
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor Thesis

Semantic Web

in EEG/ERP Portal

 Pilsen, 2012 Jakub Krauz

Declaration

I hereby declare that this bachelor thesis is completely my own work and that
I used only the cited sources.

Pilsen, May 5, 2012, Jakub Krauz

Acknowledgement

I would like to thank to my thesis supervisor Ing. Petr Ježek and to Ing. Roman
Mouček, Ph.D. for their assistance, time and valuable remarks.

Abstract

This thesis is focused on the usage of Semantic Web technologies, especially
the Web Ontology Language, within the neuroscience research. It deals
with concepts of mapping between object-oriented programming and Semantic
Web languages. The goal is to propose and implement a transformation tool
for automation of this process. Solving of semantic gaps between object-oriented
programming and Semantic Web technologies is investigated and discussed.
This effort resulted in the development of an extension of current object code
based on Java annotations. The transformation of these annotations is proposed
and implemented as well. The tool is used in the EEG/ERP Portal, which
manages a database of EEG/ERP experiments. An integration of this tool
into the EEG/ERP Portal is also presented.

Contents

1 Introduction 2

2 Semantic Web 3

2.1 Resource Description Framework (RDF) ... 4

2.2 RDF Schema (RDFS) .. 7

2.3 Web Ontology Language (OWL) ... 8

3 EEG/ERP Research 11

3.1 EEG/ERP Experiments ... 11

3.2 The EEG/ERP Portal ... 12

4 OOP to OWL Mapping Concepts 14

4.1 OOM Compared with OWL .. 15

4.2 Jena ... 16

4.3 The OWL API ... 17

4.4 JenaBean ... 17

5 JenaBeanExtension 18

5.1 Implemented Mapping ... 19

5.2 Java Annotations ... 21

5.3 Implemented OWL Language Elements ... 22

5.4 Serialization Syntaxes .. 25

5.5 Provided API ... 26

6 Integration into the Portal 28

6.1 Getting the Ontology Document .. 28

6.2 Jena Models Difficulties ... 29

6.3 RDF/XML Serialization Syntax .. 31

6.4 Optimization of the Transformation Process ... 31

6.5 Invalid Characters in XML .. 32

6.6 Proxy Objects in the OOM .. 33

7 Conclusion 34

- 1 -

1 Introduction

The neuroscience research has made great progress in last decades thanks
to technical advance. Electroencephalography (EEG) enables researching
the brain activity and disorders. The derived technique (event-related potentials,
ERP) is used in the research of brain responses to various stimuli. A need
to share knowledge arose with the growth of the EEG/ERP research. Various
Web portals emerged in order to enable researchers to share their knowledge,
data from experiments and other information. One of possible ways of sharing
information is represented by the Semantic Web technologies.

The goal of this work is to propose and implement a transformation tool
for the EEG/ERP Portal, which manages data from EEG/ERP experiments.
The transformation tool is expected to provide gathered data using languages
of the Semantic Web, namely the Web Ontology Language (OWL). Because
of existing semantic gaps between an object-oriented code (used in the Portal)
and an OWL ontology it is desirable to enrich the object code with additional
information. Java annotations were chosen for this purposes.

The first two sections deal with the theoretical background.
The Semantic Web is introduced and its languages essential for this thesis are
described in section 2. Basic concepts of the Resource Description Framework,
as the base of all Semantic Web technologies, are discussed and some illustrative
examples are given. Section 3 deals with the neuroscience background. It briefly
outlines EEG/ERP experiments and describes the purpose and goals
of the EEG/ERP Portal.

The next part is focused on the proposal and implementation
of the transformation library, which provides an automated mapping
from the object-oriented code to Semantic Web languages. Basic mapping
concepts as well as existing tools are introduced and discussed in section 4.
Section 5 provides description of the developed tool. Implemented mapping
and Java annotations as well as provided API are presented. Section 6 describes
an integration of the tool into the EEG/ERP Portal, discussing difficulties that
arose and describing their solution.

- 2 -

2 Semantic Web

Semantic Web is a term that refers to World Wide Web Consortium's (W3C)1
efforts to standardize structure of information. Its goal is to change the current
unstructured web into the web of structured data. Its advantage consists
in sharing information across different applications since data can be processed
automatically by machines. More information can be found in [1] and [2].

Today's World Wide Web (hereinafter the Web) became part of our daily
life. It is used for work, business, education, free time activities, searching
information or simply browsing, and many others. Thanks to its success
the Web contains a huge amount of data comprising all thinkable domains.
These data can be transferred and accessed via various transfer formats. They
are human-readable, but they are not machine-processable in the sense
of understanding their meaning, so called semantics.

The problem is that the current Web contains too little information
about data structure, so called metadata. All information is intended
for a human reader who understands the meaning. But machines do not
recognize which piece of information is related with another one, they cannot
distinguish relevant linkage among various data sources. Searching
for information is therefore very difficult. The text search gives very inaccurate
or even unrelated results.

These reasons led to W3C's Semantic Web activity. The beginnings
of this effort go back to the early 1990s. The activity resulted in creating
the Resource Description Framework (RDF) as the basic standard for describing
data structure. Many other similar activities were in motion in the USA and
Europe in the same time. This lead to formation of various standards, languages
and syntaxes for those purposes. Nowadays all resulting languages, frameworks
and syntaxes are integrated and standardized under W3C's Semantic Web.

The vision is to transform the Web of unstructured data into the Web
of linked data. Such data will be provided with metadata describing their
semantics and linkage. Machines will be able to read and process them
automatically, which includes automated reasoning (making logical deductions
from given axioms) and querying. The Semantic Web should be accessible
as a huge relational database in the outcome. The central importance for these
efforts are languages suitable for representing data and their semantics.

1 World Wide Web Consortium (W3C), URL: <http://www.w3.org>

- 3 -

2.1 Resource Description Framework (RDF)

Semantic Web technologies are based on the Resource Description Framework
(RDF). It is a model for representing structured information rather than
a language. Its original purpose was describing metadata on Web pages.
The best source of information about RDF is W3C's RDF Primer [3], also [1]
gives a good explanation and many related information can be found on W3C's
official site [4].

W3C describes RDF as a language for representing information
about resources in the World Wide Web. A resource can be anything – a Web
page, an institution, a person etc. These resources do not have to be directly
retrieved from the Web, but they have to be unequivocally identified. RDF uses
Uniform Resource Identifiers (URIs) for this purpose.

A special subset of URIs are Uniform Resource Locators (URLs). URLs
are used on the Web to identify Web pages. Web pages are resources that are
directly retrievable from the Web. URIs are generalization of this concept.
A URI can be created by anyone who needs to refer some resource. It can look
like a URL, but the resource does not have to be accessible from the given
address. RDF uses URI references (URIrefs) to be precise. A URIref consists
of a URI and a fragment identifier. A URIref can be for example:

http://eegdatabase.kiv.zcu.cz/home.html#article5

where http://eegdatabase.kiv.zcu.cz/home.html is a URI (as well as URL
in this case) and article5 is a fragment identifier.

The mainstay of RDF are so called statements about resources.
A statement adds a piece of information about a resource. This concept is based
on the idea that things are described via their properties, which have some
values. Such a statement consists of three parts (that is why it is also called
the triple) – a subject, a predicate, and an object. Subject is the resource being
described, predicate is the property and object is the value.

Every part of the triple can be considered a resource on its own. That is
why it should be identified by a URIref, so as any statement about this resource
can be added if needed. Only those objects that represent concrete values
(e.g. textual or numerical) are identified directly by the value itself (so called
literals). RDF allows also existence of empty nodes, i. e. nodes that are
identified neither by any URIref nor a value.

- 4 -

RDF makes a graph model of those statements (a graph is a set
of triples). Both the subject and the object represent nodes and the predicate
represents an arc (oriented from the subject to the object). The graph model is
the core of RDF. An example of such a graph is shown in Figure 1. It describes
a person named Jan Novák, who is 35 years old and has some colleague. Nodes
identified by URIrefs (persons) are drawn as ellipses while literals (names, age)
are drawn in square nodes.

An equivalent non-graphical way to express statements is the Triple
Notation (N-Triple), which writes out all the triples in a simple text form,
each triple ended by a full-stop. RDF uses XML qualified names (QNames)
in order to abbreviate long URIrefs. These are comprised of a prefix and a local
name. The prefix is a declared shorthand for the URI (called namespace)
and the local name corresponds to the fragment identifier from the URIref.

An example of statements in the Triple Notation that expresses the same
information as the graph in Figure 1 follows:

@prefix staff: <http://eegdatabase.kiv.zcu.cz/staff# >
@prefix kiv: <http://eegdatabase.kiv.zcu.cz#>

staff:0856 kiv:name "Jan" .
staff:0856 kiv:surname "Novák" .
staff:0856 kiv:age "35" .
staff:0856 kiv:colleague staff:5391 .

- 5 -

Figure 1: Example of an RDF graph.

However, the Triple Notation is only an alternative to the drawn graph,
but RDF defines a XML-based syntax for writing and exchanging data. This
normative syntax is called RDF/XML and is described in [5].

RDF/XML uses common XML features such as namespaces
and QNames, datatypes defined by XML Schema [6], entities and others.
All tags belonging to RDF have a fixed well-known namespace
http://www.w3.org/1999/02/22-rdf-syntax-ns# , which is usually abbreviated
as rdf . The root element is rdf:RDF . Every RDF/XML document is a valid
XML document, of course.

An example of a RDF/XML document that describes the graph
from Figure 1 follows:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY staff "http://eegdatabase.kiv.zcu.cz/s taff#">
]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rd f-syntax-ns#"
 xmlns:kiv="http://eegdatabase.kiv.zcu.cz#" >

 <rdf:Description rdf:about="&staff;0856">
 <kiv:name>Jan</kiv:name>
 </rdf:Description>

 <rdf:Description rdf:about="&staff;0856">
 <kiv:surname>Novák</kiv:surname>
 </rdf:Description>

 <rdf:Description rdf:about="&staff;0856">
 <kiv:age>35</kiv:age>
 </rdf:Description>

 <rdf:Description rdf:about="&staff;0856">
 <kiv:colleague rdf:resource="&staff;5391"/>
 </rdf:Description>

</rdf:RDF>

RDF defines many other features like typed literals, blank nodes,
containers and collections, statement reification and others. Many useful
documents describing RDF and related issues can be found on the official RDF
site [4].

- 6 -

RDF is the basic standard for representing information on the Web.
Other Semantic Web technologies, languages and vocabularies are built
upon this concept. Languages such as RDF Schema (described in 2.2), Web
Ontology Language (described in 2.3), or Simple Knowledge Organization
System are primarily vocabularies upon RDF. In addition they bring some
special features such as alternative serialization syntaxes besides RDF/XML.

2.2 RDF Schema (RDFS)

RDF defines how facts about various resources should be expressed. Expressing
some generic knowledge (also called schema knowledge), sorting resources
into classes or expressing common properties of those classes is also necessary.
RDF defines a vocabulary called RDF Schema (RDFS) for these purposes. RDF
Schema specification [7] is a part of W3C's RDF specification. Many useful
information is in [1] and RDF Primer [3].

Vocabulary is a set of terms that are used to describe resources. Every
term in the vocabulary has a defined meaning. Usually, terms from one
vocabulary have a common namespace. A vocabulary consists of classes,
properties and their semantics. Classes are used to identify categories of things,
while properties are used to describe those things (more in section 4.1).

RDFS is a special kind of generic vocabulary that is used to define other
user vocabularies. It contains only generic terms for describing classes,
properties and their relations. The namespace of RDFS terms is
http://www.w3.org/2000/01/rdf-schema# , usually abbreviated by the rdfs

prefix.

Classes are defined as instances of rdfs:Class . Resources can be declared
instances of some class using rdf:type property. RDF Schema allows creating
class hierarchy using inheritance, which can be expressed using
the rdfs:subClassOf property. RDF Schema defines all classes to be subclasses
of the generic class rdfs:Resource (because all classes are resources).
The following example defines two classes, Person and Man. Man is declared
a subclass of Person:

@prefix kiv: <http://www.kiv.zcu.cz/>

kiv:Person rdf:type rdfs:Class .
kiv:Man rdf:type rdfs:Class .
kiv:Man rdfs:subClassOf kiv:Person .

- 7 -

Properties are defined as instances of rdf:Property . Properties have
domains and ranges. The domain specifies classes of subjects that can own
the property and is declared using the rdfs:domain property. The range specifies
classes instances of which can be values of the property and is declared using
the rdfs:range property. RDF Schema also allows defining property hierarchy
similarly to classes using the rdfs:subPropertyOf property. The following
example defines two properties, address and permanentAddress.

PermanentAddress is declared as a subproperty of address, both domain
and range are inherited:

@prefix kiv: <http://www.kiv.zcu.cz/>

kiv:address rdf:type rdf:Property.
kiv:address rdfs:domain kiv:Person .
kiv:address rdfs:range kiv:Address .

kiv:permanentAddress rdf:type rdf:Property .
kiv:permanentAddress rdfs:subPropertyOf kiv:address .

The RDFS vocabulary provides a number of other properties that can be
used in the schema, for example for adding some comments or additional
information to declared classes and properties. They can be found in the RDFS
specification [7].

RDF Schema is the basic language for defining RDF vocabularies.
However, its capabilities are limited. For example RDFS is not able to add
constraints on defined terms. Therefore ontology languages such as the DARPA
Agent Markup Language (DAML), Ontology Interchange Language (OIL),
or the Web Ontology Language (described in section 2.3) were developed. These
languages build upon RDF and RDFS and add new vocabularies to express even
more semantics.

2.3 Web Ontology Language (OWL)

The Web Ontology Language is proposed by the W3C for defining so called
ontologies. An ontology can be described as a set of knowledge of some
particular domain, such as the neuroscience research. The term is borrowed
from philosophy where it denotes study of nature of being. The basic
explanation of OWL is in the OWL Guide [8] and in [1], W3C's official site [9]
offers many specification documents and other related sources.

- 8 -

OWL builds upon RDF and RDFS. It defines vocabulary that extends
the RDF(S) capabilities and also defines rules and restrictions for its usage.
Currently, the OWL language has two versions – OWL 1 and OWL 2.
The second version was introduced by the W3C group in 2009 and it enriches
the OWL 1 version with some new language features. However, version 2
is completely backward compatible with the version 1. Because tools used
in my work currently support only OWL 1, I decided to study and work
with OWL 1. Therefore features of OWL 1 will be discussed if the language
version is not explicitly stated.

The Web Ontology Language can be divided into three sublanguages:

• OWL Lite

• OWL DL

• OWL Full

Their mutual relations are depicted on the next diagram (Figure 2).
OWL Lite is a subset of OWL DL, which is a subset of OWL Full. Their
difference lies in their expressiveness and syntactical restrictions. OWL Lite is
the most restricted one, OWL DL eliminates some of the restrictions and OWL
Full offers the most freedom. However, with the increasing expressiveness
and syntactical freedom come computational difficulties. In fact, OWL Full has
no computational guarantees for a processing software such as reasoners. That is
why I work with OWL DL, which is expressive enough and is guaranteed to be
computed in finite time by a reasoning software.

- 9 -

Figure 2: Relations among three OWL sublanguages.

Basic elements of every ontology are classes, properties and individuals.
All these elements are resources within the meaning of RDF. OWL comes
with its own class type owl:Class . A class describes a set of objects
(individuals) that have similar characteristics. All classes of a particular
ontology creates its core, so called taxonomy.

Properties are used to add statements about resources. OWL
works with the rdf:Property type divided into several subtypes like
owl:DatatypeProperty or owl:ObjectProperty according to their extension.

Individuals are instances of classes, they represent concrete objects
in the domain. A set of individuals that belong to some class is called the class
extension. Every individual in OWL is an instance of the generic class
owl:Thing , all classes are subclasses of this one.

Ontologies are designated for sharing knowledge of some domain. OWL
takes advantage of number of serialization syntaxes. The serialization
(also called an ontology document) can be simply written to a file or stream.
It opens the way for exchanging ontologies among users and applications
or simply storing them. The most important syntaxes used for OWL
ontologies are:

• RDF/XML

• OWL/XML

• Turtle

• Functional-Style

• Manchester

The first two are XML-based, which means that the ontology document
is a valid XML document, the others are not. The RDF/XML syntax is adopted
from the RDF definition itself. It is the main syntax which must be supported
by all tools for processing ontologies. The support of other ones is optional.

- 10 -

3 EEG/ERP Research

3.1 EEG/ERP Experiments

The electroencephalography is a technique based on measuring and interpreting
brain activity. The brain produces ionic flows specific to its functions
and activities. They show on the head surface as changes of electrical potential.
It can be measured by a set of electrodes connected to a device called
electroencephalograph. The electroencephalogram (the measured signal) shows
variation of the electrical potential with time. Analysing of these waves can
examine functions of the brain and evaluate brain disorders.

Event-related potentials is a technique closely related to EEG. The main
topic of interest of this technique are responses of the brain to specific stimuli.
The tested person is exposed to some predefined stimuli (e.g. audio or video)
and the resulting brain waves are measured and analysed.

The Department of Computer Science and Engineering has a laboratory
for EEG/ERP experiments. The research is specialized in attention of drivers
or seriously injured people. Collaborators of this research are for example Skoda
Auto Inc, University Hospital in Pilsen or Czech Technical University in Prague.

The EEG/ERP experiments are time-consuming and produce a lot
of data. There is a lot of information concerning the experiment, such as data
related to tested subjects, scenarios (length of the experiment, course etc.), used
laboratory equipment, surrounding conditions like weather and temperature,
except the measured signals. All this information need to be stored
and managed efficiently. That was the reason of development of the EEG/ERP
Portal.

- 11 -

3.2 The EEG/ERP Portal

The EEG/ERP Portal2, hereinafter the Portal, is being developed
at the University of West Bohemia, Faculty of Applied Sciences, Department
of Computer Science and Engineering3 (KIV). Its purpose is to store
and manage data gathered from EEG/ERP experiments. Basic description
of the Portal is in [10], [11] and [12].

The goal is to enable neuroscience researchers and other interested people
to share and interchange data from experiments. Registered users can store,
update and download data and metadata from EEG/ERP experiments
(described in section 3.1). It is accessible through a Web interface (Figure 3).
Data are divided into several semantic groups (e.g. experiments, scenarios,
people), a logged-in user can switch among them.

2 EEGbase, URL: <http://eegdatabase.kiv.zcu.cz/home.html>
3 University of West Bohemia, Faculty of Applied Sciences, Department of Computer Science

and Engineering, URL: <http://www.kiv.zcu.cz>

- 12 -

Since the Portal stores personal data about tested subjects it is necessary
to protect them from an unauthorized access. That is why a registration is
required and user roles are introduced. Users are divided into groups
with different access privileges. This and other security issues in the Portal are
described in [13].

The Portal is an open-source project built on common technologies
like Java or XML. It is based on the three layer architecture. The data layer
uses Oracle database for data storage and Hibernate framework for object-
relational mapping (ORM). The application and presentation layers are
implemented using Spring framework and other Java EE technologies.

The Portal is registered within the Neuroscience Information Framework4
(NIF), which is a dynamic inventory of Web-based neuroscience resources. NIF
advances the neuroscience research by enabling discovery and access to public
research data and tools through an open source, networked environment.
It enables sharing data from neuroscience experiments among researchers
and other interested persons.

Sharing information from neuroscience research poses a problem, because
any structure of the shared knowledge within the neuroscience research is not
defined. The answer could lie in taking advantage of the Semantic Web
technologies. As described in section 2, the Semantic Web offers languages
designed for representing knowledge of some domain. The domain is
the neuroscience research in this case.

Hence one of the goals of the Portal development is providing the data
and metadata from EEG/ERP experiments in the form of an ontology. OWL
was chosen as the most suitable language for this purpose. Because the data
itself is stored in the relational database, it is necessary to propose and integrate
into the Portal a proper transformation tool. This tool should be able
to automatically generate the ontology from the stored data. A manual ontology
creation is totally unsuitable for this purpose since the data are dynamically
changed.

4 Neuroscience Information Framework (NIF), URL: <http://www.neuinfo.org>

- 13 -

4 OOP to OWL Mapping Concepts

Data are stored in a relational database in the Portal. When generating
the OWL ontology two basic approaches can be used:

• relational database to OWL ontology mapping

• object-oriented model (OOM) to OWL ontology mapping

Thorough analysis of these possibilities and an overview of available software
tools is described in [12]. Both approaches were tested within the Portal
environment and the second one was chosen subsequently as the more suitable
one [14].

The OOM to OWL approach does not access the database directly,
but takes advantage of Hibernate framework used in the Portal. This framework
provides an abstraction of the database model in the form of the OOM.
The object-relational mapping (ORM) is ensured automatically
by the framework and the transformation tool can work with the OOM only.
The transformation process is depicted in Figure 4.

The OOM is based on Plain Old Java Objects (POJOs). They are
ordinary Java objects used to persist the data. Individual objects corresponds
with tables in the relational database. They contain fields corresponding
to columns in these tables. Fields are accessible via appropriate getters
and setters.

- 14 -

Figure 4: Transformation process in the Portal.

4.1 OOM Compared with OWL

There is a resemblance between data models known from OOP and RDF-based
models. Both consist of classes, properties and instances. Properties in OOP are
called fields or attributes. Instances in RDF are also called individuals. Both
models can create class hierarchy using inheritance. Properties (fields) can take
primitive values or other objects as their values. Instances can be classified
into classes.

This comparison leads to a basic scheme of the mapping as shown
in Table 1.

OOP elements OWL elements

class, interface class

field (attribute), method property

instance individual

primitive datatype literal

Table 1: Basic scheme of OOP to OWL mapping.

But there are differences that must be taken into consideration. First
difference is the conception of a class. While classes (and interfaces) are
understood as types in OOP, in OWL classes are considered sets of individuals.
This fact is closely related to assigning instances to classes. While in OOP every
instance must belong to one class (except its superclasses), an individual
in OOP can belong to several diverse classes at the same time. The class
membership of an individual can even change at runtime in OWL.

Another important difference consists in approach to properties. While
in OOP fields are defined in a class and are connected with this class exclusively
(except its subclasses), properties in OWL are stand-alone entities defined
outside any class. Individuals can be assigned any property, while instances
in OOP can have properties declared in their type only. Therefore encapsulation
of class fields known from OOP does not exist in OWL, everything is public
and it can be accessed from anywhere.

- 15 -

Objects in OOP are not assigned any global identifier, since they are used
locally in an application. They cannot be referenced from outside this
application. OWL builds on referencing everything from anywhere that is why
it uses URIrefs.

There are many other issues, but the above mentioned ones are essential
for the mapping process. The conclusion is that OWL gives more possibilities
and expresivity than OOP (at data-modelling level of course). Data from OOM
should be mapped into OWL without loss of information. The OOM is poorer
in contained semantic information, therefore an adding of this information
is needed.

4.2 Jena

Jena5 is a Java framework for building Semantic Web applications. Its API
enable users to create, load and manage RDF data programatically. Jena
provides API for RDFS and OWL ontologies, including support
for the RDF/XML, Turtle or N-Triple serialization formats. It comprises many
other capabilities, such as inferencing or querying, but the above mentioned ones
are essential for the Portal. The Jena library is very well documented (including
tutorials, Javadoc and a forum support), its basic deployment is described
in a clearly arranged tutorial [15].

Jena started as an open source project under the HP Labs Semantic Web
Programme around 2000. Lately the development was in decline and seemed
to be ended. But currently (January 2012) Jena was adopted by The Apache
Software Foundation6 and is in the so called incubation period (newly accepted
projects that are not stabilized yet). Its name changed to Apache Jena
and the development was renewed.

The main disadvantage of this library is missing support for OWL 2. It is
caused by the decline period, the OWL 2 standard was published at the same
time. However, the library contains definition of OWL 2 vocabulary
and therefore I suppose adding this feature in future versions.

5 Apache Jena, URL: <http://incubator.apache.org/jena>
6 The Apache Software Foundation, URL: <http://www.apache.org>

- 16 -

4.3 The OWL API

The OWL API7 is a Java library for creating and manipulating OWL ontologies
(similarly to Jena, but this library is specialized strictly in OWL). It supports
RDF/XML, OWL/XML, OWL Functional Style, Turtle and partially other
serialization formats. This tool is focused towards the OWL 2 standard. It is
also very well documented (including code examples, Javadoc and tutorials).

The OWL API is an open source project under either LGPL or Apache
Licences. The current version is being developed at the University
of Manchester. OWL API is currently the leading tool for processing OWL
ontologies.

4.4 JenaBean

JenaBean8 is a Java library for persisting JavaBeans to RDF. It uses the Jena
library. JenaBean works as an additional interface for Jena. It enables automatic
transformation of JavaBeans (or POJOs) to the RDF model in Jena. That is
useful when mapping the OOM to RDF/OWL, because Jena's API itself does
not provide such functionality. JenaBean uses an annotation-based approach
to give the object code necessary semantics.

It is an open source project under the Apache License 2.09. In contrast
to the above mentioned tools this project is much worse documented. There are
not any tutorials as well as Javadoc comments are mostly missing. Its
development seems to be ended although it is not written on the project Web
page.

7 The OWL API, URL: <http://owlapi.sourceforge.net/index.html>
8 JenaBean, URL: <http://code.google.com/p/jenabean>
9 Apache License, Version 2.0, URL: <http://www.apache.org/licenses/LICENSE-2.0.html>

- 17 -

5 JenaBeanExtension

JenaBeanExtension is a Java library that I have been developing. It is used
in the Portal as the transformation library. Its input is the object-oriented
model in the form of POJOs. Its output is the OWL ontology. The library
is intended primarily for the Portal, but it is created as a tool that could be
used universally.

The library is based on JenaBean and the project is a continuation
of JenaBean Annotation Extension [16] and Java2SemanticWeb [17] projects.
The first one started to define and implement Java annotations that can be used
to add more semantics into the OOM. The second one was a simple library that
created an interface for the Portal to control JenaBean and OWL API. I decided
to include this interface in the library itself.

The attached CD contains all source files, a distributable JAR file,
an example of use, as well as the Javadoc documentation.

The transformation process within the JenaBeanExtension library
is depicted in Figure 5. The library gets a list of data objects (POJOs) that
create the data model. These objects are parsed and mapped to the ontology
model in Jena, which is a high-level abstraction of the RDF graph. When
finished, the model can be serialized in a specified syntax. The serialization
could be provided either directly from Jena or alternatively using the OWL
API. In the second case the serialization from Jena is loaded by the OWL API
and a new serialization is created. The reason is that the OWL API supports
some other syntaxes, e.g. OWL/XML.

The parsing process uses Java reflection. The JenaBeanExtension library
goes recursively through all provided objects and their fields and creates
appropriate resources and statements in the Jena model. There is loaded
on the one hand the static structure of data (classes, properties and their
relations) and on the other data itself (individuals).

The library keeps a list of already defined classes. If a new class appears
it is written to the model (together with metadata provided by present
annotations, described below). The same procedure is applied to all its fields.
Then the contained data (fields' values) are written to the model as well
(as instances of defined classes).

- 18 -

5.1 Implemented Mapping

Because the required language for the output ontology is OWL, I changed
the mapping used in original JenaBean. It used only RDFS vocabulary.
Of course, RDF(S) elements are valid in OWL, but OWL provides more
expressiveness. Individual language terms are referred by their QNames
in the following text. Table 2 gives an overview of used namespaces and their
prefixes.

Namespace Prefix URI

OWL owl http://www.w3.org/2002/07/owl#

RDF rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

RDF Schema rdfs http://www.w3.org/2000/01/rdf-schema#

XML Schema xsd http://www.w3.org/2001/XMLSchema#

Table 2: Used namespaces and their prefixes.

Java classes are mapped into instances of owl:Class . Class attributes are
mapped into instances of owl:DatatypeProperty or owl:ObjectProperty

(depending on their declared types). Individual Java instances are mapped
into individuals containing concrete data values. This is summarized in Table 3.

- 19 -

Figure 5: Scheme of the OOP to OWL transformation process.

Java OWL

class owl:Class

class attribute owl:DatatypeProperty or
owl:ObjectProperty

instance of class X individual of type X

Table 3: Mapping of objects.

The naming pattern preserves original names from Java, if they are not
changed explicitly by an annotation (more in section 5.2). The namespace is
adopted primarily from the Java package name, if it is not changed explicitly
by an annotation again. However, this proved to be too restrictive,
I implemented other ways to change the namespace for the whole ontology
in a simple way (see 5.5). Individuals are named after their runtime class type
and their hash code (as a unique key). It can be changed again, by @Id, which
sets the annotated attribute as the unique key instead of the hash code.

An example of mapping follows. If we consider this POJO class (getters
and setters are omitted):

package cz.zcu.kiv.pojo;

public class Person {

private String name;
private Person friend;

...
}

It is mapped to (using RDF/XML syntax):

<owl:Class rdf:about= "http://cz.zcu.kiv.pojo#Person" />

<owl:DatatypeProperty rdf:about="http://cz.zcu.kiv. pojo#name">
 <rdfs:domain rdf:resource="http://cz.zcu.kiv.pojo #Person" />
 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#stri ng" />
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="http://cz.zcu.kiv.po jo#friend">
 <rdfs:domain rdf:resource="http://cz.zcu.kiv.pojo #Person" />
 <rdfs:range rdf:resource="http://cz.zcu.kiv.pojo# Person" />

</owl:ObjectProperty>

- 20 -

This example shows the basic naming pattern as well as other features.
Properties were divided into object properties and datatype properties according
to their declared type in the POJO class. Object properties in OWL are those
with an individual as their value. In contrast, datatype properties take literal
values. Literal in OWL is similar to a primitive datatype in Java, but it is not
the same. Strings or dates are also literals. That is why some Java objects are
mapped to literals. Mapping to OWL datatypes used in current
JenaBeanExtension shows Table 4. I implemented this mapping because
of OWL 2 QL language profile validity. This profile was chosen to be supported
by the Portal.

All properties are also implicitly set their domain and range (according
to their class membership, resp. their declared type). However, the range
of datatypes (in terms of OWL) can be changed by @DataRange. If using
the triple terminology, the domain defines the class of individuals that can be
subjects of the property. Suchlike the range specifies the class of individuals,
or the datatype of literals, which can be objects.

Java datatypes and objects OWL datatypes

all integer datatypes
(and their wrapper classes)

xsd:integer

all floating-point datatypes
(and their wrapper classes)

owl:real

boolean (and its wrapper class) xsd:integer

char (and its wrapper class) xsd:string

java.lang.String xsd:string

java.util.Date xsd:dateTime

java.util.Calendar xsd:dateTime

Table 4: Mapping of datatypes.

5.2 Java Annotations

As said in section 4.1, OWL provides more expresivity than the object-oriented
model. JenaBeanExtension (like JenaBean) uses an annotation-based approach
to add the OOM more semantics. Annotations are standard part of the Java
API. Their usage is very clearly described in [18] (chapter 7).

- 21 -

Defined annotations are used in POJO classes. Depending on their
meaning they can be used for classes, fields or methods. All these annotations
are preserved in the objects at runtime (ensured by their definitions).
JenaBeanExtension checks objects on contained annotations and for every
annotation adds required information in the OWL model.

Original JenaBean provided several annotations, their detailed
description is in [16]. Four of them are still used in the current
JenaBeanExtension library. Implementation of the others I found unsuitable
and changed it (described in the next section). The four used ones are:

• @Namespace – sets namespace for annotated class and its members

• @RdfType – sets (different) name for annotated class

• @RdfProperty – sets (different) name and namespace for annotated field

• @Id – annotated field is used as a unique key for identifying instances

The goal is to implement more annotations to be able to provide POJOs
with further semantics (according to expressing abilities of OWL).

5.3 Implemented OWL Language Elements

JenaBeanExtension implements most of OWL 1 vocabulary currently. Some
language elements are implemented for implicit transformation (basic ones),
most of them are implemented in the form of Java annotations. These
annotations must be added to definitions of POJO classes so as the required
information is written into the output ontology. Language constructs describing
created ontology itself (ontology header) are implemented separately
within a special object. In addition, JenaBeanExtension provides way to load
statements created by an external tool such as Protége.

Semantics that is created automatically includes primarily classes,
properties and their hierarchy. This creates the basic structure of data. It is
sometimes called taxonomy, because it enables classifying individuals. This
information is gathered automatically from the class structure of the OOM, even
when no annotations are present in POJO classes.

- 22 -

All implemented annotations can be found in the library package named
thewebsemantic.annotations . Names of individual annotations are equivalent
to the OWL language construct which it implements. Some annotations are
parameterless, some have one or more parameters. Their meaning, usage
and some example is provided within their Javadoc documentation
and in Appendix A.

Metadata describing the ontology itself (ontology header) was not
suitable to be implemented with the annotation-style, because it does not
concern any individual class or attribute in the OOM. Therefore I created
a special class named Ontology , which is part of JenaBeanExtension API
(described in 5.5). This class encapsulates ontology properties, which can be set
using proper setters. Instance of this class can be created programatically
and passed to JenaBeanExtension afterwards. However, this solution can be
sometimes unsuitable, that is why the ontology header (as well as any other
statements) can be loaded from an auxiliary RDF/XML document (described
in section 5.5).

Table 6 gives an overview of all OWL-specific language elements
implemented in the current version of JenaBeanExtension. The second column
named “Implementation” says how the element is implemented.
JenaBeanExtension also implements some RDFS elements. Table 5 gives their
overview.

Appendix A provides more detailed description of individual elements,
describes their meaning (as defined in OWL reference [19]) and gives examples
of use.

RDFS Implementation

rdfs:comment @Comment and Ontology.setComment()

rdfs:domain implicit mapping
rdfs:isDefinedBy @IsDefinedBy

rdfs:label @Label and Ontology.setLabel()

rdfs:range implicit mapping
rdfs:seeAlso @SeeAlso and Ontology.setSeeAlso()

rdfs:subClassOf implicit mapping

Table 5: Overview of implemented RDFS-specific language elements.

- 23 -

OWL element Implementation

owl:AllDifferent @AllDifferent

owl:allValuesFrom @AllValuesFrom

owl:backwardCompatibleWith Ontology.setBackwardCompa tibleWith()

owl:cardinality @Cardinality

owl:Class implicit mapping
owl:complementOf @ComplementOf

owl:DatatypeProperty implicit mapping
owl:DeprecatedClass java.lang.@Deprecated

owl:DeprecatedProperty java.lang.@Deprecated

owl:differentFrom @DifferentFrom

owl:disjointWith @DisjointWith

owl:equivalentClass @EquivalentClass

owl:equivalentProperty @EquivalentProperty

owl:FunctionalProperty @FunctionalProperty

owl:hasValue @HasValue

owl:imports Ontology.setImports()

owl:incompatibleWith Ontology.setIncompatibleWith()

owl:InverseFunctionalProperty @InverseFunctionalProp erty

owl:inverseOf @InverseOf

owl:maxCardinality @MaxCardinality

owl:minCardinality @MinCardinality

owl:ObjectProperty implicit mapping
owl:onProperty implicit when restriction used
owl:Ontology Ontology

owl:priorVersion Ontology.setPriorVersion()

owl:Restriction implicit when restriction used
owl:sameAs @SameAs

owl:someValuesFrom @SomeValuesFrom

owl:SymmetricProperty @SymmetricProperty

owl:TransitiveProperty @TransitiveProperty

owl:versionInfo @VersionInfo and
Ontology.setVersionInfo()

Table 6: Overview of all implemented OWL-specific language elements.

- 24 -

5.4 Serialization Syntaxes

Since JenaBeanExtension uses Jena to provide the ontology model, serialization
syntaxes available are those supported by Jena. They are:

• RDF/XML (two variants)

• Turtle

• N-Triple (simple Triple Notation)

• N3 (more variants, Turtle is one them, in fact)

Jena offers two variants of the RDF/XML syntax. Both implement
W3C's specification and are equivalent, the difference lies in their
understandability for a human reader and efficiency of their implementation.
They are:

a) RDF/XML – not well human-readable, but the serialization is very
efficient

b) RDF/XML-ABBREV – very well human-readable, but the serialization is
not very efficient (performance problems
for large models are possible)

JenaBeanExtension uses the OWL API in order to provide more
serialization syntaxes. The OWL API is able to convert Jena's output into other
two syntaxes. Since the OWL API supports OWL 2, it offers syntaxes that came
together with the OWL 2 specification, namely:

• OWL/XML

• OWL Functional-Style

It also supports the older ones:

• RDF/XML

• Turtle

- 25 -

5.5 Provided API

JenaBeanExtension provides a simple API for controlling the transformation
process. All needed interfaces and classes are located in the package tools .
The complete API is depicted in UML diagram in Figure 6.

The basic interface of the API is JenaBeanExtension . Its method
loadOOM(List<Object> dataList) runs the transformation. Its argument is a list
of POJOs. The ontology can be obtained subsequently in an input stream
(java.io.InputStream) using getOntology(String syntax) , which returns
the serialization from Jena. Available serialization syntaxes are defined
in the class Syntax . The interface also offers static structure of the ontology
(i.e. defined classes and properties), using getOntologySchema(String syntax) .
All these basic methods are provided in several variants. Javadoc is
on the attached CD.

This interface also enables to load a serialization document using
loadStatements(InputStream document, String syntax) . It can be used to load
either an whole ontology (e.g. from a previous serialization), or several
statements only which will be added to the model created from POJOs.

This approach offers a more convenient way to add the ontology header
(the other one using the Ontology class was described in 5.3). Required
information, such as the ontology header, can be stored in an external
RDF/XML file. This file can be easily edited with a graphical tool such
as Protége. When the transformation starts this file is loaded and contained
information is added to the model created from POJOs. Moreover,
if the ontology header is loaded before the transformation (method loadOOM()),
the ontology namespace is used as a default namespace for all the resources
created during the tranformation (classes, properties, individuals).

An example of typical usage of the library follows:

List<Object> dataList; // list of POJOs
InputStream ontologyHeader; // RDF/XML
InputStream ontology; // generated ontology

... // initializing dataList and ontologyHeader

JenaBeanExtension jbe = new JenaBeanExtensionTool() ;
jbe.loadStatements(ontologyHeader, Syntax.RDF_XML);
jbe.loadOOM(dataList);

ontology = jbe.getOntology(Syntax.RDF_XML);

- 26 -

Because the ontology serialization is obtained from Jena, which does not
support OWL 2 and the OWL/XML syntax, JenaBeanExtension provides tool
to simply convert the serialization from RDF/XML to OWL/XML using
the OWL API. This tool implements interface OwlApi . Its constructor takes
the serialization in RDF/XML from Jena and loads the ontology into the OWL
API. Method getOntologyDocument() can be used afterwards to obtain
the serialization.

Although the serialization obtained in OWL/XML looks like OWL 2, it is
still the OWL 1 ontology that was created by Jena.

- 27 -

Figure 6: UML diagram of JenaBeanExtension API.

6 Integration into the Portal

The JenaBeanExtension library has been used in the testing version
of the Portal during the development. Therefore I have also ensured its proper
function and regular upgrades. This has brought some advantages. The library
was tested in the real environment and I was able to respond to actual problems
and needs.

6.1 Getting the Ontology Document

The ontology document is provided on the Portal's Web interface from defined
URLs. So as the URLs express their meaning, I changed them as follows:

/semantic/getOntology.html

gets the default RDF/XML serialization from Jena. The syntax can be changed
using parameter type . Its values can be rdf/xml , n-triple , turtle or n3.
For example /semantic/getOntology.html?type=turtle gets the ontology
in the Turtle syntax.

/semantic/getOntologyOwlApi.html

gets the OWL/XML serialization from the OWL API. The syntax can be
changed using parameter type. Its values can be rdf/xml , owl/xml , turtle

or owl-functional . For example /semantic/getOntologyOwlApi.html?type=owl-

functional gets the ontology in the OWL Functional-Style syntax.

/semantic/getOntologyStructure.html

gets the ontology structure (or schema) in RDF/XML (abbreviated version)
from Jena. The ontology does not contain any data, only definitions of classes
and properties.

Sample fragments of ontology documents from the Portal are enclosed
in Appendix B (in RDF/XML). They comprise a very small part of the ontology
and are stated by way of illustration only. The whole ontology document
is on the attached CD.

- 28 -

6.2 Jena Models Difficulties

Model is a structure in Jena that represents the RDF graph. The model
is a high-level abstraction of the RDF graph, which provides high-level
operations, such as creating resources, adding statements, querying for resources
with given properties or combining several models. Jena offers number of model
interfaces with different qualities. The Jena API provides ModelFactory

for creating standard types of models.

The original JenaBean used a default model provided
by the ModelFactory.createDefaultModel() method. This kind of model was
not adequate for JenaBeanExtension, because it does not support adding OWL
statements. An OWL-compatible model is called OntologyModel in Jena.
ModelFactory provides a default one:

Model m = ModelFactory.createOntologyModel();

This one was used in JenaBeanExtension at first, but problems occurred
during integration into the Portal. The computational time was unacceptable.
While the previous version (original JenaBean with the DefaultModel)
computed a few minutes, the extended version seemed to be working many
hours or even a few days (tested on Asus with Duo T6500 CPU, 4 GB RAM).

The reason is that the default OntologyModel included a RDFS-level
inference, which imposes a computational cost. Because we did not use
reasoning in the project so far, the simplest solution was to disable the reasoner.
Jena's class OntModelSpec provides constants for defining OntologyModel

specification. An OWL_MEM specification creates model without reasoning:

Model m = ModelFactory.createOntologyModel(OntModel Spec.OWL_MEM);

I measured the computational time depending on the amount
of processed data objects. The graph in Figure 7 shows results
for the OntologyModel with reasoning compared with the OntologyModel without
reasoning. While the dependence is linear without reasoning, the reasoner causes
at least quadratic dependence. Because there is processed a large amount
of data objects in the Portal, I found the reasoner included in the Jena library
unfit for our project.

- 29 -

The reasoner comes in useful primarily when querying the model.
I suppose that would not be useful in the Portal, because so far the model
serves as an intermediate stage during the transformation process. Its only usage
after loading the data is providing the serialization in a specified syntax
(RDF/XML, N-Triple, Turtle or N3 currently available). But this output
ontology document can be affected by the reasoner as well.

The OntologyModel provides two groups of methods for getting its
serialization (they can be used with various parameters, which are not
important now). The first ones are named write(...) and they do not
cooperate with the reasoner. That means the output contains only the asserted
data. But the second group named writeAll(...) includes inferred statements
in the serialization. I think that could be useful, since it would enrich the output
ontology document. Unfortunately, it cannot be used because of the above
mentioned performance problem.

- 30 -

Figure 7: Computational demands of the Ontology Model.

6.3 RDF/XML Serialization Syntax

JenaBeanExtension allows users to get the ontology in several serialization
syntaxes (described in 5.4). Since RDF/XML is the basic one (according
to W3C's recommendations) I have implement it as the default one if the type

parameter is not set properly (getting the ontology is described in 6.1).

There is a choice in Jena if the RDF/XML should be abbreviated or not.
Since the abbreviated version is much better human-readable, I wanted to prefer
it. But the implementation of Jena's RDF/XML-ABBREV serializer is not very
efficient. This matter is pointed out in Jena's documentation, too. The problem
is that the Portal manages a lot of data and the generated RDF graph is very
large. Currently the ontology in the Portal (testing version) contains
about 40,000 statements. It is about 60,000 lines in the RDF/XML serialization.

For that reasons the abbreviated version of the ontology is not possible.
In the past I succeeded in getting the abbreviated version, but the time
of creating the serialization ran into hours (Duo T6500 CPU, 4 GB RAM).
Moreover the database contained less data then. Currently the serialization
process for RDF/XML-ABBREV falls on lack of memory (4 GB RAM).

The only provided version of RDF/XML is the raw one. However,
this restriction does not concern the ontology schema document (describing
structure of classes and properties). Since this RDF graph is much smaller then
the whole ontology, the abbreviated version does not pose any problem.
RDF/XML-ABBREV is the default syntax for the ontology schema because
of its human-readability.

6.4 Optimization of the Transformation Process

The transformation process was initially invoked whenever any user requested
the ontology document from the Web interface using defined URLs. This
approach brought two problems:

• The user had to wait until the transformation is finished and the output
is produced. The processing time is quite significant and for the user very
unpleasant.

• Every transformation entails appreciable workload for the database,
because all the stored data are loaded.

- 31 -

For that reason I have introduced another solution – the ontology
is generated automatically at regular intervals and its serialization is stored
in a temporary file.

I have used java.util.Timer to schedule regular transformation tasks.
The transformation is activated after the system starts and then regularly
once a day. The ontology is stored in a temporary file (provided
by java.io.File.createTempFile()) in RDF/XML. When a user requires
the ontology, the serialization is simply read from the temporary file.
If the required syntax is other than RDF/XML, the serialization is loaded back
to JenaBeanExtension and the required serialization is created afterwards.
This is much less time consuming, the waiting time for user is a few seconds.
Moreover the database server is not burdened at all.

All the code that is responsible for the transformation process is located
in cz.zcu.kiv.eegdatabase.logic.semantic.SimpleSemanti cFactory . This bean
is initialized by the Spring framework when the Portal starts. It provides
methods for getting the ontology document which are used by the web-controller
beans.

6.5 Invalid Characters in XML

During the testing period there occurred problems with encoding some
characters in XML. The data in OOM contained characters with the code point
0x00 (NULL). Since this character is invalid in XML and the ontology
is serialized in RDF/XML, the transformation fell on an exception.

Neither JenaBeanExtension nor Jena check characters when creating
the model. That could lower the performance and moreover these characters are
not invalid generally, but only in the context of XML. For example the Turtle
serialization accepts them without any problem. Jena uses XML 1.0
for the RDF/XML serialization, therefore I focused on XML 1.0 valid
characters.

Valid XML 1.0 characters are defined in the XML specification [20]. They
are described by a set of valid Unicode code points:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] |

[#x10000-#x10FFFF]

- 32 -

It follows that invalid characters are:

• most of C0 control characters (0x00 – 0x1F)

• all surrogates (0xD800 – 0xDFFF)

• non-characters 0xFFFE and 0xFFFF

Although it comprises quite large amount of invalid characters, they
should not ordinarily appear in the data. The only invalid character that
appeared in the data so far was the 0x00 code point. It was held in a field
of type char . Since this value has a meaning of NULL, JenaBeanExtension
ignores it as if the field was not set.

6.6 Proxy Objects in the OOM

I stated that Hibernate provides a list of POJOs in section 4. To be exact,
Hibernate creates proxy objects representing requested POJOs. The framework
uses lazy initialization, data are not loaded from the database until they are
accessed, which occurs just during the parsing process in JenaBeanExtension.

Since JenaBeanExtension uses reflection, proxy objects caused problems.
Ascertainment of the class name of a proxy object does not work as expected.
For example calling the method getName() over a proxy for class Person returns
something like “Person_$$_javassist_26” instead of “Person” (Hibernate uses
Javassist proxy classes). Also iterating over all class members results in defining
objects like initializers or handlers in the output ontology (except the requested
data).

The solution is based on the fact that Hibernate proxy classes are
subclasses of original POJO classes and implement the interface
org.hibernate.proxy.HibernateProxy . The proxy class can be simply detected
before parsing and its superclass used instead. Following code fragment shows
the principle of this solution:

Object bean; // POJO object

...

Class<?> cls = (bean instanceof HibernateProxy) ?
 bean.getClass().getSuperClass() : bean.g etClass();

- 33 -

parse(cls); // parsing class members

- 34 -

7 Conclusion

The goal of this work was to propose and implement a proper transformation
tool for the EEG/ERP Portal, which is written in Java and works
with the object-oriented data model. The EEG/ERP Portal is being registered
in the Neuroscience Information Framework that enables sharing data using
Semantic Web technologies. The transformation should automatically transform
the object-oriented model into an OWL ontology.

At first I had to familiarise myself with the Portal and Semantic Web
technologies. Semantic Web is quite a new and not widely used technology
so far. This fact is closely related to lack of literature about this topic.
Specifications and recommendations proposed by the World Wide Web
Consortium are the main source of information.

The transformation tool that I have developed is based on the open-
source library JenaBean. Its code has been modified so as the tool meets
Portal's requirements. It was necessary to adjust the mapping from the object
model to the OWL ontology. The output complies with the OWL 2 QL language
profile currently. I have also implemented most of OWL 1 language elements.
They can be used in the form of Java annotations to enrich the object model
with more semantics.

The tool was tested in the Portal environment. The large amount
of contained data revealed a few problems, mostly concerning performance
of the transformation. They were all successfully resolved. However, there
remains one future issue – definitions of POJO classes need adding Java
annotations provided by JenaBeanExtension in order to take full advantage
of its capabilities. I have added a few annotations as a demonstration example
only.

The main deficiency of the tool is the missing support for OWL 2. Since
the ontology model is created in Jena, which supports only OWL 1 so far, it is
unavoidable to wait until Jena adds support for OWL 2. An alternative solution
could consist in a replacement of Jena by the OWL API, which provides similar
interface for creating OWL ontologies and supports OWL 2. That would mean
a complete reworking of the transformation library, but in my opinion it is
feasible and worth considering.

- 35 -

Abbreviations

API Application Programming Interface

EEG Electroencephalography

ERP Event-Related Potentials

JAR Java Archive

NIF Neuroscience Information Framework

OOM Object-Oriented Model

OOP Object-Oriented Programming

ORM Object-Relational Mapping

OWL Web Ontology Language

POJO Plain Old Java Objects

RDF Resource Description Framework

RDFS RDF Schema

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

- 36 -

Abbreviation Meaning

Used Software

Eclipse Integrated development environment, free licence.

Inkscape Vector graphics editor, free licence.

IntelliJ Idea Integrated development environment.

Matlab Environment for technical computing.

Notepad++ Source code editor, free licence.

OpenOffice Office productivity software suite, free licence.

Protége Ontology editor, free licence.

TortoiseSVN Subversion client, free licence.

Windows 7 Operating system.

- 37 -

Software Description

References

[1] HITZLER, Pascal, KRÖTZSCH, Markus, RUDOLPH, Sebastian.
Foundations of Semantic Web Technologies. Boca Raton: Chapman &
Hall / CRC, 2009. ISBN 978-1-4200-9050-5.

[2] World Wide Web Consortium (W3C). Semantic Web [online].
[cit. 2012-01-05]. URL: <http://www.w3.org/standards/semanticweb>

[3] World Wide Web Consortium (W3C). RDF Primer [online]. [cit. 2012-02-
06]. URL: <http://www.w3.org/TR/2004/REC-rdf-primer-20040210>

[4] World Wide Web Consortium (W3C). Resource Description Framework
(RDF) [online]. [cit. 2012-01-15]. URL: <http://www.w3.org/RDF>

[5] World Wide Web Consortium (W3C). RDF/XML Syntax Specification
(Revised), W3C Recommendation [online]. [cit. 2012-03-10].
URL: <http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210>

[6] World Wide Web Consortium (W3C). XML Schema Part 2: Datatypes,
W3C Recommendation [online]. [cit. 2012-03-10].
URL: <http://www.w3.org/TR/2001/REC-xmlschema-2-20010502>

[7] World Wide Web Consortium (W3C). RDF Vocabulary Description
Language 1.0: RDF Schema [online]. [cit. 2012-01-26].
URL: <http://www.w3.org/TR/2004/REC-rdf-schema-20040210>

[8] World Wide Web Consortium (W3C). OWL Web Ontology Language Guide
[online]. [cit. 2012-01-14]. URL: <http://www.w3.org/TR/owl-guide>

[9] World Wide Web Consortium (W3C). Web Ontology Language (OWL)
[online]. [cit. 2011-11-02]. URL: <http://www.w3.org/2004/OWL>

[10] JEŽEK, Petr, MOUČEK, Roman. Database of EEG/ERP experiments.
Third International Conference on Health Informatics, 2010, Valencia,
Spain.

[11] JEŽEK, Petr, MOUČEK, Roman. EEG/ERP Portal – Semantic Web
Extension, Generating Ontology from Object Oriented Model. Second Global
Congress on Intelligent Systems, 2010, Wuhan, China.
ISBN 978-1-4244-9247-3.

[12] ČERNÝ, Jaroslav. Neuroinformatics Database and Semantic Web
Resources. Pilsen, 2011. Diploma thesis. University of West Bohemia,
Department of Computer Science and Engineering.

- 38 -

[13] VLAŠIMSKÝ, Jiří. Access privileges in EEG/ERP portal (Systém
oprávnění v EEG/ERP portálu). Pilsen, 2011. Diploma thesis. University
of West Bohemia, Department of Computer Science and Engineering.

[14] BRŮHA, Petr. EEG/ERP Portal and Resources of Semantic Web
(EEG/ERP portál a prostředky sémantického webu). Pilsen, 2011. Diploma
thesis. University of West Bohemia, Department of Computer Science
and Engineering.

[15] Jena. An Introduction to RDF and the Jena RDF API [online]. [cit. 2011-
11-23]. URL: <http://incubator.apache.org/jena/tutorials/rdf_api.html>

[16] MARKVART, Filip. EEG/ERP portal - transformation to semantic web
(EEG/ERP portál - transformace do sémantického webu). Pilsen, 2011.
Bachelor thesis. University of West Bohemia, Department of Computer
Science and Engineering.

[17] ŠMÍD, Dominik. Database of EEG/ERP experiments and semantic web
(Databáze EEG/ERR experimentů a sémantický web). Pilsen, 2010.
Bachelor thesis. University of West Bohemia, Department of Computer
Science and Engineering.

[18] PECINOVSKÝ, Rudolf. Java 5.0 - Language innovations and upgrade
of applications (Java 5.0 - Novinky jazyka a upgrade aplikací). Brno: CP
Books, a. s., 2005. ISBN 80-251-0615-2.

[19] BECHHOFER, S., HARMELEN, F. van, HENDLER, J., HORROCKS, I.,
MCGUINESS, D. L., PATEL-SCHNEIDER, P., STEIN, L. A.. OWL Web
Ontology Language Reference [online]. [cit. 2012-03-10].
URL: <http://www.w3.org/TR/owl-ref>

[20] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0 (Fifth Edition) [online]. [cit. 2012-04-15].
URL: <http://www.w3.org/TR/xml>

- 39 -

Appendix A: Implemented OWL language elements

A.1 Classes

owl:Class

A class in OWL is defined as a group of individuals that have some common
characteristics. They do not have to share all properties. Owl:Class is a subclass
of rdfs:Class . These two elements are equivalent in OWL Full, but in OWL
Lite or DL owl:Class must meet some restrictions.

Implementation: Java classes from the object model are mapped into owl:Class

instances. There is no need to use any annotation in the Java source code, every
class is mapped implicitly. Its name is preserved from the Java class name
and its namespace is implicitly adopted from the Java package name. However,
this can be changed by using the @Namespace annotation for the Java class.
Another way is to set the default namespace in the JenaBeanExtension
constructor (but this will set the namespace for all classes in the model).

For example:

package data.pojo;
public class Person { ... }

This class is mapped into:

<owl:Class rdf:about="http://data.pojo#Person" />

owl:complementOf

If class A is a complement of class B, then every individual that does not belong
to B must belong to A and vice versa. Classes have no common individual.
This relation can be expressed as a logical negation.

Implementation: Implemented as the class annotation @ComplementOf. Its value
must be a well-formed URI (referencing the complement class).

- A1 -

Example of use:

@ComplementOf("http://some.ontology#EverythingExcep tPerson")
public class Person {

 ...

}

This class is mapped into:

<owl:Class rdf:about="#Person">

 ...

 <owl:complementOf>
 <owl:Class
 rdf:about="http://some.ontology#EverythingExc eptPerson"/>
 </owl:complementOf>

</owl:Class>

owl:disjointWith

This property expresses that two classes have no common individuals.

Implementation: Implemented as the class annotation @DisjointWith . Its value
must be a well-formed URI (referencing the disjoint class).

Example of use:

@DisjointWith("http://some.ontology#Animal")
public class Person {

 ...

}

This class is mapped into:

<owl:Class rdf:about="#Person">

 ...

 <owl:disjointWith>
 <owl:Class rdf:about="http://some.ontology#Anim al"/>
 </owl:disjointWith>

</owl:Class>

- A2 -

owl:equivalentClass

This property expresses that two classes have the same class extension
(the same set of individuals), but not necessarily the same concepts. That means
although two equivalent classes have the same instances, they does not have
to be equal. In OWL Full class equality can be expressed using below mentioned
owl:sameAs . OWL Lite or DL cannot express class equality.

Implementation: Implemented as the class annotation @EquivalentClass .
Its value must be a well-formed URI (referencing the equivalent class).

Example of use:

@EquivalentClass("http://some.ontology#Man")
public class Person {

 ...

}

This class is mapped into:

<owl:Class rdf:about="#Person">

 ...

 <owl:equivalentClass>
 <owl:Class rdf:about="http://some.ontology#Man" />
 </owl:equivalentClass>

</owl:Class>

- A3 -

A.2 Ontology Header

Following properties are used to create statements about individual ontologies.
Ontology itself is also a resource (an instance of owl:Ontology), that is why
it can be described the same way as classes or properties. Statements describing
the ontology comprise so called ontology header.

An ontology can be described using common datatype or object
properties. OWL also defines ontology properties as instances
of owl:OntologyProperty . These properties are in fact object properties that
both domain and range of which are instances of owl:Ontology . They can link
mutually compatible ontologies, import other ontologies and so on.

I implemented owl:Ontology and all its properties as a Java class within
the JenaBeanExtension API. I could not take advantage of the annotation-based
approach, because these statements does not concern any individual classes
or fields, but the whole model. The object-oriented model cannot contain this
information, it must be passed on to the JenaBean Extension additionally.
For these purposes can be used an instance of the Ontology class. Following
example shows the way of setting the ontology header:

JenaBeanExtension jbe;
Ontology ontology;
... // creating the model

ontology = new Ontology("http://kiv.zcu.cz/eegdatabase");
...(set ontology properties)...
jbe.setOntology(ontology);

owl:Ontology

Ontology itself is a resource defined by this element, referred to as an ontology
header. It should be defined near the beginning of the ontology document.
Ontology header contains information about the ontology itself. Information
about ontology can be stated using properties as well as for classes and other
resources. There is also a special kind of properties in OWL that links
an ontology to an ontology (owl:OntologyProperty).

Implementation: Implemented as the Java class Ontology within the JenaBean
Extension API. Its instance is used to set required ontology properties. It is

- A4 -

passed to JenaBeanExtension afterwards using the setOntology() method
and the owl:Ontology element is added to the ontology document.

Example of use:

JenaBeanExtension jbe;
jbe = new JenaBeanExtensionTool(datalist); // creat ing owl model
jbe.setOntology(new Ontology("kiv.zcu.cz/eegdatabas e"));
...

The third line adds to the ontology document:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegdatab ase" />

owl:backwardCompatibleWith

This is an ontology property. It defines the referenced ontology as a prior
version of the containing ontology and asserts that the new version is backward
compatible with the prior one. This can be useful when importing some third
party's ontology into our ontology. If the third party's ontology has a new
version and it is declared as backward compatible, we can safely change
the import statement to the new version.

Implementation: Implemented within the Ontology class, which is one
of the JenaBean Extension interface classes. The owl:backwardCompatibleWith

element can be set using the setBackwardCompatibleWith() method upon this
class. Its argument must be a well-formed URI referencing the prior version
of the ontology.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase/2.0");
ontology.setBackwardCompatibleWith("http://kiv.zcu. cz/eegbase/1");
...

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase/ 2.0">

 <owl:backwardCompatibleWith
 rdf:resource="http://kiv.zcu.cz/eegbase/1" />
 ...

</owl:Ontology>

- A5 -

owl:priorVersion

This is an ontology property. It defines the referenced ontology as a prior
version of the containing ontology like owl:backwardCompatibleWith , but this
statement does not say anything about their compatibility. It can be used
to manage ontology versions only.

Implementation: Implemented within the Ontology class as its method
setPriorVersion() . Its argument must be a well-formed URI referencing
the prior version.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase/2.0");
ontology.setPriorVersion("http://kiv.zcu.cz/eegbase /1.0");
...

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase/ 2.0">

 <owl:priorVersion
 rdf:resource="http://kiv.zcu.cz/eegbase/1.0" />
 ...

</owl:Ontology>

owl:incompatibleWith

This ontology property is the opposite of owl:backwardCompatibleWith . It
defines the referenced ontology as a prior version of the containing ontology and
asserts that they are not compatible each other. This fact should be assumed
automatically whenever the owl:backwardCompatibleWith element is not present.
The owl:incompatibleWith element can be used to explicitly emphasize this
fact.

Implementation: Implemented within the Ontology class as its method
setIncompatibleWith() . Its argument must be a well-formed URI referencing
the incompatible prior version.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase/2.0");
ontology.setIncompatibleWith("http://kiv.zcu.cz/eeg database");
...

- A6 -

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase/ 2.0">

 <owl:incompatibleWith
 rdf:resource="http://kiv.zcu.cz/eegdatabase" />
 ...

</owl:Ontology>

owl:imports

This is an ontology property that is used to import another ontology into our
ontology. The statement contains URI that reference the imported ontology. It
can be a third party ontology. It contains definitions that we want to use
in the importing ontology. If the imported ontology contains the owl:imports

statement as well, they are imported both.

Implementation: Implemented within the Ontology class as its methods
addImport() or setImports() . The first one adds reference to one ontology
and can be used several times. The second one sets all imports at once, its
argument is an array of references. References must be well-formed URIs.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase/2.0");
ontology.addImport("http://some.address/ontology");
ontology.addImport("http://another.address/ontology ");
...

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase/ 2.0">

 <owl:imports rdf:resource="http://some.address/on tology" />
 <owl:imports
 rdf:resource="http://another.address/ontology" />
 ...

</owl:Ontology>

- A7 -

A.3 Properties

owl:DatatypeProperty

This class is used in OWL to define datatype properties. Datatype properties
link individuals to data values. Owl:DatatypeProperty is a subclass
of rdf:Property .

Implementation: Class fields from the Java source code are mapped
into properties in the ontology model. If the field's declared type is equivalent
with some datatype used in OWL (for example integer, string, date) then
the field is mapped into an owl:DatatypeProperty instance. There is no need
to use any annotation in the Java source code, every field is mapped implicitly.
Its name is preserved from the Java field's name and its namespace is borrowed
from the Java class that declares this field.

The property is also set the rdfs:domain and rdfs:range axioms. Domain
specifies the subject that can own this property and is set to the owl:Class

instance that represents the Java class declaring this field. Range specifies
possible values of the property (object from the triple). It is set to a datatype
equivalent to the field's declared type.

For example:

public class Person {

 ...

 private String name;

}

The name field is mapped into:

<owl:DatatypeProperty rdf:about="#name">

 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range
 rdf:resource="http://www.w3.org/2001/XMLSchema# string"/>

</owl:DatatypeProperty>

- A8 -

owl:ObjectProperty

This class is used in OWL to define object properties. Object properties link
individuals to individuals. Owl:ObjectProperty is a subclass of rdf:Property .

Implementation: Class fields from the Java source code are mapped
into properties in the ontology model. If the field's declared type is not
equivalent with any datatype used in OWL then the field is mapped
into an owl:ObjectProperty instance. There is no need to use any annotation
in the Java source code, every field is mapped implicitly. Its name is preserved
from the Java field's name and its namespace is borrowed from the Java class
that declares this field.

The property is also set the rdfs:domain and rdfs:range axioms. Domain
specifies the subject that can own this property and is set to the owl:Class

instance that represents the Java class declaring this field. Range specifies
possible values of the property (object from the triple). It is set to the
owl:Class instance that represents the field's declared type.

For example:

public class Person {

 ...

 private Profession profession;

}

The profession field is mapped into:

<owl:ObjectProperty rdf:about="#profession">

 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#Profession"/>

</owl:ObjectProperty>

owl:FunctionalProperty

This built-in class is used to specify its instances to be functional. A functional
property can have only one value for a given subject. A functional property can
be either a datatype property or an object property.

- A9 -

Implementation: Implemented as the field annotation @FunctionalProperty . It is
parameterless.

Example of use:

public class Person {

 ...

 @FunctionalProperty
 private String surname;

}

The surname field is mapped into:

<owl:FunctionalProperty rdf:about="#surname">
 ...
</owl:FunctionalProperty>

owl:InverseFunctionalProperty

This built-in class specifies its instances to be inverse-functional. It is a subclass
of owl:ObjectProperty . An inverse-functional property can have only one
subject for a given object. It means that the object of the property
unequivocally determines the subject. No two subjects can have the same object
for the property.

Implementation: Implemented as the field annotation
@InverseFunctionalProperty . It is parameterless.

Example of use:

public class Person {

 ...

 @InverseFunctionalProperty
 private BirthNumber birthNumber;

}

The birthNumber field is mapped into:

<owl:InverseFunctionalProperty rdf:about="#birthNum ber">
 ...
</owl:InverseFunctionalProperty>

- A10 -

owl:SymmetricProperty

This element is used to specify a property to be symmetric. Symmetric property
means that the subject and the object from the triple can be interchanged
and the statement is true as well. In other words, if the pair (X, Y) is
an instance of a symmetric property, then the pair (Y, X) is an instance of this
property, too. It follows that its domain and range must be the same.
Owl:SymmetricProperty is a subclass of owl:ObjectProperty .

Implementation: Implemented as the field annotation @Symmetric without
arguments. If a field is marked by this annotation, the resulting property will be
specified as an owl:SymmetricProperty instance. JenaBeanExtension does not
check if the annotation is used properly (domain and range must be the same),
it must be arranged by a programmer.

Example of use:

public class Person {

 ...

 @Symmetric
 private Person friend;

}

The friend field is mapped into:

<owl:SymmetricProperty rdf:about="#friend">

 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="#Person" />

</owl:SymmetricProperty>

owl:TransitiveProperty

This element is used to specify a property to be transitive. It is useful primarily
for inferencing. Transitive property means that if we have two pairs (X, Y)
and (Y, Z) as instances of a transitive property, then the pair (X, Z) is also
an instance of this property. Owl:TransitiveProperty is a subclass
of owl:ObjectProperty .

- A11 -

Implementation: Implemented as the field annotation @Transitive without
arguments. If a field is marked by this annotation, the resulting property will be
specified as an owl:TransitiveProperty instance.

Example of use:

public class Person {

 ...

 @Transitive
 private Person classmate;

}

The classmate field is mapped into:

<owl:TransitiveProperty rdf:about="#classmate">

 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="#Person" />

</owl:TransitiveProperty>

owl:equivalentProperty

This statement links two properties to be equivalent, which means they have
the same property extension (the same values). It does not necessarily mean
that they are equal (have the same meaning). In OWL Full property equality
can be expressed using below mentioned owl:sameAs . OWL Lite or DL cannot
express class equality.

Implementation: Implemented as the field annotation @EquivalentProperty .
Its value must be a well-formed URI (referencing the equivalent property).

Example of use:

public class Person {

 ...

 @EquivalentProperty("http://some.ontology#givenNa me")
 private String name;

}

- A12 -

The name field is mapped into:

<owl:DatatypeProperty rdf:about="#name">

 ...
 <owl:equivalentProperty
 rdf:resource="http://some.ontology#givenName" / >

</owl:DatatypeProperty>

owl:inverseOf

This statement links two properties that are inverse each other. It means they
describe the same relation from the other side (some parent has a child, this
child has that parent).

Implementation: Implemented as the field annotation @Inverse . Its value must
be a well-formed URI (referencing the inverse property).

Example of use:

public class Person {

 ...

 @Inverse("data.pojo#child")
 private Person parent;

}

The parent field is mapped into:

<owl:ObjectProperty rdf:about="#parent">

 ...
 <owl:inverseOf rdf:resource="http://data.pojo#chi ld">

</owl:ObjectProperty>

- A13 -

A.4 Property Restrictions

These properties are used to describe classes of all individuals that satisfy some
restriction on their property. There are two types of restrictions in OWL – value
constraints and cardinality constraints. Value constraints define range
of a property, they specify possible values the property can acquire. Cardinality
constraints specify number of occurrences of the property within the restriction
class.

These statements define constraints on properties in the context
of the restriction class only. The property concerned has no constraints outside
this class. There are also some global property restrictions, like rdfs:range

or owl:FunctionalProperty . By way of contrast, these restrictions are applied
wherever the property concerned is used.

Property restrictions are defined inside a restriction class
(owl:Restriction) which is usually anonymous. This class contains also
the owl:onProperty element which determines the restricted property.
The anonymous restriction class can be used afterwards e.g. as a superclass
of another class for which we want to use the restriction.

owl:hasValue

This property is a value constraint. It says that at least one value
of the property concerned must be semantically equal to value V. The value
V can be either an individual or a data value.

Implementation: Implemented as field annotation @HasValue. Its argument
is either well-formed URI referencing the range class, or a simple data value.
In the generated ontology the Java class containing the annotated field inherits
from an anonymous restriction.

For example:

public class Person {

 ...

 @HasValue(stringValue="Jakub")
 private String givenname;

}

- A14 -

This class is mapped into:

<owl:Class rdf:about="#Person">

 ...

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#givenname" />
 <owl:hasValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#stri ng"
 >Jakub</owl:hasValue>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

This class describes only those persons whose name is Jakub (or one of their
names, if they have more than one).

owl:allValuesFrom, owl:someValuesFrom

These properties are value constraints, they give ranges to the property
under consideration, but unlike the rdfs:range property these ones concern only
the restriction class. Owl:allValuesFrom says that all values of the property
concerned must belong to a defined range. Owl:someValuesFrom is less restrictive
– it states that at least one value of the property under consideration has
the defined range. The range itself can be either a class or a data range.

Implementation: Implemented as field annotations @AllValuesFrom

and @SomeValuesFrom. Their arguments are either well-formed URIs referencing
the range class, or enumerations of simple data values. In the generated
ontology document the Java class containing the annotated field inherits
from an anonymous restriction.

Example of value constraint usage follows:

public class Person {

 ...

 @AllValuesFrom(charValues={'M', 'F'})
 private char gender;

 @SomeValuesFrom("http://an.ontology#Dog")
 private Set<Animal> pets;
}

- A15 -

This class is mapped into:

<owl:Class rdf:about="#Person">

 ...

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#gender" />
 <owl:allValuesFrom>
 <owl:DataRange>
 <owl:oneOf rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:resource="&rdf;nil"/>
 <rdf:first rdf:datatype="&xsd;string" >F</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="&xsd;string">M </rdf:first>
 </owl:oneOf>
 </owl:DataRange>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pets" />
 <owl:someValuesFrom rdf:resource="http://an.o ntology#Dog"/>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

This class describes those persons who have at least one dog (and can have
other animals). Their gender can be only 'M' (male) or 'F' (female).

owl:cardinality, owl:maxCardinality, owl:minCardinality

These elements are cardinality constraints. Owl:cardinality indicates that all
individuals of the restriction class have exactly N different values
of the property concerned. Owl:maxCardinality restricts the count of different
values from above, owl:minCardinality from below. If owl:maxCardinality

is used in combination with owl:minCardinality , it defines an interval to which
the number of the property's different values must belong. Owl:cardinality has
the same meaning as using both owl:maxCardinality and owl:minCardinality

with the same value of N.

Implementation: Implemented as field annotations @Cardinality ,
@MaxCardinality and @MinCardinality with integer arguments.

- A16 -

Problem of this implementation consists in the difference between
an object code and a RDF-based ontology. We can say that some property's
cardinality is 5 using @Cardinality(5) for the field under consideration. This
statement will appear in the ontology document after the transformation
process. But we can't create instances in Java that correspond to this statement
(i.e. every instance has exactly 5 different values of that field at the same time).
That is why these annotations should be used only for collections or arrays.
They restricts the "number of elements" of the collection. If used for other
types, the only meaningful values are 0 and 1.

For example:

public class Person {

 ...

 @MaxCardinality(4)
 @MinCardinality(2)
 private Set<Person> children;

}

This class is mapped into:

<owl:Class rdf:about="Person">

 ...

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#children" />
 <owl:maxCardinality
 rdf:datatype="http://www.w3.org/2001/XMLSch ema#int"
 >4</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#children" />
 <owl:minCardinality
 rdf:datatype="http://www.w3.org/2001/XMLSch ema#int"
 >2</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

This class describes those persons that have 2, 3 or 4 children.

- A17 -

A.5 Annotation Properties

Properties from this group can be used for any OWL resource. Mostly they
provide some additional information about the resource. Except
for owl:versionInfo they are not used by machines, but they are intended
for a human reader. They are implemented for classes and properties in the form
of Java annotations. They can be used in the ontology header as well using
appropriate methods in the Ontology class.

owl:versionInfo

This property is used for versioning. Its object is a literal that gives some
information about its subject's version. It is used primarily for ontologies.

Implementation: For an ontology header implemented within the Ontology class
as its method setVersionInfo() . For classes and properties implemented
as the @VersionInfo annotation. Both method and annotation have a string
argument that describes the version.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase");
ontology.setVersionInfo("v 2.0 – 5 Feb 2012");
...

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase" >

 <owl:versionInfo>v 2.0 – 5 Feb 2012</owl:versionI nfo>
 ...

</owl:Ontology>

rdfs:comment

This element is used to provide a human-readable description of its subject.

Implementation: For an ontology header implemented as the setComment()

method within the Ontology class. For classes and properties can be used
the @Comment annotation. Both method and annotation have a string value
with a textual information about the resource.

- A18 -

Example of use:

@Comment(value="Class of persons registered in the Portal."
 lang="en")
public class Person { ... }

This class is mapped into:

<owl:Class rdf:about="#Person">

 <rdfs:comment xml:lang="en">Class of p ersons registered in
 the Portal.</rdfs:comment>

</owl:Class>

rdfs:isDefinedBy

This property is used to set a reference to a resource that defines the resource
concerned. It is a subproperty of rdfs:seeAlso .

Implementation: For an ontology header implemented as the setIsDefinedBy()

method within the Ontology class. For classes and properties can be used
the @IsDefinedBy annotation. The argument is a URI referencing some resource.

Example of use:

@IsDefinedBy("http://kiv.zcu.cz/eegbase")
public class Person { ... }

This class is mapped into:

<owl:Class rdf:about="#Person">

 <rdfs:isDefinedBy rdf:resource="http://kiv.zcu.cz /eegbase"/ >
 ...

</owl:Class>

rdfs:label

This element is used to provide a human-readable name of its subject. It is
useful for a human reader to understand its meaning better, especially if some
resource is not very transparently named.

- A19 -

Implementation: For an ontology header implemented as the setLabel() method
within the Ontology class. For classes and properties can be used the @Label

annotation. Both method and annotation have a string argument that names
the resource.

Example of use:

@Label("Parameters of measuration")
public class MeasurationAdditionalParams { ... }

This class is mapped into:

<owl:Class rdf:about="#MeasurationAdditionalParams" >

 <rdfs:label>Parameters of measuration</rdfs:label >
 ...

</owl:Class>

rdfs:seeAlso

This element gives a reference to a resource that can provide some relevant
information. It can be a Web page for example.

Implementation: For an ontology header implemented as the setSeeAlso()

method within the Ontology class. For classes and properties can be used
the @SeeAlso annotation. Their argument is a URI referencing some relevant
resource.

Example of use:

Ontology ontology = new Ontology("http://kiv.zcu.cz /eegbase");
ontology.setSeeAlso("http://eegdatabase.kiv.zcu.cz");
...

This adds following ontology header:

<owl:Ontology rdf:about="http://kiv.zcu.cz/eegbase" >

 <rdfs:seeAlso rdf:resource="http://eegdatabase.ki v.zcu.cz"/>
 ...

</owl:Ontology>

- A20 -

A.6 Individuals

Following properties are used to describe individuals. This poses a problem
for the annotation-based approach, because in the static code we can annotate
only static structures like classes, fields or methods. Individual Java instances,
which are mapped into OWL individuals, cannot be provided with different
annotation values.

Classes and properties can be treated as individuals in OWL Full, that is
why we can use this group of properties for classes and properties. However,
that implies that the resulting ontology document will be in OWL Full, which
has no computational guarantees. That means for example that a further
processing by a reasoning software can be very demanding or problematic.
Therefore OWL Full is not supported in the Portal, but OWL DL. However,
I have implemented this group of properties in the JenaBean Extension library
as class or field annotations, but use of them is deprecated until the Portal
supports OWL Full.

owl:AllDifferent, owl:differentFrom

These elements indicate that given individuals are not the same.
Owl:differentFrom is a property, it describes the relation for two individuals.
Owl:AllDifferent is a built-in class that defines a group of mutually different
individuals. It is a more convenient way for a number of different individuals.

Implementation: Implemented as the class and field annotations @AllDifferent

and @DifferentFrom . Their argument is a URI or an array of URIs that refer
to different individuals.

owl:sameAs

This property states that two individuals are equal. It is the opposite
of owl:differentFrom . We can use it to express that two different URIs refer
to the same thing.

Implementation: Implemented as the class and field annotation @SameAs. Its
argument is a URI of the equal individual.

- A21 -

Appendix B: Listings

<?xml version= "1.0" ?>
<rdf:RDF
 xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:semantic= "http://thewebsemantic.com#"
 xmlns:owl= "http://www.w3.org/2002/07/owl#"
 xmlns:xsd= "http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
 xml:base= "http://kiv.zcu.cz/eegbase#" >
 <owl:Ontology rdf:about= "http://kiv.zcu.cz/eegbase" >
 <owl:versionInfo> 10 April 2012 </owl:versionInfo>
 <owl:backwardCompatibleWith rdf:resource= "http://kiv.zcu.cz/eegdatabase" />
 <owl:incompatibleWith rdf:resource= "http://kiv.zcu.cz/ontology" />
 <owl:priorVersion rdf:resource= "http://kiv.zcu.cz/eegdatabase" />
 <rdfs:comment> This ontology contains data from EEG/ERP experiment s. </rdfs:comment>
 <rdfs:label> EEG/ERP Database </rdfs:label>
 </owl:Ontology>
 <owl:Class rdf:ID= "Person" >
 <rdfs:label xml:lang= "cs" >Osoba</rdfs:label>
 <rdfs:comment xml:lang="en"> Class of persons registered in the Portal. </rdfs:comment>
 <semantic:javaclass> cz.zcu.kiv.eegdatabase.data.pojo.Person </semantic:javaclass>
 </owl:Class>
 <owl:Class rdf:ID= "Experiment" >
 <semantic:javaclass> cz.zcu.kiv.eegdatabase.data.pojo.Experiment </semantic:javaclass>
 </owl:Class>
 <owl:Class rdf:ID= "Disease" >
 <semantic:javaclass> cz.zcu.kiv.eegdatabase.data.pojo.Disease </semantic:javaclass>
 </owl:Class>
 <owl:Class rdf:ID= "ScenarioType" >
 <semantic:javaclass> cz.zcu.kiv.eegdatabase.data.pojo.ScenarioType </semantic:javaclass>
 <rdfs:subClassOf rdf:resource= "http://kiv.zcu.cz/eegbase#IScenarioType" />
 </owl:Class>

 ...

 <owl:ObjectProperty rdf:ID= "experimentsForOwnerId" >
 <rdfs:domain rdf:resource= "http://kiv.zcu.cz/eegbase#Person" />
 <rdfs:range rdf:resource= "http://kiv.zcu.cz/eegbase#Experiment" />
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID= "electrodeTypes" >
 <rdfs:domain rdf:resource= "http://kiv.zcu.cz/eegbase#ResearchGroup" />
 <rdfs:range rdf:resource= "http://kiv.zcu.cz/eegbase#ElectrodeType" />
 </owl:ObjectProperty>

 ...

 <owl:DatatypeProperty rdf:ID= "startTime" >
 <rdfs:domain rdf:resource= "http://kiv.zcu.cz/eegbase#Experiment" />
 <rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#dateTime" />
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID= "givenname" >
 <rdfs:domain rdf:resource= "http://kiv.zcu.cz/eegbase#Person" />
 <rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#string" />
 </owl:DatatypeProperty>

 ...

 <owl:AnnotationProperty rdf:about= "http://thewebsemantic.com#javaclass" >
 <rdfs:comment>
 This property determines the Java class that was ma pped into declaring resource.
 </rdfs:comment>
 <rdfs:label> Java class </rdfs:label>
 </owl:AnnotationProperty>
</rdf:RDF>

Listing B.1: Illustration fragment of the ontology schema from the Portal

(in RDF/XML-ABBREV).

- B1 -

<?xml version= "1.0" ?>
<!DOCTYPE rdf:RDF [<!ENTITY this 'http://kiv.zcu.cz /eegbase#'>
 <!ENTITY rdfs 'http://www.w3.org /2000/01/rdf-schema#'>
 <!ENTITY xsd 'http://www.w3.org/ 2001/XMLSchema#'>
 <!ENTITY owl 'http://www.w3.org/ 2002/07/owl#'>
 <!ENTITY semantic 'http://theweb semantic.com#'>
 <!ENTITY rdf 'http://www.w3.org/ 1999/02/22-rdf-syntax-ns#'>]>
<rdf:RDF
 xmlns:rdf= "&rdf;"
 xmlns:semantic= "&semantic;"
 xmlns:owl= "&owl;"
 xmlns:xsd= "&xsd;"
 xmlns= "&this;"
 xmlns:rdfs= "&rdfs;"
 xml:base= "&this;" >
 <rdf:Description rdf:about= "&this;Experiment_1477909621" >
 <subjectGroup rdf:resource= "&this;SubjectGroup_0" />
 <privateExperiment rdf:datatype= "&xsd;integer" >0</privateExperiment>
 <digitization rdf:resource= "&this;Digitization_0" />
 <rdf:type rdf:resource= "&this;Experiment" />
 <startTime rdf:datatype= "&xsd;dateTime" >2010-11-27T12:00:00Z </startTime>
 <personByOwnerId rdf:resource= "&this;Person_0" />
 <weather rdf:resource= "&this;Weather_0" />
 <endTime rdf:datatype= "&xsd;dateTime" >2010-11-27T12:30:00Z </endTime>
 <researchGroup rdf:resource= "&this;ResearchGroup_1589011725" />
 <experimentId rdf:datatype= "&xsd;integer" >122</experimentId>
 <personBySubjectPersonId rdf:resource= "&this;Person_0" />
 <scenario rdf:resource= "&this;Scenario_0" />
 <temperature rdf:datatype= "&xsd;integer" >25</temperature>
 <histories rdf:resource= "&this;History_2142899520" />
 </rdf:Description>
 <rdf:Description rdf:about= "&this;History_269925795" >
 <scenario rdf:resource= "&this;Scenario_0" />
 <person rdf:resource= "&this;Person_929761472" />
 <historyId rdf:datatype= "&xsd;integer" >310</historyId>
 <dateOfDownload rdf:datatype= "&xsd;dateTime" >2011-04-21T12:57:05Z </dateOfDownload>
 <rdf:type rdf:resource= "&this;History" />
 </rdf:Description>
 <rdf:Description rdf:about= "&this;Weather_0" >
 <defaultNumber rdf:datatype= "&xsd;integer" >0</defaultNumber>
 <weatherId rdf:datatype= "&xsd;integer" >0</weatherId>
 <scn rdf:datatype= "&xsd;integer" >0</scn>
 <rdf:type rdf:resource= "&this;Weather" />
 </rdf:Description>
 <rdf:Description rdf:about= "&this;Disease_983945598" >
 <title rdf:datatype= "&xsd;string" >blindnesss </title>
 <experiments rdf:resource= "&this;Experiment_376897125" />
 <diseaseId rdf:datatype= "&xsd;integer" >31</diseaseId>
 <description rdf:datatype= "&xsd;string" >blindnesss </description>
 <rdf:type rdf:resource= "&this;Disease" />
 </rdf:Description>
 <rdf:Description rdf:about= "&this;Hardware_2009202871" >
 <description rdf:datatype= "&xsd;string" >Usporny procesor </description>
 <hardwareId rdf:datatype= "&xsd;integer" >71</hardwareId>
 <experiments rdf:resource= "&this;Experiment_1322182163" />
 <type rdf:datatype= "&xsd;string" >Sandy Bridge </type>
 <defaultNumber rdf:datatype= "&xsd;integer" >1</defaultNumber>
 <title rdf:datatype= "&xsd;string" >Intel 2100 T </title>
 <researchGroups rdf:resource= "&this;ResearchGroup_1072752492" />
 <hardwareGroupRels rdf:resource= "&this;Hardware_2009202871" />
 <researchGroups rdf:resource= "&this;ResearchGroup_54927975" />
 <experiments rdf:resource= "&this;Experiment_966434611" />
 <rdf:type rdf:resource= "&this;Hardware" />
 </rdf:Description>

 ...

</rdf:RDF>

Listing B.2: Illustration fragment of the ontology document from the Portal

(in RDF/XML).

- B2 -

