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Abstract

This diploma thesis describes the theory behind the discontinuous Galerkin finite element method
(DG FEM) and subsequently the implementation of the method into numerical software package
SfePy (Simple finite elements in Python). SfePy uses the term based representation to specify
a solved equation. Several new terms needed in DG FEM formulation were implemented along
with an internal representation of the discretization. Namely the linear advection flux term, the
general hyperbolic flux term, the diffusion flux term, and the diffusion penalty term. To enable
solving transient equations two explicit time-stepping solvers, the forward Euler solver and the
TVD Runge-Kutta of the 3rd order solver were implemented. Moreover, the moment limiters for
1D and 2D transient problems were also implemented. This implementation was then used in
eight examples to test the convergence of the method and illustrate the effects and interactions
of the diffusion penalty term and the limiter. The diffusion penalty term proves to be necessary
to overcome the discontinuity of the method in problems that mandate a continuous solution.
The limiter causes significant artificial diffusion but keeps oscillation occurring in the high order
approximations manageable.

Abstrakt

Tato diplomová práce popisuje teorii za nespojitou Galerkinovou metodou konečných prvk̊u (DG
MKP) a následně jej́ı implementaci do numerického software SfePy (Simple finite elements in
Python). SfePy použ́ıvá k reprezentaci řešených rovnic jednotlivé, předpřipravené integrálńı termy.
Tato práce popisuje odvozeńı a implementaci několika termů, potřebných k formulaci metody.
Jmenovitě jde o lineárńı advekčńı term, obecný hyperbolický term, difuzńı term a difuzńı penal-
tový term. Spolu s nimi byla do SfePy přidána i potřebná vnitřńı reprezentace diskretizace. Pro
řešeńı tranzientńıch problémů jsou součást́ı implementace i dva explicitńı časové řešiče: dopředný
Euler̊uv řešič a TVD Runge-Kutta třet́ıho řádu. Pro použit́ı v tranzientńıch problémech je určen
tzv. momentový limeter implementovaný pro 1D problémy a 2D problémy s uniformńı čtyřúhel-
ńıkovou śıt́ı. Tato implementace byla následně použita k řešeńı osmi př́ıklad̊u, na kterých tes-
tujeme konvergenci metody a vliv limiteru a penaltového členu. Penaltový člen se ukazuje jako
nezbytný v problémech, které vyžaduj́ı spojité řešeńı. Limiter zp̊usobuje značnou umělou difuzi
avšak zabraňuje oscilaćım, které se objevuj́ı u metod vyšš́ıho řádu.
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Chapter 1

Introduction

In this work, we present the implementation of discontinuous Galerkin Finite Elements Method
(DG FEM) in software package SfePy and results of experimental measurement of convergence of
the method. We consider several model problems, the basic one being a linear advection problem
for variable p with constant advection velocity ~a

∂p

∂t
− ~a · ∇p = 0,

with a Dirichlet boundary conditions

p(t, ~x) = pD(t, ~x) for ~x in ∂Ω,

which we gradually generalize by adding diffusion D, source term g and nonlinearity ~f

∂p

∂t
+∇ · ~f(p)−D∆p = g.

The first main goal of this work is to provide an implementation of the discontinuous Galerkin
method, which could be used to empirically study the behavior of the method but also in academic
and potential real-world applications and in education. The second main goal is to use this
implementation to analyze the behavior of the method when applied to chosen model problems
based on the equations above, especially concerning the choice of different fluxes and penalty terms
(see below).

The work is divided as follows: The introductory chapter summarizes literature and basic
concepts of DG FEM and introduces SfePy . In the second chapter, we derive the method for a
model problem and explore the theory behind it. The third chapter describes in detail the SfePy
package and the implementation of the method. The fourth chapter presents the setup and results
of numerical experiments measuring convergence. In the concluding chapter, we discuss the results
and present suggestions for future work.

1.1 Basic concepts and literature

In continuous or classical finite element discretizations of the partial differential equation, the so-
lution is approximated by a combination of basis functions whose supports span across multiple
geometrical elements of the mesh discretizing the computational domain. This enforces continuity
of the solution and provides a way of transferring information between the elements. In discon-
tinuous Galerkin FE methods, on the other hand, the basis functions used in the approximation
of test and state variables have supports limited to the individual geometrical elements, much
like piecewise approximation in finite volume (FV) methods. This leads to compact discretization
stencils and allows discontinuities in the approximate solution but also requires fluxes at element

1



CHAPTER 1. INTRODUCTION 2

interfaces to be introduced in order to transfer information between elements. As we shall see,
these properties of the DG FE methods prove to be useful in some applications and burdens in
others.

The discontinuous approximation and compact stencils make DG FEM appealing for multi-
domain and multi-physics simulations [11]. The possibility to approximate discontinuous solutions
proves useful in modeling so-called shock waves in nonlinear conservation laws with small dissipa-
tion [19](see Example 7). Inherent discontinuity of solution, however, brings difficulties for diffusion
dominated or otherwise naturally continuous problems and forces introduction of so-called penalty
terms (more in Section 2.3.2, [3] and [19]). The introduction of fluxes provides great flexibility
of DG FEM and allows a straightforward implementation of conservation laws which endows
the method with good stability properties when approximating advection dominated problems.
Among disadvantages of the use of fluxes belong a complicated theoretical analysis of the methods
and a lack of an exact solution to Riemann problems for high order approximations in individual
mesh elements. The use of approximate fluxes for solving Riemann problems with rough initial
data with large gradients introduces oscillations not present in FV methods mandating the use of
so-called limiters (more in Section 2.7, [11, Sec. 3.2.4] and [18]). The FE nature of DG FEM and
the use of fluxes allows the DG FEM to be interpreted both as Galerkin projection onto suitable
energy spaces as well as high order classical upwind finite volume schemes [13].

Although studied thoroughly, as literature cited above suggests, DG FE methods still pose
research challenges and promise new and potentially useful results for numerical modeling. Among
challenges are those mentioned above. One of great promises is the so-called super-convergence
observed for certain problems [22] which yet awaits to be leveraged in applications.

1.2 SfePy – Simple Finite Elements in Python

Simple finite elements in Python (SfePy , http://sfepy.org/) is a software package providing FE
based methods along with a wide range of tools for defining, solving, and post-processing variety
of coupled PDEs in 1D, 2D, and 3D. It can be viewed both as a black-box PDE solver and as a
Python package which can be used for building custom application [8]. The code of the package
is open-source published under New BSD-3 Clause license [17] and is available on Github [6].
Detailed documentation with many examples can be found in [7].

SfePy can use many FE based terms to build the PDEs to be solved. This approach is
reflected in Section 2 where the discretization of the equation is divided into discretization of
individual terms, these are then implemented individually in Chapter 3. As of time of writing
SfePy supports classical FEM and isogeometric analysis (IGA) based FEM and provides tools
for setting up, solving and post-processing problems in applications like homogenization of porous
media, acoustic waves in thin perforated layers, finite element formulation of Schroedinger equation
or flow of a two-phase non-Newtonian fluid medium in a general domain [8].

There are several other software packages implementing DG FEM, some of the currently avail-
able codes are: hpGEM [20] (https://hpgem.org/) which provides implementation of so-called
hp-methods in C++; FEniCS project [1] (https://fenicsproject.org/) which is well estab-
lished numerical software build on C/C++; PyFR [24] (http://www.pyfr.org/) which is Python
based framework for solving advection-diffusion type problems that leverages locality of DG FE
methods to run computations efficiently on modern streaming architectures, such as Graphical
Processing Units (GPUs)[24].

http://sfepy.org/
https://hpgem.org/
https://fenicsproject.org/
http://www.pyfr.org/


Chapter 2

Discontinous Galerkin Method

In this chapter, we lay the theoretical background for the concepts necessary to describe the
method and then derive the discretization of the advection term ~a · ∇(p), the general nonlinear

hyperbolic term ∇ · ~f(p), the diffusion term ∇ · (D∇p) and the source term g(x) occurring in
various PDEs, namely, from the simplest one: the linear advection equation with a constant and
non-constant velocity, the advection with diffusion and sources, the general nonlinear hyperbolic
equation. Using the discretized terms we will formulate the method for these equations. Towards
the end of the chapter, we introduce limiters necessary for stabilization of the high order versions
of the method.

2.1 Terms and equations

The basic equation we will be concerned with is the partial hyperbolic-elliptic equation for the
unknown function p, p : Ω → R, where Ω ⊂ R is the physical domain with the boundary ∂Ω, in
the stationary form

∇ · ~f(p)−∇ · (D∇p) = g, (2.1.1)

where f is a sufficiently smooth vector function f : R→ Rn, with the Dirichlet boundary conditions

p(t, ~x) = pD(t, ~x) for ~x in ∂Ω, (2.1.2)

or in the transient form
∂p

∂t
+∇ · ~f(p)−∇ · (D∇p) = g, (2.1.3)

with boundary conditions of the same form and the initial condition

p(0, ~x) = p0(~x). (2.1.4)

For this problem we will be concerned with discretization of the generally nonlinear hyperbolic
term covered in Section 2.3.1

∇ · ~f(p), (2.1.5)

which also covers discretization of the linear advection term

~a · ∇p; (2.1.6)

the diffusion term covered in Section 2.3.2

−∇ · (D∇p); (2.1.7)

the source term in Section 2.3.3
g; (2.1.8)

and finally in Section 2.4 we will treat discretization of the temporal derivative term

∂p

∂t
. (2.1.9)

3



CHAPTER 2. DISCONTINOUS GALERKIN METHOD 4

2.2 Finite dimensional discontinuous approximation space

In order to discretize the terms and further the equations we first need to establish the approxima-
tion space we will use, similarly to continuous FEM. We start by choosing a suitable computational
domain Ωh which approximates the domain Ω. Since SfePy supports simplex and tensor prod-
uct meshes, we will be concerned with space filling tessellations containing line segments for 1D
problems, and only triangles or only quadrangles for 2D problems. The subscript h denotes the
minimal diameter of the elements, N will denote the number of elements of Ωh and individual
elements will be denoted by T k for k = 0, . . . , N − 1. Creating this suitable tessellation for an
arbitrary computational domain is by no means a trivial task, however for the time being we will
assume the selected computational domain and the mesh satisfy all conditions required below.
First we define the space of piecewise continuous functions on Ωh as

C1(Ωh) =
{
v; v|Tk ∈ C1 ∀T k ∈ Ωh

}
. (2.2.1)

and the broken Sobolev space on Ωh as

W 1,2(Ωh) =
{
v; v|Tk ∈W 1,2 ∀T k ∈ Ωh

}
. (2.2.2)

In the finite dimensional discretization we will work in finite dimensional subspaces of W 1,2(Ωh).
On each element T k we express solution p(t, ~x) locally as a linear combination of basis functions

p(t, ~x)|Tk ≈ pkh(t, ~x) =

Nbase−1∑
n=0

P knψ
k
n(~x), (2.2.3)

i.e., as a function in the local space

VTk = span
{
ψkn(~x), n = 0, 1, . . . Nbase − 1

}
, (2.2.4)

where Nbase is the number of basis functions we use in the approximation and hence the dimension
of the local approximation space. This number is directly tied to approximation order and is
dependent on the type of mesh elements. Additionally we also require that

supp
{
ψkn(~x

)
} = T k n ∈ {0, 1, . . . Nbase − 1}. (2.2.5)

This means that basis functions are localized to individual elements and allow us to represent
a discontinuous solution, unlike in the classical FEM, where supports of basis functions overlap,
spanning multiple elements and thus enforcing continuity of solution.

In 1D, ψkn(~x) is composed of Legendre polynomials shifted and truncated to interval [0, 1]; we
denote Lr(x) the Legendre polynomial of order r. These Legendre polynomials are orthogonal
and hence the set {ψkn(x)| ψn = Ln, n = 0, 1, . . . Nbase − 1} forms basis of the Nbase dimensional
polynomial space. We denote M = Nbase − 1 the maximal order of used Legendre polynomials.

In 2D the basis functions ψkn(~x) are composed from Legendre polynomials in such a way that
the set {ψkn(~x)| n = 0, 1, . . . Nbase − 1} is orthogonal with respect to the local scalar product

(p, v)Tk =

∫
Tk

p · v. (2.2.6)

hence forming basis of the Nbase-dimensional space. The particular shape of ψkn(~x) depends on
topology of the mesh elements. For tensor product meshes, i.e., quadrilateral elements we use the
straight-forward tensor product of Legendre polynomials. If we denote M the order of approxi-
mation, d the dimension of the geometric space (2 in our case), we get quadrilateral element basis
functions in the form

ψkn(~x) = Lr(x)Ls(y) r, s = 0, 1, . . . ,M, (2.2.7)

and the dimension of the approximation space is

Nbase = (M + 1)d. (2.2.8)
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In the case of simplex meshes, the shape of ψkn(~x) is the result of Gram-Schmidt orthogonal-
ization process on the canonical basis

{xrys, r, s = 0, 1, . . . ,M s.t. r + s ≤M} , (2.2.9)

with respect to scalar product (2.2.6) and its shape is much more elaborate. The Jacobi polyno-
mials are needed to represent the basis. If we denote Jα,βm the m-th order Jacobi polynomial, the
individual basis functions can be written in the form [15]

ψkn(~x) = Jr(a)J2s+1,0
s (b)(1− b)r r, s = 0, 1, . . . ,M s.t. r + s = n ≤M, (2.2.10)

where

a = 2
1 + x

1− y
− 1, b = y. (2.2.11)

We get the local polynomial space of dimension

Nbase =
(M + 1) · (M + 2) · ... · (M + d)

d!
. (2.2.12)

In both 2D cases the mapping between n and r and s (i.e., ordering of basis functions)

n = indx(r, s), (2.2.13)

with its reverses
r = indx1(n), s = indx2(n), (2.2.14)

is theoretically arbitrary. In practice we choose it so that the basis functions are ordered lexically
i.e.

n ≤ m⇔ indx1(n) + indx2(n) ≤ indx1(m) + indx2(m). (2.2.15)

The used mapping is probably best expressed using a procedural programming language, see
Listing 3.2. In the whole computational domain Ωh the solution can be then thought of as being
a member of the direct sum of local spaces

LeMΩh
=

⊕
Tk∈Ωh

VTk , (2.2.16)

which is the finite dimensional subspace of the broken Sobolev space defined in (2.2.2), that is
LeMΩh

⊂W 1,2(Ωh), Le stands for Legendre, it has dimension

Ndof = dim(LeMΩh
) = N ·Nbase, (2.2.17)

where subscript dof stands for degrees of freedom (DOFs). This is the local basis commonly used
in literature [15], [4], however there are also other usable bases, which must not be orthogonal or
polynomial [25]. We will always use the full basis of the functions, however the implementation
contains mechanism to omit some of them for testing purposes.
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2.3 Spatial discretization

We can now start formulating the discretization in space domain. To discretize equation (2.1.1) in
finite elements manner we first devise the weak formulation of the problem. First we choose the
unknown p and an arbitrary test function w to be from C1(Ωh) and multiply equation (2.1.1) by
w to get

∇ · ~f(p) · w(~x)−∇ · (D∇p) · w(~x) = g · w(~x). (2.3.1)

After integrating over the domain Ω we get∫
Ω

∇ · ~f(p) · w(~x)−
∫

Ω

∇ · (D∇p) · w(~x) =

∫
Ω

g · w(~x). (2.3.2)

This holds for every Cauchy sequence of functions pn, wn and using Lebesgue dominated con-
vergence theorem we can formulate the problem on closure of C1(Ωh) i.e. for p ∈ W 1,2(Ωh) and
w ∈W 1,2(Ωh), obtaining the equation (2.3.2) in the form (we drop independent variables t and ~x
notations for brevity)

N∑
k=0

(∫
Tk

∇ · ~f(p) · w −
∫
Tk

∇ · (D∇p) · w
)

=

N∑
k=0

(∫
Tk

g · w
)
. (2.3.3)

Having arrived to the ”broken” integral formulation of the equation we will now focus on discretiza-
tion of individual terms within mesh elements.

2.3.1 Hyperbolic term discretization

Using the Green’s theorem on the first integral term in (2.3.3) we get∫
Tk

∇ · ~f(p) · w =

∫
∂Tk

~n~f(p)w −
∫
Tk

~f(p) · ∇w, (2.3.4)

where ~n is the normal vector to the boundary ∂T k of T k. The approximation of the value of ~f on
the boundary of the element plays the key role in the discretization using DG FE methods. The
issue is that the approximate solution is discontinuous across the boundary of an element and two
values are actually present, pin inner to the element and pout outer, coming from its neighbor across
a particular part of the boundary. Since we deal with 2D elements with a polygonal boundary, the
integral over the boundary can be expressed as sum of integrals over line segments F ki , i = 0, 1, 2
for triangular meshes or i = 0, 1, 2, 3 for quadrilateral meshes, forming the boundary:

Nf∑
i=0

∫
Fk

i

~nf ~f(p)w. (2.3.5)

If we denote T k(i) the element sharing the line segment F ki with the element T k, the value pout

corresponds to the approximation in this element, i.e., pout = p
k(i)
h . For simplicity of notation

we continue using integral over the whole boundary of T k implicitly assuming that pout changes
as described above. To approximate the unknown value of ~f(p) we will use the approximate flux
~f∗(pin, pout) obtaining the first term on the right-hand side in the form∫

∂Tk

~n~f(p)w =

∫
∂Tk

~n · ~f∗(pin, pout) · w. (2.3.6)

In our setting we will use the so-called local Lax-Friedrichs flux exclusively, although there are many
other possible fluxes, for examples see [19, 9], their later implementation should be straightforward
(more in Section 3.5.1). The Lax-Friedrichs flux as given in [15] is of the form

~f∗(pin, pout) =
~f(pin) + ~f(pout)

2
+ (1− α)~n

C

2
(pin − pout), (2.3.7)
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where α ∈ [0, 1] is a parameter adjusting the nature of the flux, α = 0 for purely upwind scheme,
α = 1 for central scheme, and

C = max
p∈[pin:pout]

∣∣∣∣n1
∂f1

∂p
+ n2

∂f2

∂p

∣∣∣∣ = max
p∈[pin:pout]

∣∣∣∣∣~n · d~fdp (p)

∣∣∣∣∣ , (2.3.8)

where [pin : pout] denotes the closed interval[
min
∂Tk

(min(pin, pout)),max
∂Tk

(max(pin, pout))
]
.

Note that in the linear case, where ~f(p) = ~ap and d~f
dp (p) = ~a, C reduces to

C = |~n~a|. (2.3.9)

In this formulation C constitutes the upper bound on wave speed at the boundary interface. In
order to simplify notation we denote “jump” in the quantity p across the boundary

[p] = pin − pout, (2.3.10)

and the average of p across the boundary

〈p〉 =
pin + pout

2
. (2.3.11)

Using this notation we can write

~f∗(pin, pout) = 〈p〉+ (1− α)~n
C

2
[p]. (2.3.12)

After approximating p and w on each element T k as linear combinations of basis functions as
in (2.2.3):

p(t, ~x) ≈
Nbase−1∑
i=0

P ki ψi(~x), (2.3.13)

w(t, ~x) ≈
Nbase−1∑
j=0

W k
j ψj(~x), (2.3.14)

and substituting (2.3.6) to (2.3.4) we arrive to

∫
Tk

∇ · ~f(p) · w ≈
∫
Tk

~f
(Nbase−1∑

i=0

P ki ψi

)
· ∇
(Nbase−1∑

j=0

W k
j ψj

)

−
∫
∂Tk

~n · ~f∗(pin, pout) ·
Nbase−1∑
j=0

W k
j ψj . (2.3.15)

Since this approximation holds for every test function w ∈ LeMΩh
we can successively choose

W k
j = 1 ∀ j, k. Using summation notation for clarity, we can then write terms on the right-hand

side of (2.3.15) as

aChyp(p) =

∫
Tk

~f(P ki ψi) · ∇ψj , (2.3.16)

aFhyp(p) =

∫
∂Tk

~n · ~f∗(pin, pout) · ψj . (2.3.17)
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where p denotes vector of unknowns P ki grouped by element as follows

p =
(
P 0

0 , P
0
1 , P

0
2 , . . . , P

0
Nbase−1, . . . , P

N
0 , PN1 , PN2 , . . . , PNNbase−1

)
. (2.3.18)

Note that in (2.3.17) we do not include the minus sign in front of the flux term. In the linear case
the term defined in (2.3.17) can be rewritten as

aCadv(p) =

∫
Tk

~aP ki ψi · ∇ψj . (2.3.19)

This finalizes discretization of the general hyperbolic term ∇ · ~f(p) · w, the two terms – the
integral over element T k (often called the stiffness term) and the integral over its surface ∂T k –
are implemented in SfePy as ScalarDotMGradScalarTerm and AdvectDGFluxTerm in the special
case ~f = ~ap and as NonlinScalarDotGradTerm and NonlinearHyperDGFluxTerm in the general
case. See Section 3.5.1 in Chapter 3 for details on the implementation.

2.3.2 Elliptic term discretization

To discretize the elliptic diffusion term ∫
Tk

∇ · (D∇p)w,

we use the Green’s theorem as well, obtaining∫
Tk

∇ · (D∇p) · w =

∫
∂Tk

D(∇p · ~n)w −
∫
Tk

D∇p∇w. (2.3.20)

On the boundary ∂T k we define, using notation from (2.3.11),

∇p =
∇pin +∇pout

2
= 〈∇p〉. (2.3.21)

Substituting (2.3.21) to (2.3.20) and using the fact that the test function w vanishes outside the
element we get the so-called incomplete scheme∫

∂Tk

D〈∇p〉 · ~n[w]−
∫
Tk

D∇p∇w. (2.3.22)

Due to regularity of p the [p(t, ·)] = 0 holds [19, p. 14] and the term:∫
∂Tk

D〈∇w〉 · ~n[p] (2.3.23)

vanishes. We can then create symmetric resp. non-symmetric schemes by adding the term (2.3.23)
with ”+” resp. ”−” sign [19, p. 14]. This ”symmetrizes” the discretization with respect to p and
w, which is advantageous in theoretical analysis [12, p. 39]. However neither of these schemes is
stable and we need to compensate for the discontinuities of the p across element boundaries by
adding an interior penalty term [19, 3, 12]

ν

∫
∂Tk

Cw ·
Ord2

d(∂T k)
[p][w], (2.3.24)

where the constant ν captures properties of the diffusion tensor D. In case D = ε, ε > 0 we set
ν = ε. Cw is a parameter at our disposal used to fine tune the penalty term. See examples 3, 4,
5, 7 and 8 in Chapter 4 for effects of different choices of Cw. And finally d(∂T k) is the volume of
the boundary of T k. To simplify notation we denote

σ = νCw ·
Ord2

d(∂T k)
. (2.3.25)
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We further proceed as for the hyperbolic term. By replacing p and w by their finite dimensional
approximations (2.3.13) and (2.3.14) and using the fact that the test function ψki vanishes outside
element T k and hence

〈ψki 〉 =
ψki
2
, (2.3.26)

[ψki ] = ψki , (2.3.27)

holds, we obtain individual terms needed to discretize the diffusion term in forms∫
∂Tk

D〈∇p〉 · ~n[w] ≈ aLdiff(p) =

∫
∂Tk

D〈P ki ∇ψi〉 · ~n[ψj ] =

∫
∂Tk

D〈P ki ∇ψi〉 · ~nψj , (2.3.28)∫
∂Tk

D〈∇w〉 · ~n[p] ≈ aRdiff(p) =

∫
∂Tk

D〈∇ψj〉 · ~n[P ki ψi] =

∫
∂Tk

D
∇ψj

2
· ~n[P ki ψi], (2.3.29)∫

Tk

D∇p∇w ≈ aCdiff(p) =

∫
Tk

D∇P ki ψi∇ψj , (2.3.30)∫
∂Tk

σ[p][w] ≈ aPdiff(p) =

∫
∂Tk

σ[P ki ψi][ψj ] =

∫
∂Tk

σ[P ki ψi]ψj . (2.3.31)

Using these we construct three variants of the discontinuous Galerkin method used for elliptic
problems: Symmetric Interior Penalty Galerkin method (SIPG)∫

Tk

∇ · (D∇p)w ≈ −aCdiff(p) + aLdiff(p) + aRdiff(p)− aPdiff(p), (2.3.32)

Non-symmetric Interior Penalty Galerkin method (NIPG)∫
Tk

∇ · (D∇p)w ≈ −aCdiff(p) + aLdiff(p)− aRdiff(p)− aPdiff(p), (2.3.33)

Incomplete Interior Penalty Galerkin method (IIPG)∫
Tk

∇ · (D∇p)w ≈ −aCdiff(p) + aLdiff(p)− aPdiff(p). (2.3.34)

2.3.3 Source term discretization

The discretization of the source term is analogous in DG FEM as in continuous FEM. In the term∫
Ωh

g · w (2.3.35)

we take the test function from the broken Legendre space LeMΩh
obtaining

N∑
k=0

(∫
Tk

g · w
)
. (2.3.36)

After substituting (2.3.14) and successively choosing W k
j = 1 ∀ j, k we get

N−1∑
k=0

Nbase−1∑
j=0

(∫
Tk

g · ψj
)
. (2.3.37)

Hence for the element T k and test function ψj the source term coefficient is

bsource =

∫
Tk

g · ψj . (2.3.38)
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2.4 Temporal discretization

In discretizing the transient equation (2.1.3) we use the discretization of terms devised for the
stationary equation, with the important difference that the discretization coefficients in (2.3.13)
now depend on time, that is

P ki = P ki (t). (2.4.1)

By applying spatial discretization to the transient term we obtain∫
Tk

∂p

∂t
(t)w ≈ dP ki

dt
(t)

∫
Tk

ψiψj . (2.4.2)

Using this discretization in (2.1.3) we obtain the system of ordinary differential equations for
unknown coefficients P ki (t) in variable t

M
dp

dt
(t) + L(p(t)) = 0, (2.4.3)

where L is composed from discretized terms derived in previous sections and M is a matrix
composed of blocks Mk,l, k, l = 0, . . . , N of the form

(Mk,l)ij = (ψki , ψ
l
j)Tk . (2.4.4)

Since the basis functions are orthogonal with respect to the scalar product (2.2.6), the individual
blocks are diagonal and since basis functions ψki vanish outside of the element T k, the matrix M
is diagonal

M =



M0,0 0 · · · 0 · · · 0
0 M1,1

... 0
. . . 0

...
...

... Mk,k

...
... 0

. . . 0
0 0 · · · · · · 0 MN,N


. (2.4.5)

Thanks to this the inverse of M is trivial and we can rewrite (2.4.3) as

dp

dt
(t) + M−1L(p(t)) = 0, (2.4.6)

denoting
L̄ = M−1L, (2.4.7)

we can write (2.4.3) in the form
dp

dt
(t) + L̄(p(t)) = 0. (2.4.8)

There is plethora of different schemes for evolving the equation (2.4.8). We will only present the
basic forward Euler scheme and the so called total variations diminishing Runge-Kutta scheme of
the 3rd order.

Forward Euler scheme In the forward Euler scheme we approximate the time derivative using
the forward difference, i.e.,

dp

dt
(t) ≈ p(n+1) − p(n)

∆t
, (2.4.9)

where n denotes the current time step. Substituting into (2.4.8) yields

p(n+1) − p(n)

∆t
+ L̄(p(n), t(n)) = 0 (2.4.10)
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and after rearranging to obtain an explicit equation for p(n+1) we get

p(n+1) = p(n) −∆tL̄(p(n), t(n)). (2.4.11)

The forward Euler scheme is first order in time. We use it to define the so-called total variation
diminishing property of L̄, that is the total variation of the numerical solution in one dimension

TV (p) =
∑
k

|pk+1 − pk| , (2.4.12)

where k ranges over subsequent 1D mesh elements, does not increase in time, i.e.,

TV (pn+1) ≤ TV (pn), (2.4.13)

under update by the forward Euler scheme. This motivates usage of the following TVD Runge-
Kutta method [14, p. 73].

TVD Runge-Kutta 3rd order scheme The third order total variations diminishing Runge-
Kutta scheme [14] is a three step scheme that maintains the TVD property while achieving the
3rd order accuracy in time.

p(1) = p(n) −∆tL̄(p(n)),

p(2) =
3

4
p(n) +

1

4
p(1) − 1

4
∆tL̄(p(1)),

p(n+1) =
1

3
p(n) +

2

3
p(2) − 2

3
∆tL̄(p(2)).

(2.4.14)

Hyperbolic term stability requirement Use of explicit time stepping solvers poses strict
upper bounds on the size of time step. For purely advection problems the Courant-Friedrichs-
Lewy condition adjusted for high order approximations mandates [5, p. 5]

∆t ≤ CCFL
h

‖~a‖
· 1

2M + 1
, (2.4.15)

where 0 < CCFL ≤ 1 is an adjustable parameter of order 1.

Elliptic term stability requirement For problems including diffusion the CFL condition
(2.4.15) is often overridden by [15]

∆t ≤ CDIFF
h2

D
, (2.4.16)

where 0 < CDIFF ≤ 1 is again an adjustable parameter of order 1.
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2.5 Initial condition discretization

The initial condition
p0(~x),

is discretized in a straight-forward manner as an orthogonal projection into the finite dimensional
space LeMΩh

on the domain Ωh. That is by solving

(P ki )0

∫
Tk

ψiψj =

∫
Tk

p0(~x)ψj , (2.5.1)

for (P ki )0. We use the mass matrix notation and the fact that it is diagonal and get

(P ki )0 =
1

(ψki , ψ
k
i )Tk

∫
Tk

p0(~x)ψi. (2.5.2)

2.6 Boundary conditions

Unlike it is common in literature we postponed treatment of the boundary conditions (BCs) un-
til now. The reason is to keep the theoretical discussion closely tied with the implementation.
This allows us to demonstrate how the method works, hopefully providing the reader with enough
information and understanding to modify it. In our implementation treatment of boundary con-
ditions is separated from the terms implementation, i.e., terms do not have any information about
boundary conditions, they are merely passed data, which already satisfy BCs. In expressions

〈p〉 =
pin + pout

2
(2.6.1)

and
[p] = pin − pout, (2.6.2)

the missing outer value pout in boundary elements is substituted by

• the value of the Dirichlet boundary condition, or

• the value in the corresponding neighbor cell where the periodic boundary conditions are
defined,

whenever there is no direct neighbor. In implementations this is ensured in terms themselves by
getting corresponding values from DGField through method get_both_facet_base_vals.
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2.7 Limiters

In high order DG FEM, oscillations, which can significantly decrease the quality of solution, occur
even when the Courant-Friedrichs-Lewy condition (2.4.15) is met. To combat this a limiter needs
to be used — in the following section we present moment limiters for 1D and 2D problems.

2.7.1 Moment limiter

The moment limiter by Krivodonova [18] leverages the idea that coefficients for higher-order basis
functions in hierarchically ordered Legendre basis represent derivatives of lower-order data and uses
this to limit the derivative of order i in a given cell using derivatives of order i− 1 in neighboring
cells. This kind of limiter, unlike others, does not reduce the solution to the first-order accuracy.
Unfortunately this kind of limiting is so far available only in one-dimensional problems and in two
dimensional problems with tensor product meshes.

One-dimensional limiting

We limit the solution in each cell T k

pkh(t, ~x) =

Nbase∑
i=0

P ki ψi(~x) (2.7.1)

by limiting its coefficients P ki , starting with the coefficients of the highest order, i.e., i = Nbase we
subsequently replace P ki with

P̃ ki = minmod
(
P ki , αi(P

k+1
i−1 − P

k
i−1), αi(P

k
i−1 − P k−1

i−1 )
)
, (2.7.2)

stopping when P ki = P̃ ki . In the definition of limiter (2.7.2), minmod is a function of three variables

minmod(a, b, c) =

{
sign(a) min(|a| , |b| , |c|) if sign(a) = sign(b) = sign(c)

0 otherwise
. (2.7.3)

and αi is the limiting coefficient dependent on the order. Krivodonova [18] proposes to take αi
from range

1

2(2n− 1)
≤ αn ≤ 1. (2.7.4)

Choosing αi outside this region results in either a loss of accuracy or a numerical instability [18, p.
882]. The lower bound of the interval corresponds to the strictest limiting, whereas αi = 1 is the
mildest limiter possible [18, p. 882] and we set it as the value of α. The one-dimensional limiter
is implemented in dg.limiters.MomentLimiter1D, see Section 3.6 for details.

Two-dimensional limiting

In this section we describe extension of the moment limiter to regular tensor-product meshes in
two dimensions. We limit the solution coefficients in individual cells much like in 1D, but this time
we have to take into account derivatives in four directions and to introduce some new notation:

P̃ k,mr,s = minmod
(
P k,mr,s , αs(P

k,m+1
r,s−1 − P

k,m
r,s−1), αs(P

k,m
r,s−1 − P

k,m−1
r,s−1 ),

αr(P
k+1,m
r−1,s − P

k+1,m
r−1,s ), αr(P

k−1,m
r−1,s − P

k,m
r−1,s)

)
, (2.7.5)

where P k,mr,s denotes the coefficient of the basis function ψn of the form

ψn = Lr(x)Ls(y)
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i.e.,
n = indx(r, s).

Further we leveraged the fact that we assume the mesh to be regular uniform Cartesian grid and
introduced the new notation for indexing mesh elements as T k,m where k ranges over rows and m
over columns. The region of stability for αn is different due to normalization of basis functions

1

2
√

4n2 − 1
≤ αn ≤

√
2n− 1

2n+ 1
, (2.7.6)

we choose upper bound as α again. The two-dimensional limiter is implemented in the class
dg.limiters.MomentLimiter2D, see Section 3.6.



Chapter 3

Discontinous Galerkin Method
implementation

In this chapter we explore in detail SfePy package application interface (API) as well as its inner
workings in order to explain the implementation details of the method. We will show several usage
examples and hopefully provide enough information for users to use the method effectively and
even modify it.

3.1 Problem specification

Before we delve into inner workings of SfePy numerical code lets introduce the so-called declarative
problem specification format. The format relies on Python dictionaries, see Listing 3.1 for model
problem specification for the 2D Laplace equation on the domain [0, 1] × [0, 1] simplified from
Example 3. It contains dictionaries declaring components of the problem like regions in a geometric
domain, a field governing the used FE method, state, and test variables, boundary conditions,
material constants, and functions, etc. Detailed and more general treatment of the format can be
found in [8] here we focus on the specification of a problem to be solved using DG FEM.

Listing 3.1: Problem specification file example_dg_laplace.py.

regions = {’Omega’ : ’all’, ¶
’left’ : (’vertices in x == 0’, ’edge’),

’right’: (’vertices in x == 1’, ’edge’),

’top’ : (’vertices in y == 1’, ’edge’),

’bottom ’: (’vertices in y == 0’, ’edge’)}

fields = {’f’: (’real’, ’scalar ’, ’Omega’, ·
str(approx_order) + ’d’, ’DG’, ’legendre ’)}

variables = {’p’: (’unknown field’, ’f’, 0, 1),

’v’: (’test field’, ’f’, ’p’)} ¸

def analytic_sol(coors):

x_1 , x_2 = coors [..., 0], coors [..., 1]

res = 1/2* x_1**2 - 1/2* x_2 **2 - a*x_1 + b*x_2 + c

return res

@local_register_function

def bcs(ts, coors , bc, problem): ¹
x_1 , x_2 = coors [..., 0], coors [..., 1]

15
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res = nm.zeros(x_1.shape)

if bc.diff == 0:

res[:] = analytic_sol(coors)

elif bc.diff == 1:

res = nm.stack((x_1 - a, -x_2 + b), axis=-2)

return res

dgebcs = { º
’p_left ’ : (’left’, {’p.all’: "bcs", ’grad.p.all’: "bcs"}),

’p_right ’ : (’right’, {’p.all’: "bcs", ’grad.p.all’: "bcs"}),

’p_bottom ’ : (’bottom ’, {’p.all’: "bcs", ’grad.p.all’: "bcs"}),

’p_top’ : (’top’, {’p.all’: "bcs", ’grad.p.all’: "bcs"})}

materials = {’D’: ({’val’: [diffcoef], ’.Cw’: cw},)} »
integrals = {’i’: 2 * approx_order}

equations = {’the_equation ’: ¼
"dw_laplace.i.Omega(D.val , v, p) "

" - dw_dg_diffusion_flux.i.Omega(D.val , p, v)"

" - dw_dg_diffusion_flux.i.Omega(D.val , v, p)"

" + dw_dg_interior_penalty.i.Omega(D.val , D.Cw, v, p)"

"= 0"}

solvers = {’ls’: (’ls.auto_direct ’, {}),½
’newton ’: (’nls.newton ’, {})}

options = {’nls’ : ’newton ’, ¾
’ls’ : ’ls’,

’output_format ’ : ’msh’

’format_variant ’: ’gmsh -dg’}

¶ regions dictionary specifies different regions used in boundary conditions specification,
Omega region is required for setting up fields, ’edge’ regions are needed for BCs.

· fields determine discretization spaces of variables and are defined using tuple of strings.
(data type, number of components, region name, approximation order, field type,

polyspace) here the field ’f’ is a field for the discretization of a real scalar variable in the
region "Omega" using the discontinuous Galerkin method of the order approx_order in the
space of Legendre polynomials.

¸ Here ’p’ is an unknown state variable we are solving for and ’v’ is a test variable, they are
both discretized using the field ’f’ defined above.

¹ The function bcs is called during solution, it is supposed to produce values and derivatives
of boundary conditions.

¹ The dgebcs dictionary sets up boundary conditions specifically for DG FE methods, it
creates map between boundary regions and, variables and values of functions that determine
boundary conditions.

» In materials dictionary we specify the diffusion coefficient D, the dot notation ’.Cw’ causes
material not to be broad-casted to quadrature points, which is convenient for constants
parameterizing terms like Cw or α in (2.3.25) resp. (2.3.7).

¼ The equation to solve is composed of terms derived in Chapter 2.

½ Linear and non-linear solvers to use, SfePy supports various solvers including mumps [2].
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¾ Various options, ’output_format’: ’msh’ and ’format_variant’: ’gmsh’ ensure output
in format suitable for post-processing using Gmsh [21](http://gmsh.info/).

3.2 SfePy architecture

Components in the problem specification file are parsed into various Python objects brought
together in the Problem object, the most important are:

• Equation – representing the equation to be solved,

• EssentialBC – representing Dirichlet boundary conditions,

• PeriodicBC – representing periodic boundary conditions,

• InitialCondition – representing the initial condition, in case of transient problems,

• TimeSteppingSolver – specifying the time discretization scheme, in case of transient prob-
lems.

The Equation object is built by combining Term objects: these represent individual integral terms
that are evaluated in the course of solving a problem. Due to the interpreted nature of CPython
in which SfePy is mainly run and which is generally too slow for high-performance numerical
computation due to overhead from the interpreter, SfePy relies on various approaches to speed
up the computation. In general, it uses fast vectorized operations provided by NumPy and SciPy
[23]. C and Cython are used in places where vectorization is not possible, or is too difficult or
unreadable [8]. Our implementation relies on NumPy vectorization, especially the einsum function
(mode details below). Terms keep references to other objects:

• Variable – representing state and test variables,

• Material – representing various material constants or functions,

• Integral – representing Gauss quadrature rules.

The Variable object in turn contains reference to the Field object that manages the chosen
discretization – finite dimensional space represented by a PolySpace object and provides methods
needed to work with it along with the computational domain (the Domain object) which stores
geometry including Region objects used in the definition of EssentialBC and PeriodicBC and
the equations.

3.3 DG method components

Having laid out the structure of the SfePy problem and objects needed to create it and work with
it we now present classes needed to implement the DG FEM. Following the architecture of SfePy ,
the DG FE method implementation comprises of:

• DGField,

• LegendrePolySpace and its subclasses,

• LegendreTensorProductPolySpace and

• LegendreSimplexPolySpace;

DG specific terms as summarized in the top portion of Table 3.3.1;

http://gmsh.info/
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Table 3.3.1: Table of terms used in DG method.

Class Name Symbol Expression

AdvectionDGFluxTerm "dw_dg_advect_laxfrie_flux" aFadv(p)
∫
∂Tk ~n · ~f∗(pin, pout) · ψj

NonlinearHyperbolicDGFluxTerm "dw_dg_nonlinear_laxfrie_flux" aFhyp(p)
∫
∂Tk ~n · ~f∗(pin, pout) · ψj

NonlinearScalarDotGradTerm "dw_ns_dot_grad_s" aChyp(p)
∫
Tk

~f(P ki ψi) · ∇ψj

DiffusionDGFluxTerm "dw_dg_diffusion_flux"
aRdiff(p)
aLdiff(p)

∫
∂Tk D

∇ψj

2 · ~n[P ki ψi]∫
∂Tk D〈P ki ∇ψi〉 · ~nψj

DiffusionInteriorPenaltyTerm "dw_dg_interior_penalty" aPdiff(p)
∫
∂Tk σ[P ki ψi]ψj

ScalarDotMGradScalarTerm "dw_s_dot_mgrad_s" aCadv(p)
∫
Tk ~aP

k
i ψi · ∇ψj

LaplaceTerm "dw_laplace" aCdiff(p)
∫
Tk D∇P ki ψi∇ψj

DotProductVolumeTerm "dw_volume_dot" –
dPk

i

dt (t)
∫
Tk ψiψj

DG specific boundary conditions:

• DGEssentialBC,

• DGPeriodicBC;

and multistage time-stepping solvers:

• abstract base class DGMultiStageTS and two solvers used in numerical experiments:

• EulerStepSolver,

• TVDRK3StepSolver.

Finally limiters were implemented as subclasses of DGLimiter abstract class (which has no coun-
terpart in SfePy):

• IdentityLimiter – provided for convenience to enable easily disabling limiter without
changing syntax,

• MomentLimiter1D – for 1D problems only,

• MommentLimiter2D – only for 2D problems on regular tensor product meshes.

The limiters are used in the problem composition as post-stage hooks passed to time-stepping
solvers. For technical reasons we also created the DGVariable class in order to bypass the classical
FE treatment of boundary conditions, otherwise it is similar to the original SfePy Variable class
and we omit its detailed description.

3.4 DG Field

The DGField class inherits from the Field base class. This provides it with the basic functionality
needed to be used in problem specification. From methods implemented in DGField, the most
relevant to DG FEM are:

• get_both_facet_state_vals – which returns values of state variable on opposing sides of
the boundary for each element,

• get_both_facet_base_vals – which returns values of basis functions on opposing sides of
the boundary for each element,

• get_facet_neighbor_idx – which returns indices of cell neighbors for individual facets along
with index of the facet within the neighboring cell,
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• get_bc_facet_values – which provides values of boundary conditions,

• get_facet_boundary_idx –

• get_facet_vols

• get_facet_qp

3.4.1 Legendre polynomial spaces implementation

Legendre polynomial spaces are implemented in two classes LegendreTensorProductPolySpace

and LegendreSimplexPolySpace. Both are derived from the abstract class LegendrePolySpace

which inherits from SfePy PolySpace. It implements the method _eval_base which is used to
get values of basis functions as well as their derivatives. It also contains methods for evaluating
Legendre and Jacobi polynomials common to tensor-product and simplex subclasses. These classes
are accompanied by the function get_n_el_nod, which returns number of basis functions for the
given order, dimension and type of basis, and the generator iter_by_order (3.2) which generates
tuples of r and s in desired hierarchical order. For example, for the approximation order 2 and the
tensor-product basis this is: (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (2, 1),

(1, 2), (2, 2).

Listing 3.2: Iteration over r and s indicies of basis functions .

def iter_by_order(order , dim , extended=False):

...

porder = order + 1

for k in range(porder):

for r in range(k + 1):

yield r, k - r ¶
if not extended: return ·
for s in range(1, porder):

for r in range(1, porder):

if r + s <= porder - 1:

continue

yield r, s

¶ yield keyword turns a function into a generator usable in for cycles, for example in Listing
3.6.

· extended flag distinguishes the simplex basis from tensor-product one which uses more basis
functions.

To obtain values of Jacobi polynomials, we used implementations provided by SciPy in the special
module.

3.5 DG Terms

Besides terms listed in Table 3.3.1 we implemented the abstract class DGTerm from which the
other terms inherit. Methods eval_real and call_function implemented in this class manage
calling the method named function, which each term implements, and returning the results to
the evaluation engine of SfePy . The function method comes from architecture of the terms al-
ready present in SfePy where it is used to call extensions programmed and optimized using C
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programing language. This method is called whenever value of the term is needed either to build
residual vector (i.e. right-hand side of an equation) or to get terms contribution to the matrix
form of L (in case of implicit problem). The method returns the residual values correspond-
ing to the individual DOFs and in the matrix mode also the indices to build the sparse matrix
representation. To demonstrate how this is implemented we explore AdvectionDGFluxTerm and
DiffusionDGFluxTerm, DiffusionInteriorPenaltyTerm is implemented in the same manner,
NonlinearScalarDotGradTerm was modified from ScalarDotMGradScalarTerm already imple-
mented in SfePy.

3.5.1 Hyperbolic flux term implementation

AdvectionDGFluxTerm corresponds to the discretized term (2.3.17) where ~f(p) = ~ap. The part of
the function capturing computation of cell fluxes can be seen in Listing 3.3 below.

Listing 3.3: Computation of advection cell fluxes.

def function(self, out , state , diff_var , field , region , advelo):

fc_n = field.get_cell_normals_per_facet(region)

# get maximal wave speeds at facets

C = nm.abs(nm.einsum("ifk ,ik->if", fc_n , advelo)) ¶

if diff_var is not None: ·

nbrhd_idx = field.get_facet_neighbor_idx(region , state.eq_map)

active_cells , active_facets = nm.where(nbrhd_idx[:, :, 0] >= 0)

active_nrbhs = nbrhd_idx[active_cells , active_facets , 0]

in_fc_b , out_fc_b , whs = field.get_both_facet_base_vals(state ,

region)

inner_diff = nm.einsum("nfk , nfk ->nf", ¸
fc_n ,

advelo[:, None , :]

+ nm.einsum("nfk , nf->nfk",

(1 - self.alpha) * fc_n , C)) / 2.

outer_diff = nm.einsum("nfk , nfk ->nf",

fc_n ,

advelo[:, None , :]

- nm.einsum("nfk , nf ->nfk",

(1 - self.alpha) * fc_n , C)) / 2.

inner_vals = nm.einsum("nf, ndfq , nbfq , nfq -> ndb", ¹
inner_diff ,

in_fc_b ,

in_fc_b ,

whs)

outer_vals = nm.einsum("i, idq , ibq , iq -> idb",

outer_diff[active_cells , active_facets],

in_fc_b[active_cells , :, active_facets],

out_fc_b[active_cells , :, active_facets],

whs[active_cells , active_facets ])

vals = nm.vstack ((inner_vals , outer_vals))

vals = vals.flatten ()
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# compute positions within matrix

iels = self._get_nbrhd_dof_indexes(active_cells , active_nrbhs ,

field)

out = (vals , iels[:, 0], iels[:, 1], state , state)

else:

facet_base_vals = field.get_facet_base(base_only=True)

in_fc_v , out_fc_v , weights =

field.get_both_facet_state_vals(state , region)

# reshape facet base to ( n_el_nod , n_el_facet , n_qp )

fc_b = facet_base_vals [:, 0, :, 0, :].T

fc_v_avg = (in_fc_v + out_fc_v)/2.

fc_v_jmp = in_fc_v - out_fc_v

central = nm.einsum("ik,ifq ->ifkq", advelo , fc_v_avg)

upwind = (1 - self.alpha)/2. * nm.einsum("if,ifk ,ifq ->ifkq",

C, fc_n , fc_v_jmp)

cell_fluxes = nm.einsum("ifk ,ifkq ,dfq ,ifq ->id",

fc_n , central + upwind , fc_b , weights)

out [0, 0, :, 0] = cell_fluxes

return out

¶ numpy.einsum uses the Einstein summation notation for expressing tensor contractions, for
details see [10].

· The presence of diff_var denotes an evaluation in the matrix mode.

¸, ¹ Variables inner_diff, outer_diff and inner_vals and outer_vals correspond to the
decomposition of the term (2.3.17)∫

∂Tk

~n · ~f∗(pin.pout) · ψj (3.5.1)

First we substitute the flux ~f∗ from(2.3.7), using ~f(p) = ~ap we get∫
∂Tk

~n

(
~apin + ~apout

2
+ (1− α)~n

C

2
(pin − pout)

)
ψj (3.5.2)

and then expand and split the integral∫
∂Tk

~n
~apin

2
ψj +

∫
∂Tk

~n
~apout

2
ψj +

∫
∂Tk

~n(1−α)~n
C

2
pinψj−

∫
∂Tk

~n(1−α)~n
C

2
poutψj . (3.5.3)

Rearranging yields∫
∂Tk

~n
~apin

2
ψj +

∫
∂Tk

~n(1−α)~n
C

2
pinψj +

∫
∂Tk

~n
~apout

2
ψj−

∫
∂Tk

~n(1−α)~n
C

2
poutψj , (3.5.4)

∫
∂Tk

1

2
(~n~a+ ~n(1− α)~nC)pinψj +

∫
∂Tk

1

2
(~n~a− ~n(1− α)~nC)poutψj , (3.5.5)
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after substituting corresponding outer and inner values of p we get the contribution for P ki
and P

k(l)
i in the form

inner_vals︷ ︸︸ ︷∫
∂Tk

1

2
~n(~a+ (1− α)~nC)︸ ︷︷ ︸

inner_diff

ψki ψj (3.5.6)

and
outer_vals︷ ︸︸ ︷∫

∂Tk

1

2
~n(~a− (1− α)~nC)︸ ︷︷ ︸

outer_diff

ψ
k(l)
i ψkj , (3.5.7)

where k(l) denotes the neighboring element sharing face F kl like in (2.3.5).

The general hyperbolic term is implemented in the class NonlinearHyperbolicDGFluxTerm unlike
linear advection term above it does not support evaluation in matrix mode.

3.5.2 Diffusion flux term implementation

Implementation of the diffusion flux terms follows the same course as the implementation of hy-
perbolic flux terms, with the important difference that DiffusionDGFluxTerm implements both
terms in (2.3.28) and (2.3.29). This is thanks to two modes in which it can be used in an
equation — this has already been demonstrated for the Laplace equation in Listing 3.1 where
"dw_dg_diffusion_flux.i.Omega(D.val, p, v)" corresponds to aRdiff(p) and mode ’avg_state’
(¶), and "dw_dg_diffusion_flux.i.Omega(D.val, v, p)" corresponds to aLdiff(p) and mode
’avg_virtual’ (·). The implementation of residual mode computation is presented in Listing
3.4.

Listing 3.4: Computation of diffusion cell fluxes.

if self.mode == ’avg_state ’: ¶
avgDdState = (nm.einsum("ikl ,ifkq ->ifkq",

D, inner_facet_state_d) +

nm.einsum("ikl ,ifkq ->ifkq",

D, outer_facet_state_d)) / 2.

# o u t e r _ f a c e t _ b a s e is in DG zero

# hence the jump is inner value

jmpBase = inner_facet_base

cell_fluxes = nm.einsum("ifkq ,ifk ,idfq ,ifq ->id",

avgDdState , fc_n , jmpBase , weights)

elif self.mode == ’avg_virtual ’: ·
avgDdbase = (nm.einsum("ikl ,idfkq ->idfkq",

D, inner_facet_base_d)) / 2.

jmpState = inner_facet_state - outer_facet_state

cell_fluxes = nm.einsum("idfkq , ifk , ifq , ifq -> id",

avgDdbase , fc_n , jmpState , weights)

3.6 Limiters implementation

Following design patterns used in SfePy and Python in general, the limiters are implemented as
classes. The base class providing only the constructor is called DGLimiter, its subclasses then
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implement the abstract method __call__ — this makes all limiters callable objects, allowing one
to pass them as post-step or post-stage or other hooks to time-stepping solvers. For convenience
the identity limiter which does not alter the solution is implemented in the class IdentityLimiter.

Moment limiter – 1D

The code listing below shows the implementation of the moment limiter introduced in Section 2.7.1,
omitting some details for brevity.

Listing 3.5: Moment limiter for 1D.

idx = nm.arange(nm.shape(u[0, 1:-1]) [0])

nu = nm.copy(u)

tilu = nm.zeros(u.shape [1:])

for ll in range(self.n_el_nod - 1, 0, -1):

tilu[idx] = minmod(nu[ll, 1:-1][idx],

nu[ll -1, 2:][ idx] - nu[ll -1, 1:-1][idx],

nu[ll -1, 1: -1][idx] - nu[ll -1, :-2][idx]) ¶

idx = idx[nm.where(abs(tilu[idx] - nu[ll, 1:-1][idx])

> MACHINE_EPS)[0]] ·
if len(idx) == 0:

break ¸
nu[ll, 1:-1][idx] = tilu[idx] ¹

¶ Compute the limiting value ũ.

· Extract indicies where the limiting value is larger than the current solution.

¸ If none of the coefficients requires limiting we stop.

¸ Replace old values with limited ones.

Moment limiter – 2D

We list the implementation of the 2D limiter for reference in Listing 3.6. The Limiter is imple-
mented according to Section 2.7.

Listing 3.6: Moment limiter for cartesian grid.

for ll, (ii, jj) in enumerate(

iter_by_order(self.field.approx_order ,

2, # dim

extended=ex)):

nu[ii, jj, ...] = u[ll] ¶

for ii, jj in reversed(list(

iter_by_order(

self.field.approx_order , 2,

extended=ex))):

minmod_args = [nu[ii, jj, idx]]

nbrhs = nbrhd_idx[idx]

if ii - 1 >= 0:

alf = nm.sqrt ((2 * ii -1) / (2 * ii + 1))

# right d i f f e r e n c e in x axis

dx_r = alf*(nu[ii -1, jj, nbrhs[:, 1]] - nu[ii -1, jj, idx])
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# left differnce in x axis

dx_l = alf*(nu[ii -1, jj, idx] - nu[ii -1, jj, nbrhs[:, 3]])

minmod_args += [dx_r , dx_l]

if jj - 1 >= 0:

alf = nm.sqrt ((2 * jj - 1) / (2 * jj + 1))

# right i . e . element " up " d i f f e r e n c e in y axis

dy_up = alf*(nu[ii, jj -1, nbrhs[:, 2]] - nu[ii , jj -1, idx])

# left i . e . element " down " d i f f e r e n c e in y axis

dy_dn = alf*(nu[ii, jj -1, idx] - nu[ii, jj -1, nbrhs[:, 0]])

minmod_args += [dy_up , dy_dn]

tilu[idx] = minmod_seq(minmod_args)

idx = idx[nm.where(abs(tilu[idx] - nu[ii, jj , idx]) >

MACHINE_EPS)[0]]

if len(idx) == 0:

break

nu[ii, jj, idx] = tilu[idx]

resu = nm.zeros(u.shape)

for ll, (ii, jj) in enumerate(

iter_by_order(self.field.approx_order ,

2, # dim

extended=ex)):

resu[ll] = nu[ii, jj] ·

¶ Reshape the solution array for indexing using r and s indicies, effectively removing need for
the explicit inverse of index mapping from (2.2.13).

· Convert back to the linear index.

3.7 Time-stepping solvers implementation

As demonstrated in Section 2.4, the explicit DG FEM requires explicit time stepping solvers
with multiple stages in one time step. These had not been part of the rich collection of time-
stepping solvers included in SfePy , so two new solvers were implemented: the basic Euler solver,
the total-variations diminishing Runge-Kutta of the 3rd order (TVD RK-3). Again following the
structure of SfePy , they are implemented as subclasses of TimeSteppingSolver. The abstract
class DGMultiStageTS extends the basic TimeSteppingSolver with the option to provide pre-
stage and post-stage hooks, allowing to apply limiters between stages. The two time-stepping
solvers are then implemented in classes EulerStepSolver and TVDRK3StepSolver.



Chapter 4

Numerical experiments

In this chapter we first introduce PDEs used to study the behavior of DG FE method and provide
a short guide to the convergence study setup. Finally, we present the results of convergence studies
for various problem setups.

4.1 Example PDEs

In the following examples we will be demonstrating the behavior of the method by solving the
following equations:

Transient advection equation in one resp. two dimensions

∂p

∂t
+ a

∂p

∂x
= 0, (4.1.1)

resp.
∂p

∂t
+ ~a · ∇p = 0. (4.1.2)

After applying discretizations devised in Chapter 2 we obtain both equations in the same form

dP ki
dt

(t)

∫
Tk

ψiψj −
∫
Tk

~aP ki ψi · ∇ψj +

∫
∂Tk

~n · ~f∗(pin, pout) · ψj = 0. (4.1.3)

The Equation expressed in SfePy declarative notation can be found in Listing 4.1 below;

Listing 4.1: Advection equation

equations = {’Advection ’:

# transient

"dw_volume_dot.i.Omega(v, p)"

"- dw_s_dot_mgrad_s.i.Omega(a.val , p[-1], v)" ¶
"+ dw_dg_advect_laxfrie_flux.i.Omega(a.flux , a.val , v, p[-1])" ·
"= 0"

}

¶ "p[-1]" ensures the variable object stores history one step backwards in time facilitating
forward nature of time stepping solvers,

· "a.flux" is an optional material argument representing α coefficient in (2.3.7).

25
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Laplace equation in two dimensions

−D
(
∂2p

∂x2
+
∂2p

∂y2

)
= 0. (4.1.4)

Employing the symmetric discretization of the diffusion term and adding the diffusion penalty
term yields the equation in the form∫

Tk

D∇P ki ψi∇ψj −
∫
∂Tk

D〈P ki ∇ψi〉 · ~nψj −
∫
∂Tk

D
∇ψj

2
· ~n[P ki ψi]

+ ν

∫
∂Tk

σ[P ki ψi]ψj = 0. (4.1.5)

The discretization of this equation using SfePy terms can be found in Listing 3.1;

Static advection-diffusion equation with a right hand side

∂p

∂x
+
∂p

∂y
−D ·

(
∂2p

∂x2
+
∂2p

∂y2

)
= g, (4.1.6)

i.e.,
~a · ∇p−D∆p = g, (4.1.7)

where ~a = [1, 1]T is the advection velocity, D is the diffusion coefficient and g is a source function.
Combining discretizations of the two previous equations we obtain the discretized form

−
∫
Tk

~aP ki ψi · ∇ψj +

∫
∂Tk

~n · ~f∗(pin, pout) · ψj

+

∫
Tk

D∇P ki ψi∇ψj −
∫
∂Tk

D〈P ki ∇ψi〉 · ~nψj −
∫
∂Tk

D
∇ψj

2
· ~n[P ki ψi]

+ ν

∫
∂Tk

σ[P ki ψi]ψj −
∫
Tk

g · ψj = 0. (4.1.8)

In SfePy declarative notation this equation has the form presented in Listing 4.2.

Listing 4.2: Static advection-diffusion equation

equations = {’adv_diff ’ :

# advection

"- dw_s_dot_mgrad_s.i.Omega(a.val , p, v)"

"+ dw_dg_advect_laxfrie_flux.i.Omega(a.flux , a.val , v, p)"

# diffusion

"+ dw_laplace.i.Omega(D.val , v, p) "

"- dw_dg_diffusion_flux.i.Omega(D.val , p, v)"

"- dw_dg_diffusion_flux.i.Omega(D.val , v, p)"

# penalty

"+ dw_dg_interior_penalty.i.Omega(D.val , D.cw, v, p)"

# source

"- dw_volume_lvf.i.Omega(g.val , v)"

"= 0"

}



CHAPTER 4. NUMERICAL EXPERIMENTS 27

Transient viscous Burgers’ equation in one resp. two dimensions

∂p

∂t
+

1

2

∂p2

∂x
−D · ∂

2p

∂x2
= g, (4.1.9)

resp.
∂p

∂t
+

1

2

(
∂p2

∂x
+
∂p2

∂y

)
−D ·

(
∂2p

∂x2
+
∂2p

∂y2

)
= g, (4.1.10)

i.e.,
∂p

∂t
+∇ · ~f(p)−D∆p = g. (4.1.11)

with ~f(p) = 1
2 [p2, p2]T = 1

2~ap
2. Discretizing using all the terms derived before we get the same

form for both 1D and 2D

dP ki
dt

(t)

∫
Tk

ψiψj −
∫
Tk

~f(P ki ψi) · ∇ψj +

∫
∂Tk

~n · ~f∗(pin, pout) · ψj

+

∫
Tk

D∇P ki ψi∇ψj −
∫
∂Tk

D〈P ki ∇ψi〉 · ~nψj −
∫
∂Tk

D
∇ψj

2
· ~n[P ki ψi]

+ ν

∫
∂Tk

σ[P ki ψi]ψj −
∫
Tk

g · ψj = 0. (4.1.12)

In SfePy declarative notation this equation has the form presented in Listing 4.3.

Listing 4.3: Viscous Burgers’ equation

burg_velo = nm.array ([1., 1.])

def f(p):

return .5* burg_velo * p[..., None] ** 2

def f_d(p):

return burg_velo * p[..., None]

equations = {’burgers ’:

# transient

"dw_volume_dot.i.Omega(v, p)"

# non - linear h y p e r b o l i c terms

"- dw_ns_dot_grad_s.i.Omega(f, f_d , p[-1], v)" ¶
"+ dw_dg_nonlinear_laxfrie_flux.i.Omega(f, f_d , v, p[-1])" ·
# diffusion

"+ dw_laplace.i.Omega(D.val , v, p[-1])"

"- dw_dg_diffusion_flux.i.Omega(D.val , p[-1], v)"

"- dw_dg_diffusion_flux.i.Omega(D.val , v, p[-1])"

# penalty

"+ dw_dg_interior_penalty.i.Omega(D.val , D.Cw, v, p[-1])"

# source

"- dw_volume_lvf.i.Omega(g.val , v)"

" = 0"

}

¶, · Nonlinear terms require as parameters the function and its derivative.
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4.2 Examples

Measuring convergence We define convergence rate r as is common in literature

r =

log

(
‖p− phn

‖L2∥∥p− phn−1

∥∥
L2

)

log

(
hdn
hdn−1

) . (4.2.1)

Inspired by [19] we present plots depicting average convergence rate over several mesh refinements,
this might not be an ideal measure of the method behavior, nevertheless it still provides us with a
convenient indicator. Accompanied with plots of L2 error it allows us to reason about the method
over several varying parameters, notably it reveals the relationship between the diffusion coefficient
and the penalty term in examples including the diffusion terms.

In Example 1 we explore behavior of DG FE method for the 1D pure advection, the time
dependent problem with and without limiting, in Example 2 we do the same for the 2D problem
although this time we omit the convergence study in favor of exploring effectiveness of different
approximation orders while keeping the number of DOFs constant. Examples 3, 4, 5 and 6
demonstrate importance of diffusion penalty terms. Final two examples 7 and 8 show usage of the
method on the Burgers’ equation. All the test problems studied further are specified using the
declarative approach introduced in 4, codes can be found in [26] (https://zenodo.org/record/
3947773).

https://zenodo.org/record/3947773
https://zenodo.org/record/3947773
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Example 1 (Advection 1D). In Ω = [0, 1] we will solve the equation (4.1.1). We use two initial
conditions u(0, x) to obtain two different solutions:

usmooth =

{
g(x), 0.1 < x < .3

0, elsewhere
, (4.2.2)

where

g(ξ) = exp

(
1

10(ξ − 0.2)2 − 1
+ 1

)
, (4.2.3)

and

ustep =


1

2
, 0.1 < x < .3

0, elsewhere
. (4.2.4)

The periodic boundary condition is prescribed at x = 0 and x = 1 — this results in the solution
at time t = 1 to be the same as the initial condition, i.e.

u(1, x) = u(0, x). (4.2.5)

We then compare u(1, x) with u(0, x) to test the convergence, see Figure 2 and 3. For the smooth
initial condition the limiting increases the error of the solution due to artificial diffusion, higher
order methods are capable of counteracting this effect though. For the discontinuous initial con-
dition the limiting significantly improves the behavior of the method by removing oscillations and
basically enabling use of high order methods, which suffer from them the most. This effect is illus-
trated in Figure 1. The resulting errors are still significant as the limiting introduces prominent
smoothing. Note that for both usmooth a ustep with and without limiting the convergence rate
of the method is impacted by using the 3rd order TVD Runge-Kutta time-stepping solver. This
behavior is consistent with that reported by Krivodonova [18].

(a) Limit: True (b) Limit: False

Figure 1: Example 1. Solution for ustep for CFL coefficient CCFL = 0.1, order M = 4, on uniform
mesh with 100 elements.
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Figure 2: Example 1. Relative errors for smooth initial condition usmooth.
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Figure 3: Example 1. Relative errors for discontinuous initial condition ustep.
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Example 2 (Advection 2D). In Ω = [−1, 1]2 we will solve the equation (4.1.1). We choose the
same initial conditions u(0, x) as in [18]

u(x, 0) =


cos2(2πr), r ≤ 0.25,

1, 0.1 ≤ x ≤ 0.6 and − 0.25 ≤ y ≤ 0.25,

0, elsewhere,

(4.2.6)

where r = (x+ 0.5)2 + y. We choose the velocity ~a dependent on space coordinates:

~a = (2πx,−2πy),

so that the initial data rotate about the origin, revolving fully for every integer value of t. In
Figure 4 we can see comparison of the initial state and the state after one revolution. In Table 4.2.1
and Figure 5 we present errors and contours of the solution for different orders, we choose meshes
so that the number of DOFs remains the same (57600) for each order. Table 4.2.1 clearly shows
that higher orders are not beneficial. And the trade off between refining a mesh and increasing
the order seems to favor mesh refining.

(a) t = 0

(b) t = 1

Figure 4: Example 2. Approximation of initial condition (top) and solution after one revolution
(bottom) obtained using first order approximation.
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Table 4.2.1: Example 2. Errors in L2 norm for different orders.

Order M #Cells Nbase Error Initial error

1 14400 4 0.1577 0.0004
2 6400 9 0.1963 0.0001
3 3600 16 0.2297 0.0648
4 2304 25 0.2619 0.0787

(a) M = 1 (b) M = 2

(c) M = 3 (d) M = 4

Figure 5: Example 2. Contours of the solution for different orders, number of DOFs is kept
constant.
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Example 3 (Diffusion 2D). Inspired by [16, problem 8.4 (3), p. 150], in Ω = [0, 1]2 we will solve
the Laplace equation (4.1.4). We setup boundary conditions in such a way that the exact solution
uexact is polynomial

uexact =
1

2
x2 − 1

2
y2 − ax+ by + c. (4.2.7)

We set boundary conditions to match the analytical solution as follows

ux(0, y) = −a, ux(a, y) = 0,

uy(x, 0) = b, uy(x, b) = 0.
(4.2.8)

In our setting we chose a = 1, b = 1, c = 0. Different values of the coefficient Cw in the penalty
term yield different convergence behavior as demonstrated in Figures 7 and 8. Figure 6 shows
the importance of penalty term for stabilizing the method. Figure 7 may suggest that high order
methods do not meet the expected convergence rate, they however still attain the lowest error as
illustrated in Figure 8. This is due to the polynomial solution which can be approximated very
accurately even on a coarse mesh and refining does not provide much benefit especially for the
high order approximations.

(a) Cw = 1 (b) Cw = 10

Figure 6: Example 3. Solution for different values of Cw, D = 0.001, M = 2, uniform quadrilateral
mesh 4× 4 elements. The visualization was scaled down by factor 0.5 in vertical axis.

Figure 7: Example 3. Average convergence rates for different choices of Cw for quadrilaterals (left)
and triangles (right).
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Figure 8: Example 3. Relative errors for different choice of Cw for quadrilaterals (left) and triangles
(right).



CHAPTER 4. NUMERICAL EXPERIMENTS 36

Example 4 (Advection-diffusion 2D). Based on Example 1 from [3], we will solve the equation
(4.1.6) in Ω = [0, 1]2. We set up the boundary conditions and source function g in such a way that
the exact solution uexact is

uexact(x, y) = −
(
y2 − y

)
sin (2πx) . (4.2.9)

Solving for g yields

g = − 2π
(
y2 − y

)
cos (2πx)− 2

(
2π2

(
y2 − y

)
sin (2πx)−D sin (2πx)

)
− (2 y − 1) sin (2πx) .

(4.2.10)
Matching boundary conditions are

u(x) = 0, ∇u(x) = [−2π(y2 − y) cos(2πx),−(2y − 1) sin(2πx)]T , x ∈ ∂Ω. (4.2.11)

Different values of the coefficient Cw in the penalty term then yield different convergence behavior
as demonstrated in Figures 10 and 11. Both figures illustrate the ”gluing” effect of the penalty
term which increases with Cw and counteracts discontinuities between elements which are the main
source of error in this example. In Figure 9 this effect is clearly visible in numerical solutions.
With the growing Cw the convergence behavior of the method improves, with the exception of
the 0th order approximation for which it has no effect as expected. Antonietti et al. [3] report
convergence for order 1 and 2, these are in accord with ours.

(a) Cw = 1 (b) Cw = 105

Figure 9: Example 4. Solutions on quadrilateral mesh for D = 1 and for different values of Cw.

Figure 10: Example 4. Average convergence rates for different choice of Cw for quadrilaterals
(left) and triangles (right).
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Figure 11: Example 4. Relative errors for different choices of Cw for quadrilaterals (left) and
triangles (right).
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Example 5 (Advection-diffusion 2D). Based on Example 2 [3], in Ω = [0, 1]2 we will again solve
the equation (4.1.6) We set up the boundary condition and source function in such a way that the
exact solution uexact is

uexact = − arctan

(
4 (2x− 1)

2
+ 4 (2 y − 1)

2 − 1

16
√

D

)
. (4.2.12)

We omit analytical forms of g and boundary conditions for brevity, they can be found in the code.
Different values of the coefficient Cw in the penalty term yield different convergence behavior as
demonstrated in Figures 13 and 14. For very low values of the diffusion coefficient D the solution
develops into a cylinder. In this state high values of Cw are detrimental as they prevent steep
edges and cause artifacts in the solution, for illustration compare Figure 12a and Figure 12b:
in (a) the relative error of the approximate solution significantly less then in (b) despite visible
discontinuities. Antonietti et al. [3] report convergence for order 1 and 2, these are in accord with
ours.

(a) Cw = 1 (b) Cw = 105

Figure 12: Example 5. Solutions for D = 10−5, on triangular mesh with 4096 elements, 4th order
approximation. The visualization was scaled down by factor 0.1 in vertical axis.

Figure 13: Example 5. Average convergence rate for different choices of Cw for quadrilaterals
(left) and triangles (right).
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Figure 14: Example 5. Relative errors for different choices of Cw for quadrilaterals (left) and
triangles (right).
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Example 6 (Advection-diffusion 2D). Based on Example 3 in [3], in Ω = [0, 1]2 we will once
again solve the equation (4.1.6) We set up the boundary condition and source function in such a
way that the exact solution uexact is

uexact = −xy + x+ y +
exp

(
− (x−1)(y−1)

D

)
− exp

(
− 1
D

)
exp

(
− 1
D

)
− 1

. (4.2.13)

We omit analytical forms of g and boundary conditions for brevity, they can found in the code.
Different values of the coefficient Cw in the penalty term yield different convergence behavior as
demonstrated in Figures 16 and 17. Antonietti et al. [3] report convergence for order 1 and 2,
these are in accord with ours.

(a) Cw = 1 (b) Cw = 103

Figure 15: Example 6. Solutions using quadrilateral mesh for D = 0.001 and for different values
of Cw for quadrilaterals (left) and triangles (right).

Figure 16: Example 6. Average convergence rate for different choices of Cw
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Figure 17: Example 6. Relative errors for different choice of Cw for quadrilaterals (left) and
triangles (right).
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Example 7 (Viscous Burgers 1D). Based on [15, Section 7.1.2, Example 7.5, p. 255]. On
Ω = [−1, 1] we will solve the viscous Burgers’ equation (4.1.10) with the zero source function.
This equation has an exact solution of a traveling wave

uexact = − tanh

(
−2 t− 2x− 1

4D

)
+ 1. (4.2.14)

We set boundary conditions to match the solution

u(−1, t) = − tanh

(
−2 t+ 1

4D

)
+ 1, u(−1, t) = − tanh

(
−2 t− 3

4D

)
+ 1,

ux(−1, t) =
1

2D
tanh

(
−2 t+ 1

4D

)2

− 1

2D
, ux(1, t) =

1

2D
tanh

(
−2 t− 3

4D

)2

− 1

2D
.

(4.2.15)

We will study the solution at time t = 1 with D = 0.001 and D = 0.01. Figure 20 shows relative
errors for different combinations of parameters. In case D = 0.001 increasing Cw is detrimental to
the accuracy of the solution as it develops into a steep step, see analytic solution in Figure 18, whose
approximation requires discontinuity in the approximate solution. For D = 0.01 the diffusion

Figure 18: Example 7. Exact solution at t = 1.

leads to a smoother solution and the penalty term counteracting discontinuity between elements is
beneficial, it also helps to counteract oscillations similarly to the limiter in Example 1. However, if
the limiter is employed the smoothing of the solution caused by artificial diffusion is so severe that
the penalty term is detrimental in either case. Figure 19 demonstrates the effect of the limiter.

(a) Limit: False (b) Limit: True

Figure 19: Example 7. 4th order solution for D = 0.001, Cw = 10 with and without limiting,
uniform mesh with 16 elements.
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Figure 20: Example 7. Relative errors for different choices of Cw
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Example 8 (Viscous Burgers 2D). Based on example in [19, Section 1.6], we will solve the
equation (4.1.10) in Ω = [0, 1]2. We setup the boundary condition and source function in such
way that the exact solution uexact is

uexact = −
(
e(−t) − 1

)
(sin (5xy) + sin (−4xy + 4x+ 4 y)). (4.2.16)

We omit analytical forms of g and boundary conditions for brevity. Different values of the coef-
ficient Cw in the penalty term then yield only slightly different convergence behavior as demon-
strated in Figure 22 and 23. In this case the solution does not feature any sharp steps and an
increase in the penalty coefficient leads to an increase in accuracy. In Figure 21 this effect is
clearly visible in the numerical solution, similarly to Example 4. Kučera in [19] reports average
convergence rates for an irregular triangular mesh slightly higher then ours.

(a) Cw = 1 (b) Cw = 15

Figure 21: Example 8. Solution for different values of Cw on a quadrilateral mesh.

Figure 22: Example 8. Average convergence rates for different values of Cw for quadrilaterals
(left) and triangles (right).
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Figure 23: Example 8. Relative errors for different choices of Cw for quadrilaterals (left) and
triangles (right).
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Conclusion

In this work, we implemented the discontinuous Galerkin method into SfePy package. SfePy uses
a term based syntax for building discretization of equations. We implemented several new terms,
namely the linear advection flux term, the general hyperbolic flux term, the diffusion flux and the
diffusion penalty terms, and the general term for computing the integral∫

Tk

~f(P ki ψi) · ∇ψj .

Along with a wide range of terms already present in SfePy this allows users to discretize a variety of
useful equations. To enable solving transient equations we implemented two explicit time-stepping
solvers, the forward Euler solver and the TVD Runge-Kutta of the 3rd order solver. Moreover, we
implemented the moment limiters for 1D and 2D transient problems. These contribution are part
of the SfePy since the release 2020.2 .

To study properties of the method we calculated relative errors with respect to an analytical so-
lution for seven example problems chosen from the literature. For some of them, we present results
which complement already published parametric studies. In example 1 and 2 we demonstrated
behavior of the moment limiter for 3rd and 4th order approximations. In examples 4, 5 and 6 we
explored dependency between the optimal value of coefficient Cw in diffusion penalty term and
diffusion coefficient for up to 4th order approximation. An in example Example 7 we expanded
the analysis to include use of the limiter. Examples with the diffusion show the usefulness of the
diffusion penalty term but also demonstrate its limits and provide direction when choosing value
of coefficient Cw. The usage of the limiter introduces an artificial diffusion which significantly
impacts quality of the solution. However, in some cases it is necessary to maintain the stability of
the method. For transient problems, the performance of the method is further hindered by used
time stepping solvers, nevertheless, the method still performs to the expectations.

This fulfills all the major goals of this work. There are, however, still many possible improve-
ments and opportunities for future work. Although from the time and memory requirements
perspective the implementation of the method scales well enough with SfePy capabilities, there
is still room for improvement. Calls of numpy.einsum could use an optimized tensor contraction
path, which could be retained between individual term evaluations (i.e., between time steps). The
implementation of limiters is rather ad-hoc and refactoring it to bring it in line with the design
of other SfePy elements would help to make their code more readable and their usage simpler
and more versatile. One important feature available in SfePy missing from this DG FEM im-
plementation is the ability to solve systems of PDEs. This lack could inspire future work as it
would require substantial modification of flux terms as well as the implementation of strategies for
evolving systems of interest like Euler or Navier-Stokes equations [15]. Further, besides the imple-
mented Lax-Friedrichs flux, there is a variety of other numerical fluxes for example the Godunov
flux [11] or fluxes designed specifically for solving Euler equations [19, Section 3.3]. These could
be added along with terms for specifying Newton boundary conditions to broaden the selection

46
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of tools available in SfePy . Thanks to the versatility of the problem specification this would also
unlock a large potential for further study of the method behavior.
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