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ABSTRACT
Fish motion is a very important indicator of various health conditions of fish swarms in the fish farming industry.
Many researchers have successfully analyzed fish motion information with the help of special sensors or computer
vision, but their research results were either limited to few robotic fishes for ground-truth reasons or restricted to 2D
space. Therefore, there is still a lack of methods that can accurately estimate the motion of a real fish swarm in 3D
space. Here we present our Fish Motion Estimation (FME) algorithm that uses multi-object tracking, monocular
depth estimation, and our novel post-processing approach to estimate fish motion in the world coordinate system.
Our results show that the estimated fish motion approximates the ground truth very well and the achieved accuracy
of 81.0% is sufficient for the use case of fish monitoring in fish farms.

Keywords
fish activity index, multi-object tracking, absolute depth map reconstruction, post-processing approach, motion
estimation, fish swarm

1 INTRODUCTION

The level of fish activity serves as an important
indicator in fish farming, providing biologists with
insights into the condition of a fish swarm, such as
hunger or sickness. For example, reduced activity
is often observed in hungry fish, leading to a no-
ticeable decline in their overall speed. Summarizing
the motion characteristics of a fish swarm is one of
many approaches to reflect their entire activity level.
Some researchers in recent years have used computer
vision [HZL+20, WML+21] or Doppler-based tech-
nique [HFPA20, HFPA19, HFU+22] to estimate real
fish speed, but they cannot evaluate the error of their
method because of the lack of real fish speed as the
reference. Other researchers [WWX15, WLZ+16]
found robotic fishes with special sensors could be
an alternative because these sensors can provide the
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ground truth as a reference, but their experimental
results are limited to very few fishes rather than fish
swarms. Overall, these attempts consistently fail to
reflect the true motion information of fish swarms in
3D space, leading to low persuasiveness and reliability.

In our work, we address the aforementioned limitations
in two steps. First, it is technically difficult to obtain
the real speed of a fish swarm in the real world, so we
use the Unity game engine [JBT+18] to simulate differ-
ent fish swarm scenes in the real world. By undertaking
this approach, we can not only replicate real-world fish
swarm scenarios but also utilize Unity to generate accu-
rate fish swarm motion data and the ground truth. Sec-
ond, we propose a novel algorithm as shown in Fig. 1 to
robustly estimate fish motion in a simple, reproducible,
and inexpensive manner. This algorithm consists of
three main components, a multi-object tracking mod-
ule, a monocular depth (mono-depth) estimation mod-
ule, and a post-processing module. In our experiments,
our unique post-processing method proved to be effec-
tive in overcoming the significant challenges caused by
complex fish swimming motion in 3D space. The esti-
mated average speed of the fish swarm is located in the
world coordinate system, so our result can reflect the
real state of fish motion. We use this average speed of
the fish swarm as an index to represent the overall activ-
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Figure 1: The overview of our Fish Motion Estimation (FME) algorithm. In a given frame Ft , we employ an object
detector and Kalman Filter [Kal60] for fish tracking, assigning a unique ID to each fish. Simultaneously, a mono-
depth model processes this image Ft and estimates the relative inverse depth map. From this, we reconstruct the
absolute depth map. Afterward, we utilize our post-processing approach to process the tracking result and absolute
depth map, and further we use this processing result to compute the fish swarm’s average speed Vt in the world
coordinate system.

ity level of the fish swarm. Although we study our Fish
Motion Estimation (FME) algorithm in a synthetic en-
vironment, we believe that our approach can be easily
and effectively transferred to the real world. Therefore,
all experimental steps in the synthetic environment re-
main strictly consistent with those in the real world.
We structure this paper as follows. In Section 2, we
summarize the recent approaches for fish motion esti-
mation. In Section 3, we describe our approach to abso-
lute depth map reconstruction, the post-processing ap-
proach, and speed computation in detail. In Section 4,
we show the detailed experiment results in multi-object
tracking, mono-depth estimation, and fish motion es-
timation. In Section 5, we summarize our work and
present the future plan to improve our fish motion esti-
mation algorithm.
Our main contributions include:

• Introduction of a new algorithm that accurately esti-
mates how fishes move in 3D space.

• Creation of a novel post-processing method to han-
dle the challenges posed by the way fishes swim,
making our approach stand out.

• A step forward by looking at how fishes move not
just in 2D but also in 3D space, offering a more com-
plete picture.

2 RELATED WORK
Fish studies in the early days relied on video systems to
analyze fish swimming movements from video record-
ings, such as FICASS [PSW+97]. Later on, some

researchers used camera-based computer-controlled
devices to perform real-time processing of fish kine-
matic information, including swimming acceleration
and velocity [WZ07, CXG+09]. However, their
research results are only based on few fishes. Other
researchers use the Doppler principle-based technique
to measure the motion information of fish swarms
in sea cages [HFPA20, HFPA19, HFU+22]. Unlike
the Doppler-based technique, some researchers used
CNN-based methods to continuously track multiple
fishes and further use the tracking results to estimate
the fish swimming speed [LXH+21, BPPLAM23].
However, their experimental findings are less reliable
as they cannot compare their results with ground truth,
and their works are limited in 2D space. Zhang et
al. [ZZH+23] utilized a binocular camera to project
the 2D tracking space into 3D space and compare their
estimated fish swimming speed with their ground truth
in that space, but their ground truth is derived from
pixel coordinates rather than from the real world.

To enhance the reliability of experimental results, sub-
sequent researchers replaced the real fish with the con-
trollable robotic fish because they can obtain the real
swimming speed of the robotic fish as the ground truth.
However, these robot fish-based methods require addi-
tional assistance, such as the optimal information fu-
sion decentralized Kalman filter algorithm [WWX15],
pressure sensor [WLZ+16, ZZX14], and the deep re-
inforcement learning controller [DSAR24, DNSR23].
Nevertheless, their experimental subjects only involve
very few robotic fishes rather than fish swarms.
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Figure 2: Three types of coordinate systems. (b) The
arrows represent the fish’s swimming directions.

To overcome these dilemmas, we use 3D fish models
and the Unity game engine to simulate real-world fish
swarm scenes. Under these settings, we can obtain real
fish speed in 3D space as the ground truth. Since our
synthetic fish scenes are in the world coordinate system,
our work extends fish motion estimation from 2D to 3D
space.

3 METHOD
3.1 Absolute Depth Map Reconstruction
To estimate the fish motion information in World Co-
ordinate System (WCS) shown in Fig. 2 (c), we first
need to acquire fish position information in WCS. As
shown in Fig. 1, we use MiDaS Hybrid [RLH+22] as
the mono-depth model to estimate relative inverse depth
Rinv, and use an object detector to estimate fish posi-
tion in the Pixel Coordinate System (PCS) shown in
Fig. 2 (b). The depth Rinv predicted by MiDaS Hybrid
is scaled and shifted to a unit scale s = 1 and zero trans-
lation t = 0, so it loses the absolute depth information
of the objects in the scene and only presents the relative
positional relationship between objects. However, we
need the absolute depth information to convert fish po-
sition information from PCS to that in WCS. To solve
this problem, we use an optimized transform algorithm
as shown in Equation (1) to convert Rinv to absolute
depth Dabs.

s∗, t∗← argmin L2(Ddv,Rdv) (1)

Ddv is the known absolute depth values in the scene,
while Rdv is the relative inverse depth values in the
depth map Rinv. This algorithm requires at least two
known absolute depth values Ddv and two relative in-
verse depth values Rdv to solve s∗ and t∗.

We place ten reference objects in the fish pond to pro-
vide the known absolute depth values from the fish

scene. We take the center point on the front surface
from each reference object as the reference point pi.
We locate the coordinate of each reference point pi =
(wi

x,w
i
y,w

i
z) in WCS. Since Unity game engine can of-

fer camera extrinsic parameter E and intrinsic parame-
ter I, we can convert these reference points in WCS to
those in the Camera Coordinate System (CCS) shown
in Fig. 2 (a). Afterward, we collect the absolute depth
values Ddv from these reference points. We continue to
convert these reference points in CCS to those in PCS
so that we use the pixel coordinates of these reference
points to extract Rdv from the relative inverse depth map
Rinv. In the end, we use the known absolute depth val-
ues Ddv and relative inverse depth values Rdv to solve
the optimal solution s∗ and t∗. With s∗ and t∗, we can
reconstruct the absolute depth Dabs by using following
the Equation (2).

Dabs← Rinv× s∗+ t∗ (2)

3.2 Post Processing
Fish swimming movements are random, unpredictable,
and easily influenced by their states as well as the sur-
roundings [RPM22, HZL+20]. These special features
eventually cause two problems, which are the fluctua-
tion in the position of the BBox center point and the
abrupt jump in the depth value at that point. These two
problems will cause large errors in speed computation
because we estimate fish speed based on the BBox cen-
ter points.

We assume that the location of a fish at the current
frame f is based on its location at previous frames.
Therefore, our idea is to summarize the past location
information of a fish and use it to update its location in-
formation in the current frame f . We use the Exponen-
tially Weighted Moving Average (EWMA) to achieve
it.

3.2.1 Fluctuation problem of BBox center point
Due to the various fish swimming postures or fish-
tail swinging movements, these factors could cause the
BBox dimensions to change abnormally between suc-
cessive sequences. For example, the width of BBox
may suddenly become larger or smaller in two succes-
sive frames t− 1 and t when a fish is swimming. This
leads to the fluctuation problem on the BBox center
point, and it can negatively affect the estimation results
of fish speed. To overcome this problem, we create two
detectors as described in Equation (3) to monitor ab-
normal changes in the BBox dimensions. We use the
average variation Avg(.) of the BBox dimensions in the
past 30 frames as the reference to determine if the cur-
rent change in the BBox dimension is abnormal.

detectorw = abs(wt −wt−1)> Avg(Dw,Len(Dw))

detectorh = abs(ht −ht−1)> Avg(Dh,Len(Dh)).
(3)
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Figure 3: Annotation. The real-time speed of each fish
in WCS.

Dw = {(wi−wi−1)}t−1
i=t−28 is the list containing the dif-

ference between the BBox width w in every two adja-
cent frames, while the Dh = {(hi− hi−1)}t−1

i=t−28 repre-
sents the difference in BBox height h. If we detect an
abnormal change in the BBox dimensions at frame t
when a fish swims, we collect its BBox dimensions in
the previous 5 frames. Afterward, we use EWMA to
update the BBox dimensions at the current frame t and
further compute the BBox center point ct = (cx

t ,c
y
t ).

3.2.2 Jump problem on the depth value
Abrupt changes in depth value at the BBox center
points occur mainly when a fish is partially occluded
by others during fish interactions. This occlusion
problem causes the fish BBox center point to jump
onto other fishes in the next frame making the depth
value inaccurate. To tackle this problem, we first create
a detector as shown in Equation (4) to monitor each
fish and detect if its depth value at the BBox center
point jumps. We assume that the change in depth value
for each fish in successive frames is smooth when a
fish swims alone. abs(dt − dt−1) is the absolute depth
difference in successive frames. We experimentally
found that δ = 0.6 m delivers good results. Together
with the BBox center point ct = (cx

t ,c
y
t ) at current

frame t, the absolute depth map Dt
abs and the set of

depth values in past 30 frames Dep = {d∗i }t−1
i=t−29, we

use EWMA to update the depth value at the current
frame t. Eventually, we obtain the updated absolute
depth value d∗t .

detectordep = abs(dt −dt−1)≥ δ . (4)

3.3 Speed computation
In order to estimate the average speed of the fish swarm,
we start with a single fish. We use the BBox center

Hyperparameter Symbol Search Space
Kernel Size k [3×3,5×5,7×7]

Detection Thres Td [30%,40%,50%,60%,70%]
Tracking Thres Tt [30%,40%,50%,60%,70%]
Fusion Thres Tf [30%,40%,50%,60%,70%]

Untracked Thres Tunt [30%,40%,50%,60%,70%]
Unconfirmed Thres Tunc [30%,40%,50%,60%,70%]

IoU Thres Tiou [30%,40%,50%,60%,70%]

Table 1: Grid search space for hyper-parameters

points C = {(cx
i ,c

y
i )}t

i=1 and the absolute depth values
Dep = {d∗i }t

i=1 to firstly project BBox center points C
in PCS to WCS, and then we compute fish speed V =
{vi}t

i=1. The time interval is 1/30 seconds, so f ps =
30. Next, we still use the above computation steps to
calculate the speed for each fish in a fish swarm. With
our multi-object tracker, we can identify each fish in
the next frames. For each frame, we use Equation (5) to
compute the average speed v̄t of all tracked fishes. Here
N is the total number of fishes at the frame t. After
traversing all frames T , we obtain the average speed
V̄ = {v̄t}T

t=1 as the final result.

v̄t =
1
N

N

∑
o=1

vo
t , (5)

4 EXPERIMENTS
4.1 Synthetic Fish Dataset
There are some fish datasets available for different com-
puter vision tasks, such as [UKT20] and [SLK+20],
but none of them provides fish motion information.
Therefore, we use Unity game engine [JBT+18] to de-
sign our synthetic fish dataset and automatically gener-
ate annotation as shown in Fig. 3. This synthetic dataset
contains 163 videos which have 89901 images in to-
tal. We split this dataset into training dataset with 99
videos, validation dataset with 32 videos, and testing
dataset with 32 videos. The frame per second in this
dataset is 30 fps.

Unity captures the ground truth speeds based on the
gravity center of the 3D fish model. It is very difficult
to visually determine the position of the gravity cen-
ter of a swimming fish, so we choose to approximate
the ground truth speed by the speed of the BBox center
point. This is expected to introduce inherent errors, pri-
marily stemming from two distinct factors. Firstly, the
likelihood of the gravity center aligning precisely with
the center point of the BBox diminishes when a fish is

Trackers k Td Tt Tf Tunt Tunc Tiou
Thrnet 3×3 30% 70% 70% 70% 30% −
Tretina − 30% 50% − 70% 30% 50%

Tf asterrcnn − 50% 50% − 70% 40% 50%

Table 2: Grid search result for multi-object trackors
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Trackers IDF1 ↑ MOTA ↑ MOTP ↑ f ps ↑
Thrnet 80.1% 81.1% 87.4% 16.7
Tretina 79.4% 80.5% 86.7% 20.39

Tf asterrcnn 82.4% 81.8% 87.4% 21.15

Table 3: Multi-object tracking results

navigating through three-dimensional space. Secondly,
the depth value at the BBox center point consistently
corresponds to the outer surface of the fish, whereas the
gravity center resides within the fish. Consequently, the
depth value at the BBox center point is almost always
smaller than the value at the gravity center.

4.2 Multi-Object Tracking
We adopt the tracking-by-detection approach to
achieve multiple fish tracking in our synthetic fish
swarm scenes. We prepare three detector-based multi-
object trackers, including HRNet-based tracker Thrnet ,
RetinaNet-based tracker Tretina, and FasterRCNN-
based tracker Tf asterrcnn. We use the same training
strategy to train these object detectors. The batch size
is set to 10. We optimize these models with the Adam
optimizer [KB14] for 40 epochs. The learning rate γ is
1.25e−4, and it is decayed by half for every 10 epochs.
After the training stage, we use each well-trained
object detector and Kalman Filter [Kal60] to compose
a multi-object tracker. Since Kalman Filter involves
some hyperparameters, we create a search space for
each tracking hyperparameter shown in Table 1 and use
the grid search approach to find the optimal tracking
parameter for each tracker. We show the result in
Table 2.

We use the evaluation metrics that are commonly
adapted in the community to measure tracking per-
formance. The tracking result is shown in Table 3.
Thrnet has comparable overall performance with Tretina,
but Tf asterrcnn outperforms other trackers in tracking
performance and inference speed. Therefore, we will

Reconstruction Algorithms
RMSE/m ↓ &1.25 ↑ &1.252 ↑mono-depth models ML

MiDaS
Hybrid

LR 0.625 0.73 0.94
PR 27.36 0.72 0.925
DT 0.66 0.695 0.915

KNN 0.655 0.7 0.92

MiDaS
Large

LR 0.93 0.58 0.825
PR 42.915 0.605 0.84
DT 0.79 0.575 0.855

KNN 0.785 0.59 0.85

Boosting
MiDaS

LR 0.725 0.675 0.9
PR 118.3 0.66 0.885
DT 0.71 0.665 0.9

KNN 0.7 0.67 0.9

TCMiDaS

LR 1.675 0.355 0.535
PR 2934.985 0.44 0.62
DT 1.485 0.38 0.6

KNN 1.415 0.375 0.61

Table 4: Comparison of different absolute depth map
reconstruction algorithms

Figure 4: Random layout of reference objects. (a) The
red boxes are the positions of reference objects. (b) The
reference objects from the front view.

use the FasterRCNN-based tracker to achieve multiple
fish tracking in the following experiments.

4.3 Absolute Depth Map Reconstruction
Since it is technically difficult to generate precise depth
maps as ground truth in underwater environments, we
cannot train any mono-depth models in the real world.
Similarly, we do not train any mono-depth models on
our synthetic datasets, and we use an already well-
trained model MiDas [RLH+22] with high generaliza-
tion ability.

4.3.1 Transformation Algorithms
We choose four open-source mono-depth variants
based on MiDaS as our experimental candidates,
and they are MiDaS Hybrid [RLH+22], MiDaS
Large [RLH+22], BoostingMiDaS [MDM+21] and
TCMiDaS [LLZ+21]. We use four Machine Learning
(ML) algorithms to reconstruct absolute depth maps
from the relative inverse depth maps, including Linear
Regression (LR), second-order Polynomial Regression
(PR), Decision Tree (DT), and KNN. There are two
primary reasons for this operation. Firstly, these
models lack the capability to directly predict absolute
depth maps. Secondly, [RLH+22, MDM+21, LLZ+21]
do not put forth any default transformation algorithms

Figure 5: Examples of reconstructed absolute depth
maps
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Figure 6: Examples of the absolute depth maps reconstructed by linear regression in different fish scenes. The
green rectangle marks the ignored fish. The blue rectangle marks fish with the same depth values in a small fish
swarm.

that can effectively convert a relative inverse depth
map into an absolute depth map. We use the Root
Mean Squared Error (RMSE) to measure the deviation
between the estimated depth values and the ground
truth. We also use &1.25 and &1.252 to evaluate their
precision. Since absolute depth map reconstruction
requires some known depth values from the scene,
we tried different layouts of the reference objects and
came up with the one that performed best, as shown in
Fig. 4 (a).

A depth estimation algorithm is deemed effective if it
achieves continuous values in the predicted depth map
without introducing layering effects, while also main-
taining good metrics for both the background and fore-
ground objects. We combine four mono-depth vari-
ants and four ML algorithms and evaluate their absolute
depth map reconstruction results. The result is shown
in Table 4. We find that polynomial regression ends up
with a very large error in RMSE. This primarily stems
from the x2 term in polynomial regression, which tends
to magnify large depth values during the depth map re-
construction process. Thus, it is unsafe to use polyno-
mial regression to conduct depth map transformation.
As shown in Fig. 5, the decision tree and KNN tend to
reconstruct absolute depth maps with obvious layering
effects, so it is not acceptable in our case. Addition-
ally, the reconstructed depth maps based on TCMiDaS
lose most of the depth information. It is probably be-
cause the training strategy in Li et al. [LLZ+21] does
not maintain the original generalization capability of
MiDas. Thus, we will not consider this model in our
work. Unlike other ML algorithms, linear regression
maintains the most balanced performance in all metrics
and with all Midas variants. Therefore, linear regres-
sion is the most suitable transformation algorithm.

We further compare the absolute depth maps recon-
structed by linear regression in different fish scenes. As
shown in Fig. 6, MiDaS Large tends to miss some fishes

that are relatively far away in the scene when estimating
depth maps. BoostingMiDaS can provide depth infor-
mation for all fishes, but it tends to predict the same
depth values for neighboring fishes forming a group in
the image. The reason may be that the fish’s appear-
ance and the boundaries between these fishes become
blurred in these scenes, so BoostingMiDaS incorrectly
recognizes their contextual cues as the same. Such a
situation makes it difficult for BoostingMidas to distin-
guish multiple fishes with blurred boundaries. MiDaS
Hybrid and linear regression do not have the problems
mentioned above, so we will use MiDaS Hybrid and
linear regression to reconstruct absolute depth maps for
our fish scenes.

4.3.2 Layout of Reference Objects
The spatial layout of reference objects is another im-
portant factor in absolute depth map reconstruction. As
shown in Fig. 7, we prepare seven different spatial lay-
outs and restrict the size of all reference objects to
0.1× 0.1× 0.1m3. We assume that the reference ob-
jects in this size are too small to affect fish swimming
movements.

The result is shown in Table 5. We find that the in-
creasing number of reference objects from layouts A to

Figure 7: Different layouts of reference objects. The
red bboxes are the positions of reference objects
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Figure 8: Post-processing performance. The Occ means occlusion.

D improves the overall accuracy in absolute depth map
reconstruction and decreases errors in reconstructed ab-
solute depth values. The reason is that placing more ref-
erence objects in the depth direction of the fish pond can
provide more depth information about the pond. How-
ever, as shown in Table 5, placing two more objects in
layout E shown in Fig. 7 ends up with a very similar
evaluation result to that of layout D. This result indi-
cates that placing more objects is less helpful in improv-
ing the accuracy of absolute depth map reconstruction.
To solve this problem, we created layout F by slightly
shifting each reference object in different directions by
a small distance. In Table 5, the overall evaluation re-
sult in layout F delivers better results than other layouts.
Compared to layout E, layout F uses the same number
of reference objects to obtain a more complete depth
range in the fish pond. Therefore, we will arrange ref-
erence objects in our fish ponds according to layout F.

4.4 Post Processing
To investigate the effectiveness of our post-processing
method against the fluctuation problem of BBox center
point and the jump problem on depth value, we cre-
ated simple scenes where a fish swims in pre-designed
movements. These scenes include three types of motion
and three types of swimming trajectories. The three
types of motion include acceleration (Acc), decelera-
tion (Dec), and uniform (Unif). The three types of tra-
jectories include the Coordinate Axis direction (CA),
the Coordinate Plane direction (CP), and Spatial Turn-
Around movements (STA). In detail, the CA direction
includes directions in

−→
d = (1,0,0),

−→
d = (0,1,0), and

Layout RMSE/m ↓ &1.25 ↑ &1.252 ↑
A 1.84 0.1 0.525
B 0.65 0.68 0.89
C 0.59 0.735 0.93
D 0.565 0.755 0.95
E 0.57 0.75 0.955
F 0.55 0.77 0.95

Table 5: Absolute depth map reconstruction in different
layouts

−→
d = (0,0,1), while the CP direction includes direc-
tions in

−→
d = (1,1,0),

−→
d = (1,0,1), and

−→
d = (0,1,1).

Since a fish is either occluded or not occluded when
swimming in a fish swarm, we divide these scenes into
the occluded and not-occluded ones. In total, we have
18 different scenes. Also, we feed the ground truth
BBox and depth map to our post-processing approach
rather than the tracking result and reconstructed abso-
lute depth maps as shown in Fig. 1.

As shown in Fig. 8, our FME algorithm can produce
better results in occluded and non-occluded scenes than
FME algorithm without the post-processing approach.
Our post-processing approach reduces ▽RMSE by
0.274m/s. This result implies that our post-processing
approach effectively addresses the disturbance caused
by fish swimming movement. Following, two exam-
ples are given to demonstrate the improvements in fish
motion estimation.

Since fish swimming movements always cause the drift
problem on BBox center point, we make a single fish
swimming in the direction

−→
d = (1,0,0) as shown in

Fig. 9 in order to investigate the influence of this prob-
lem on the fish motion. The fish swimming along this
trajectory can always be at the same distance from the

Figure 9: Post processing on BBox
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camera. As shown in Fig. 9, the estimated result based
on our post-processing approach remains exactly the
same as the ground truth while the method without the
post-processing generates a very fluctuating result. This
comparison indicates that our post-processing approach
can overcome the drift problem on BBox center points.
When a fish is swimming behind another fish as shown
in Fig. 10, it causes the depth value at the BBox center
point to abruptly jump in two consecutive frames. How-
ever, our post-processing approach can overcome this
problem and maintain smooth changes in depth values
on successive frames.

4.5 Fish motion estimation
We have prepared two types of fish scenes, including
the single-fish scene and the fish swarm. Our initial
focus is on the single-fish scene. This choice allows us
to fully isolate the effects of interaction between fishes
and concentrate on assessing the influence of the spatial
swimming movements of an individual fish on our FME
algorithm. We compare our FME algorithms based on
four different input sources that include Ground Truth
BBox (GTBBox), Ground Truth depth (GTDepth),
Predicted BBox (PredBBox), and Estimated absolute
Depth map (EstDepth). We consider the result from
the algorithm based on GTBBox&GTDepth as the
benchmark.

We utilize RMSE to evaluate the deviation between the
estimated speed and the ground truth speed. We also
use distance correlation (DistCorr) to quantify the sim-
ilarity of tendency between them. Unlike the Spearman
correlation and the Pearson correlation, DistCorr can
measure the nonlinear association between two vari-
ables with non-monotonicity, and it does not impose
any restrictions on the distribution of these two vari-
ables.

Figure 10: Post processing on depth. The red line on
the top figure represents the fish swimming trajectory.

4.5.1 Single-Fish Scene
As shown in Table 6, the benchmark result ends up
with an error of RMSE = 0.05m/s, while the correla-
tion reaches up to DistCorr = 92.0%. Since we only
use ground truth depth maps and BBox to estimate fish
speed, we think this error mainly comes from the inher-
ent error as we discussed in Section 4.1 and our post-
processing approach.

The estimation result in group C is very close to the
benchmark, giving an error of RMSE = 0.06m/s and
the correlation of DistCorr = 92.0%. The reason for
this difference is that BBoxes predicted by our track-
ing algorithm deviate a bit from the ground truth BBox,
so it leads to a localization error in the fish positions.
However, its performance remains very close to the
benchmark as shown in Fig. 11 (b). We notice that
the result in Group B is worse than that in the bench-
mark. This is mainly because the reconstructed abso-
lute depth map provides less accurate depth values for
fish speed computation. In group D, the combination
of our tracking and absolute depth reconstruction al-
gorithms can generate nearly the same performance as
that in group B. It implies that our absolute depth es-
timation algorithm is the main error source in single-
fish motion estimation. However, the estimated speed
shown in Fig. 11 (c) approximates the ground truth well
enough. Thus, we believe that our algorithm can ro-
bustly estimate fish motion in single-fish scenes with
an error of RMSE = 0.08m/s and the correlation of
DistCorr = 89.0%.

4.5.2 Fish Swarm Scene
As shown in Table 7, we notice that the benchmark
result has an error of RMSE = 0.03m/s, but the cor-
relation between the estimated average speed and the
ground truth is DistCorr = 92.0%. The estimated re-
sult in Group D has an error of RMSE = 0.06m/s.
By comparing with the benchmark, our tracking and
absolute depth map reconstruction algorithms together
lead to an increasing error in the estimated average
speed by ▽RMSE = 0.03m/s. Also, its correlation
of DistCorr = 81.0% differs from the benchmark by
▽DistCorr = 11.0%. The reasons are two-fold. First,
fish swarm scenes make a more difficult task for our
tracker because of occlusion, which makes it more dif-
ficult to continuously and stably track a fish with the
same tracking ID, and increases the chances of los-
ing some tracked targets or ID switches while tracking

Group Input Source RMSE(m/s) ↓ DistCorr ↑
A Benchmark 0.05 92.0%
B GTBBox&EstDepth 0.08 90.0%
C PredBBox&GTDepth 0.06 92.0%
D PredBBox&EstDepth 0.08 89.0%

Table 6: Fish motion estimation in single-fish scenes
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Figure 11: Fish motion estimation. (a)-(c): single fish scenes. (d)-(f): fish swarm scenes.

many fishes. This problem is highly dependent on the
complexity of fish interaction in a fish swarm. The im-
perfection of our tracking algorithm on motion estima-
tion becomes more obvious in fish swarm scenes. Sec-
ond, fish swarm scenes increase the difficulty of recon-
structing accurate absolute depth information for the
fish. These two aspects eventually lead to the devia-
tion in fish speed computation. However, the estimated
speed curve shown in Fig. 11 (f) closely mirrors the
trend of the ground truth curve. Thus, we believe that
our tracking model and mono-depth estimation algo-
rithm can adequately estimate fish motion in fish swarm
scenes with RMSE = 0.06m/s and DistCorr = 81.0%.
Our biologist partners believe that this error is accept-
able as long as the estimated speed curve is close to the
ground truth curve.

Additionally, we adopt a 95% confidence interval to
measure the error range of the average speed in a fish
swarm at a given frame f computed by our FME algo-
rithm, and the range is [−0.167m/s,0.1m/s]. This error
range is measured under the frame rate of 30 fps.

5 CONCLUSION
In our research, we tackled challenges in fish motion
studies by addressing the lack of ground truth informa-
tion, and the complexity of fish swarm scenes. We cre-
ated synthetic fish data and introduced a novel fish mo-
tion estimation algorithm, incorporating multi-object
tracking, a mono-depth model, and an innovative post-
processing approach for 3D motion estimation. Our re-
search successfully extends fish studies from 2D to 3D
space. Our experiments show that our post-processing

Group Input Source RMSE(m/s) ↓ DistCorr ↑
A Benchmark 0.03 92.0%
B GTBBox&EstDepth 0.05 88.0%
C PredBBox&GTDepth 0.04 92.0%
D PredBBox&EstDepth 0.06 81.0%

Table 7: Fish motion estimation in fish swarm scenes

method significantly reduces errors in fish speed com-
putation, and our FME algorithm can estimate ade-
quately accurate fish motion in different fish swarm
scenes.
Our work demonstrates the feasibility of accurately
computing fish motion using a multi-object tracker and
a mono-depth model. Looking ahead, we aim to design
a neural network model for direct fish speed prediction.
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