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ABSTRACT
We developed Beta Caller, an end-to-end system supporting the sport of rock climbing for climbers with visual
impairment. Beta Caller provides real-time, audible instructions containing a prediction for the climber’s next
move while they are actively climbing a rock wall. This system leverages computer vision techniques to collect
key information about the climber’s environment, enabling Beta Caller to make move predictions on climbing walls
it has never encountered before. Neural networks are used to predict where the climber should move next, based
on information provided by the computer vision models. The predicted move is translated into a verbal message
guiding the climber to the next hold and then transmitted via wireless headphones using a text-to-speech model.
This novel idea makes one of the fastest growing sports in the world even more appealing and approachable to
climbers with visual impairment, however, this tool can be utilized by all climbers to improve their climbing skills.
Beta Caller achieved 80.08% accuracy predicting which limb the climber should move next and, when predicting
the location of the next hold, Beta Caller achieved a bounding box error of only 6.79%. These results pioneer a
strong foundation shaping the future landscape of rock climbing prediction tools for visually impaired climbers.

Keywords
artificial intelligence, computer vision, human computer interaction, object detection, pose estimation, human
motion prediction, rock climbing

1 INTRODUCTION

Rock climbing is one of the fastest growing sports
in the world, exploding in popularity in the last few
years. With inspiring and alluring documentaries like
The Dawn Wall [Low17a], Free Solo [Vas18a], Valley
Uprising [Mor14a], and many more, coupled with the
sport’s Olympic debut in the 2020 Summer Olympics,
rock climbing grew exponentially in the last few years
and captivated the interest of millions of people world-
wide. Even before these catalyzing events, the sport of
rock climbing garnered interest across the globe due to
the sport’s ability to concurrently challenge participants
physically and mentally. The sport initially interested a
niche group of outdoorsy, free-spirited people, but now
captivates the attention of a wide-spread, diverse audi-
ence. For those less familiar with this sport, definitions
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of several rock climbing terms whose meaning may not
be innately understood are provided in Table 1.

Hold 3D plastic grip for a climber to grab with
their hand or step on with their foot

Move Transition of hand or foot to the next hold
Route A sequence of moves, typically using a sin-

gle hold color, to get to the top of the wall
Beta Information about how to complete a route
Caller Someone providing instructions to a climber

Table 1: Rock Climbing Terminology

A large population of athletes with varying disabilities
competitively participate in sports, and rock climbing
is no exception. Climbers with disabilities have found
many innovative and unique ways to push and pull their
body up a wall to get to the top. There have been many
technological advancements in prosthetics and various
rock climbing gear to make the sport more approach-
able, inclusive and enjoyable to a wider scope of abil-
ities. However, technology assisting visually impaired
climbers remains grossly under-researched. The most
common and “advanced” way for a visually impaired
climber to participate in the sport is to have someone,
who is typically a specially trained coach, on the ground
verbally coaching the climber (known as the “caller”)
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by providing them information (commonly referred to
as “beta”) about how to ascend the wall. In addition to
hearing the commands for the next move, visually im-
paired climbers use their palms to scan the wall for rock
holds. This current approach is exceedingly challeng-
ing, time consuming and may be intimidating to a new
climber and to the caller who is coaching the climber up
the wall. The caller’s task is arguably the most impor-
tant and requires significant climbing experience, spa-
tial estimation skills and quick thinking in order to pro-
cess the climber’s body position, what holds are avail-
able to them, where they should move next, and finally
call out a command to guide the climber to the next
hold.
This paper introduces the application of computer vi-
sion and mobile media technology to a revolutionary
sensory substitution device, Beta Caller, that leverages
Artificial Intelligence (AI) to aid rock climbers of all
abilities to better enjoy and compete in the sport. Beta
Caller combines two computer vision models to under-
stand key information about the climber’s environment
(where holds are located on the wall and the climber’s
body pose), as well as a combination of neural networks
to provide a real-time prediction of the climber’s next
move. Beta Caller uses a text-to-speech model to trans-
mit an audible message containing coaching informa-
tion in a timely and useful manner to enable the climber
to quickly and successfully complete the next move and
ascend to the top of the wall. In addition to this novel
system, our paper contributes a rock climbing move-
ment dataset that, to the best of our knowledge, stands
as the sole resource of its kind.

2 RELATED WORK
Despite the recent interest in rock climbing, research
within the sport is fairly limited in quantity, depth
and scope. A small amount of rock climbing research
focuses on better understanding how rock climbers
move their bodies [Pfe11a][Ouc10a][Sib07a][Wei14a],
and additional research describes a handful of real-time
climbing tools to make the sport more enjoyable by
helping climbers efficiently move through a route
[Kos17a][Kos17b]. A majority of climbing research,
however, aims to provide performance feedback to
the climber after their workout session concludes in
order to evaluate how well they trained instead of
providing feedback while the climber is on the rock
wall [Lad13a][Bre23a][Kos15a].
One example of a performance feedback tool was cre-
ated by Ekaireb et al. to assess video footage of a
climber using computer vision and machine learning to
provide a report of how well the person climbed a route
[Eka22a]. Their research conducts image segmentation
creating a mask of the raw image only containing the
climbing wall and excluding the background. Addi-
tionally, information about the climber’s environment is

gathered using an object detection model to locate all of
the holds on the climbing wall and then a pose estima-
tion model identifies all of the climber’s joint keypoints.
This information is collected for each video frame and,
after the climb is completed, these frames are evaluated
to provide the climber with feedback about how well
they climbed the route. Beta Caller improves the sys-
tem created by Ekaireb et al. by collecting information
about the climber’s environment and training a model to
provide climbers with real-time movement predictions
on any indoor rock climbing wall.

2.1 Assistive Technology for Visually
Impaired Rock Climbers

Richardson et al. developed a real-time, assistive
climbing system to guide visually impaired climbers
[Ric22a]. Climb-o-Vision uses a helmet-mounted,
computer vision system that identifies where holds
are located on the climbing wall and provides tactile
feedback on the climber’s tongue to guide them to a
hold. This system is able to identify holds only where
the climber’s helmet is facing and does not provide
guidance to the climber where the next best hold is
located. Electrotactile tongue interfaces have advanced
the capabilities of vision substitution, however this
research did not provide any conclusions evaluating the
effectiveness of the tongue interface during climbing to
guide a climber’s hand to holds.
Ramsay and Chang [Ram20a] developed a real-time
climbing tool to assist visually impaired climbers as
they are actively climbing using a body pose sonifi-
cation system. They developed a tool to provide the
climber with an auditory command containing the loca-
tion of the next hold on the wall. Additionally, the tool
produces a tone for the climber that changes pitch based
on the distance from the climber’s hand to the next hold.
However, this tool is limited to a specific, standardized
climbing wall called a MoonBoard. A MoonBoard is a
small (7.5ft wide by 10.5ft tall) climbing wall used with
the sole purpose of training. This board is filled with
evenly-spaced holds each with an LED light. When
lit, the LED lights identify the holds the climber is al-
lowed to use creating the intended route. The primary
benefit of this board is that there are over 6,000 pre-
programmed routes in a small space. The MoonBoard
was created to provide advanced rock climbers with a
training tool. The easiest route on a MoonBoard is sig-
nificantly more challenging than the most routes in an
indoor rock climbing gym, therefore it is not intended
for use by a majority of the climbing community.
Ramsay and Chang’s research [Ram20a] capitalized on
the known, uniform placement of holds on the Moon-
Board, eliminating the need for object detection to iden-
tify the location of holds on the rock climbing wall. Ad-
ditionally, the use of a MoonBoard automatically pro-
vides known move sequences, so there is no need to
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Figure 1: Beta Caller Architecture

create a move prediction model to intelligently predict
where the climber should move next or which limb they
should move. Ramsay and Chang solely focused on us-
ing a pose estimation model to identify the climber’s
joint keypoints in order to provide the climber with an
auditory command of how to move to the next known
hold. Their results were successful when demonstrated
on a vertical Twister game mat representing a simulated
climbing wall. Beta Caller significantly augments this
work outside of the confines of the MoonBoard by gen-
eralizing the nature of the system to work on any indoor
rock climbing wall. This requires Beta Caller to be able
to accurately identify hold locations in addition to the
climber’s pose, as well as predict the next best hold for
the climber to move to and which hand should move
to that hold. To the best of our knowledge, there does
not exist any research into real-time systems that pre-
dict where a climber should move next.

3 METHODOLOGY
Beta Caller gathers information about the climber’s en-
vironment and provides real-time, audible commands
containing a prediction for the climber’s next move
while they are actively climbing. In practice, the pro-
posed system allows a climber to point a camera at the
climbing wall to guide them to the top by providing a
series of commands to accomplish each next move.

3.1 System Architecture
Beta Caller comprises three primary components:
video camera input, a suite of AI models, and a
text-to-speech model providing an audible command to
the climber via wireless headphones (Figure 1).

Beta Caller runs on a laptop which is stationed on the
ground with a camera facing the climber on the climb-
ing wall. The first two models utilize computer vi-
sion techniques to gather key information about the
climber’s environment. The first model employs object
detection to identify where the holds are located on the
climbing wall. The second model uses pose estimation
to locate the climber’s pose by identifying joint key-
points on the climber’s body. The last model, the core

of Beta Caller, uses information about the climber’s en-
vironment to predict where the climber should move
next. Specifically, a combination of neural networks
were built to predict which limb the climber should
move and, if either hand is predicted to move next, to
which hold the climber should move that limb.
After a move is predicted, simple trigonometry is used
to calculate the direction the climber should move their
hand to the next hold. Additionally, the distance be-
tween the climber’s wrist and the next hold is calcu-
lated. Using this information, Beta Caller calls out
which hand the climber should move, the angle which
the climber should move their hand, and the distance
from their wrist to the predicted hold (e.g. “Right
hand. Two o’clock. About two feet.”). This com-
mand is played using a text-to-speech engine, pyttsx3,
and enables the climber to listen to the output using
wireless headphones connected to the laptop. Once
the climber receives this command, Beta Caller waits
for the climber to complete the move by continuously
tracking the climber’s pose. Once the move is com-
pleted, Beta Caller makes another prediction where the
climber should move to and transmits that command to
the climber. This process is repeated until the climber
finishes the entire route.

3.2 Data Pipeline
To the best of our knowledge, there does not exist a rock
climbing dataset suitable for predicting climbing move-
ment, so we constructed a dataset with over 4,100 im-
ages collected as image sequences from over 250 videos
where each frame is saved after a completed move.
The images are named according to the video they cor-
respond to followed by the time sequence (e.g. 01-
01.jpg). These images are sent through a data pipeline
to gather features and labels to later be used to train the
move prediction model.
The first step in the data pipeline is to run inference
on each image using two computer vision models to
gather key information about the climbing wall and the
climber’s body position. Beta Caller uses one of the
leading and most widely used object detection models,
YOLOv8 [Red16a], to train a custom object detection
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Figure 2: Results of Data Pipeline for Image Labeling

model to identify indoor rock climbing holds. In addi-
tion to object detection, Beta Caller utilizes the state of
the art pose estimation model, ViTPose [Xu22a]. ViT-
Pose is a vision transformer model that has an encoder
to extract image features and a lightweight decoder to
conduct pose estimation. Beta Caller uses ViTPose to
get the x-y coordinates of 17 joint keypoints from the
climber’s body. The data collected from each of these
computer vision models is illustrated in Figure 3.

Figure 3: Data Output from Computer Vision Models

Hold predictions can be drawn with bounding boxes
around each hold found in the image and joint keypoints
are drawn as dots accompanied by lines connecting
the keypoints, providing a stick figure of the climber.
The illustrations of the computer vision models’ results
shown in Figure 4 are used solely for demonstrative
and validation purposes because Beta Caller will not
need to visually display the holds and pose, rather use
that information to provide an audible command to the
climber.

Figure 4: Computer Vision Models’ Results

After running inference on an image, the output data is
added to a CSV file. The data output from these models
are two data structures containing normalized x-y coor-
dinates of the holds within the image and the climber’s
joint keypoints. The holds data structure contains a row
for each hold detected and four columns representing
the bounding box coordinates (xmin,ymin,xmax,ymax).
The pose data structure contains a row for each of the
17 joint keypoints and two columns representing the
keypoint’s x and y coordinates.
The data pipeline uses these two data structures for both
the current image and the previous image from the im-
age sequence to compute and identify the labels for the
previous image. There are five labels in the dataset:
which limb moved and the bounding box coordinates of
the hold the climber moved their limb to. Beta Caller
combines both feet together into a single class because
the primary focus of calling moves to a climber is to di-
rect them to the best hand holds. Focusing on accurate
hand predictions provides the climber more time, using
less energy, to find the best holds for their feet to pre-
pare them for the next hand movement. Additionally,
providing specific guidance for four limbs instead of
two might easily become overwhelming for a climber.
Previous experience climbing with people with visual
impairment confirms the necessity of predicting the cor-
rect hand to move as well as when the climber is re-
quired to move their feet up to prepare for the next hand
movement. Therefore, the limb label will be assigned
the value left hand, right hand or feet.
In order to validate the data pipeline, labels are drawn
on each image. The top left corner of the image con-
tains text for which limb will move and a red bounding
box is drawn around which hold the climber will move
their limb to. For example, the first image in the Figure
2 sequence is labeled indicating the climber will move
their right hand to the red box because this outcome is
observed in the subsequent image from the sequence.
The final dataset prepared for the move prediction mod-
els is in CSV format containing 34 features, represent-
ing the normalized x-y coordinates for each of the 17
joint keypoints, and 5 labels (limb,xmin,ymin,xmax,ymax)
for over 4,100 images. The dataset was split into two
subsets: training and testing. Specifically, 90% of the
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data was used for training the model and 10% was re-
served for testing its performance. During training,
30% of the training data was used for validation.

3.3 Move Prediction
Two dense neural networks are trained to predict the
climber’s next move. The first is a multi-class classifi-
cation network used to predict which hand the climber
should move or if they should move their feet. The
model architecture is illustrated in Figure 5. The in-
put layer contains 34 input neurons matching the num-
ber of features in the dataset. The first hidden layer
contains 256 neurons and the second contains 128 neu-
rons and they both use the ReLU activation function.
Finally, the output layer contains three neurons (left,
right, feet) and uses the Softmax activation function to
create simulated prediction probabilities for each class.
This model uses the Adam optimizer, the Categorical
Cross-Entropy loss function, as well as prediction ac-
curacy for the performance metric.

...
...

...

I1

I34

H1

H256

H1

H128

O1

O2

O3

Input Hidden 1 Hidden 2 Output

Figure 5: Limb Prediction Neural Network

Combining both the left and right foot movement into a
single class causes a class imbalance where each hand
represents 25% of the training dataset and the feet class
contains 50%. In order to maintain the largest num-
ber of data points, Synthetic Minority Over-sampling
Technique (SMOTE) [Cha02a] is used to balance the
three classes. This technique creates additional, syn-
thetic samples similar to the left and right hand obser-
vations to match the number of feet observations.

The second neural network is a multi-output re-
gression network used to predict a bounding box
(xmin,ymin,xmax,ymax) where the climber should move
their hand next. Similar to the limb prediction model,
the input layer contains 34 input neurons and this model
uses five hidden layers. The hidden layers contain
256, 128, 64, 32 and 16 neurons, all using the ReLU
activation function. The output layer consists of four
neurons (xmin,ymin,xmax,ymax) activated by the Sigmoid
function. This model uses the Adam optimizer, the
Mean Squared Error (MSE) loss function, and Root
Mean-Squared Error (RMSE) as the performance
metric.

3.4 Command Translation

After the next move is predicted, Beta Caller contin-
ues in one of two ways depending on which limb is
predicted. If the climber’s feet are predicted to move,
Beta Caller immediately communicates to the climber
to move their feet upwards to a nearby hold. If one
of the climber’s hands is predicted to move, a series
of computations must occur first to translate the move
predictions into a usable command. For a majority of
visually impaired climbers, a usable command contains
which hand they should move along with what direction
and how far they should move that hand.

To translate a prediction, Beta Caller first maps the pre-
dicted hold location to the nearest actual hold on the
climbing wall found by the object detection model. Us-
ing this hold’s center point and the climber’s nose key-
point, the angle between the two coordinates is calcu-
lated and converted into an hour hand on a clock. The
12 o’clock position represents 0 degrees and each addi-
tional 30 degrees increments the hour hand by one.

In addition to the direction the climber should move
their hand, the distance between the climber’s predicted
hand and the next hold is calculated using the climber’s
wrist keypoint and the hold’s center point. The hold lo-
cation and climber’s joint keypoints are all represented
by pixel values, so the pixel distance can be calculated
easily. However, physical distance is required. In order
to convert the pixel distance into physical distance, a
known physical distance within the image must be used
to create a conversion factor.

The distance between the climber’s eyes, known as
pupillary distance, is a distance on the human body that
has the least amount of variance between human sub-
jects. Limb length, waist or shoulder width, and essen-
tially all other human body measurements vary greatly
from human to human. However, the average pupillary
distance is 2.5 inches and only ranges from 2-3 inches
for all humans [Whi22a]. Therefore, the average pupil-
lary distance is used as a known physical distance to
create a conversion factor for calculated pixel distances.
Despite the climber facing away from the camera, ViT-
Pose is able to make an accurate prediction of where the
person’s eyes are located.

The exact distance, in feet and inches, is not the easi-
est for a climber to process, understand and move their
body. Beta Caller converts the distance to the next
hold to a more usable approximation of distance in or-
der to simplify the command and not overwhelm the
climber. Table 2 provides examples of these simplifi-
cations. Once the distance is known, all three parts of
a command (hand, direction, and distance) are trans-
mitted to the climber using a text-to-speech conversion
library, pyttsx3. For example, a climber might hear
“Right hand. Two o’clock. About two feet.”.
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Feet Inches Move Distance
0 6 6 inches
2 0 - 3 About 2 feet
2 4 - 9 2 and a half feet
2 10 - 11 About 3 feet

Table 2: Distance Simplification Examples

4 RESULTS
An experiment was conducted for both the limb pre-
diction and hold prediction neural networks with the
goal of creating the best network architecture by trying
three pose estimation models and changing the number
of hidden layers and neurons.

The three pre-trained pose estimation models used in
the experiment are MediaPipe [Goo24a], YOLOPose
[Maj22a], and ViTPose [Xu22a]. The accuracy of the
pose estimation model is of utmost importance as its
outputs serve as crucial inputs for both the limb and
hold prediction models. In order to find the best net-
work architecture, the number of hidden layers was var-
ied from one to five layers. Each additional hidden layer
contains half of the number of neurons from the pre-
ceding hidden layer. The experiment includes networks
where the first hidden layer contains 256 neurons, as
well as networks that start with 128 neurons in the first
hidden layer. In total, thirty different configurations
were tested to find the best limb prediction model and
ten configurations for the hold prediction model.

The results of the experiment are summarized in Ta-
ble 3. The most accurate configurations obtain 80.08%
limb prediction accuracy and both use ViTPose joint
keypoints for limb prediction. One network contains
two hidden layers with 256 and 128 neurons and the
other network has four hidden layers containing 128,
64, 32, and 16 neurons. With the exception of one
model architecture, using ViTPose for features for limb
prediction always led to the highest accuracy. As a
result, ViTPose data was used for all models in the
hold prediction experiment. The best hold prediction
model configuration reached a bounding box RMSE of
0.0679. The input and output data use normalized pix-
els between 0 and 1, so this RMSE represents the per-
centage of error from the predicted bounding box to the
actual hold. The most accurate neural network contains
five hidden layers with 256, 128, 64, 32 and 16 neurons
and achieves a bounding box prediction error of 6.79%.

In order to validate the move predictions made by both
neural networks, the ViTPose data from an image is
used for inference with the two trained models. The
predicted limb is written in the top left corner of the im-
age and an yellow box is drawn to show the predicted
coordinates where the climber should move their hand.
A red box is drawn to indicate the closest hold to the
predicted coordinates. The final inference results can
be visualized in Figure 6. In the left image, the move

prediction models predict the climber will move their
left hand to the yellow box which is mapped to the hold
outlined with a red box. The right image confirms an
accurate prediction that the climber did move their left
hand to that predicted hold.

Figure 6: Beta Caller Prediction Results

Quantitative metrics describing the models’ ability to
accurately predict which limb the climber should and
to where the climber should move their limb should not
be the primary focus of evaluating the effectiveness of
Beta Caller. Rock climbing, like dancing, can be more
of an art than a science at times and provides climbers
the option of approaching a route differently depending
on the climber’s body type, climbing style, flexibility,
and numerous other factors. This results in a single
route being climbed in innumerable diverse ways and
establishes the fact that a correct sequence of moves
does not exist, rather there are better singular moves
than others.

In practice, a human caller will provide an “incorrect”
command for which limb the climber should move or
where they should move that limb, or both. However,
this is merely the result of the caller’s climbing style
and how they would approach the route. Fortunately,
the “incorrect” command will not impede the climber
from continuing to move up the wall. Therefore, when
Beta Caller’s limb prediction model incorrectly predicts
a limb to move, it is no different than the human caller
and the climber will still be able to find a hold to move
to even with the incorrectly predicted limb.

The hold prediction model’s error is greatly reduced
when Beta Caller maps the predicted bounding box to
the closest hold found by the object detection model.
However, even with the known location of a hold it
is challenging for any climber to hear the command
“Right hand. Two o’clock. About two feet.” and move
their hand to the exact location of the hold because the
clock direction is rounded to the nearest hour and the
distance is rounded to the nearest half foot. This style of
command provides an appropriate amount of informa-
tion without overwhelming the climber with too much
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Hidden Layers Hidden Neurons Limb Accuracy Hold RMSE
MediaPipe YOLOPose ViTPose ViTPose

1 256 69.74 68.94 73.18 0.0696
128 69.30 68.32 67.05 0.0702

2 256, 128 72.81 72.67 80.08 0.0686
128, 64 71.93 68.94 73.95 0.0687

3 256, 128, 64 69.30 69.57 77.78 0.0680
128, 64, 32 72.81 68.94 79.31 0.0684

4 256, 128, 64, 32 71.49 69.57 79.69 0.0682
128, 64, 32, 16 72.37 65.97 80.08 0.0690

5 256, 128, 64, 32, 16 71.49 65.97 77.78 0.0679
128, 64, 32, 16, 8 71.93 64.60 78.16 0.0692

Table 3: Limb Prediction and Hold Prediction Experiment Results

detail. Fortunately, visually impaired climbers are es-
pecially talented at scanning the wall with their palms
to find a hold nearby.

Without existing systems for comparison, these results
provide a solid foundation, establish strong baselines,
and pave the way for future rock climbing prediction
systems.

5 CONCLUSION
This paper provided an operational prototype of an end-
to-end system to revolutionize rock climbing for peo-
ple of all skill levels, especially those with visual im-
pairment. Beta Caller leverages a compilation of AI
models to assist rock climbers up a wall to better en-
joy and compete in the sport. Beta Caller successfully
combines two state-of-the-art computer vision mod-
els for object detection and pose estimation and uses
two neural networks to predict which limb the climber
should move, as well as the next best hold for a climber
to move to. Achieving limb prediction accuracy of
80.08% and predicting the next hold with only 6.79%
error, Beta Caller creates a vital audible command con-
taining the predicted move’s information in a timely and
useful way to enable the climber to make the next move
and ascend to the top of the rock climbing wall.

6 FUTURE WORK
Current accuracy for the limb prediction and hold pre-
diction neural networks are sufficient to demonstrate
proof of concept and create a robust starting point for
rock climbing movement prediction. However, these
results have the potential to be more accurate. Dense
neural networks are the simplest of feed-forward net-
works due to their connections from all neurons to all
neurons between each layer. The images used as input
for the dense neural networks are currently treated as
individual, independent observations and they exclude
the information observed from the previous frame or
multiple frames. The sport of rock climbing is inher-
ently sequential. For example, if a climber moves both

of their feet, the next move will likely be one of their
hands, not their feet again. In order to more accurately
model this sequential nature of rock climbing, a recur-
rent neural network or transformer network can be used
to leverage the capability of making strong sequence-
to-sequence predictions.

Beta Caller was built on a smaller dataset, so a promis-
ing avenue for future work involves collecting more
data to fine-tune the object detection, pose estimation,
and move prediction neural networks. This iterative
fine-tuning process holds the potential to significantly
enhance the accuracy and versatility of these models,
ensuring their effectiveness across various climbing en-
vironments and accommodating diverse body types and
climbing styles.

In order to establish a conversion ratio for estimating
physical distance from pixel distance, Beta Caller uti-
lizes the climber’s pupil distance. It is imperative to
validate the accuracy of these estimates through empir-
ical testing. While this conversion methodology holds
promise for its simplicity and applicability, its real-
world performance should be evaluated across various
rock climbing walls. Testing should assess the accuracy
of the derived physical distances compared to ground
truth measurements. Additionally, the robustness of the
conversion ratio should be tested under different light-
ing conditions, camera angles, and camera distances
away from the wall.

Another opportunity for future research could involve
a comparative study evaluating the efficacy of Beta
Caller, contrasted with the performance of a human
caller providing beta to the same climber on the same
routes. Speed, accuracy, and ease of understanding
could be used as metrics to assess the climber’s re-
sponse to Beta Caller predictions compared to human
caller predictions. Such a study would not only offer in-
sights into the system’s effectiveness but also shed light
on the climber’s interaction with inclusive technologies
and enhance our understanding of the capabilities and
adaptations within the visually impaired community.
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