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ABSTRACT 
This paper proposes a natural data augmentation method and an anomaly removal artificial neural network for 

accurate anomaly detection. Anomaly detection is important because the provision of high-quality products is vital 

in the manufacturing industry. However, it is difficult to obtain a sufficient number of anomaly samples for the 

detection, which represents a significant challenge when it comes to achieving accurate anomaly detection by 

machine learning. General data augmentation methods generate new anomaly images by combining normal images 

and anomaly images. As an alternative, this paper describes a method that generates new anomaly images by using 

the Eigenspace. More natural anomaly images are generated than with general data augmentation methods. This 

paper also proposes an anomaly removal neural network that utilizes this natural data augmentation. The results 

of an anomaly detection experiment showed that the AUC of 94.7% was achieved for the capsule dataset when 

using anomaly images generated by the proposed data augmentation for training the anomaly removal neural 

network. This is 1.3% higher than the state-of-the-art data augmentation method that has been utilized for training 

the neural network. In the case of the pill dataset, AUC of 99.4% was achieved by proposed method. This is 3.0% 

higher than the state-of-the-art data augmentation method that has been utilized for training the neural network. 

The results of a series of experiments demonstrated that anomaly images generated by the proposed data 

augmentation are effective for training the neural network. 

Keywords 
Anomaly detection, Machine learning, Image generation, Data augmentation, Principal component analysis, 

Eigenspace

1. INTRODUCTION 

Recently, machine learning has shown promise for 

accurate anomaly detection. However, there is a 

shortage of anomaly images for learning due to the 

difficulty to obtaining such images in the 

manufacturing industry. This is a critical issue when it 

comes to achieving accurate anomaly detection.  

Conventionally, three approaches to address this issue 

have been taken. In the first approach, methods use 

reconstruction models based on Generative 

adversarial networks (GANs) [Sch17] [Zen18] 

[Akc19]. These methods aim to successfully 

reconstruct normal images, while unsuccessfully 

reconstructing anomalies. However, they may be able 

to successfully reconstruct an anomaly image because 

the models learn to reconstruct the input image. 

In the second approach, methods utilize pre-trained 
Convolutional neural networks (CNNs) as feature 

extractors [Coh20] [Rip21] [Def21] [Rot22]. These 

methods aim to model the normal features for 

detecting anomaly features. However, since they do 
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not learn anomaly images, they may miss very small 

anomalies. 

In the third approach, methods generate artificial 

anomaly images by data augmentation. For example, 

CutPaste [Li21] trains the one-class discrimination of 

CNNs by using normal images and generated anomaly 

images. StainNoise [Col21], DRAEM [Zav21], and 

NSA [Sch22] train image reconstruction artificial 

neural networks using normal images and generated 

anomaly images and then determine anomalies from 

the input and output of the neural network. These 

methods can generate a lot of anomaly images by 

combining artificial anomalies and normal images. 

However, when the artificial anomalies are unnatural, 

artifacts may occur in the generated anomaly images, 

which affect the learning of the neural networks. In 

other words, if low-quality anomaly images are 

generated by the previous data augmentations, the 

accuracy of the subsequent anomaly detection may 

decrease.  

Thus, Conventional data augmentation methods in the 

image space generate unnatural anomaly images. This 

is problematic for the quality of the training data. In 

this study, we propose a data augmentation method in 

the feature space instead of the conventional approach 

in the image space. Then, we propose a neural network 

for anomaly removal based on the data augmentation. 

2. PREVIOUS DATA 

AUGMENTATION AND BASIC 

CONCEPT OF PROPOSED IDEA 

 In this section, we first describe the general approach 

to data augmentation and its issues. We then present 

our basic idea to address the problems of the previous 

methods. 

2-1. Previous data augmentation methods and 

related problems 

When applying machine learning to anomaly 

detection, it is necessary for the discriminator to learn 

various anomalies. However, there is a shortage of 

anomaly images for machine learning due to the 

difficulty of obtaining a sufficient number of such 

images in the manufacturing industry. 

In the field of anomaly detection, there are methods 

that generate anomaly images by combining artificial 

anomalies with normal images [Li21] [Col21] [Zav21] 

[Sch22]. These methods have the advantage of being 

able to generate the many anomaly images required 

for the training of discriminators. However, when the 

artificial anomalies are unnatural, artifacts may occur 

in the generated anomaly images, which in turn affects 

the learning of the discriminators. In other words, the 

problem here is that discriminators cannot acquire a 

generalizable performance with unnatural data 

augmentation. Our aim in this study is, therefore, to 

improve the quality of anomaly images generated by 

data augmentation. 

2-2. Basic concept 

Real images contain various information, such as the 

position of the object and the size of the anomalies. If 

we can extract and fuse these pieces of information 

from real images, we should be able to generate highly 

realistic anomaly images.  

The basic concept is shown in Fig. 1. First, the images 

are converted into feature values, and next the normal 

feature values and anomaly feature values are fused in 

the feature space. Finally, high-reality anomaly 

images are generated by converting these feature 

values into images. Additionally, various anomaly 

images can be generated by applying transform 

processing to the anomaly feature values in the feature 

space. 

3. PROPOSED METHOD 

In this section, first, we explain our method of 

converting images into feature values using principal 

component analysis. Next, we present our method for 

combining normal feature values and anomaly feature 

values in the Eigenspace, along with our method for 

diversifying the anomaly information in the generated 

images. Finally, we show our method for training an 

anomaly removal neural network using normal images 

and generated anomaly images. 

Figure 1. Basic concept of proposed method. 

ISSN 1213-6972 (print) 
ISSN 1213-6964 (online)

Journal of WSCG 
http://www.wscg.eu Vol.32, No-1-2, 2024 

92https://www.doi.org/10.24132/JWSCG.2024.10



3-1. Feature transformation based on 

principal component analysis 

In our approach, images are transformed into feature 

values by means of principal component analysis. 

There are two advantages to using principal 

component analysis for feature transformation: first, 

the feature values in the Eigenspace obtained in this 

way can be converted into images, and second, the 

feature values in the Eigenspace can be interpreted on 

the basis of the eigenvalues. Image generation 

methods utilizing the feature space include those using 

Variational Auto-Encoder (VAE) [Gar19] and GANs 

[Ant17] [Bow18]. However, since these methods use 

deep learning, it is difficult to interpret the features in 

the feature space. 

Here, we transform images into features as follows. 

Principal component analysis is applied to 𝑁 training 

images comprising many normal images and a small 

number of anomaly images. When the dimensionality 

of the image vectors is 𝐷 dimensions (𝑁 < 𝐷), the 𝑁 

image vectors 𝒙𝑛 (𝑛 = 1, 2, ⋯ , 𝑁) are defined by 

𝒙𝑛 = (𝑥𝑛1, 𝑥𝑛2, ⋯ , 𝑥𝑛𝐷)𝑇 .                         (1) 

Next, the data is centered by taking the difference 

between the 𝑁 image vectors 𝒙𝑛 and the mean vector 

𝒙 . The data matrix of the centered data 𝒙𝑛  (𝑛 =
1, 2, ⋯ , 𝑁) is defined by 

�̅� = (𝒙1, ⋯ , 𝒙𝑛)𝑇 = (𝒙1 − 𝒙, ⋯ , 𝒙𝑛 − 𝒙)𝑇  .   (2) 

Using this data matrix �̅�, the covariance matrix 𝑺 can 

be obtained by 

𝑺 =  
1

𝑁
�̅�𝑇�̅�  .                                (3) 

In the principal component analysis, the eigenvalue 

problem for this covariance matrix 𝑺 is solved. As a 

result, the eigenvalues 𝜆𝑗  and the corresponding 𝐷 

dimensional eigenvectors 𝒂𝑗  are derived. When the 

dimensionality 𝐷 is larger than the number of training 

images 𝑁 , the number of non-zero eigenvalues and 

their corresponding eigenvectors obtained are 𝑁 − 1. 

By selecting the eigenvectors 𝒂𝑗 corresponding to the 

eigenvalues 𝜆𝑗 in descending order, the Eigenspace 𝑨 

is obtained. By projecting the centered image vectors 

𝒙𝑛 onto Eigenspace 𝑨, the image is transformed into 

the feature vectors 𝒔𝑛, which is defined by 

𝒔𝑛 = 𝑨𝑇𝒙𝑛 =  (𝑠𝑛1, 𝑠𝑛2, ⋯ , 𝑠𝑛𝑁−1)𝑇   .         (4) 

3-2. Fusion of anomaly features in Eigenspace 

Next, using pairs of centered normal image vectors 

𝒙𝑛𝑜𝑟 and anomaly image vectors 𝒙𝑎𝑛𝑜, new anomaly 

images 𝒙𝑎𝑛𝑜 are generated. 

First, using Eq. (4) from Subsection 3-1, we project 

the normal image vectors 𝒙𝑛𝑜𝑟 and the anomaly image 

vectors  𝒙𝑎𝑛𝑜  onto Eigenspace 𝑨 . As a result, the 

feature vectors 𝒔𝑛𝑜𝑟 and 𝒔𝑎𝑛𝑜 are obtained. 

The relationship between the eigenvalues 𝜆𝑗  and the 

principal component numbers is shown in Fig. 2. Here, 

we expect the top components with large eigenvalues 

to aggregate normal information correlated with all the 

data, while in contrast, the lower components with 

small eigenvalues are expected to aggregate anomaly 

information, especially for anomaly images. 

Therefore, for the feature vectors 𝒔𝑛𝑜𝑟 obtained from 

the normal images, the top components of the feature 

Figure 2. Relationship between eigenvalues and 

 principal component numbers. 

Figure 3. Fusion of feature components in Eigenspace. 
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vectors are extracted, and for the feature vectors 𝒔𝑎𝑛𝑜 

obtained from the anomaly images, the lower 

components are extracted. In this case, the boundary 

between the top and bottom features is qualitatively 

determined from the cumulative contribution rate 

graph, defining the components up to the 𝑀 -th 

component as the top and the rest as the bottom. 

Finally, new features are generated by combining the 

extracted feature components in the Eigenspace. Fig. 

3 shows the generation of new features by fusing the 

normal and anomaly feature vectors in the Eigenspace. 

These features are transformed into images by adding 

the mean vector 𝒙 to the linear combination of their 

components and each eigenvector, as 

 𝒙𝑎𝑛𝑜 =  𝒙 + ∑ 𝑠𝑛𝑜𝑟(𝑖)𝒂𝑖

𝑀

𝑖=1

+  ∑ 𝑠𝑎𝑛𝑜(𝑖)𝒂𝑖

𝑁−1

𝑖=𝑀+1

   .   (5) 

By this operation, a new anomaly image 𝒙𝑎𝑛𝑜  is 

generated by fusing the defect features of defective 

image 𝒙𝑎𝑛𝑜 into the normal image 𝒙𝑛𝑜𝑟. 

3-3. Diversification processing of anomaly 

information 

Using Eq. (5) from Subsection 3-2, new anomaly 

images are generated by fusing anomaly information 

from anomaly images into normal images. However, 

the position and size of anomalies in the generated 

images depend on the anomaly images used for the 

image generation. Therefore, variation in the 

generated images is limited to the number of 

combinations of normal and anomaly images. In this 

subsection, we modify Eq. (5) to variate the generated 

anomalies. There are two targets for diversifying 

anomalies: anomaly intensity and geometric 

information. 

First, we diversify the anomaly intensity in the 

generated images by multiplying the weight 

coefficient 𝑤, as 

 𝒙𝑎𝑛𝑜 =  𝒙 +  ∑ 𝑠𝑛𝑜𝑟(𝑖)𝒂𝑖

𝑀

𝑖=1

+ 𝑤 ∑ 𝑠𝑎𝑛𝑜(𝑖)𝒂𝑖

𝑁−1

𝑖=𝑀+1

 .  (6) 

Next, we describe the diversification of geometric 

information about anomalies. In Eq. (5), the linear 

combination of anomaly features and lower 

eigenvectors represents anomaly information. 

Therefore, this anomaly information vector is 

transformed into the image-size matrix. Then, 

geometric transformations such as mirroring and 

reduction are applied to this matrix. Then, this matrix 

is transformed into a vector and added to the normal 

information vector. As a result, the geometric 

information of the anomaly in the generated image 

changes. 

3-4. Anomaly removal neural network 

By using the data augmentation method described in 

Subsection 3-1 to Subsection 3-3, pairs of normal 

images and artificially generated anomaly images can 

be obtained. The artificially generated anomaly 

images in this pair are identical to the normal images 

except for the anomaly parts. 

We then use this pair of images to train the anomaly 

removal neural network, as shown in Fig. 4. The 

neural network architecture utilizes U-Net [Ron15], 

which is a type of autoencoder. During the training, 

when a normal image is input, the Mean Squared Error 

(MSE) loss is calculated between the output 𝒚 of the 

neural network and the normal image 𝒙𝑛𝑜𝑟 (Fig. 4(a)). 

When an artificial anomaly image generated using the 

proposed data augmentation is input, the MSE loss is 

calculated between the output 𝒚 of the neural network 

and the normal image 𝒙𝑛𝑜𝑟 paired with this artificial 

anomaly image 𝒙𝑎𝑛𝑜  (Fig. 4(b)). The equation is 

shown below. As a result of this training, the anomaly 

removal neural network is obtained. 

𝑀𝑆𝐸 =
1

𝑛𝑚
∑ ∑ [𝒚(𝑗, 𝑖) − 𝒙𝑛𝑜𝑟(𝑗, 𝑖)]2

𝑚 − 1

𝑖= 0

𝑛−1

𝑗=0

       (7) 

During the testing of the neural network, the anomaly 

score is defined as the sum of the absolute differences 

Figure 4. Training of anomaly removal neural 

network. 

Figure 5. Example images of each dataset. 
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between the input image 𝒙 and the output image 𝒚 of 

the neural network. The equation is shown below. 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 = ∑ ∑ |𝒚(𝑗, 𝑖) − 𝒙(𝑗, 𝑖)|

𝑚 − 1

𝑖= 0

𝑛−1

𝑗=0

      (8) 

4. IMAGE GENERATION 

EXPERIMENT 

We performed an image generation experiment in 

which new anomaly images were generated by the 

proposed data augmentation method using many 

normal images and a few anomaly images. Our 

objectives are to determine whether (1) various 

anomaly images can be generated by the fusion of 

normal and anomaly features in the Eigenspace and 

(2) the anomaly areas in the generated images appear 

natural. 

4-1. Settings 

We utilized the capsule dataset and the pill dataset 

comprising grayscaled images sized 128 × 128. 

Example images are shown in Fig 5, depicted in color 

for display purpose. Note that, since principal 

component analysis is used for image generation, the 

position of the objects has been aligned in advance. 

In this experiment, we utilized 300 normal images and 

15 anomaly images from the capsule dataset. We 

utilized 1200 normal images and 15 anomaly images 

from the pill dataset. New anomaly images were 

generated using the proposed data augmentation 

method. We checked a graph of the cumulative 

contribution rate obtained by principal component 

analysis. We determined to be the top component up 

to a cumulative contribution rate of 99.0% for the 

capsule dataset and determined to be the top 

component up to a cumulative contribution rate of 

90.0% for the pill dataset. Regarding the 

diversification process applied to anomaly 

information, a combination of scalar transformation 

was utilized. The value of the scalar multiplication 

was determined randomly within the range of 0.8 to 

1.0. The mirror transformation was randomly selected 

from among three types (vertical, horizontal, and 

combined vertical and horizontal). The reduction 

transformation ratio was set randomly within the range 

of 0.8 to 1.0. 

Figure 6. Results of image generation. 
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4-2. Results 

Fig. 6 shows examples of pairs of normal images and 

anomaly images used for image generation, along with 

the generated images from those pairs. Note that, as in 

Fig.5, the images here are actually grayscale, but are 

depicted in color for display purpose. In terms of 

computation time (CPU: Intel Core i7-12700KF, 

Memory: 32 GB), Principal component analysis took 

1566 sec, and generating 300 images took 442 sec for 

the capsule dataset. 

The results of the capsule dataset in Fig. 6 show that 

new images have been generated by fusing the 

anomaly information from anomaly images onto 

normal images. Specifically, when the anomaly 

intensity is diversified, the anomaly intensity of the 

generated images changes compared to that of the 

anomaly images used for the data augmentation. 

Additionally, when the position of the anomaly is 

diversified by mirror transformation, the position of 

the anomaly in the anomaly images used for the data 

augmentation differs from in the generated images. At 

this time, only the position of the anomaly has 

changed, while the position of the capsule remains 

unchanged. When the size of the anomaly is 

diversified by reduction transformation, the anomalies 

in the generated images are smaller compared to those 

in the anomaly images used for the data augmentation. 

At this time, only the size of the anomaly has changed, 

while the size of the capsule itself remains unchanged. 

This is because the normal information and anomaly 

information have been appropriately extracted in the 

Eigenspace. Further, focusing on the anomaly area of 

the generated images, we can see that the boundary 

between the anomaly and the object is natural and that 

highly realistic anomaly images have been generated. 

Similar results were confirmed from the pill dataset. 

These results demonstrate natural data augmentation 

has been achieved by the fusion of normal and 

anomaly information in the Eigenspace. 

5. ANOMALY DETECTION 

EXPERIMENT 

In the next experiment, we investigated whether the 

anomaly images generated by the proposed data 

augmentation are effective as training data for the 

anomaly removal neural network. 

5-1. Settings 

We utilized the same capsule and pill datasets here as 

in Section 4 and compared the following four cases. 

1) The discriminator has been trained using 

anomaly images generated by the proposed data 

augmentation.  

2) The anomaly removal neural network has been 

trained with only normal images. 

3)  The neural network has been trained using 

anomaly images generated by previous methods. 

4)  The neural network has been trained using 

anomaly images generated by the proposed data 

augmentation.  

The previous methods we compared are CutPaste 

[Li21], StainNoise [Col21], and DRAEM [Zav21]. 

DRAEM is a state-of-the-art anomaly detection 

method using data augmentation.  

Fig. 7 shows a comparison of the images generated by 

each method. CutPaste generates anomaly images by 

cutting out any rectangular region of a normal image 

and pasting it onto another area. StainNoise generates 

elliptical anomalies and synthesizes them into normal 

images to generate anomaly images. DRAEM 

generates anomalies from texture images of other 

Table 1. Number of images in anomaly 

detection experiment. 

Figure 7. Qualitative comparison of proposed 

and previous methods. 
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domains and synthesizes them into normal images to 

generate anomaly images. In this experiment, the 

previous methods used only the data augmentation 

part and used the same model as the proposed method 

for the training. 

Table 1 breaks down the number of images used for 

training and testing the discriminator and the proposed 

method used 300 normal images and 300 artificial 

anomaly images for training the neural network in the 

case of the capsule dataset. The 300 artificial anomaly 

images were generated using 15 real anomaly images 

and 300 normal images. In the case of the pill dataset, 

the proposed method used 1200 normal images and 

1200 artificial anomaly images for training the neural 

network. The 1200 artificial anomaly images were 

generated using 15 real anomaly images and 1200 

Figure 8. Anomaly score maps output from the anomaly removal neural network for capsule dataset. 

Table 2. Results of the anomaly detection experiment for the capsule dataset. 

Table 3. Results of the anomaly detection experiment for the pill dataset. 

Figure 9. Anomaly score maps output from the anomaly removal neural network for pill dataset. 
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normal images. During testing, 300 normal images 

and 300 anomaly images were used. 

Regarding the learning conditions, ResNet18 [He16] 

was used as the discriminator, and U-Net [Ron15] as 

the anomaly removal neural network. The batch size 

was set to 32 and the number of epochs was 300. The 

loss function for the discriminator was Binary Cross 

Entropy (BCE) loss. The loss function for the anomaly 

removal neural network was MSE loss. The 

optimization method was Adam [kin14] with the 

learning rate set to 0.0001. The anomaly detection 

performance was evaluated by the Area Under the 

Curve (AUC) during testing. AUC is the area under 

the ROC (Receiver Operating Characteristic) curve, 

which is created by calculating the true positive and 

false positive rates from the anomaly scores output 

from the neural network. Although the accuracy is also 

available as an evaluation indicator, AUC is more 

suitable from the viewpoint of threshold determination. 

5-2. Results 

The results of the anomaly detection experiments are 

listed in Table 2 and Table 3. Table 2 shows the 

experimental results for the capsule data set. Table 3 

shows the experimental results for the pill dataset. 

From Table 2 (the capsule dataset), we can see the 

highest AUC of 94.7% was achieved when U-Net was 

trained using the proposed data augmentation. In 

contrast, the lowest AUC of 85.2% was achieved 

when ResNet18 was trained for class classification 

using the proposed data augmentation. From Table 3 

(the pill dataset), we can see the highest AUC of 

99.4% was achieved when U-Net was trained using 

the proposed data augmentation. In contrast, the lower 

AUC of 97.0% was achieved when ResNet18 was 

trained for class classification using the proposed data 

augmentation. The reason for the low result with 

ResNet is that, since its learning task is class 

discrimination, it was influenced by the number of real 

anomaly images used for the proposed data 

augmentation. Conversely, the anomaly removal 

neural network utilizing U-Net learns the task of 

removing anomalies from input images based on pairs 

of normal images and artificial anomaly images, so the 

influence of the number of real anomaly images used 

for the proposed data augmentation was minimal. 

These results indicate that when there are only a few 

real anomaly samples, training the proposed anomaly 

removal neural network can detect anomalies more 

accurately than class discrimination. 

Furthermore, the proposed method had the highest 

AUC when compared with the case where the 

anomaly removal neural network was trained using 

artificially generated anomaly images by previous 

data augmentations. In the case of the capsule dataset, 

the proposed method is 1.3% higher than the result of 

DRAEM which is the state-of-the-art data 

augmentation method.  For the pill dataset, the 

proposed method is 3.0% higher than the result of 

DRAEM. Fig. 8 and Fig. 9 show the anomaly score 

map for input images when the anomaly removal 

neural network was trained using only normal images 

and when it was trained using each data augmentation 

method. First, when the anomaly removal neural 

network was trained only with normal images, the 

anomaly score map does not show any heat even when 

an anomaly image is input. This is because training the 

neural network only with normal images has given it 

the ability to output the same image as the input image. 

Next, when the anomaly removal neural network was 

trained using previous data augmentation methods, 

anomalies can be detected, but the anomaly score map 

also shows heat even when a normal image is input. In 

contrast, when the anomaly removal neural network 

was trained using the proposed data augmentation, 

anomalies can be detected and the anomaly score map 

does not show heat for the normal image. This is 

because the anomaly images generated by the 

proposed data augmentation are more natural than 

those generated by the previous data augmentation 

methods. 

CONCLUSION 

In this study, we proposed a natural data augmentation 

method that generates natural anomaly images by 

fusing normal and anomaly features in the Eigenspace, 

along with an anomaly removal neural network based 

on this natural data augmentation. The results of an 

image generation experiment, demonstrate that natural 

anomaly images can be generated from pairs of many 

normal images and a few anomaly images. In addition, 

by applying transform processing to the anomaly 

features in the Eigenspace, various anomaly images 

can be generated. The results of an anomaly detection 

experiment show that the AUC of 94.7% was achieved 

for the capsule dataset when utilizing anomaly images 

generated by the proposed data augmentation for 

training the anomaly removal neural network, which 

is 1.3% higher than the state-of-the-art data 

augmentation method that was utilized for training the 

neural network. In the case of the pill dataset, the 

results of an anomaly detection experiment show that 

the AUC of 99.4% was achieved when utilizing 

anomaly images generated by the proposed data 

augmentation for training the anomaly removal neural 

network, which is 3.0% higher than the state-of-the-

art data augmentation method that was utilized for 

training the neural network. These findings 

demonstrate that anomaly images generated by the 

proposed data augmentation are effective for training 

the anomaly removal neural network. 
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