are further described in Section 2.1.1.

Input layer Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 2.2: Block diagram of a fully-connected deep neural
network with two hidden layers

The hidden layers of a neural network allow the network to learn depen-
dencies and patterns present in the dataset, which allows the network to
solve complex tasks without the need for an explicit algorithm programmed
directly for the task.

As mentioned in Chapter 1, a neural network can either be in a training
phase, or in a evaluation phase. In the training phase, the network is pre-
sented with labeled training data, meaning that for each input value, the
desired output value is known (this type of training is called supervised learn-
ing). The network takes the input value and calculates the output based on
its current parameters (weights and biases), after which it calculates the er-
ror between the predicted and the correct output from the labeled training
data. The error is calculated according to the so-called loss function, which
is determined based on the nature of the problem, whether it is a classifi-
cation or regression task (a simple comparison is shown in Fig. 2.3. These
two fundamental machine learning tasks differ in their objectives. While
the goal of regression is to predict a continuous numerical value based on
input features (e.g. predicting the temperature for the next day), the goal of
classification is to assign the input to a given category based on its features
(e.g. labeling an email as either spam or not).
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One of the most commonly used loss functions for regression problems is the
mean squared error (MSE), which is calculated by the formula in Eq. (2.4).

MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 (2.4)

where

• N = number of samples in the output y

• yi = correct value of the ith element of the output

• ŷi = predicted value of the ith element of the output

• i = index of the output element

For the problem of classification, the most commonly used loss function is
cross-entropy, which is more suitable for outputs with a probabilistic distri-
bution. The formula to calculate cross-entropy is shown in Eq. (2.5).

H(y, ŷ) = −
N∑

i=1
yi log(ŷi) (2.5)

where

• N = number of samples

• yi = correct value of the ith element of the output

• ŷi = predicted value of the ith element of the output

• i = index of the output element
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Simulated regression problem - prediction of a daily temperature
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(a) Artificial regression task
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(b) Artificial classification task

Figure 2.3: Demonstration of regression and classification
problems on artificial data
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The goal of the training phase is to find a set of weights and biases that
minimizes the loss function. Due to the high dimension of the loss function,
especially in deep neural networks, it is essentially not possible to find the
minimum of the loss function analytically. Because of that, the network
iteratively adjusts its trainable parameters, weights and biases (see Eq. (2.2)
for their meaning in artificial neuron activation). The magnitude of those
adjustments is determined by the negative gradient of the loss function. The
gradient is a vector of all partial derivatives, and the value of a gradient at
any given point of the functions the gradient shows the direction of the
steepest increase (the negative gradient therefore shows the direction of the
steepest decrease). This method of finding the minimum of the loss function
is called the gradient descent. One can imagine the working principle of
this algorithm as starting at a random point on the loss function (random
initialization of weights and biases), calculating the negative gradient at that
point, and finally taking a small step along the loss function in the direction
of the negative gradient. The simplification of the gradient descent algorithm
is displayed in Fig. 2.4. However, because the gradient descent always takes
a step in the direction of the steepest decrease, it can end up prematurely
when it encounters a local minimum, and so finding the optimal solution
is not always guaranteed. Such a case is displayed in Fig. 2.5, where wL

denotes the local minima that the gradient descent algorithm could end in
before reaching the optimal weight value of w∗.

w*

Positive derivative,
weight must be 
decreased

Negative derivative,
weight must be 
increased

Figure 2.4: Illustration of the dependency of the loss func-
tion (L(w)) on a single weight w - single global minimum,

w∗ denotes the optimal value of the weight w
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wL

wL

wL

w*

Figure 2.5: Illustration of the dependency of the loss func-
tion (L(w)) on a single weight w - multiple local minima, w∗

denotes the optimal value of the weight w, while each wL de-
notes a local minimum which the gradient descent algorithm

could end up in

In general, neural networks should be used in tasks where an explicit solution
is either not known, or where it would be too complicated to produce an exact
algorithm. However, in cases where the explicit solution of the problem is
known, such as linear regression problems, it is generally better to use the
explicit solution due to the extensive computational cost of training a neural
network.

2.1.1 Convolutional neural network

Convolutional neural networks (CNN) are artificial neural networks that con-
tain at least one convolutional layer, which is a special kind of layer with
a trainable convolutional filter, called a kernel. Because of the advantages
listed below, convolutional neural networks have become state-of-the-art in
digital image processing and computer vision applications since their first
introduction in 1998, when they were used to recognize handwritten digits
on checks in US banks (Lecun et al., 1998), to today, when transformer archi-
tecture networks (Section 2.1.2) are beginning to gain traction in the area of
computer vision. In order to fully explain the convolutional neural network,
it is first necessary to explain the operation of convolution itself. Since only
discrete convolution is relevant for this thesis, the continuous version of the
operation will not be explained in detail, and the term "convolution" will
hereafter refer to the discrete version when used. Convolution is a mathe-
matical operation on two number sequences, denoted f(n) and h(n), which
produces another number sequence, denoted g(n), where each element is a
sum of the element-wise product of both original sequences, as shown in
Eq. (2.6).
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g(n) = f(n) ∗ h(n) =
∞∑

k=−∞
f(k) · h(n− k) (2.6)

The intuition behind the process of convolving two sequences could be de-
scribed as:

1. Having two number sequences (f(n) and h(n)), reverse one in time
(f(n− k))

2. Slide one of the sequences (h) over the other (f)

3. For each slide (k), compute the element-wise product of the overlapping
values

4. Add up the product (
∑

)

5. Store the sum as an element of a new sequence on the corresponding
index (k)

For better demonstration, the following example is provided in Fig. 2.6, in
which two short arrays of numbers, f and h are convolved according to the
formula in Eq. (2.6). For the parts of the arrays that do not overlap, one
can imagine that the array simply has a value of zero at those indices, as
illustrated by the red zeros in the image.

1 11 4 4 7f(n) = h(n) = 4 51 93 28g(n) =

1 11 4

7 4

1 11 4

7 4

1 11 4

7 4

1 11 4

7 4

1 11 4 1 11 4 1 11 4

4·7 = 2811·7 + 4·4
= 93

1·7 + 11·4
= 511·4 = 4

(1,0)(n,k) = (0,0) (1,1) (2,1) (2,2) (3,2)

0 0 0 0

00

00

Figure 2.6: Demonstration of how a one-dimensional con-
volution of two short arrays works

However, in computer vision, two-dimensional convolution is used for most
applications, as it is best suited for single-image processing. Images are ba-
sically matrices of pixel values - for grayscale images, pixel values are stored
directly in a single two-dimensional array (Fig. 2.7), for colored images, the
pixel values are stored in a three-dimensional array, where a value for each
of the color channels, Red, Green and Blue (RGB for short), is stored in a
separate page of the matrix (Fig. 2.8). An example of how a 3D matrix is
structured as shown in Fig. 2.9. In some special applications, such as analy-
sis of volumetric (three-dimensional) images or video analysis, where it can
be used to analyze the motion of an object over time, three-dimensional con-
volution is used. However, since only the two-dimensional version is utilized
in this thesis, it is explained below.
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The general formula of discrete two-dimensional convolution is given in
Eq. (2.7),

g(i, j) = f ∗ h =
∞∑

m=−∞

∞∑
n=−∞

f(i−m, j − n) · h(m,n) (2.7)

where

• g = product of the convolution

• f = original two-dimensional matrix

• h = convolution kernel

• i, j,m, n = matrix indices, f(i, j) represents the value of the pixel at
row i and column j in the matrix f

but since digital images have a finite size and are represented as arrays in
computers (indexing from zero is assumed in this case), the equation can be
rewritten to the form given in Eq. (2.8)

g(i, j) =
M−1∑
m=0

N−1∑
n=0

f(i−m, j − n) · h(m,n) (2.8)

where

• g = convolved image

• f = original image

• h = convolution kernel

• i, j,m, n = array indices

• M,N = size (height and width) of the convolution kernel h



0 0 0 0 0 0 0 0
0 0 255 0 0 255 0 0
0 0 255 0 0 255 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 255 0 0 0 0 255 0
0 0 255 255 255 255 0 0
0 0 0 0 0 0 0 0


(a) The two-dimensional array rep-
resenting the image in a computer

(b) The same array when the values
are represented as pixel values (in-

tensity)

Figure 2.7: An illustration of an 8x8 grayscale image repre-
sentation in a computer (values are represented by unsigned

8-bit integers)
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

0 0 0 0 0 0 0 0
0 0 255 0 0 0 0 0
0 0 255 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(a) The three-dimensional array
representing the image in a com-

puter - Blue channel



0 0 0 0 0 0 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 255 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(b) The three-dimensional array
representing the image in a com-

puter - Green channel

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 255 0 0 0 0 255 0
0 0 255 255 255 255 0 0
0 0 0 0 0 0 0 0


(c) The three-dimensional array
representing the image in a com-

puter - Red channel
(d) The same array when the values

are represented as pixel values

Figure 2.8: An illustration of an RGB image representation
in a computer (pixel values are represented by unsigned 8-bit

integers)

(1,1,1) (1,2,1)

(2,1,1) (2,2,1)

(1,1,2) (1,2,2)

(2,2,2)

Figure 2.9: Illustration of a three-dimensional matrix with
indexing in the format (row, column, page)
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To better understand the working principle described by the formula, the
illustration in Fig. 2.10 is provided. One can imagine the algorithm of the
two-dimensional discrete convolution as taking the convolution kernel and
gradually shifting the kernel (colored square with value "4" in the image)
center over each pixel in the original image. Doing so, for each pixel in the
original image, a region of overlapping points is formed. In this region, each
value from the original image is multiplied with a corresponding value from
the convolution kernel, and all of those values get summed up. The resulting
sum is then stored in a copy of the original image, at the same position that
the pixel had in the original image. Because the convolution kernel would
reach out of bounds on the edge pixels of the original pixels, any element
(pixel) beyond the borders of the original image is considered to have a zero
value, which cancels out its effect on the resulting sum.

3 6 12 1 10

1 2 2 3 8

6 0 4 5 12

6 7 2 2 9

13 9 1 3 1

0 -1 0

-1 4 -1

0 -1 0

5 7 39 -21 31

-7 -1 -13 -4 7

17 -19 7 -1 26

-2 11 -6 -11 21

37 15 -10 8 -8

Original image

Convolution
kernel

Convolution result

Figure 2.10: Demonstration of how a two-dimensional con-
volution with a Laplace kernel works

As can be seen in Fig. 6.1, convolution is used to extract important features
in the processed image (edges in the case of the Laplace kernel, as it is a
gradient approximation).

(a) A photo of the Hungarian Parliament
Building (Országház) in Budapest

(b) The same photo after applying a Laplace
kernel convolution to it

Figure 2.11: Demonstration of the usage of two-
dimensional convolution on a real image (Laplace kernel)

In convolutional neural networks, the values of the convolution kernels are
not given as a part of the network architecture, but rather are obtained as
a result of the network training, where the network modifies the parameters
in such a way that the convolutional layers extract the features that the
network evaluates as relevant for classification, such as edges (extracted by
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layers closer to the input layer), curves and other, more complex patterns
(extracted by the layers deeper in the network architecture). The weights
(values for each pixel) are typically shared among the whole convolutional
layer of the network, which results in a reduction of the network’s trainable
parameters, which significantly lowers the computational intensity of the
network training, and it can also help prevent overfitting. The parameter
reduction can be illustrated by a comparison of a classical feed-forward net-
work and a convolutional network on the task of classifying 32x32 images.
Given that each image is comprised of 1024 pixels, the input layer would
have 1024 · ψ trainable parameters, with ψ being the number of neurons in
the first hidden layer. Contrary to that, a convolutional layer with a 5x5
convolution kernel would only have 26 parameters (25 weights and 1 bias),
as the weights of the kernel are shared among the whole layer.

Convolutional networks also usually make use of one or more pooling layers.
Pooling layers are used to reduce the dimension of the feature maps produced
by the convolutional layers. This is achieved by dividing the original input
(feature map) into non-overlapping square regions, and by only retaining
the most significant value from each area in the new, reduced feature map.
The most commonly used type of pooling is the Max-Pooling, where the
retained value is the largest value from the area, as is shown in Fig. 2.12.
The other commonly used type of pooling is the Average-Pooling, where the
retained value is the average value from the whole area. The dimension
reduction achieved by pooling can help to reduce the number of parameters
needed to train the network, which speeds up the training process, as fewer
operations need to be computed during the training phase, and it can also
help to make the network more robust to small changes in the input values
and to overfitting, as only the most significant value from each area is used
during the training. Unlike the convolution kernel values, the pooling layers
usually have fixed parameters set by the author of the network as a part of
the network architecture.

8 1

5 7

3 15

9 8

7 9

8 18

1 0

3 2

8 15

18 3

2 × 2
Max-Pool

Figure 2.12: Demonstration of how a 2x2 Max-Pooling
works
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2.1.2 Transformer architecture

Transformer architecture of artificial neural networks was first proposed in
the paper "Attention Is All You Need" (Vaswani et al., 2017) from the Google
Brain team, and was originally designed for machine translation. In general,
transformers are well-suited for processing sequential data, making them the
current state-of-the-art approach in the area of natural language processing
(NLP), as can be seen in the (at the time of writing) arguably most popular
example of ChatGPT, which is based on the GPT (Generative Pre-trained
Transformer) 3.5 (Brown et al., 2020). A huge benefit of using the trans-
former architecture is its ability to process input data in parallel with the
ability to process a value infinitely far back in the input sequence.

The key concept of the transformer architecture is its so-called self-attention
mechanism, a sequence-to-sequence (meaning the input, as well as the out-
put, is a sequence of vectors, also called tokens) algorithm that allows the
network to dynamically weigh different parts of the input based on their im-
portance for the current task, such as the most important words (or phrases)
in a sentence in natural language processing. The working principle of a self-
attention layer can be described in the following steps:

1. Get the embedding vector for each element of the input

2. Compute a query, key and value vectors by applying linear transfor-
mations (multiplying with the respective weight matrices) to the input
token, as shown in Eq. (2.9).

3. Compute the similarity score for the token (dot product of the query
vector with the key vector), as shown in Eq. (2.10)

4. Normalize the scores using a softmax function (Eq. (2.3)), which as-
signs a weight to each element based on its relevance to the other
elements, as shown in Eq. (2.11)

5. Based on the obtained weights, compute a weighted sum of the value
vectors (Eq. (2.12)), where the weights are given by the normalized
scores, yielding the output of the self-attention layer, which can be
further utilized, usually as an input to the next layer of the neural
network

qi = Wq · xi

ki = Wk · xi

vi = Wv · xi

(2.9)

where

• qi, ki, vi = ith query, key and value vector, respectively

• xi = ith embedding vector of the input sequence

• Wq, Wk, Wv = weight matrices for query, key and value vector trans-
formations, respectively

• i = index
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w′
ij = qT

i · kj (2.10)

where

• w′
ij = element of a weight matrix before normalization

• qi = ith query vector

• kj = jth key vector

• i, j = vector indices

wij = softmax(w′
ij) (2.11)

yi =
∑

j

wij · vj (2.12)

where

• wij = element of a normalized weight matrix

• yi = ith vector of the output sequence

• vj = jth value vector

• i, j = vector indices

For better understanding of the meaning of the key, query and value vectors,
an illustration is provided in Fig. 2.13.

x1 x2 x3

y1 y2 y3

k2

q1 w12 x

+

v2... ...

Output sequence

Input sequence

Figure 2.13: Illustration of how the key, query and value
vectors are utilized in the attention computation



Chapter 2. Tools and technologies 18

A more detailed explanation of the transformer architecture can be found at
(Bloem, 2019).

Because transformer architecture has proven to be very powerful in the area
of NLP, the possibility of applying transformer architecture to computer
vision tasks is also being explored nowadays. The result of the research in
this are the so-called Vision Transformers (ViT ), originally introduced in
(Dosovitskiy et al., 2021).

Vision Transformers split the input image into patches of fixed size (16 by
16 pixels in the original paper). Each of those patches is then squeezed into
a one-dimensional array, resulting in a vector from which the embedding is
computed. This embedding is then passed into a transformer structure as
described earlier in this section. Because the transformer architecture can
work with very long (theoretically infinite) input sequence, the network is
able to capture global dependencies in the input image, which can improve
the network’s ability to understand the scene and objects in the scene (if
there is a hand near a face in the image, it is more probable that there
will also be a bottle or a cup in the image). This is an improvement over
convolutional neural networks, as those can capture local dependencies very
well, but can struggle with capturing dependencies over large regions of the
input image. Vision Transformers also utilize positional encodings, which
help the transformer architecture retain the important information about
the position of the input vector in the input sequence (transformers normally
process the whole sequence in parallel regardless of the original order, hence
why the positional information has to be added explicitly).

2.2 Face recognition framework
For the task of face recognition, an open-source Python library called
face_recognition 1 was chosen for its simple API, which makes it extremely
easy to use in the project. The face_recognition library is built on top of the
dlib 2 library, which is a machine learning library written in C++. Pretrained
models from the dlib library are used for computationally expensive tasks
such as the extraction of facial features from images, as C++ is by design
faster (and therefore more suitable for such tasks) than Python, and the
face_recognition library is essentially a high-level Python API for the high-
performance algorithms.

Because the goal of this bachelor thesis was to implement the face recognition
algorithm in a human-interactive dialog loop on the robotic entity, it was
necessary for the user to be able to add a new face to the list of known faces
interactively. The face_recognition library allows this level of interaction,
because each of the known faces is stored in a form of a face encoding, which
is a vector whose each component represents a location of one of the facial
features.

1https://github.com/ageitgey/face_recognition
2https://github.com/davisking/dlib

https://github.com/ageitgey/face_recognition
https://github.com/davisking/dlib
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The size of this vector varies based on the model used for the feature extrac-
tion:

• model "large" - vector of 68 points (see Fig. 2.14)

• model "small" - vector of 5 points (labeled 36, 39, 42, 45 and 33 in
Fig. 2.14)

The smaller model reduces the computation time, but at the cost of reduced
accuracy of the face recognition itself. The larger model is used in the
implementation in this bachelor thesis.

For checking if any face is present in the source image, two face-detection
algorithms from the library can be utilized:

1. convolutional neural network (Section 2.1.1)

2. classical-approach called Histogram of oriented gradients (HOG)

Although the method using a convolutional neural network achieves a better
recognition accuracy and is more robust to changes in the face angle and
rotation, the HOG method has a lower inference time when running solely
on CPU (without GPU acceleration), and it was therefore chosen for the
implementation in this bachelor thesis, as it allows a real-time inference on
the limited hardware of the robotic entity. Histogram of oriented gradients
works by dividing the image into multiple smaller regions (usually 8 by 8
pixels) and computing intensity gradients and orientations in each of those
regions (essentially a magnitude and direction of edges in the region). After
this computation, the values are normalized and histograms are generated
for each of the regions. By concatenating all the histograms, the feature
vector is obtained.
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Figure 2.14: The 68 points representing the face landmarks
locations
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The simplified process of getting a face recognition result from the source
image is shown in a flowchart in Fig. 2.15.

Get the source image
 containing face/s

Detect face/s in the source image

Similarity between encodings
 larger than threshold?

Successfully detected
<face_name>

True

False

Output that nothing
was detected

Extract landmarks
of the detected face/s

Compare the encoding with all
known face encodings

Figure 2.15: A flowchart representing the process of get-
ting the face recognition result from the source image

2.3 Object detection
First, it should be explained what the term object detection means. Object
detection is a computer vision task that aims to find an object within a
source image and classify it into one of the n known classes. Thus, it could
be said that the object detection task consists of two subtasks:

1. object localization = finding the position of the object in the source
image

2. object classification = assigning the object into one of the n known
classes

Nowadays, this is commonly achieved by using artificial neural networks,
which are trained to find a so-called bounding box around the object, which
is a rectangle that delimits the area containing the object in the image.
Object detection can then simply be seen as taking the input image, using the
object localization algorithm to find the bounding box around the object, and
then passing the region within the bounding box to the object recognition
algorithm, which determines which class the object belongs to.



Chapter 2. Tools and technologies 21

MobileNetV3

As the main implementation of the object detection algorithm in this bach-
elor thesis, the latest network architecture from the MobileNet family of
efficient convolutional neural networks was chosen, namely the MobileNetV3
Large version (Howard et al., 2019). The whole family of MobileNet networks
is designed to run efficiently on embedded devices, such as smartphones or
single-board computers, like Raspberry Pi. MobileNetV3 architecture im-
proves the accuracy in comparison to the previous version by using a Squeeze-
and-Excitation (SE) blocks (Hu et al., 2017) in the design of the network,
which allow the network to better capture the interdependencies between the
image channels. SE blocks work by first squeezing each channel into a single
numerical value by using global average pooling (explained in Section 2.1.1).
This numerical value is then passed to an auxiliary two-layer network, which
produces the weight assigned to each channel of the image when processed
by the main neural network.

To reduce the computational cost of inference, MobileNetV3 uses a special-
ized neuron activation function, which was specifically designed with the
limited processing power of mobile devices in comparison to desktop com-
puters. This activation function is called hard-swish (shown in Fig. 2.16),
and is based on the ReLU (Rectified Linear Unit) activation function. The
formula for the hard-swish function is as follows:

f(z) = h-swish(z) = z · ReLU6(z + 3)
6 (2.13)

The ReLU6 activation function is a modified version of the widely used ReLU
activation function, the formulas for both of those functions are as follows:

f(z) = ReLU(z) = max(z, 0) (2.14)

f(z) = ReLU6(z) = min(max(z, 0), 6) (2.15)
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Figure 2.16: Neuron activation functions: ReLU, ReLU6
and Hard-swish
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YOLOS tiny

The YOLOS (You Only Look at One Sequence) network architecture, first
introduced in (Fang et al., 2021), is a modification of the original Vision
Transformer architecture, in which it replaces the classification output token
by a hundred randomly initialized output tokens for object detection, which
allows the network to predict bounding boxes of the object in the image as
well as the class of the object.

YOLOS Tiny is the smallest version of the model proposed in the original
paper. It has the lowest prediction accuracy of all the introduced versions,
but it is also the least computationally expensive one, making it the best
choice for using it in the implementation on the physical robotic entity with
its limited computational resources.

Image embedding extractor + Classifier

During the design phase, the possibility of using the output of the pre-
trained neural network as an embedding of the input image and then using
a classifier on the embeddings was considered. This approach is similar
to the frozen feature extractor solution discussed in (Section 2.4), but the
final architecture could be seen as taking the concept a step further - while
the frozen feature extractor approach only replaces the output layer of the
whole network, the second concept splits the whole model into two separate
networks, with the first one being the pre-trained network without the last
layer, which produces an embedding from the input image, and the second
being any type of classifier, which assigns labels to the embeddings produced
by the first network.

2.4 Transfer learning
First of all, it should be specified that in the scientific community, there
are sometimes slightly different definitions of this term. In the context of
this bachelor thesis, the term transfer learning represents a machine learning
technique where a model (in our case an artificial neural network) trained
for one task is reused (either as is or in a modified form) for a different but
principally similar task. In transfer learning, instead of building a new net-
work from scratch with randomly initialized parameters, an already trained
network is used as the baseline for the new model. Such a pre-trained net-
work is typically trained on a large dataset, such as ImageNet for image
classification, from which it has already learned the general features of en-
tities present in the training dataset. The network’s ability to recognize
those general features can then be used as a starting point for learning the
more specific features of the new task. Transfer learning generally reduces
the computational time needed for the training process, and the size of the
dataset needed for the training of the neural network is also significantly
smaller (the computational time needed for the training can be reduced
from days to minutes, and the number of images needed to represent each
class can be reduced from tens of thousands to hundreds of images).
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In transfer learning, two main approaches to handling the pre-trained model
exist:

• fine-tuning the whole neural network

• using the pre-trained model as a frozen feature extractor

Fine-tuning the network means that the parameters of the pre-trained model
are used as a starting point for the training phase, instead of the random ini-
tialization used when training from scratch. The network is then trained as
normal, with all the network parameters being updated during the training
phase, but the convergence to the correct parameter values is faster thanks
to the previous initialization. Using the pre-trained model as a frozen fea-
ture extractor means that the parameters of all of the layers are fixed to the
values obtained from the pre-trained model, and only the parameters of the
last, fully connected layer of the network are modified during the training
phase (in some cases, n-last layers can be modified, which should theoreti-
cally improve the performance, but at the cost of additional computational
time needed to retrain the network). This means that the new model is es-
sentially a combination of two separate neural networks, the first one being
the original pre-trained model with its last layer removed, and the second
one being a single-layer network. The first network then takes the image to
be classified as its input, and based on the trained parameters, the network
outputs a vector of the image features (image embedding). This image em-
bedding is then used as an input for the second neural network, which then
outputs the score for each of the possible classes.

In this bachelor thesis, both of the above-mentioned approaches were tested,
and it was experimentally determined that using the pre-trained model as a
frozen feature extractor is a more viable strategy than fine-tuning the whole
network, because of the shorter time needed to train the new neural network.
The exact results of those experiments can be seen in Chapter 5.

2.5 Communication protocols
Since the Raspberry Pi single-board computer is not powerful enough to
handle the computationally demanding task of retraining a neural network,
an external server had to be used (see Chapter 3). The communication pro-
tocols used for communication with the server are described in this chapter.

2.5.1 HTTP

HTTP (Hypertext Transfer Protocol) is a communication protocol used to
transfer web pages, images, and other data over the internet, and it is there-
fore the foundation of data communication for the World Wide Web. HTTP
is a stateless protocol, which means that each request is independent of any
previous requests, and it operates on a client-server model, where the client
sends a request to the server, and the server then sends a response with the
requested data (HTTP, 2023).



Chapter 2. Tools and technologies 24

HTTP request consists of a method, a URL, and headers that provide addi-
tional information about the request, such as the type of data being requested
(HTML, XML, JSON, binary, etc...), sender description or the preferred lan-
guage of the sender. Probably the two most commonly used methods are
the GET method, which is used for transferring data from the server to the
client, and the POST method, which is used for transferring data from the
client to the server. The HTTP response then contains a status code, which
indicates whether the request was successful (status codes 200-299) or not
successful (status codes 400-499 for client-side errors, status codes 500-599
for server-side errors) along with headers that provide information about the
response, such as its length or content type (Mozilla, 2023).

Nowadays, over 80 % of websites use the secure extension of the HTTP
protocol (W3 Techs, 2023), called HTTPS (Hypertext Transfer Protocol
Secure), which provides encryption using TLS (Transport Layer Security)
on top of all the standard HTTP functions. Overall, HTTP is a fundamental
protocol of the internet and plays a crucial role in enabling communication
and data transfer between clients and servers.

2.5.2 WebSocket

WebSocket is a communication protocol that enables two-way (full-duplex)
communication between a client and a server over a single TCP (Transmis-
sion Control Protocol) connection. Unlike HTTP, which only allows one-way
requests from client to server, WebSocket protocol allows for real-time com-
munication between the client and server.

WebSocket protocol establishes a connection between the client and server
using a special handshake process, where the client sends an HTTP request
to upgrade the communication to the server. If the server supports Web-
Socket communication, it responds with an HTTP response which confirms
that the protocol has been switched. Once the connection is upgraded to
a WebSocket connection, both the client and server can send data to each
other in real-time until the connection is closed. Messages used in the Web-
Socket protocol consist of a header, which contains information about the
message, such as its length and type, and a payload, which contains the
actual data being sent (WHATWG, 2023).

2.5.3 MQTT

MQTT (Message Queuing Telemetry Transport) is a lightweight, TCP/IP-
based messaging protocol designed for high-latency (or otherwise unreliable
networks), where small amounts of data (low-bandwidth networks) are being
transmitted between devices (machine-to-machine, M2M communication).
Thanks to these properties, MQTT is often used in IoT (Internet of Things)
applications, where resources are often limited.

Because messaging in the MQTT protocol is based on the publish-subscribe
model, there are two types of entities in MQTT - client and broker. The
client can then work either as a publisher or as a subscriber. The publisher
client sends a message within the specified topic to the broker, which then
forwards the message to all clients subscribed to the topic, as is illustrated
in Fig. 2.17.
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A single client can work as a publisher or as a subscriber in multiple different
topics. A single client can work as a publisher in one topic and as a subscriber
in another topic at the same time, but it can work only as a subscriber or a
publisher within one topic (MQTT, 2023).

MQTT
BROKER

CLIENT
(PUBLISHER)

Message CLIENT
(SUBSCRIBER)

Message

Figure 2.17: Block diagram of the MQTT messaging
model

MQTT supports three levels of reliability and guarantee of delivery of the
message, called QoS (Quality of Service):

• QoS 0 : The message is delivered once or not at all

• QoS 1 : The message is delivered at least once, but duplicates may
occur

• QoS 2 : The message is delivered exactly once

To demonstrate how MQTT communication works, consider the entities
shown in Fig. 2.18.

Device 3Device 1

Subscribe: 'ALERT'

Publish: 'TEMPERATURE1'

Device 2

Subscribe: 'ALERT'

Publish: 'TEMPERATURE2'

Subscribe: 'TEMPERATURE1'

Subscribe: 'TEMPERATURE2'

Publish: 'ALERT'

Figure 2.18: Model example of MQTT communication be-
tween three clients

Entities named Device 1 and Device 2 represent simple IoT devices mea-
suring some arbitrary temperature values. Each of these devices publishes
the measured temperature to its respective MQTT topic, and both of these
devices subscribe to the ’ALERT’ topic, which can be seen as a system-wide
warning from the main device. This main device is the entity named Device
3, and it represents a smart home control center, which subscribes to both of
the ’TEMPERATUREx’ and publishes to the ’ALERT’ topic. When Device
1 publishes the measured value to the ’TEMPERATURE1’ topic, only De-
vice 3 receives the message, because Device 2 is not subscribed to the topic.
On the other hand, when Device 3 publishes a message to the ’ALERT’
topic, both Device 1 and Device 2 receive the message, and can further
process it according to their source code.
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2.6 ROS - Robot Operating System
Robot operating system or simply ROS is an open-source software devel-
opment kit maintained by the Open Robotics organization, which offers a
collection of software libraries, tools, and drivers that helps simplify the de-
veloping and operating robot software. ROS is based on a decentralized
architecture, where each component (called node) of the robot system is an
individual executable program. These nodes are connected to each other via
a message-passing system called ROS topics (ROS Wiki, 2023). Some of the
ROS elements used in this bachelor thesis are listed below along with their
short description:

• Package - ROS nodes and other relevant software, such as configura-
tion or external libraries, are bundled into packages for release. These
bundles should have enough functionality to be useful, but not so much
that they become too difficult to use.

• Node - Node is a process responsible for running the executable code.
Nodes should be written to only process a single specific task, and
complex tasks should then be solved by multiple nodes communicating
via messages.

• Topic - Topic is a named channel over which individual nodes send
messages to each other. Topics work on an anonymous publish/sub-
scribe model, where nodes do not know with what nodes they are
communicating, and are only interested in the messages published to
their subscribed topics.

• Message - Message is a simple data structure containing the data be-
ing sent to a topic. Standard primitive types (integers, floating point
numbers, boolean values, etc.) are supported, as well as arrays of those
types. Messages can also include custom, user-defined structures and
arrays of such structures.

• Service - Service is analogous to a topic, with the difference being that
services work on a request/reply model, and it is used in situations
corresponding to a remote procedure call, where using a topic would
not be sufficient. A client calls the service by sending the request
message, and then it awaits the reply from the service.

• Action - Action works on the same principle as service, but it is more
suitable for long-running tasks, as it can be canceled by the client if the
execution time exceeds some threshold, and it can also send periodic
feedback on the execution status.

According to the official website (ROS, 2023), the main goal of the ROS
framework is to make code reusability as easy as possible in robotics re-
search and development. As each node of the robot system is essentially a
standalone executable program, such a node, or even a collection of multiple
nodes (called Packages), can then be easily distributed among the research
community.

The version of ROS used in this bachelor thesis is ROS Noetic Ninjemys,
which is a distribution of ROS 1 released in May 2020.
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2.7 SpeechCloud
SpeechCloud is a collection of tools for solving tasks associated with voice
dialog systems, which was developed at SpeechTech, s.r.o. in cooperation
with the University of West Bohemia in Pilsen. The tasks relevant for this
bachelor thesis are automatic speech recognition (ASR), which means au-
tomatic computer recognition and transcription of human speech into text,
and text-to-speech (TTS), which is a computer analysis and conversion of
written text into a synthetic speech that sounds like a human voice (Švec,
Neduchal, and Hrúz, 2022).

As SpeechCloud is a proprietary software, its implementation details are not
accessible to the general public. However, because SpeechCloud is only used
as a service for the ASR and TTS tasks in this bachelor thesis, an explanation
of the client API is provided along with the simplified block diagram of the
SpeechCloud architecture, which is shown in Fig. 2.19.

Client application

SpeechCloud

Main
loop

SC
Worker

ASR

TTS SCAPI
Server

SIP
Switch

I1

I2

Figure 2.19: Simplified block diagram of the SpeechCloud
architecture

The components in the block diagram shown in Fig. 2.19 are explained below:

• SC API Server - primary access point for the client application, issues
configuration for the client application, provides logging of incoming
and outgoing messages, mediates communication between the client
application and SC Worker, and provides authentication for the SIP
Switch

• SIP Switch - provides the transport of audio data between SC Worker
and client application

• SC Worker - mediates communication between the client application
and the ASR and TTS kernels, sends and receives the audio data via
the SIP Switch

• ASR - speech recognition kernel

• TTS - speech synthesis kernel

• I1 - communication interface for the standard VoIP (Voice over IP)
audio data transfer between SpeechCloud and the client application

• I2 - communication interface for the control communication, client con-
figuration and logging messages between SpeechCloud and the client
application based on either HTTP or WebSockets protocol
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Chapter 3

Interactive learning dialog

The actual goal of this bachelor thesis was to implement the object detec-
tion and face recognition algorithms in an interactive dialog loop, where the
system could dynamically learn to recognize new objects and faces based
on the interaction with the user. The goal was for the system to be able
to start “blank” (in a sense that the models were pre-trained, but not yet
retrained accordingly to the task given by the user), where the user would
first introduce themselves, and then teach the entity to recognize various
objects.

It is first necessary to explain how the detection and recognition modules
are implemented on their own, and then explain how they interact with each
other and how they are integrated into the interactive dialog loop.

3.1 Face recognition module
The face recognition module must be able to handle two tasks – recognizing
faces on the camera and learning to recognize a new face. The recognition
task is handled by the Python library described in (Section 2.2). The module
itself is implemented in such a way that each iteration of the algorithm takes
the image from the system’s camera as the input, extracts encodings of the
faces in the input image, computes the similarity between the faces in the
input image and the known faces, and produces a list of all the known faces
detected in the input image as its output, as shown in (Fig. 3.1).

The task of adding a new face is similar to the task of recognizing faces.
After the entity is prompted to take a picture of the new face via the voice
dialog, it then starts a countdown of five seconds, after which the picture
is taken. The entity then prompts the user to say his name, and pairs the
name with the encoding, storing it in its collection of known faces. The
collection of known faces is stored in a dedicated directory in the internal
storage of the Raspberry Pi. To ensure that each encoding would be stored
under a valid filename (as names can generally be comprised of multiple
words, e.g. “Martin Adamec”), each encoding file is stored in a default
binary format of the Python NumPy library under a name following the
pattern “fXX.npy”, where XX is a number of the encoding zero-padded to
two digits (the first encoding would therefore be saved as “f01.npy”, and the
tenth encoding would be saved as “f10.npy”). The name provided by the
user is then used as a key in the dictionary, while the ID (the name without
the “.npy” extension) of the encoding file is used as a value corresponding
to the key, which ensures that a user can easily rewrite the encoding used
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to recognize them. This dictionary is then stored in a JSON file, which is
loaded for loading the known faces (see example below).

{
"Martin Adamec": "f01",
"Aragorn II Elessar, King of Gondor and Arnor": "f02",
"Robert": "f03"

}

Get source image from camera

Find face locations in the image

Compare found face encodings
with known faces

Found a face?

True

Face is known?

Publish the names to ROS topic

True

False

False

END

END

(a) Flowchart of the process of recognizing faces
in a single frame

Prompt the user to look
into the camera

Find the face in the image

Create an encoding from the face

Save the new encoding

Notify the user that
 the new face was added

successfully

Take a picture of the new face

Add the entry to the known
encodings collection

(b) Flowchart of the process of
adding a new known face for

recognition

Figure 3.1: Flowcharts of the two sub-processes of the face
recognition module
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3.2 Object detection module
Similarly, the object detection module also has to handle two tasks – recog-
nizing the object shown on camera, and learning to recognize a new object.
The model used for the first task is the combination of an image embedding
extractor with a classifier (Section 2.3), in this case, a fully-connected feed-
forward neural network with one hidden layer comprised of 60 neurons. This
network is retrained during each iteration of the learning dialog, with the
weights being modified based on feedback from the user. The network used
for the embedding extraction is the MobileNetV3 Large model, described in
(Section 2.3).

Despite only modifying the weights of the small fully-connected network,
the process of retraining the network on the custom dataset is still very
computationally expensive, and the training therefore has to be done on a
remote server with a GPU (the exact time difference can be seen in (Sec-
tion 5.2)) to keep the delay between showing the new object to the system
and the system being able to recognize it as short as possible (by utilizing
the remote servers computational power, this delay is reduced to hundreds
of milliseconds as opposed to minutes when training directly on Raspberry
Pi). After the system is prompted by the user to enter the learning loop,
the system tries to recognize the object shown on the camera based on the
current configuration of the classifier. The predicted class label (name of
the object) is then presented to the user, who gives the system feedback on
whether the prediction is correct or not. If the prediction is correct, nothing
is modified and the system continues to another iteration. If the prediction
is evaluated as incorrect by the user, the system retrains the classifier in
order to be able to assign a correct class label to the object. The retraining
itself is performed on the remote server, where the retraining of the small
fully-connected layer is done in under a second, as shown in (Chapter 5).
Another benefit of the architecture of the utilized detection model is that
only small amounts of data are transferred between the system and the re-
mote server - a single image with a class label from the system to the server,
and the weights of the small neural network from the remote server back to
the system (because the embedding extractor is not modified at any point,
it can be stored on both the remote server and the Raspberry Pi). As shown
in (Fig. 3.2), the detection task itself is implemented in a way similar to the
face recognition task - the image taken by the camera is passed to the neural
network retrained for the current custom dataset. If the confidence of the
predicted class passes a threshold of 40%, the predicted class is outputted
as a result. Otherwise, the user is notified that no object was recognized by
the system.
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Get source image from camera

Pass the image through the network

Confidence is higher
than threshold?

Output the class label

True

False

Output that nothing
was detected

(a) Flowchart of the process of detecting an object
in an image

Take a picture
of the object

Send the new object data
to the remote server

 and wait for the response

Update the class label list

Notify the user that
 the new object was added

 successfully

Save the class label
from the user feedback

Reload the detection model

(b) Flowchart of the process of
retraining the network to recog-

nize a new object

Figure 3.2: Flowcharts of the two sub-processes of the ob-
ject detection module

3.3 Integration into the dialog loop
This section describes the approach chosen for the integration of the four
above-mentioned procedures into an interactive dialog loop (Fig. 3.3). When
the system is activated, it starts a main infinite loop, called "watch around",
during which it tries to find known faces (Fig. 3.1a) in the video stream
from the camera. If a known face is detected, the entity enters a dialog
loop (Fig. 3.4) during which the user can give a command to recognize an
object shown to the camera (Fig. 3.2a), to enter a learning loop in which
the object detection model can be retrained (Fig. 3.2b), or to add a new
face to its collection of known faces (Fig. 3.1b). The process of "watching
around" until a known face is detected could be compared to the wake word
detection, commonly used with voice assistants, referring to a specific phrase
used to activate the assistant (e.g. "Hey Google" for the Google Assistant1),
just modified to react to video input (face) instead of audio input (phrase).

1https://assistant.google.com/

https://assistant.google.com/
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Start the main dialog

Initialize camera stream

Was loop shut down?

End process

True

False

Start the infinite
"watch around" loop

Face recognition
subroutine

Known face found?

True

Interactive dialog
subroutine

False

Figure 3.3: Flowchart of the main loop of the interactive
system

In Fig. 3.3, it can be seen that the system scans the camera input for faces
in an infinite loop, waiting until a known face is detected before allowing
the user to interact with the computer vision models. This was chosen for
simplicity reasons, as the "watch around" operation is not time intensive
when no known face is detected, allowing for multiple loop iterations per
second. This approach theoretically makes it impossible for unknown users
to add themselves to the collection of known faces, creating a primitive form
of authorization. However, because the goal of this thesis was not to create
a security system, but rather an interactive dialog system implemented on a
low-cost robotic entity (Chapter 6), an unknown user can manually prompt
the system to enter the "New face" subroutine via the robotic entity GUI.

Begin the loop

End process

True

Process commands
from the user

Object detection
subroutine

False

Request to exit 
interactive dialog?

Request to add 
new known face?

Request to recognize
 object on camera?

Request to retrain
 object recognizer?

Retraining
subroutine

True

True

True

False

False

False

New face
subroutine

Figure 3.4: Flowchart of the interactive dialog loop (com-
puter vision tasks)

As shown in Fig. 3.4, when the interactive dialog loop is entered, the system
is ready to recognize voice commands via the ASR module (alternatively,
the commands can be given via the GUI of the system). If a command to
start any of the three previously described tasks (recognize object, retrain
detector, add new known face) is recognized by the system, the respective
subroutine is entered. After this task is completed, a new iteration of the
loop starts from the beginning, meaning that only one task can be done per
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loop iteration. This is done for simplicity reasons, such as that the loop
would always start with the user command recognition.

HUMAN
USER

SPEECHCLOUD

GUI

CAMERA

SERVER
(GPU)

FACE
RECOGNITION

OBJECT
DETECTION

ROS DIALOG
MANAGEMENT

ASR

TTS

SPEECH

FEEDBACK

 

ROBOT.V1
PLATFORM

Figure 3.5: Block diagram of the interactions between the
robotic entity and the human user

The block diagram depicted in Fig. 3.5 illustrates the details of the interac-
tions between individual modules of the robotic platform Robot.v1 (Chap-
ter 6). The block labeled "ROS DIALOG MANAGEMENT" represents the
algorithm that controls the whole robotic entity, which can simply be seen
as the entry point to the "watch around" infinite loop for the purpose of
this thesis (in reality, this block could serve as an entry point multiple dif-
ferent processes at once, but those other processes are not the subject of
this bachelor thesis). The blocks labeled "GUI" and "CAMERA" represent
the peripherals of the robotic entity, while the blocks labeled "ASR" and
"TTS" represent the speech recognition and synthesis blocks described in
Section 2.7. Finally, the blocks labeled "FACE RECOGNITION" and "OB-
JECT DETECTION" represent the modules described in Section 3.1 and
Section 3.2 respectively.
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Chapter 4

Data

This chapter provides a brief description of the various datasets used in this
bachelor thesis.

4.1 Dataset D1 - Labeled Faces in the Wild
The Labeled Faces in the Wild (LFW ) dataset1 is a large collection of images
of faces. This dataset consists of over 13 000 face images scraped from the
internet, and is frequently used as a benchmark for facial recognition tasks,
and was also used to pre-train the models in the dlib library, which was used
in (Section 2.2).

4.2 Dataset D2 - ImageNet
The ImageNet dataset2 is a large-scale collection of images used in object
recognition tasks. The dataset consists of a thousand classes ranging from
animals to food to everyday objects, with each class represented by thou-
sands to millions of labeled images in various resolutions. The ImageNet
dataset is often used as a benchmark for image classification tasks, and
many pre-trained networks, including the MobileNetV3 model (Section 2.3)
used in this bachelor thesis, have been trained on this very dataset.

4.3 Dataset D3 - COCO
The COCO (Common Objects in Context) dataset3 is another popular large-
scale dataset used in the area of computer vision for the tasks of object
detection, segmentation, and captioning. The object detection part of this
dataset contains hundreds of thousands of labeled images in various reso-
lutions, forming a total of 80 object classes. The COCO dataset is also
commonly used to benchmark models in computer vision.

1http://vis-www.cs.umass.edu/lfw/
2https://image-net.org/index.php
3https://cocodataset.org/#home

http://vis-www.cs.umass.edu/lfw/
https://image-net.org/index.php
https://cocodataset.org/#home
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4.4 Dataset D4 - Intel Image Classification
The Intel Image Classification dataset4 is a medium-sized dataset consisting
of 6 classes, with most of the images having a resolution of 150 by 150 pixels,
with some of the images being smaller. Despite this dataset commonly being
used for the task of scene understanding (the classes represent physically
larger objects such as a mountain or a building), it was determined that
using this dataset would nicely illustrate the limits of using a pre-trained
model for the task of object recognition.

4.5 Dataset D5 - Custom dataset
Due to the nature of the problem addressed in this bachelor thesis, it is
expected that a user will create a custom dataset comprised of the objects
that they want to teach to the entity. Because the objects in the dataset
are going to change based on the dialog interactions with the user, only the
general structure of the custom dataset is described - when prompted by the
user, the robotic entity takes a picture of what the user is currently showing
to the camera. Each picture is taken in the resolution of 640 by 480 pixels,
as that is the default resolution of the OpenCV library used to handle the
camera hardware. The images representing the object are then stored under
the label provided by the user in the interactive dialog.

4https://www.kaggle.com/datasets/puneet6060/
intel-image-classification

https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
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Chapter 5

Experiments and results

Because the purpose of the robotic entity is to run a dialog loop with the
shortest possible time delay between the user input and the response from
the robotic entity (ideally in real-time), the computational speed was the
most important parameter in the design of the solution, and the accuracy of
the algorithm was the second most important parameter.

5.1 Evaluation of face recognition
This section describes the results of the multiple experiments performed in
order to evaluate the task of face recognition.

5.1.1 Face localization algorithm - HOG or CNN

When implementing the algorithm described in (Section 3.1), it was neces-
sary to determine what settings should be used in the final implementation
to meet the above-mentioned criteria. Both of the algorithms for face lo-
calization that the face_recognition library offers were compared. Based
on the results shown in Table 5.1, the HOG algorithm was chosen for the
implementation, as it is noticeably faster than the CNN based localization
method.

Face localization model Average inference time per frame
CNN 3.64 s
HOG 0.58 s

Table 5.1: Comparison of computational time for the two
localization algorithms available in the face_recognition li-

brary - average over 100 iterations

The same comparison was made for the choice between the 68-point model
and the 5-point model for the extraction of facial features, but the compu-
tational time difference has proven to be negligible, so the 68-point model
was chosen for the implementation.
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5.1.2 Influence of the number of known faces

Because the comparison of the encodings of the face detected on camera and
the known faces is done in a sequential manner, comparing the detected face
encoding with every known face encoding, it was expected that the inference
time would increase with a higher number of known faces. However, this
has not proven to be the case, as the time difference was not observed to
increase with the growing size of the known faces collection, as can be seen
in Table 5.2.

Number of known faces Average inference time per frame
1 0.69 s
10 0.69 s
100 0.69 s

Table 5.2: Comparison of inference times per frame for
different number of encoding in the known face collection -

average over 100 iterations

5.2 Evaluation of object detection
This section describes the results of the multiple experiments performed in
order to evaluate the task of object detection.

5.2.1 Ready-to-use object detection methods

To illustrate how well the used object detection models would work if used
without any modifications to the pre-trained weights, an experiment to de-
termine the accuracy was done on 100 random images from two datasets -
D3 (COCO) and D4 (Intel Image Classification).

Model Mean accuracy (D3) Mean accuracy (D4)
MobileNetV3 Large 0.97 0.27
YOLOS Tiny 0.96 0.43

Table 5.3: Comparison of average prediction accuracy on
datasets D3 (Section 4.3) and D4 (Section 4.4) over 100 ran-

dom samples

As expected, both models achieved high average accuracy on the COCO
dataset, as both networks are pre-trained on the ImageNet dataset, which
has a significant overlap of classes with the COCO dataset. On the other
hand, on the Intel Image Classification, both models achieved significantly
lower average accuracy, which is to be expected, since there is no overlap of
class labels between this dataset and the training datasets of both networks
(theoretically speaking, the accuracy would be 0 due to the mutually exclu-
sive class labels, but the detection was counted towards the accuracy if any
object was detected correctly, regardless of the actual label in the dataset
D4).
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5.2.2 Influence of transfer learning

Multiple experiments were done in order to determine the more suitable
approach between the two alternatives described in Section 2.4 - fine-tuning
and frozen feature extractor. The results (time needed for retraining the
network on the robotic entity) for both approaches are shown in (Table 5.4).
The network was trained for 15 epochs.

Dataset Fine-tuning Frozen feature extractor
3 classes, 3 train, 2 val 5 m 5 s 3 m 11 s
5 classes, 3 train, 2 val 6 m 28 s 3 m 5 s
2 classes, 100 train, 70 val 94 m 48 s 46 m 33 s

Table 5.4: Comparison of computational time needed for
retraining the MobileNetV3 Large network on Raspberry Pi

This experiment was also performed to demonstrate the high time require-
ments, justifying the utilization of the remote server for this task.

5.2.3 Image embedding + FFNN

To illustrate the efficiency of this approach (described in more detail in
(Section 2.3)), the experiment was repeated multiple times with different
backbones for the image embedding extraction. This experiment was done
on the Intel Image Classification dataset.

Embed. model Mean embedding time Train time Accuracy
Resnet-18 0.0365 ± 0.0033 s 0.42 s 0.882
Alexnet 0.0246 ± 0.0039 s 0.37 s 0.874
Vgg-11 0.1258 ± 0.0143 s 1.09 s 0.896
Densenet 0.1194 ± 0.0216 s 4.98 s 0.884
efficientnet_b0 0.0460 ± 0.0090 s 3.61 s 0.895
efficientnet_b1 0.0591 ± 0.0063 s 6.63 s 0.889
efficientnet_b2 0.0605 ± 0.0105 s 7.84 s 0.898
efficientnet_b3 0.0846 ± 0.0112 s 9.56 s 0.883
mobilenet_v3 0.0358 ± 0.0092 s 0.8 s 0.915

Table 5.5: Performance comparison of different image em-
bedding extractors on dataset D4 (Section 4.4)

As can be seen from the results in Table 5.5, the MobileNetV3 had the
best performance of all tested backbones. A significant improvement in
accuracy when compared with the experiment performed on the pre-trained,
unmodified version of the MobileNetV3 network can also be seen, which
further demonstrates the power of transfer learning.
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5.2.4 Influence of ONNX optimization

To improve the performance of the object detection models on the limited
hardware of the Raspberry Pi platform, the ONNX framework mentioned in
Section 3.2 can be utilized. The inference time comparison was performed on
randomly selected images from the D3 dataset (Section 4.4), and the result
of this comparison for the MobileNetV3 Large model is shown in (Table 5.6),
and the result for the YOLOS Tiny model is shown in (Table 5.7).

Hardware Normal inference time ONNX inference time
Laptop 0.105 ± 0.033 s 0.078 ± 0.037 s
RaspberryPi 4 1.524 ± 0.239 s 0.637 ± 0.193 s

Table 5.6: Comparison of average inference time of the
baseline model and the compiled ONNX model over 1000

iterations - MobileNetV3 Large

Hardware Normal inference time ONNX inference time
Laptop 0.051 ± 0.009 s 0.034 ± 0.007 s
RaspberryPi 4 0.493 ± 0.111 s 0.373 ± 0.112 s

Table 5.7: Comparison of average inference time of the
normal model and the compiled ONNX model over 1000 it-

erations - YOLOS Tiny

From the results of both experiments, it is clearly visible that the ONNX
optimization improves the performance of the model, noticeably reducing
the inference time for a single frame. Even for the chosen image resolution
of 150 by 150 pixels, the time difference is significant, and it allows for a
real-time response with a delay of under 1 second, even for the slower model
based on MobileNetV3.

The "Laptop" mentioned in both Table 5.6 and Table 5.7 had the following
specifications:

• CPU - Intel Core i3-7130U, 2.70 GHz, 2 cores, 4 threads

• RAM - 16 GB

• GPU - The laptop used for the experiments has no external GPU

The experiments were originally performed on a laptop to determine if utiliz-
ing the ONNX optimization would be of any relevance, and the experiments
were repeated on Raspberry Pi after the ONNX optimization was proven to
achieve significantly better results.
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5.2.5 Learning dialog evaluation

As a final experiment for the evaluation of the object detection module, an
example of running the learning loop is presented. In this examples, the
system starts with a custom dataset consisting of three known class labels:
ball, mug and pen.

During the runtime of the learning loop, more samples are added to the
dataset representing each class, and a completely new class "face" is added
during the training loop. The number of samples in each class over time
can be seen in the lower graph in (Fig. 5.1), and the accuracy for each class
along with the mean accuracy for all classes combined can be seen in the
upper graph in (Fig. 5.1). It can be seen that even with a relatively small
number of samples in each class, the system has a very high recognition
accuracy for all classes, demonstrating the power of using the pre-trained
feature extractor, and how drastically the computational time and size of
the dataset needed to achieve satisfactory results are reduced thanks to the
utilization of transfer learning (Section 2.4).

Figure 5.1: Example of the learning loop for adding new
objects
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Chapter 6

Application

As a final step in this bachelor thesis, the algorithms described in Chapter 3
were implemented on a physical entity, called Robot.v1.

Robot.v1 is a multimodal low-cost physical entity developed in cooperation
of Faculty Of Applied Sciences and Ladislav Sutnar Faculty Of Design And
Art at University Of West Bohemia in Pilsen (Fakulta Aplikovaných věd a
Fakulta designu a umění Ladislava Sutnara Západočeské univerzity v Plzni).
The budget for the whole entity was set at 10 000 crowns, and the goal of
the whole project is to create a functional prototype as a proof of concept.
Robot.v1 has a rotund shape and is comprised of two parts, the stationary
base and the rotational part. As the entity was designed to be multimodal,
it needs to have adequate peripherals to be able to handle both audio and
video input and output. The list of all the peripherals is listed below:

• Microphone array

• Camera (Raspberry Pi Camera Module 2)

• Speaker

• LCD touchscreen

• Power button

• Light sensors

The computational part of the entity is based on Raspberry Pi 4B, which is
the latest version in the line of low-cost single-board computers developed
by the Raspberry Pi Foundation, running the Raspbian operating systems
(a Debian-based GNU-Linux distribution designed specifically for the Rasp-
berry Pi). This board can be purchased for a price of about 1000 to 2500
crowns (35 to 75 dollars) depending on the RAM size, and it is able to
operate all the necessary peripherals. The physical case of Robot.v1 was
designed and modeled by a design student and then printed on a 3D printer,
which was chosen to ensure short iteration times between different stages of
prototyping.
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(a) A photo of the Robot.v1 entity from the
front

(b) A photo of the Robot.v1 entity from the
top, showing the LCD touchscreen

(c) A photo of the Robot.v1 entity from the side

Figure 6.1: Photos of the physical realization of the
Robot.v1 entity
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Chapter 7

Discussion

The overall objective of this bachelor thesis consisted of four subtasks:

1. Determine the most suitable algorithms for the tasks of face recognition
and object detection on Raspberry Pi

2. Incorporate those algorithms into a voice-interactive system

3. Design a method for teaching the system to recognize new faces and
objects

4. Implement the voice-interactive system on a physical robotic entity

7.1 Recapitulation of Methods
At first, a detailed explanation of the algorithms chosen for the implementa-
tion was given in Chapter 2, so that the design choices could be understood
completely.

The implementation of the face recognition module was described in (Sec-
tion 3.1), explaining how the recognition of the user’s face is incorporated
into the interactive voice dialog, how the information about known faces is
stored in the system, and how the system learns to recognize a new face.

In Section 3.2, the implementation of the object detection module is de-
scribed, explaining how the user can teach the system to recognize new ob-
jects, detailing how the model is split into two smaller models, one of which
acts as an extractor of the feature vectors (embeddings) from the image,
and the other then acts as a classifier, assigning an individual class (label)
to each of those embeddings.

Finally, the incorporation of both of the modules into the interactive voice
dialog is explained in Section 3.3, describing how the user can interact with
each module within the main dialog loop.

Alternative approach to object detection

As was previously stated in this thesis, MobileNetV3 Large (Section 2.3)
network was originally chosen as the go-to model for the object detection
task. However, during the experiment phase, multiple new approaches were
discovered, leading to the addition of the YOLOS Tiny network, which uti-
lizes the transformer architecture explained in (Section 2.1). The original
idea for the retraining procedure for the object detection task was to prompt
the user to show the new object on camera and rotate it around, while the
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robotic entity would take 100 images of the object, ensuring that the dataset
would contain images taken from multiple different angles. However, this ap-
proach has been rejected during the implementation in favor of the approach
described in (Section 3.2) in the final implementation, as it was determined
that it better illustrates the effects of retraining the entity on new objects.

7.2 Summary of Results
The three main tasks described in Chapter 3 along with their implementation
details, and the experiments performed to verify the solutions were described
in Chapter 5. The summary of the results achieved in each of the three tasks
respectively is provided below.

7.2.1 Face recognition

The implementation presented in Section 3.1 has been proven to be able to
keep the response time below one second, allowing the module to run in real
time. The system is able to learn to recognize a new face when prompted,
and it is able to do so from just a single picture, from which the feature
vector is extracted and stored in the collection of known faces.

7.2.2 Object detection

The solution presented in Section 3.2 has shown the system’s ability to learn
to recognize a new object from just a few sample images shown to the system,
demonstrating the interactivity of the implementation. When the system is
prompted by the user, it is able to recognize the object shown on camera,
which is done entirely on the Raspberry Pi hardware, while still retaining a
real-time response. When the system is prompted to enter the learning loop,
it takes a picture of the object shown on camera, tries to assign a label to it
with its current classifier settings, and then it takes feedback from the user.
If the feedback tells the system that there was an error in the classification,
the system sends the picture and the correct label to the remote server to
retrain the classifier there. After receiving the updated model back from the
server, the system is ready for the next iteration of the training loop.

7.2.3 Application on physical entity

Although at the time of writing this bachelor thesis the physical prototype
of the Robot.v1 entity is not yet complete due to unforeseen complications
during construction, the multiple experiments described in Chapter 5 are
sufficient to demonstrate the validity of the entire Robot.v1 project concept
and the idea of creating a low-cost multimodal robotic entity in general. It
has been proven that even with such limited computing power it is possible
to create an interactive system that can process both audio stimuli (voice
control) and visual stimuli (object and face recognition), while at the same
time handling all the peripherals described in Chapter 6.
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Chapter 8

Conclusion

The purpose of this bachelor thesis was to verify whether it is possible to
implement an interactive system on the computationally limited hardware
of the Raspberry Pi 4 single board computer so that the system is able to
process audio and visual stimuli from the user with sufficient accuracy.

The solution chosen and implemented was presented for both the task of
face recognition and for the task of object detection, along with the integra-
tion of both of these solutions into the main dialog loop of the interactive
system. Experiments showing that the system is able to recognize new users
by learning their faces, and to recognize new object by interactively getting
feedback from the user, and updating its current knowledge based on this
feedback were also presented.

To sum up this thesis, it works well as a proof of concept, showing that
it is indeed possible to achieve quite impressive results in the tasks of face
recognition, which works entirely on the Raspberry Pi hardware, and even
in the task of object detection, where the remote server is utilized to speed
up the computationally intensive process of retraining a neural network,
all while maintaining interactivity and the ability to teach the system to
recognize new objects and faces. However, there is still a lot of work that
could be done to further improve the solutions presented.

8.1 Future Work

8.1.1 Robot.v1

As implied by the "v1" in the name "Robot.v1", the form of the physical
entity at the time of writing the bachelor thesis is only a first prototype,
serving as a proof of concept for the whole idea of a low-cost robotic entity.
Therefore, the addition of new features is expected in the future. Some of the
future features are already planned, namely automatic rotation of the top of
the robotic entity so that the solar panel is directed towards the strongest
light source, or automatic rotation of the entity by the microphone towards
the sound source, and it is possible that they will become the subject of
bachelor theses in the upcoming years.

8.1.2 The general concepts utilized in this thesis

During the March of 2023, the group of students working on various parts
of the Robot.v1 entity as part of their bachelor theses participated in the
"Aimtec Hackathon 2023" event, weekend whose central theme was "when
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code helps" ("Když kód pomáhá"), focusing on new ways in which technology
can make life easier for people with different kinds of disabilities. During
this event, the idea arose to apply the knowledge gained during the writing
of this bachelor thesis to a small handheld device that would be able to help
visually impaired people recognize small objects that might be difficult for
them to distinguish. The concepts and methods introduced in this bachelor
thesis were mainly developed as proof of concept, but if there is any potential
of a real-world application, this idea was determined as the best choice by
the author of this thesis.
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