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Abstrakt

Cílem této diplomové práce je analýza kvality odhadu polohy objektů v předem definované
mapě. Pro tuto analýzu byl implementován algoritmus pro sledování objektů s využitím
radarové multilaterace, který umožňuje modulární přístup ke konfiguraci jednotlivých při-
jímačů z hlediska jejich počtu, rozmístění a dostupnosti měření. Algoritmus využívá čtyři
dynamické pohybové modely pro účely odhadu polohy. Přesnost poskytnutých odhadů
je vyhodnocena pomocí Monte Carlo simulací, a údaje o přesnosti jsou následně prezen-
továny prostřednictvím mapy kvality odhadu. Výsledná simulace poskytuje celkový obraz
o kvalitě odhadu v rámci definovaného prostoru v závislosti na různých podmínkách.

Klíčová slova: odhad stavu, Kalmanův filtr, rozšířený Kalmanův filtr, inter-
akce mezi více modely, dynamické modely pohybu, měření vzdálenosti, čas
příchodu signálů, časový rozdíl příchodu signálů, úhel příchodu signálů

Abstract

The aim of this thesis is to analyze the quality of object position estimation in a predefined
map. For this analysis, an algorithm for object tracking using radar multilateration has
been implemented, which allows a modular approach to the configuration of individual
receivers in terms of their number, placement and availability of measurements. The algo-
rithm uses four dynamic motion models for position estimation purposes. The accuracy
of the provided estimates is evaluated using Monte Carlo simulations, and the accuracy
is then presented via an estimation quality map. The resulting simulation provides an
overall picture of the estimation quality within the defined space depending on various
conditions.

Key words: state estimation, Kalman filter, extended Kalman filter, Inter-
acting Multiple Models, dynamic motion models, ranging, time of arrival,
time difference of arrival, angle of arrival
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1 Introduction

Accurate estimation of aircraft trajectories is essential for the coordination of aircraft
movements at airports and aerospace, which is a critical aspect for safety. Radar sensors,
which are commonly used as data source for estimation, are noisy and their processing
(i.e., the estimation) relies on inaccurate motion models. This may lead to compromised
estimation accuracy, calling for further investigation. The main objective of this work is to
develop a methodology and software capable of the assessing accuracy of aircraft position
estimation depending on the chosen model configuration and data processing approach
[1].

1.1 Motivation

x

y

z

Receiver1

Receiver2 Receiver3

Receiver4

Figure 1: Object detection using radar
multilateration

The motivation for this thesis is to assess the
accuracy and reliability of object position esti-
mates depending on several conditions. Mul-
tilateration, a method that determines an ob-
ject position by utilizing range measurements
such as angle of arrival (AoA), time of arrival
(ToA) and time difference of arrival (TDoA)
from multiple receivers with known positions, is
illustrated in Figure 1. The reliability of multi-
lateration can be compromised for objects that
perform manoeuvres due to the dynamic nature
of their motions and measurement uncertain-
ties. [2].

Multilateration techniques are increasingly
utilized in airport surveillance systems to en-
hance the monitoring of object movements. The multilateration sensors provide precise
positioniong data to complete the capabilities of primarily used tracking systems. Multi-
lateration system has the potential to provide the same or even better results at a reduced
cost compared to traditional surveillance radar systems [3]. This potential is particularly
important in challenging areas where it is crucial to ensure high estimation accuracy.
Furthermore, receivers layouts and availability of measurements can enhance the overall
efficiency of tracking systems. The detailed analysis of estimation quality within a pre-
defined space under specific conditions can lead to strategic decision on the placement of
receivers. Such strategic placement ensures that the system provides the most accurate
and reliable estimate of object locations.

1 Siřiště
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1.2 Thesis structure

This thesis deals with the problem of tracking maneuvering objects using radar multi-
lateration. It is used to estimate the position of individual objects moving in the area of,
e.g., an airport. The key component of this thesis is to implement a tracking algorithm
that allows modular selection of individual receivers, in terms of their number but also
their layout. In addition, it is possible to choose availability of individual measurements
provided by each receiver. The algorithm utilizes a predefined set of four models for
estimation purposes. The estimate accuracy is evaluated by Monte Carlo simulations and
is presented through a map of estimation quality.

Ground truthTrajectory
generation

MeasurementsMeasurement
generation

Estimates
Estimation

IMM - KF/EKF Evaluation mapAnalysis of
estimation quality

Figure 2: Block diagram of software implementation structure

A block diagram describing the structure of the software implementation is illustrated
in Figure 2. The thesis is organised as follows: Section 2 discusses geometric principles of
positioning, including explanation of the concept such as AoA, ToA and TDoA. It consists
of mathematical formulas essential for modeling and simulating the measurements. This
part is represented in the block diagram by the block Measurement generation. Sub-
sequently, Section 3 describes motion models for tracking position and velocity, including
the nearly constant velocity (NCV) and discrete white noise acceleration (DWNA) mod-
els. It also covers more comprehensive models like the Singer model and the discrete
Wiener process acceleration (DWPA), which model position, velocity, and acceleration
dynamics. In the block diagram, this part is included in the Trajectory generation,
where the models are used to generate groud-truth values, and in the Estimation block,
where the motion models are used in the IMM algorithm. Next, the principles of multiple
model approach are expressed in Section 4.3 including the interacting multiple models
(IMM) algorithm, which is essential for the efficient state estimation processes discussed
in this thesis [4]–[6]. Later, Section 5 is devoted to the implementation. This includes
generating of ground-truth values using hidden Markov model (HMM) with previously
mentioned models. The ground truth is utilized to generate TDoA and AoA measure-
ments, which are transformed into position vector for the Kalman filter (KF) or used as
raw values for the extended Kalman filter (EKF). The IMM algorithm is implemented
for state estimation across several scenarios, including different combination of models,
receiver’s layout and availability of measurements. The outcomes of the IMM algorithm
are further analyzed in the evaluation part of the program (the block Analysis of es-
timation quality in the diagram), where the estimation results are compared with the
true values. The results are illustrated using a map, which is colored based on the quality

2 Siřiště
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of estimates allowing users to visualy assess estimation quality under the chosen condi-
tions. The software implementation is structured with distinct, modular components,
each featuring specific inputs and outputs that allows easy substitution.

Finally, simulation experiments are conducted in Section 6 to demonstrate the flexibil-
ity in selecting individual conditions for evaluating the quality of the estimation. Several
scenarios under different conditions are presented, showcasing their outcomes and com-
parisons. This will serve as a demonstration of the analysis capabilities and plot the result
on a sample case.

3 Siřiště
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2 Ranging

This section covers the basic concept of ranging, including ranging techniques specifically
focusing on time of flight methods such as time of arrival, time difference of arrival, and
angle of arrival. Each technique’s methodology, applications, and mathematical founda-
tions are explored to provide a comprehensive understanding.

2.1 Ranging Techniques: Methods and Applications

Positioning by ranging is a process of determining the location of an object emitting a radio
signal (emitter) by indirectly measuring its distance from several objects (receivers) with
known positions. Positioning by ranging can also be referred to as lateration, trilateration,
or multilateration depending on the number of receivers, and which signals are used
for obtaining the object position. It is one of the most common method used in radio
navigation.

Range is typically determined by measuring the signals’s time of flight (ToF), but it
can also be calculated from the received signal strength. For the purpose of this thesis,
however only ToF methods will be discussed. ToF is based on the time signal takes to
travel from the emitter to the receiver [7].

There are several types of ToF-based methods to obtain position of an object. For the
purpose of this thesis, the following methods will be further described:

• Passive ranging – time of arrival (ToA) measurements are used.

• Hyperbolic ranging – time difference of arrival (TDoA) measurements are used.

• Angular positioning – angle of arrival (AoA) measurements are used.

• Combination of hyperbolic ranging and angular positioning.

2.1.1 Geometric principles of positioning by ranging

Before describing the individual ranging methods, it is necessary to establish geometric
principles of positioning by ranging. In this section, it is assumed that the emitters and
receivers are located in a 2-D plane for simplicity and the ranges i.e., distances between
the emitter and the receiver, are available. In the case of a single receiver, the emitter
can be positioned anywhere on the circle with the receiver at its center. The radius of
the circle is equal to the distance between the emitter and receiver. The circle is called
line of position (LoP). Generally, LoP is considered as locus of candidate positions, as
shown in Figure 3, where (xr, yr) represent the receiver coordinates and d is the range.

To compute the geometric range, denote the emitter position as (xe, ye), where xe

and ye signify the emitter coordinates within the 2-D planar coordinate frame. (xr, yr)

4 Siřiště
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Receiver

d

LOP

(xr, yr)

Figure 3: Line of position for a single receiver

represent the receiver coordinates. The subscripts r and e refer to receiver and emitter
respectively. In the case of the considered 2-D setting, the coresponding geometric range
can be computed as follows:

der =
√

(xr − xe)2 + (yr − ye)2, (2.1)

Note that, the geometric range (2.1) is independent of direction, i.e., der is equal to dre.
Considering a second receiver, the locus of the emitter position is defined by the

intersection of the two coresponding LoPs. Such a scenario is illustrated in Figure 4,
where the circles intersect at two points. That is, to satisfy the LoP constrains from both

Receiver 1

d1

Alternative position of emitter

d2

Real position of emitter

Receiver 2

Figure 4: Locus of emitter’s position for two receivers

receivers, the object position should lie at an intersection. This leads to ambiguity of
solution, which can be resolved by obtaining measurements from a third receiver or by

5 Siřiště
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considering additional information about the object.

2.1.2 Passive ranging - time of arrival (ToA)

Given the geometric aspects, the methodology of passive ranging using ToA, ie., for a
single receiver, can be stated. In passive ranging, the receiver r records the time tr of
detecting a known signal that was sent from an emmiter e at a known time te. The
time te is referred to as the time of emission. Consider that there are N receivers with
known positions Xi = [xi, yi, zi]⊺, i = 1, 2, ...., N and one emitter with unknown position
Xe = [xe, ye, ze]⊺. The time tri at which a signal emmited from emitter reaches the receiver
i can be expressed as:

tri = te + ∥Xe − Xi∥
c

+ vi, (2.2)

where c is speed of light and vi is the arrival time measurement noise. In this thesis,
vi is assumed to be zero-mean Gaussian process uncorrelated with other receivers for
simplicity. The time of arrival (ToA) is measured by the receiver clock while the signal
transmission time is determined by the emitter clock. Note, that there are four unknown
values in Equation (2.2): the position of the emitter Xe = [xe, ye, ze] and time of emission
te. Consequently, a minimum of four ToA measurements is necessary to solve for Xe and
te. Time of emission can be removed from (2.2) by a different approach. One of the
possible solution is the positioning from time difference of arrival (TDoA) [7]–[9].

2.1.3 Positioning from Time Difference Of Arrival

In TDoA positioning, the differences in ranging measurements between each pair of re-
ceivers are used to eliminate the emission time te. To achieve this, receivers need to be
synchronised. The formula to compute the TDoA between receivers i and j is formulated
as:

∆tij = tri
− trj

= ∥Xe − Xi∥
c

− ∥Xe − Xj∥
c

+ vij, (2.3)

where noise vij is given as:

vij = vi − vj. (2.4)

As mentioned in Section 2.1.2, noises vi and vj are assumed independent. The location
of the emitter Xe = [xe, ye, ze] can be now obtained by using only three TDoA measure-
ments due to elimination of time of emission. Note, that ∆tij depends on the order of
differencing, ie., ∆tij = −∆tji (when neglecting noise) and TDoA between receivers i and

6 Siřiště
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j can alternatively be computed by using the TDoA for a third receiver k:

∆tij = ∆tik + ∆tkj. (2.5)

Considering positioning by TDoA in 2-D, a visual representation of this concept is il-
lustrated in Figure 5, where TDoA measurements from three receivers create hyperbolic
Lines of Position (LoPs).

Receiver 1

Receiver 2 Receiver 3

LOP from
receiver 1 and 2

LOP from
receiver 2 and 3

LOP from
receiver 1 and 3

Position of emitter

Figure 5: Hyperbolic LoP from TDoA measurements in 2D using three receivers

Considering N receivers, there are N−1 equations, which are linearly independent. For
simplicity, all TDoA measurements are determined relative to a specific receiver (called
reference receiver), denoted as X1. The TDoA between receiver i, where i = 2, 3, ...., N ,
and receiver 1 is given as follows:

∆ti1 = ∥Xe − Xi∥
c

− ∥Xe − X1∥
c︸ ︷︷ ︸

hi(Xe)

+vi1. (2.6)

7 Siřiště



University of West Bohemia Department of Cybernetics

Considering N − 1 TDoA equations, the formula can be expressed as:

∆t21

∆t31

∆t41
...

∆tN1


︸ ︷︷ ︸

∆t

=



h2(Xe)
h3(Xe)
h4(Xe)

...
hN(Xe)


︸ ︷︷ ︸

h(X )e

+



v21

v31

v41
...

vN1


︸ ︷︷ ︸

v

.
(2.7)

As mentioned above, the noise is assumed to be zero-mean Gaussian process. It means
that the maximum likelihood estimate can be used for the estimation of Xe:

X̂e = arg min
Xe

(
∆t − h(Xe)

)⊺
Q−1

(
∆t − h(Xe)

)
, (2.8)

where Q = E[vv⊺] is the measurements noise covariance matrix. Note that the measure-
ment noise covariance matrix Q for TDoA is not diagonal, unlike in TOA systems. This
is caused because Q captures covariance between the noise differencies vij = vi − vj from
individual receivers, as mentioned above. The issue lies in the challenge of discovering an
algorithm that can find the global minimum of the right-hand side of the equation (2.8).
The chance to find global minimum can be improved by determining a region, where the
optimal solution is located. It is assumed that the emitter is placed within intersection of
hyperbolas formed by the time differences of arrival from multiple receivers. The equation
(2.8) is valid under the condition that Xe ∈ S1 ∩ S2 ∩ SN , where Si indicates the area
where the object is detectable by the receiver ri [7]–[9].

2.1.4 Positioning from Angle of Arrival

In the angular positioning method, also referred to as Angle of Arrival (AoA), the position
of an emitter is obtained through the directions of lines of sight (LoS) from the emitter
to two or more known receivers. Each LoS constitutes a line of position. The position of
emitter is located at the intersection of these lines of positions [7]. In this thesis, azimuth
and elevation are used as AoAs. These two angles, as illustrated in Figure 6, define the
3-D direction from which a signal arrives at a receiver which is essential for determining
the position of an emitter in 3-D space.

The azimuth is the angle between true north and the horizontal projection of the line
of sight (LoS) from the emitter to each receiver [7]. The azimuth angle between receiver
i and emitter can be computed using:

ZAoA,az
i = arctan

(
yi − ye

xi − xe

)
+ vAoA,az

i , (2.9)

8 Siřiště
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x

y

z

receiver

emitter

azimuth

elevation

Figure 6: AOA - azimuth and elevation

where yi, xi and ye, xe represent y and x coordinates of receiver i and emitter, respectively.
vAoA

i is AoA noise of receiver i.
The elevation refers to the angle formed between the horizontal plane and the (LoS)

to the emitter. The elevation angle between receiver i and emitter is calculated by:

ZAoA,el
i = arctan

 zi − ze√
(yi − ye)2 + (xi − xe)2

+ vAoA,el
i . (2.10)

The estimation of position Xe is calculated numerically similarly to TDoA, i.e. using
maximum likelihood estimation as defined in Equation (2.8). The transformation of TDoA
and AoA measurements into position vector is further described in the Section 2.1.5.

2.1.5 Transformation of TDoA and AoA measurements

The relation for TDoA and AoA measurements will be used to simulate the measurements
from the ground-truth values of object position. In addition, the relations will be used
in the estimation algorithm that provide the estimate of emmiter position. As will be
discussed in subsequent sections, two distinct methods are employed for handling the
measurements in estimation algorithms. These include direct access the ToA and AoA
measurements or transforming these values into a position vector. The methodology of
transformation is described in this section.

The core of the solution lies in a nonlinear least-squares method implemented in the
lsqnonlin function in MATLAB. It minimizes the sum of squares of nonlinear functions
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to obtain optimal solution. The function lsqnonlin solves the problem of form:

min
X

∥f(X )∥2
2 = min

X
(f1(X )2 + f2(X )2 + . . . + fn(X )2). (2.11)

For convenience, the subscript in Xe will be dropped in the sequel. The function for
the nonlinear least-squares solver is defined as an extended version of the minimization
formula described in equation 2.8:

X̂ = arg min
X

(Z − hext(X ))⊺Q−1(Z − hext(X )), (2.12)

where X is the true position of the emitter, Z is the vector of TDoA (∆t) and AoA
(azimuth, elevation) noised measurements:

Z =



∆t
ZAoA,az

1

ZAoA,el
1

...
ZAoA,az

i

ZAoA,el
i


, (2.13)

hext(X ) is the extended measurement model coresponding to joint TDoA and AoA values
evaluated at position of the emitter X :

hext(X ) =
hTDoA(X )

hAoA(X )

 , (2.14)

and Q is a diagonal matrix with ToA and AoA noise variances along the diagonal:

Q = diag
(
QTDoA, QAoA

)
. (2.15)

The function to be minimized adjusts the residuals (the difference between measured
and predicted values) by the inverse of standard deviation of the measurement noise. It
prioritizes the more reliable measurements in the optimization process by giving higher
weight to the residuals with smaller expected errors.

In addition to the function f(X ), the optimalization process relies on the Jacobian ma-
trix, which represents the partial derivatives of the measurement functions. The Jacobian
calculation for TDoA and AoA is explored later in this section.

By dynamically updating the emitter’s estimated position based on the feedback from
both function f(X ) and its Jacobian, the optimalization process refines the emitter loca-
tion estimation by iteratively minimizing the measurement discrepancies.
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Figure 7: Comparison of converted TDoA/AoA measurements with true emitter positions
in 3D

Additionally, vectors specifying the distance to the area defined above were used as
bounds on the variables. Finding solution to (2.12) is an iterative process. For each
iteration, the initial condition is based on the estimation from the previous estimation
cycle.

The output of the nonlinear least-squares is the vector Zlin, which represents the con-
verted measurement directly providing position values. As an example, positions com-
puted for each time are visualized in comparison with true positions of emitter in Figure
7.

In addition to the estimation of the emitter’s position, the covariance matrix of noise
of coverted TDoA/AoA measurement (denote as R) is required. This matrix is crucial for
measuring the level of uncertainty in the position and its one of the input necessary for the
Kalman filter algorithm. Further, the covariance matrix R is calculated approximately
using the inverse of the Jacobian matrix:

R =
(
J†(Zlin)

)
· Qv ·

(
J†(Zlin)

)⊺
, (2.16)

where Qv represents covariance matrix of the noise associated with the TDoA and AoA
measurements and † denotes pseudoinverse. The Jacobian matrix J(·) consists of n rows
corresponding to each available TDoA measurement and additional 2n rows for each
available AoA measurement as follows.
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The rows of J(·) corresponding to TDoA measurements are given as:

JTDoA
i (Zlin) = ∂hi(Xe)

∂Xe

∣∣∣∣∣
Xe=Zlin

= 1
c

(
Xe − Xi

∥Xe − Xi∥
− Xe − Xj

∥Xe − Xj∥

)
Xe=Zlin

, (2.17)

where Zlin represents the current estimate of the emitter position. The resulting row of
the Jacobian matrix JTDoA

i (Zlin) reflects the sensitivity of the TDoA measurements to
change in the estimated emitter position.

Given the position of the emitter Xe and the receiver Xr, the difference vector is
∆X = Xr − Xe. Similarly to TDoA, the rows of J(·) corresponding to AoA measurements
are given as:

JAoA
i (Zlin) =

 ∆Y
∆X2+∆Y 2 − ∆X

∆X2+∆Y 2 0
∆X·∆Z

r
√

∆X2+∆Y 2
∆Y ·∆Z

r
√

∆X2+∆Y 2 − ∆X2+∆Y 2

r
√

∆X2+∆Y 2

 ∣∣∣∣∣
Xe=Zlin

, (2.18)

where ∆X, ∆Y , and ∆Z are the components of ∆X , and r is equal to:

r = ∆X2 + ∆Y 2 + ∆Z2. (2.19)

The rows of the Jacoban matrix in Equation (2.18) effectively capture how changes in the
emitter’s position influence the measured angles.
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3 Dynamic Object Motion Models

For the purpose of describing the motion models, it is necessary to define the state vector.
The state vector is a fundamental concept in system modeling. It contains comprehensive
list of variables which define the system current state. For a single dimension, assume
that the state vector can be defined as follows:

xk =
[
xk ẋk ẍk

]⊺
, (3.1)

where xk represents objects position, ẋk velocity and ẍk an acceleration at a discrete time
step k. Note, that in the following text the symbol ⊺ represents matrix transpose while T

represents the sampling period. In Section 3.2 modeling in 3-D will be explained. Given
the state vector, the state equation can be expressed as:

xk = Fxk−1 + Γwk. (3.2)

This equation represents a linear relationship involving noise wk and the previous value
of the state vector xk−1. The process noise may represent mismodeling of dynamics. Its
characteristic is described by the covariance matrix denoted as Q. Value of Q is typically
obtained throught simulations, experiments or identifications [10].

3.1 Dynamic models in navigation

For the purpose of this thesis, four dynamic models will be described: the nearly constant
velocity (NCV) model, Singer acceleration model, discrete white noise acceleration model
(DWNA) and discrete Wiener process acceleration model (DWPA).

3.1.1 Nearly constant velocity

The nearly constant velocity (NCV) model state consists of position and velocity. The
moodel is acquired through the discretization of the continuous white noise acceleration
model [11]. The resulting discrete time state equation (3.2) becomes:

xk+1 = FNCVxk + vk, (3.3)

where xk =
[
xk, ẋk

]⊺
, and the transition matrix is:

FNCV =
1 T

0 1

 , (3.4)
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and vk is discrete time process noise with zero-mean and covariance:

QNCV =
T 3

3
T 2

2
T 2

2 T

 q̃, (3.5)

where power spectral density of the continuous time white noise, denoted as q̃, models
the uncertainty of the motion. It is possible to achieve NCV model by choosing a relatively
low value for q̃. To ensure the validity of the model, it is necessary for the changes in the
velocity during sampling to be small compared to the actual velocity [11], [12].

3.1.2 Singer acceleration model

For the Singer model, the state vector xk involves position xk, velocity ẋk and acceleration
ẍk. It is assumed that the acceleration is modeled by a first-order Markov process:

ẍk+1 = ρmẍk +
√

(1 − ρm)σmrk, (3.6)

where ρm = e−βT and β = 1
τm

. The parameters τm and σm represent target maneuver time
constants, rk is zero-mean unit-standard deviation Gaussian distributed random variable
[10].

The Singer model is defined as:


xk+1

ẋk+1

ẍk+1

 =


1 T 1

β2 · (−1 + βT + ρm)
1 1 1

β
· (1 − ρm)

0 0 ρm


︸ ︷︷ ︸

FSinger


xk

ẋk

ẍk

+ wk,
(3.7)

where FSinger is Singer model transition matrix.
The formula for the process covariance matrix is given as:

QSinger = 2σ2
m

τm


q11 q12 q13

q21 q22 q23

q31 q32 q33

 , (3.8)
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where:

q11 = 1
2β5 ·

[
1 − e−2βT + 2βT + 2β3T 3

3 − 2β2T 2 − 4βTe−βT

]
,

q12 = 1
2β4 ·

[
e−2βT + 1 − 2e−βT + 2βTe−βT − 2βT + β2T 2

]
,

q13 = 1
2β3 ·

[
1 − e−2βT − 2βTe−βT

]
,

q22 = 1
2β4 ·

[
4e−2βT − 3 − e−2βT + 2βT

]
,

q23 = 1
2β2 ·

[
e−2βT + 1 − 2e−βT

]
,

q33 = 1
2β

·
[
1 − e−2βT

]
.

. (3.9)

In the case that the sampling interval is short, that means T ≪ τm, the formulation is
given as:

lim
βT →0

QSinger = 2σ2
m

τm


T 5

20
T 4

8
T 3

6
T 4

8
T 3

3
T 2

2
T 3

6
T 2

2 T

 . (3.10)

In the case that maneuver time constant is much smaller than the sampling period (T ≫
τm), an accurate estimate of acceleration cannot be obtained, and thus the model can use
only position and velocity as is stated in [10]:

FSinger =
1 T

0 1

 QSinger = 2σ2
m

τm

T 3

3
T 2

2
T 2

2 T

 . (3.11)

3.1.3 Discrete white noise acceleration model

The state vector x of Discrete White Noise Acceleration (DWNA) model consists of
position and velocity. The model is a common kinematics model which is defined in the
discrete time. In the model, the process noise denoted as wk, is a scalar-valued zero-mean
white sequence with variance σ2

v at each time step. The DWNA model is:

xk+1 = FDWNAxk + ΓDWNAwk, (3.12)

where ΓDWNA is a noise gain [11]. The state equaton for the DWNA model is shown in
equation (3.12), where transition matrix and vector gain multiplying the scalar process
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noise are given as:

FDWNA =
1 T

0 1

 ΓDWNA =
1

2T 2

T

 . (3.13)

The covariance matrix of the process noise is:

QDWNA = E[ΓDWNAwkwkΓ⊺
DWNA] = ΓDWNAσ2

vΓ⊺
DWNA =

1
4T 4 1

2T 3

1
2T 3 T 2

σ2
v . (3.14)

Note that the rank of QDWNA is 1, making it singular which can lead to a problem in
some cases [11].

3.1.4 Discrete Wiener process acceleration model

The discrete Wiener process acceleration (DWPA) model describes dynamics of three
state variables: position, velocity and acceleration. The model can be described using the
state equation:

xk+1 = FDWPAxk + ΓDWPAwk, (3.15)

where:

FDWPA =


1 T 1

2T 2

0 1 T

0 0 1

 ΓDWPA =


1
2T 2

T

1

 (3.16)

and vk represents white noise with a zero-mean and variance σ2
v vk ∼ N (0, σ2

v) [11].
The covariance matrix of the process noise is given as:

QDWPA = ΓDWPAσ2
vΓ⊺

DWPA =


1
4T 4 1

2T 3 1
2T 2

1
2T 3 1

2T 2 T
1
2T 2 T 1

σ2
v (3.17)

16 Siřiště



University of West Bohemia Department of Cybernetics

3.2 Modeling for several spatial dimentions

A moving object within our three-dimensional world can easily be described by a vector
which contains its three-dimensional Cartesian position and velocity vector. The state
vector is therefore as follows:

x =
[
x ẋ ẍ y ẏ ÿ z ż z̈

]⊺
, (3.18)

where
[
x y z

]⊺
is a vector of the object position,

[
ẋ ẏ ż

]⊺
is its velocity vector and[

ẍ ÿ z̈
]⊺

is the vector of accelerations [13].
The dynamics for x can be transferred into matrix form:

xk+1 = Fkxk + Γwk. (3.19)

The resulting form of equation for 3D scenario is as follows:

xk+1

ẋk+1

ẍk+1

yk+1

ẏk+1

ÿk+1

zk+1

żk+1

z̈k+1


︸ ︷︷ ︸

xk+1

=


Fα 0 0
0 Fα 0
0 0 Fα


︸ ︷︷ ︸

Fk



xk

ẋk

ẍk

yk

ẏk

ÿk

zk

żk

z̈k


︸ ︷︷ ︸

xk

+


Γα 0 0
0 Γα 0
0 0 Γα



wk,x

wk,y

wk,z


︸ ︷︷ ︸

wk

, (3.20)

where α ∈ {NCV, Singer, DWNA, DWPA} and wk ∼ N (0, Qk). Value of Qk can be
formulated by taking covariance of wk:

Qk = Cov(wk) = E[wkw⊺
k]

Qk =


Qα 0 0
0 Qα 0
0 0 Qα

 ,
(3.21)

where Qα represents the specific covariance matrix of the process noise for the chosen
dynamic model.

17 Siřiště



University of West Bohemia Department of Cybernetics

3.3 Observation model

While dynamic models predict the state of an object, the observation model describes
how observations of the system state are obtained, including the influence of measurement
noise. The observation equation is defined as follows:

zk = Hxk + vk, (3.22)

where vk represents measurement noise. Noises wk and vk are assumed to be uncorrelated
zero-mean Gaussian white noises:

E(wk) = 0, COV (wk) = E(wkw⊺
k) = Qk,

E(vk) = 0, COV (vk) = E(vkv⊺
k) = Rk,

E(vkw⊺
k) = 0,

(3.23)

where Qk and Rk are covariance matrices of the noises of the state equation and mea-
surement equation [7], [14], [15].

In real-world scenarios, observation of the system often does not follow a linear re-
lationship with the state vector. It is common problem in the complex systems. The
nonlinear observation equation can be expressed in following form:

zk = h(xk) + vk, (3.24)

where h(·) represents a nonlinear function. Nonlinear equations were discussed earlier in
the context of TDOA measurements, where observation was given as:

∆t = h(Xe) + v. (3.25)
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4 State Estimation

State estimation plays a pivotal role in the realm of control systems and navigation to
provide current state of dynamic system based on an observation. It is a fundamental
method that enables determination of the object trajectory over time.

This section delves into the algorithms of the Kalman filter and the Extended Kalman
filter. The KF is the best linear estimator with minimal means square error (MSE) for
estimating the state of linear dynamic systems. However, many real-world systems exhibit
non-linear dynamics or measurements, prohibiting the application of the standard Kalman
filter. For these scenarios, the Extended Kalman filter modifies the approach to handle
non-linear systems by linearizing them at the current estimate. Both of these algorithms
will be described in the following Sections 4.1 and 4.2.

Real-world systems often cannot be accurately or completely described by a single
model due to the presence of uncertainties or complex system behaviour. This observation
leads to the multiple model approach, a technique that does not rely on a single state-space
model. Instead, multiple models are implemented to enhance the overall performance of
state estimation. This approach leverages the use of multiple models to create more
realistic predictions. Section 4.3 will describe the Interacting Multiple Model (IMM)
algorithm, which implements these principles.

4.1 Kalman filter

The Kalman filter (KF) is an algorithm used for estimating the state of a dynamic system.
The estimation is based on the combination of measurements which are collected at the
discrete time intervals and predictions given by the system’s dynamic and measurement
model. The state dynamics is described as:

xk+1 = Fkxk + wk. (4.1)

The values of the measurements are usually affected by noise [15]. The measurement
equation in the KF is assumed to be linear, which is fundamental requirement for the
formulation of the filter. The equation is determined as:

zk = Hkxk + vk, (4.2)

where zk represents the measurement vector at time step k, Hk is measurement matrix
and vk denotes the measurement noise.

The KF has been applied in the field of target tracking and navigation [14]. The KF
uses knowledge of both deterministic and statistical properties of the system to provide
optimal estimates given the information available. To achieve this goal, each iteration
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must carry more information than just the state estimate. That is, the KF keeps track of
uncertainties in its estimates, which indicate how large errors in the estimates of different
state elements are and how they are correlated [7]. The estimated mean of the state vector
is linked with covariance matrix describing errors which represent the uncertainties in the
state estimation provided by the filter and the degree of correlation between errors in
these estimates. KF algorithm is recursive and the initial values of the state vector and
covariance matrix must be set [7].

4.1.1 KF Algorithm

The Kalman filter algorithm can be derived throught many approaches, which are pro-
vided in [15]. The resulting algorithm is given in three main steps:

1. Initialization k = 0

In this step, initial values for estimated state and covariance matrix have to be chosen:

p
[
x0|−1|z−1

]
= p

[
x0
]

= N
[
x0; x̂0|−1, P0|−1

]
, (4.3)

where x̂0|−1 and P0|−1 denote the state estimate and covariance matrix respectively. Note
that the assumption of Gaussianity is made due to IMM algorithm.

2. Measurement update k = 0, 1, ....

In this step, the measurements are incorporated correcting the estimate as:

x̂k|k = x̂k|k−1 + Kk(zk − Hkx̂k|k−1),
Kk = Pk|k−1H⊺

k(HkPk|k−1H⊺
k + Rk)−1,

Pk|k = Pk|k−1 − KkHkPk|k−1,

(4.4)

where Kk represents the Kalman gain matrix (which determines how much weight is
given to the measurements), x̂k|k denotes the filtered state estimate and Pk|k is the error
covariance matrix. Additionally, Pk|k−1 and x̂k|k−1 represent the prior covariance matrix
and state estimate.

3. Prediction k = 1, 2, ...

In this step, the prediction of the estimate is calculated:

x̂k|k−1 = Fx̂k−1|k−1,

Pk|k−1 = FPk−1|k−1F⊺ + Q.
(4.5)
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Note that how the algorithm is influenced by the level of uncertainty given by the model
and the initialization, ie. Q, R and P0|−1. If the uncertainty about the motion model is
"high", the Kalman gain will also be "high", giving more emphasis on the measurements.
On the other hand, if the measurement noise covariance, ie. the value of the R, is "high",
the Kalman gain will be „low". In this case, the filter trusts the motion model more than
the measurements [7].

4.2 Extended Kalman filter

In the previous subsection, filtering for linear systems was considered. The issue is that
in real-world scenarios, the assumption of linearity often does not hold, so the Kalman
filter cannot be used. The assumption of linearity of measurements is abandoned, so the
measurement equation for extended Kalman filter is defined as:

zk = h(xk) + vk, (4.6)

where h is non-linear function [15].
The EKF employs Taylor’s series expansion of the function h(xk) at the best available

estimate x̂k|k−1. In this process, only the first two terms of the Taylor series are taken
into account, reflecting the need for a linear approximation of the functions. This leads
to:

h(xk) ≈ h(x̂k|k−1) + H(x̂k|k−1)(xk − x̂k|k−1), (4.7)

where:
H(x̂k|k−1) = ∂h(xk)

∂xk

∣∣∣∣∣
xk=x̂k|k−1

, (4.8)

H(x̂k|k−1) =


∂h1(x̂k|k−1)

∂x1
· · · ∂h1(x̂k|k−1)

∂xn... . . . ...
∂hm(x̂k|k−1)

∂x1
· · · ∂hm(x̂k|k−1)

∂xn

 , (4.9)

is the Jacobian matrix of the function h at the point of actual best estimate x̂k|k−1 [15].
As discussed previously, the Jacobian matrices for TDoA and AoA measurements are
detailed in Section 2.1.5. Note that matrix H(x̂k|k−1) is equivalent to J(x̂k|k−1) as defined
in Equation (2.16). The resulting EKF update is given by:

x̂k|k = x̂k|k−1 + Kk(zk − hk(x̂k|k−1)),
Kk = Pk|k−1H⊺

k(x̂k|k−1)(Hk(x̂k|k−1)Pk|k−1h⊺
k(x̂k|k−1) + Rk)−1,

Pk|k = Pk|k−1 − KkHk(x̂k|k−1)Pk|k−1,

(4.10)

Note that the motion model is considered linear in this thesis and thus the prediction is
given by the KF.
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4.3 Multiple model approach

In this section, the basis of the multiple model approach is explained, in particular, the
interacting multiple model method, which is used in a later sections of this thesis to
estimate the position of objects, is described.

Multiple model approach (MMA) is used in control theory, where multiple models are
combined to make predictions or decisions [16]. The approach does not rely on single
state-space model. Instead, multiple models are used to improve overall performance
of system. Systems where the multiple model approach is leveraged, are called hybrid
systems. These systems contain continuous and discrete uncertainties.

4.3.1 Formulation

Consider r possible models of the system {M(j)}r
j=1 and M ∈ {M(j)}r

j=1 being currently
active model further referred to as mode. The prior probability that system is in mode
M = M(j) is denoted with:

P
{
M(j)|Z0

}
= µ0(j) j = 1, 2, 3, . . . , r, (4.11)

where Z0 represents the prior information. Note that ∑r
j=1 µ0(j) = 1. For convenience,

it will be assumed that all models are linear-Gaussian. Subsequently, the multiple model
approach will be demonstrated for fixed modes in time and for switching modes.

4.3.2 The Multiple Model Approach for fixed modes

In the MMA, fixed modes refer to a scenario where fixed set of possible models are given
and one of them is correct for all time instances. For fixed modes the Bayesian formula
for posterior probability will be applied:

µk(j) = Λ(j)µk−1(j)∑r
i=1 Λ(i)µk−1(i)

, (4.12)

where Λ(j) is a likelihood function of mode M = M(j):

Λ(j) = p
(
zk|Zk−1, M(j)

)
= N {νk(j); 0, Sk(j)}, (4.13)

where ν(j) can be defined as inovation of mode M = M(j) and S(j) is its covariance.
For each mode, a filter is assigned that provides mode-conditioned state estimates and
mode-conditioned covariances.

The principle of MMA with a fixed model is that there is a bank of filters and according
to the outcome of likelihood function the correct mode is selected from it. The principle
is illustrated in Figure 8. Based on the selected mode state estimate x̂k|k−1, and its
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covariance Pk|k−1 are computed . The latest mode probabilities are used to calculate

Filter 1

Filter 2

Filter n

zk Mode probability
update

Λk(1)

Λk(2)

Λk(n)

μk

Figure 8: Mode probability update

estimates and covariances:

x̂k|k =
r∑

j=1
µk(j)x̂j

k|k

Pk|k =
r∑

j=1
µk(j)

(
Pj

k|k + [x̂j
k|k − x̂k|k][x̂j

k|k − x̂k|k]⊺
)

.

(4.14)

Once initialized, the filters proceed to operate recursively based on their own estimates.
The likelihood functions associated to the estimates are used to refresh the probabilities
of each modes, which are used to combine the estimates and covariances associated to
specific mode. Note that under these assumptions, the posterior pdf of the state of the
system is a Gaussian mixture:

p[xk|Zk] =
r∑

j=1
µk(j)N [xk; x̂j

k|k, Pj
k|k]. (4.15)

However, there are limitations to the given formulas. First, there has to be one correct
model among all cosidered models, which has been in effect for all time instances.

Convergence of the probability of correct mode can be achieved if there is a correct
mode (or near to correct mode) and no mode-jump occurs during the estimation process.
In that case, the probability of the correct mode will coverge to one [16].
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4.3.3 The Multiple Model Approach for switching modes

This formulation assumes that the modes can change over time. The hybrid system is
considered to be modeled by:

xk = FMk
xk−1 + wk−1,Mk

,

zk = h(xk) + vk,
(4.16)

where Mk is mode at the time k. Similarly to the previous chapter, the correct mode Mk

is searched among all available models at the time k:

Mk ∈ {M(j)}r
j=1. (4.17)

Regarding the taxonomy, Mk can be referred to as the modal state, which is a discrete
random variable. Otherwise, xk is called the base state and its value is usually continu-
ous. Switches between modes suggests the definition of mode history or sequence of
the modes:

Mk,l ∈
{
M(i1,l), M(i2,l), . . . , M(ik,l)

}
1 ≤ ik,l ≤ r, (4.18)

where l = 1, . . . , rk denotes a specific sequence of the mode history, r represents the
number of all modes, k is the time step and ik,l is the index of the model at the time k

from the l-th mode history.
The process that allows switching between the models is named mode jump process.

Under time invariant mode transitions and their independence with respect to the base
state, the mode jump process is a homogenous Markov chain with known mode transition
probabilities:

P (i, j) = P
{
Mk = M(j)|Mk−1 = M(i)

}
. (4.19)

The event, when the mode M = M(j) is active at time k can be denoted with:

Mk(j) ≡ {Mk = M(j)}. (4.20)

The mode history can be expressed using its parent sequence Mk−1,s which states for
s-th sequence from 0 to k − 1. The resulting formulation:

Mk,l =
{
Mk−1,s, Mk(j)

}
, (4.21)

where the first element of the set represents history s to the time instant k − 1 and Mk(j)
is the new element of the parent sequence. The probabilities of transition (4.19) can be
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denoted as follows:

p(i, j) = P
{
Mk(j)|Mk−1,s

}
, (4.22)

where Mk−1,s = P
{
Mk−2,r, Mk−1(j)

}
.The probability of mode history can be further

determined:

µk,l = P
{
Mk,l|Zk

}
= 1

c
p[zk|Mk,l, Zk−1]p(i, j)µk−1,s, (4.23)

where c is a normalization constant. The complication lies in the conditional pdf which
eventually results to be a Gaussian mixture with exponentially increasing number of
terms. This exponential growth makes it impractical to handle. Feasible solutions lie in
suboptional techniques which are using only N terms e.g., with the highest probabilities,
the rest are ignored. The probabilities have to be renormalized after the approximation so
they sum to unity. Another famous suboptimal solution called the Interacting Multiple
Model will be described in the following subsection.

4.4 The Interacting Multiple Model

In the Interacting Multiple Model (IMM), there are r filters running in parallel and the
total probability can be computed by:

p[xk|Zk] =
r∑

j=1
p[xk|Mk(j), Zk]P

{
Mk(j)|Zk

}
, (4.24)

which can also be expressed as:

p[xk|Zk] =
r∑

j=1
p[xk|Mk(j), zk, Zk−1]µj(k). (4.25)

Bayesian theorem can be used to compute the posterior pdf:

p[xk|Mk(j), zk, Zk−1] = p[zk|Mk(j), xk]
p[zk|Mk(j), Zk−1]p[xk|Mk(j), Zk−1]. (4.26)

The prior and posterior probability calculation represent one cycle of the estimation of
Mk(j). With a usage of total probability theorem, the prior pdf can be expressed as:

p[xk|Mk(j), Zk−1] =
r∑

i=1
p[xk|Mk(j), Mk−1(i), Zk−1]P

{
Mk−1(i)|Mk(j), Zk−1

}
,

p[xk|Mk(j), Zk−1] =
r∑

i=1
p[xk|Mk(j), Mk−1(i), Zk−1]µk−1|k−1(i|j),

(4.27)
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where the weights, denotes as µk−1|k−1(i|j), are given by posterior probabilities. With
the use of approximation, where the past information up to k − 1 denoted with Zk−1 is
summarized by r model-conditioned estimates and covariances, the pdf can be formulated
as mixture of Gaussian pdfs:

p[xk|Mk(j), Zk−1] =
r∑

i=1
N
{
xk; x̂i|j

k|k−1, Pi|j
k|k−1

}
µk−1|k−1(i|j), (4.28)

where:

x̂i|j
k|k−1 = Fjx̂i

k−1|k−1,

Pi|j
k|k−1 = FjPi

k−1|k−1F
⊺
j + Qj.

(4.29)

Then moment matching by a single Gaussian pdf can be used:

p[xk|Mk(j), Zk−1] ≈ N
{
xk; x̂0j

k|k−1, P0j
k|k−1

}
, (4.30)

where:

x̂0j
k|k−1 =

r∑
i=1

µk−1|k−1(i|j) x̂i|j
k|k−1︸ ︷︷ ︸

Fj x̂i
k−1|k−1

= Fjx̂0j
k−1|k−1

P0j
k|k−1 = FjP0j

k−1|k−1F
⊺
j + Qj,

(4.31)

with:

x̂0j
k−1|k−1 =

r∑
j=1

µk−1|k−1(i|j)x̂i|j
k−1|k−1

P0j
k−1|k−1 =

r∑
j=1

µk−1|k−1(i|j)
(
Pi|j

k−1|k−1 + [x̂i|j
k−1|k−1 − x̂k−1|k−1][x̂i|j

k−1|k−1 − x̂k−1|k−1]⊺
)

,

(4.32)

which may be called as mixed state estimates.
For further understanding of the IMM approach, one recursion cycle of IMM will

be shown. Each cycle of IMM consists of three main steps. The first step is called
interaction/mixing (Figure 9). During this step estimates x̂i

k−1|k−1 are mixed with the
weights µk−1|k−1(i|j) referred to as mixing probabilities. The second step is filtering
(Figure 10) which updates estimates based on the measurement zk. The last step is
combination which combines estimates and covariances of each filters which is illustrated
in the Figure 11. The algorithm will be disscussed in more detail in chapter 4.4.1 [17].
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Figure 9: IMM - interaction step [17]
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Figure 11: IMM - Combination step [17]
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4.4.1 Algorithm description

The IMM algorithm has three major properties: it is recursive, modular and its com-
putional requirements are fixed during each cycle [5], [17]. Each cycle is composed of the
following steps:

1. Calculation of the mixing probabilities

In this step, it is necessary to calculate the probability that model M(i) was active at time
k − 1 in the case where M(j) is active at the time k under the condition Zk−1. Mixing
probability is given by formula:

µk−1|k−1(i|j) = 1
c(j)P

{
Mk(j)|Mk−1(i), Zk−1

}
P
{
Mk−1(i)|Zk−1

}
. (4.33)

The formula can be expressed as:

µk−1|k−1(i|j) = 1
c(j)p(i, j)µk−1(i), (4.34)

where µk−1(i) is mode probability. This formulation allows to calculate mixing at the
beginning of each cycle because µk−1|k−1(i|j) is conditioned on Zk−1. Constant c(j) is
normalization factor computed by:

c(j) =
r∑

i=1
p(ij)µk−1(i). (4.35)

2. Mixing

After the calculation of the mixing probabilities, an initial condition is obtained for all
filters by mixing the state estimates of all the parallel filters. The mixed initial condition
for the filter matched to Mk(j) can be express as:

x̂0j
k−1|k−1 =

r∑
i=1

x̂i
k−1|k−1 µk−1|k−1(i|j). (4.36)

This also applies to the covariance:

P0j
k−1|k−1 =

r∑
i=1

µk−1|k−1(i|j)
{
Pi

k−1|k−1 + [x̂i
k−1|k−1 − x̂0j

k−1|k−1] · [·]⊺
}

j = 1, . . . , r.

(4.37)
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3. Prediction step

This step predicts the state and covariance of each model based on its dynamics:

x̂0j
k|k−1 = Fjx̂0k

k−1|k−1,

P0j
k|k−1 = FjP0j

k−1|k−1F
⊺
j + Qj,

(4.38)

where Fj is the state transition matrix for model j, Qj is process noise covariance matrix
for model j. For convenience, the subscript j substitute Mk(j). The prediction x̂0j

k|k−1

and its corresponding covariance matrix P0j
k|k−1 are computed for each model j.

4. Filtering step

After the prediction, the filtering step refines the state estimate using the new measure-
ments:

x̂j
k|k = x̂k|k−1 + K0j(zk − h(x̂0j

k|k−1)),

Pj
k|k = Pj

k|k−1 − K0jH(x̂0j
k|k−1)P

0j
k|k−1,

K0j = P0j
k|k−1(S

j)−1

Sj = H(x̂0j
k|k−1)P

j
k|k−1H

⊺(x̂0j
k|k−1) + R,

(4.39)

where Sj is an innovation covariance matrix for model j. Note that for EKF, h(·) is a
nonlinear function and the matrix H is Jacobian matrix.

5. Mode-matched filtering

As shown on the Figure 10, renormalized estimates and covariances are used to compute
likelihood functions corresponding to the r filters:

Λk(j) = p
[
zk|Mk(j), Zk−1

]
,

j = 1, . . . , r.
(4.40)

It can be also expressed as:

Λk(j) = N
[
zk; hk(x̂k|k−1), Sj

]
j = 1, . . . , r.

(4.41)
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6. Mode probability update

Mode probability update is calculated based on the likelihoods obtained from the previous
step:

µk(j) = P
{
Mk(j)|Zk

}
µk(j) = 1

c
Λk(j)c(j) j = 1, . . . , r.

(4.42)

Factor c is the normalization constant for the mode probability update:

c =
r∑

j=1
Λk(j)c(j). (4.43)

7. Estimate and covariance combination

In this step, estimates and corresponding covanriances are combined to yield a single
estimate according to the mixture formula:

x̂k|k =
r∑

j=1
x̂j

k|kµk(j),

Pk|k =
r∑

j=1
µj(k)

{
Pj

k|k + [x̂j
k|k − x̂k|k] · [·]⊺

}
.

(4.44)

This last step is not necessary for the recrusion because it is not part of the algorithm
itself.
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5 Architectural Overview of the Tracking Assesse-
ment Framework

The aim of this thesis is to analyse the quality of the estimates provided. This section
provides an exploration of the simulation and estimation methodologies which were ap-
plied within the thesis. Four dynamic motion models, which were presented in Section
3, are used to generate ground-truth values and to simulate the measurements, for which
the ranging principles from the Section 2 section are applied. Furthermore, the IMM al-
gorithm from the 4.4 Section is implemented to estimate the position of the object, which
will be evaluated in terms of quality. The general structure of the code developed in this
thesis is grapically summarized by the Figure 12.

Configuration

Simulation

Estimation

Evaluation
and 

Analysis

Configuration

Configuration of models

Configuration of receivers

Configuration of map

True values

Generation of true values

 Simulation of TDoA and AoA

Estimation

Calculation of linear measurements

IMM (KF + EKF)

Evaluation of estimation quality

Impact of receivers layout

Impact of available measurements

Impact of initial conditions

Figure 12: Architecture of code
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The structure is divided into four main components, each playing a crucial role in
accurately simulating and analyzing the behavior of multilateral tracking systems. All
components are modular, allowing for the possibility of replacements. For instance, the
part involving the simulation of true trajectories and generating measurements could be
substituted with actual values and measurements obtained from real-world scenarios once
the data assciation is resolved.

The configuration component of the framework offers a flexible approach to setting up
dynamic models for both estimation and simulation, allowing for detailed customization
of receiver characteristics and select the map where the quality of the estimation results
will be displayed.

In this thesis, the trajectories to be estimated are generated to analyse the dynamic
systems. This process employs a Hidden Markov Model (HMM) approach that utilizes a
combination of predefined models decsribed in the Section 3 with configurations provided
by the user.

The one of the main parts of this thesis is the implementation of the IMM algorithm
for estimating the position of an object. This implementation involves calculation of
mixing probabilities, mixing, mode-match filtering, mode probabilty update and estimate
combination. The IMM algorithm is chosen for its flexibility to adapt various models and
its proficient handling of uncertainties.

The final component of the framework enables the evaluation of estimation quality,
leveraging a different sets of configuration that include the layout of receivers, initial
conditions, and the availability of measurements. To assess the performance of the esti-
mations, two distinct methods are implemented: the Root Mean Square Error (RMSE)
and the Average Normalized Estimation Error Squared (ANEES). These approaches pro-
vide an analysis of estimation accuracy, enabling a deeper understanding of the system’s
performance under various scenarios. The RMSE and ANEES methodologies are further
described in later sections.

Further sections will delve into the specifics of configuration setups, trajectory genera-
tion methods, the IMM implementation and analysis methodology of the obtained results
under different scenarios.

5.1 Configuration module

The purpose of this section is to clarify the configuration of the models, receivers, and
evaluation map used for quality estimation. The configuration framework is divided into
three main parts: the configuration of the models, the configuration of the receivers, and
the configuration of the map, which is used to evaluate the quality of the estimated states
by the IMM algorithm.

The configuration of the models includes by default four models described previously:
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NCV, DWPA, Singer and DWNA. Each model provides information about the object,
with the DWPA and Singer models offering additional details about the acceleration of
the object. Each model has a fixed structure as described in the Section 3. Parameters
such as the sampling period T or power spectral density q can be adjusted to enhance
the model’s accuracy and make it more reflective of real-world scenarios. In addition, this
section involves the definition of inital probabilities and transition matrices, which are
necessary for the HMM and the IMM algorithm. Note that any number of models can be
used within the IMM algorithm framework if the models have the same space dimension
in the current implementation. It is only necessary to expand transition matrix and initial
probabilities. For the purpose of this thesis, the models are paired as follows: NCV with
DWNA and Singer with DWPA. Note that, the user can define new models if desired.

In the case of the receivers, several parameters are adjustable. Users can select any
number of receivers according to their simulation needs. Each receiver has several config-
urable parameters:

• Position: Defined by coordinates.

• Availability of AoA measurements: The parameter allows the simulation of
AoA measurements for the current receiver.

• AoA noise characteristics: The AoA noise is assumed to be Gaussian, allowing
the user to modify its mean value and variance.

• Availability of ToA: The parameter allows the simulation of ToA measurement
for the current receiver.

• ToA noise characteristics: Similar to AoA, the ToA noise is considered Gaussian,
with adjustable mean value and variance.

These settings provide flexibility in how receivers are configured and contribute to the
simulation’s realism and adaptability to different scenarios. TDoA measurements criti-
cally depend on the geometric configuration of the receivers. This thesis explores several
geometric layouts of receivers to evaluate their impact. One of the layouts is the so-called
star layout, which is shown in Figure 13. In this layout, the reference receiver is the
central point relative to which TDoA measurements from other receivers are calculated.

The last part of configuration framework involves setting up the evaluation map, which
is defined as discretization of the tracking area into rectangular cells, where the estimation
quality can be visualized efficiently. The map is defined within a 3-D plane, declared by its
edges. The user have the flexibility to define the level of quantization of the map, which
divides the space into distinct discretization cells. This allows for a detailed analysis of the
estimation quality within each cells. This structured approach provides way to observe
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Figure 13: Star layout of the receivers

and evaluate the quality of estimation under various conditions. The example of splitting
the space into distinct cells is shown in Figure 14.

The configuration also involves the definition of the starting positions from which
individual simulations of trajectories will start. The simulated trajectories should ideally
cover the entire map as densely as possible. The choice of initial conditions includes
multiple variants to help to calculate estimation quality for whole map. This discretization

Figure 14: Example evaluation map

serves as the basis for the visualization, which is further discussed in Section 5.4.
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5.2 Simulations of true values and measurements

Due to the lack of real-world measurement data suitable to perform large-scale estima-
tion quality assessement, it is necessary to obtain simulated data. The true data of
positions, velocities and, where applicable, accelerations are simulated according to the
hidden Markov Model (HMM). Within the simulation framework, it is possible to choose
between two pairs of models by default with the same dimensionality: NCV with DWNA
and Singer with DWPA. The choice between the models depends on inital probabilities
and a transition matrix, which are set by the user. The initial probabilities define the
dynamic model being the active model at the beginning of the simulation. Transition ma-
trix determines likelihood of switching between models within HMM setup. Additionally,
user can specify the length of each trajectory simulation.

At each step, determined by the sampling period T , the HMM determines whether
the transition between models occurs based on the transition matrix. If the transition is
triggered, the simulation switches to the appropriate model, which defines the dynamics
used to calculate the next state. This approach aims to mimic potential changes in motion
dynamic that may occur in real-world scenario. The simulated trajectory for the Singer
and DWPA models is illustrated in Figure 15. Figure 16 demonstrates which model is
active at each time step. The parameters for this simulation are specified as follows: For
the Singer model, the maneuver time constant is τm = 10 and the process noise standard
deviation is σm = 0.1. For the DWPA model, the noise standard deviation is set to σv = 1.
For both models, sampling period is set to T = 0.1s.
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Figure 15: Generated trajectory using HMM with Singer and DWPA models
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Once the true data for positions, velocities, and accelerations have been generated
through simulation, the next step involves creating the measurements of TDoA and AoA.
TDoA measurements are calculated based on the true distances obtained from the simula-
tion, considering the predefined positions of various receivers according to equation (4.9).
Similarly, the AoA measurements are simulating by determining the angle of incoming
signals relative to the position of each receiver according to equation (2.17).

5.3 Estimation framework

With the generated measurements, the estimation of trajectory can be executed using the
IMM algorithm explained in Section 4.4.1. The algorithm effectively combines multiple
dynamic models to adapt various motion behaviors. In this section, the principal methods
used in each scenario will be further analyzed and explained in detail.

TDoA and AoA measurements are later utilized by the IMM algorithm to estimate
the state of the object. Processing of such measurements, however, can be approached
in several ways. For the Kalman filtering framework (i.e., linear filtering), it is necessary
to transform these measurements at each time step into a 3-D position, as described
in detail in Section 2.1.5. In contrast, the extended Kalman filtering framework (i.e.
nonlinear filtering) which handles the non-linear measurements directly.

The effectiveness of these approaches across various scenarios will be compared in a
later section, providing insights into their relative efficiencies under different conditions.
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5.3.1 Estimation using the IMM algorithm

The IMM algorithm is implemented as it was described in the Section 4.4.1. This imple-
mentation accommodates various models, but it requires initial probabilities, a transition
matrix, and initial conditions of each used model for both state estimates and their covari-
ance matrices. These may either be the same as used for the simulation, or not, depending
on the user needs.

For fair comparisons, the initial conditions for the state estimation are set based on
the first few measurements of TDoA or AoA, depending on the model used. For models
with nine state dimensions, such as Singer and DWPA, the first three measurements are
utilized. For models with six state dimensions, such as NCV and DWNA, only the first
two measurements are needed. These initial measurements are transformed into position
vectors as outlined in Section 2.1.5 and used to provide the initial position estimates. To
complete the entire initial state vector, initial estimates of velocity and acceleration are
also required. For each spatial dimension, these are derived using the following transfor-
mation matrices: For the NCV and DWNA models, the transformation matrix is defined
as:

A =
 0 1

−1
T

1
T

 , (5.1)

which models a simple velocity-based transition and estimates the velocity as a function
of position changes during the sampling period. For the Singer and DWPA models, which
account for acceleration, the transformation matrix is:

A =


0 0 1

−1
2T

0 1
2T

1
T 2

−2
T 2

1
T 2

 , (5.2)

This matrix models acceleration by relating it to the change in velocity over time. Note
that the matrix A is defined only for one dimension. Assume the generic state that
consists of position, velocity and possibly acceleration in the case of Singer and DWPA:

ξk =
[
ξk ξ̇k ξ̈k

]⊺
, (5.3)

The inital state mean for generic variable, i.e. the initial state mean for one dimension,
is calculated using:

ξinit = Az, (5.4)

where z denotes measurement transformed from TDoA and AoA values into the position
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vector as it is described in Section 2.1.5.
The initial covariance matrix is also calculated analytically using the first three mea-

surements, but this time the covariance matrix of measurement R is used together with
the matrix A defined above:

Pinit = ARA⊺, (5.5)

where R is the covariance matrix of measurements for one dimension and for the first
two or three time steps depending on whether NCV and DWNA or Singer and DWPA is
used.

For each model, both the initial mean vector and covariance matrix are computed
by propagating the measurement uncertainties through the transformation matrices A.
Further details are omitted for simplicity.

The IMM algortihm allows to handle a varienty of scenarios with different number
and types of measurements. As previously mentioned, the IMM can process both linear
measurements by emplying the KF equations and nonlinear measurements using EKF.

Continuing the example from Section 2.1.5 the coresponding estimation using the
EKF with three available TDoAs and four AoAs using Singer and DWPA models is
demonstrated in the Figure 17.
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Figure 17: IMM algorithm estimation

38 Siřiště



University of West Bohemia Department of Cybernetics

5.4 Visualization module

To ease the assessement of the results, a visualization module analyzes each generated tra-
jectory and the corresponding position estimates. As previously mentioned, quantization
is utilized as a configuration parameter. This setting ensures that the space is divided
into distinct sections where the evaluation of estimation quality takes place.

Two different performance metrics are utilized: Root Mean Square Error (RMSE) and
Average Normalized Estimation Error Squared (ANEES). The estimation quality with
RMSE is assessed within each quantized section of the space. For the purpose of this
thesis, the RMSE is defined as the square root of the mean value of squared residuals.
For a given cell:

RMSE =

√√√√√∑Ncell
i=1

∥∥∥X̂ i − X i
∥∥∥2

Ncell
, (5.6)

where X i represents true position of emitter, X̂ i is its corresponding estimated position of
the emitter at the same time step and ∥·∥ denotes the Euclidean norm. The symbol Ncell

is the number of (X̂ i, X i) pairs where the true position X i belongs to the specific cell.
The RMSE quality is therefore related to a specific cell, which is created by discretizing
the space.

The ANEES expresses how the confidence the filter has in its estimates matches reality.
An ANEES value of one indicates consistency, suggesting that the filter’s error covariance
matrix matches the true error covariance. Values greater than one indicate that the filter
is overconfident with its estimate, which means that the estimation error covariance is
"smaller" than it should be. Lastly, values less than one mean underconfidence of the
filter’s predictions. The formula of ANEES is given as:

ANEES = 1
N · nx

N∑
k=1

(X̂ i
e,k|k − X i

e,k)⊺(Pi
k|k)−1(X̂ i

e,k|k − X i
e,k), (5.7)

where nx is dimension of the position vector, which is always 3 since movement occurs
in 3D space, and Pi

k|k is the estimated error covariance matrix and and N is in this case
the number of time instants in one specific Monte Carlo sample. Unlike RMSE, which
is calculated per cell, ANEES is applied to a single sample to provide comprehensive
information about that specific sample.

One example of visualization of the estimation quality for a given map is illustrated in
Figure 18. Note that the layout of the receivers for this specific example is illustrated in
Figure 19. The discretization of the space enable to assess the estimation quality within
each cells. It is thus possible to determine for which areas of the map provided estimate
is accurate. The estimation quality is color-coded as it is shown in Figure 18. For this
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Figure 18: Visualization of the estimation quality within the evaluation map
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Figure 19: Layout of the receivers for the specific example

example RMSE is used. The color gradient transitions from red color, which indicates poor
quality of estimates, throught the yellow for moderately accurrate estimates to green color
that express high precision of the estimate. Moreover, each segment of the space is colored
based on the specified treshold. This threshold can be chosen arbitrarily by the user and
it needs to be set manually. The automatic scaling of the errors based on the worst and
best error cases is not feasible because of the possibility of excessively large errors, that
could obscure all other errors. Therefore, the maximum error will be saturated by the
user. For the purposes of this example, the treshold is set to the value of quantization
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due the quantization is smooth in this example. An estimate is considered accurate if
the RMSE places the estimate in a circle centered at the true position with a diameter
equal to the quantization value. If the estimate lies outside this circle but inside a circle
with a diameter twice the quantization, it is considered moderately accurate. Estimates
lying outside the circle with twice the diameter of the quantization are considered as
inaccurate. The example of such a coloring for one generated trajectory and its estimate
is demonstrated in the Figure 20, where it can be seen that the estimation quality can
be considered good over entire scenario. Note that the threshold is another parameter
that can be set by the user, and this parameter determines the boundaries for moderate
and poor quality. The example of the poor estimated position of the emitter and its

Figure 20: Visualization of the estimate quality for one trajectory

Figure 21: Visualization of the poor estimation quality for one trajectory

visualization of quality is shown in the figure 21.
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The visualization in 3-D is not informative for the assessing the quality of estimates
across the entire defined map. For this purpose, it is possible to select a specific vertical-
level and visualize the quality in 2-D space at the particular level. The estimation quality
at a specific level z = 0 of the map illustrated in Figure 18 is shown in Figure 22.
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Figure 22: Visualization of estimation quality in 2D for specific layer

Alternatively, the user can also visualize a specific layer along the z or y axis. This is
shown in the figure 23.
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Figure 23: Visualization of estimate quality in 2D for specific layers of z and y

The user can also select a specific Monte Carlo simulation sample i.e., a trajectory to
be tracked and its corresponding reacking results and visualize its trajectory for each axis,
as well as the R(M)SE and (A)NEES quality metrics. For an example trajectory, this is
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visualized in Figures 24 and 25. Note that for a single trajectory, the terms "mean" and
"average" might not be exact, so they are given in parentheses.
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Figure 24: RMSE metric for each axis for the example trajectory
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Figure 25: ANEES metric for the example trajectory

The visualization techniques presented in this chapter were developed with the aim of
providing the possibility of deeper analysis of the impact of various factors, such as the
layout of the receivers or availability of the measurements.
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6 Simulation Experiments

In this section, simulation experiments are conducted and analyzed using the method-
ologies and techniques previously explained. As was described in Section 5.1, the user
has nearly unlimited possibilities to setup simulations. For the purpose of this thesis,
however, only a few scenarios are shown. These scenarios are chosen to demonstrate the
impact of several configurations on the quality of the estimation and to show the diversity
of possible configurations.

For the illustrations presented in this thesis, a maximum of four receivers is utilized.
The analysis will include two experiments. For the experiment, the evaluation map is
defined along the x-axis from −5000 to 5000 meters, the y-axis follows the same range
and the z-axis range is declared from 0 to 10000 meters. The quantization for all axis is
defined as q = 500 m. The parameters of the individual sensors are as follows:

• Reference sensor:

– Position: (0, 0, 0) m.

– AoA measurement noise characteristics: N (0, σ2
AoA), where σAoA = 3π

180 rad.

– ToA measurement noise characteristics: N (0, σ2
ToA), where σToA = 2 × 10−10 s.

• Sensor 2:

– Position: (−10483.39, 15093.59, 3.24) m.

– AoA measurement noise characteristics: N (0, σ2
AoA), where σAoA = 3π

180 rad.

– ToA measurement noise characteristics: N (0, σ2
ToA), where σToA = 1 × 10−10 s.

• Sensor 3:

– Position: (14472.85, 7020.92, 53.89) m.

– AoA measurement noise characteristics: N (0, σ2
AoA), where σAoA = 3π

180 rad.

– ToA measurement noise characteristics: N (0, σ2
ToA), where σToA = 2 × 10−10 s.

• Sensor 4:

– Position: (−3148.59, −18307.34, 213.20) m.

– AoA measurement noise characteristics: N (0, σ2
AoA), where σAoA = 3π

180 rad.

– ToA measurement noise characteristics: N (0, σ2
ToA), where σToA = 3 × 10−10 s.

For this configuration, the sampling period for models was set to T = 0.03 s. Power
spectral density of the NCV noise is q = 100 m2s−3. For DWNA and DWPA models,
variance has been chosen as σv = 30 ms−1 and maneuver time constant for the Singer
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model have been selected as τm = 10 s. Initial probabilities are given as
[
0.3 0.7

]
and

transition matrix is defined as:

P =
0.95 0.05
0.05 0.95

 . (6.1)

Time of the each Monte Carlo simulation is set to 10 s. Additionally, to explore the impact
of measurement frequency on the estimation quality, scenarios considering only every tenth
measurement, are added. A moderate threshold is defined as 20 meters, and any estimates
with an RMSE exceeding 40 meters will be classified as poor. This layout, illustrated in
Figure 26, represents a typical configuration used in ranging implementations. The Figure
also shows the map that will be covered.
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Figure 26: Experiment: layout of receivers
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For each experiment six typical scenarios will be observed and compared to assess the
corresponding tracking performance.

Scenarios:

• Scenario 1-3: Transformation of both TDoA and AoA measurements into the po-
sition vector [x, y, z] at each time step, followed by the application of the Kalman
filter:

1. Three TDoA and no AoA Available.

2. Three TDoA and four AoA Available.

3. Two TDoA and three AoA Available.

• Processing non-linear TDoA and AoA measurements with the Extended Kalman
Filter:

4. Three TDoA and no AoA Available.

5. Three TDoA and four AoA Available.

6. Two TDoA and three AoA Available.

In the following section, the specific receiver layouts will be analyzed for all the above
scenarios. The results will be presented through plots which were described in the Section
5.4. These comparisons highlight how the number of measurements and their processing
method can affect the quality of estimation. Additionally, the effect of reduced mea-
surement sampling frequency will also be investigated. Note that this experiment serves
primarily to demonstrate the capabilities of visually representing the estimation quality.
A much larger area would need to be covered in order to draw conclusions from the data.

46 Siřiště



University of West Bohemia Department of Cybernetics

6.1 Part I: Frequent measurements

In this section, experiment will be executed including comparison of each scenarios. The
experiment provides comparison of the RMSE estimation quality for the specific layout
and the impact of the alignment of the receivers. This experiment mainly focuses on
demonstrating configuration options and plotting for analysis. Initially, the estimation
quality is compared between a Kalman filter, which processes transformed TDoA and AoA
measurements into a position vector at each time step, and an extended Kalman filter,
which directly utilizes TDoA and AoA measurements. It is noted that while scenarios 1-3
are identical to scenarios 4-6, the only distinction lies in the handling of measurements.
Individual scenarios are illustrated in Figures 29, 32 and 35. Although the quantiza-
tion was chosen higher during generation, it was increased to q = 1000 m for rendering
purposes.

Figure 27: Scenario 1: KF Figure 28: Scenario 4: EKF

Figure 29: NCV and DWNA models - scenario 1 and 4 (three TDoA, no AoA)

As the results show, the estimation quality is slightly better for scenarios where EKF
with direct handling of TDoA and AoA measurements is used for estimation. The best
estimate is provided for the case where all TDoA and AoA measurements are available.
The graphs also show that the estimation quality is quite high for the chosen threshold
of 40 m, which determines the sensitivity of coloring the cells.

For a more detailed analysis, the quantization resolution has been increased by reduc-
ing the cell size from 1000 to 500 meters for each axis. The resulting Figure 36, 37 and
38 illustrate the quality across all z-levels for all scenarios, with i.e., averaged RMSE over
all z-values. A more detailed look at the results shows that the quality of the estimate
is not as good as the 3-D plots suggest.
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Figure 30: Scenario 2: KF Figure 31: Scenario 5: EKF

Figure 32: NCV and DWNA models - scenario 2 and 5 (three TDoA, four AoA)

Figure 33: Scenario 3: KF Figure 34: Scenario 6: EKF

Figure 35: NCV and DWNA models - scenario 3 and 6 (two TDoA, three AoA)
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Figure 36: Scenario 1 and 4: the quality across all z-levels
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Figure 37: Scenario 2 and 5: the quality across all z-levels
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Figure 38: Scenario 3 and 6: the quality across all z-levels
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The results for the Singer and DWPA model look similar. The scenario 3 and 6
are compared in Figure 41 and corresponding Figure 42 illustrates the quality across all
z-levels these two scenarios.

Figure 39: Scenario 1: KF Figure 40: Scenario 4: EKF

Figure 41: Singer and DWPA models - scenario 3 and 6: (three TDoA, no AoA)
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Figure 42: Scenario 1 and 4: the quality across all z-levels

Note that for the 2D analysis, the RMSE is averaged over all levels of z. The 2D plot
serves as a complement to the 3D representation and clearly illustrates that the frequency
of incorrect location estimates in the lower part of the map far exceeds the frequency
of correct estimates in the upper part. As a result, the resulting 2D plot looks almost
entirely red. This implies that an assessment of the quality of the estimates with respect
to multiple evaluations is necessary for the evaluation.
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6.2 Part II: Scarse measurements

In the second part of this experiment, only every tenth measurement will be utilized for
updating the KF and EKF. During the other steps, the IMM will rely on the provided
model dynamics and previously calculated values, with measurement updates occuring
only at each tenth time step. For clarity, two scenarios will be demonstrated: Scenario 1
and Scenario 4. Results for these scenarios are shown in Figures 45 for NCV and DWNA
models.

Figure 43: Scenario 1: KF Figure 44: Scenario 4: EKF

Figure 45: NCV and DWNA models - scenario 1 and 4 (every tenth measurement is used)

The figures seem to show that although the estimation quality has dropped with the
frequency of measurements, as could one expect. For comparison, the 2-D graphs averaged
across all z-values are illustrated in Figures 46.
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Figure 46: Scenario 1 and 4: the quality across all z-levels (every tenth measurement is
used)

These results better reflect that the quality of the estimate has declined compared to
previous Figures 36.
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6.3 Experiment conclusion

These experiments demonstrate the capabilities of the implemented software, which al-
lows for flexible configuration of the number of receivers and measurements. That is,
the software enables users to create maps depicting estimation quality of any size with
customizable quantization. Results can be analyzed in both 3-D and 2-D formats. Users
have the option to select specific z-levels or y-levels for plotting or, alternatively, to an-
alyze averaged values across all (e.g. z) levels. While individual Monte Carlo sample
analyses are possible and detailed in Section 5.4, they are not presented in this section
due to the extensive number of trajectories (over 9000) required to represent such a large
map effectively. The experiment serves merely as an illustration of the capabilities of the
implemented software. It can be seen that a more extensive experiment (using, e.g., a
larger map) would be required for answering many practical questions, such as how to
receiver’s layout. noise parameters or parameters of the motion model influence the track-
ing quality. Such experiments are, however, outside the scope of this thesis. However, the
experiment allows for the following observations:

• In the first experiment, specifically scenarios 1, 2 and 3, which employ the KF, the
low profile estimates are not provided in high quality. In scenario 4, which utilizes
only TDoA measurements, a similar issue is observed. However, incorporating AoA
measurements into the EKF resolves this problem.

• When using the KF with transformed measurements in the first experiment, inac-
curate estimates consistently occur in the same direction for scenarios 2 and 3. This
issue likely arises from AoA ambiguity, particularly at the specific angle where the
four-quadrant arctangent switches from −180 to 180 degrees. This effect is com-
pensated for in the EKF, but not in the solutions involving nonlinear least squares
that are utilized in the KF.

• Scarse measurements result in a decrease in the estimation quality, although the
decline is not drastic.
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7 Conclusion

This thesis explored the application of multilateration technique for tracking maneuvering
objects. The objective of this thesis is to evaluate the accuracy of object position estima-
tion within a specific map. For this evaluation, an object tracking algorithm employing
radar multilateration was utilized, enabling a flexible configuration of individual receiver
units regarding their quantity, positioning, and measurement availability.

The first part of the thesis was devoted to the theoretical foundations, in particular:
ranging, dynamic object motion models and state estimation. For ranging, geometric
principles of positioning were explored. Terms such as time of arrival, time difference
of arrival and angle of arrival were explained and the mathematical formulas crucial for
simualtion were defined. Subsequently, the thesis delved into dynamic object motion
models, where models such as the nearly constant velocity and discrete white noise ac-
celeration were detailed, along with more complex models like the Singer and discrete
Wiener process acceleration that model acceleration in addition to position and velocity.
Further, the state estimation process were explored and the Interacting Multiple Model
algorithm were utilized.

Subsequently, the tracking assessement framework was implemented in MATLAB. It
consists of five main parts: configuration, ground-truth value generation, measurement
simulation, estimation process, and evaluation of estimation quality. In the configuration
part, the user can select various models and parameters, choose the number of receivers,
determine their positions, specify the availability of individual measurements for each
receiver, define the noise characteristics of the measurements, and select the evaluation
map in which the estimation quality will be evaluated. The next part of the program is
dedicated to generating ground-truth values. These true values are later used to simulate
time difference of arrival and angle of arrival measurements. In the estimation section, the
Interacting Multiple Model algorithm is implemented for state estimation using Kalman
filter or extended Kalman filter based on the handling of linear or non-linear measurements
respectively. The outcomes of the estimation process are further analyzed in the last part
of the program, which is devoted to evaluating the results. The estimated values are
compared with the true trajectories, and the results are illustrated through a map with
color-coding according to chosen evaluation metrics, which was the root mean squared
error. The average normalized estimation error squared was used as well for evaluating
individual Monte Carlo samples. The framework was designed with separate modules
where each module consists of inputs and outputs that allows easy substitution. Thus,
each module can operate on its own by providing the appropriate inputs. As a result, real
data could be used instead of simulated ones as well.

The final part of this thesis was devoted to simulations, where several possible scenarios
were showcased. These scenarios included different measurement approaches, employing
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both Kalman filter with transformed time difference of arrival and angle of arrival measure-
ments and extended Kalman filter that works directly with the values of these measured
signals. It should be emphasized that the experiment serves mainly as a demonstration
of the possibilities of graphical illustration. The result of this thesis is the implemented
software that allows the user to configure their own scenario and analyze the results.

Future work could focus on expanding the evaluation map for a wider range of scenarios
and different receiver layout. Integrating a combination of motion models, whose state
dimensions are not the same, e.g. using all four models simultaneously for estimation
process could be of interest as well.
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