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Abstract
Rendering high-polygonal models from distant perspectives has certain performance issues related to high density
of subpixel triangles, which can be solved by levels of detail, a classical optimization method. Since a mesh
occupies a small area on the screen, an alternative representation of the geometry in the form of a point cloud
can replace the original geometry with little or no change to the image, and allowing for significant performance
improvements due to the smaller number of primitives rendered. This paper presents a method for automatically
generating a point cloud from a polygonal mesh with nested levels of detail. It also considers a method for
rendering cloud with dynamically varying cloud density in real time based on view frustum and distance.
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1 INTRODUCTION
Modern 3D models in real-time computer graphics ap-
plications can be extremely detailed, with millions of
polygons and high-resolution textures. However, mod-
els only occupy a certain area on the screen, which may
not correspond to excessive geometry detail, thereby
causing performance degradation without any improve-
ment in image quality.

Various rendering technologies may be used to present
a complex and heavy 3D scenes [DGY07]. The main
methods are primitive rasterization and ray tracing,
which have proven to be simple, robust and widely
used. Geometry simplification and visibility culling are
also common techniques to achieve interactive frame
rates for a rendering application.

One of the most common optimization methods are lev-
els of detail [Kru+97]. The basic idea is to create sim-
plified versions of the original model that can replace
each other, while preserving or slightly changing the
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original image. Simplification can occur in a number of
ways. First of all by reducing the number of rendered
primitives, which naturally affects performance and the
amount of memory required. Replacing subpixel trian-
gles with larger triangles increases the coverage of the
fragment shader due to a greater ratio between active
and helper invocations. Simplification can also affect
the materials and lighting shaders used, speeding up the
rendering process. It is clear that if a model is simplified
significantly, visual quality tends to deteriorate. There-
fore, in order for the degradation to have little effect
on the image, the simplified model should replace the
original model at a certain moment, when the difference
between the details is not noticeable on the correspond-
ing area of the screen. In other words, some dynamic
real-time switching between levels of detail is required
depending on the change of the distance to the camera
and consequently the projected screen space size.

Manual adjustment of LOD (level of detail) is ham-
pered by the need to balance performance and quality.
Therefore, various optimization techniques and gener-
ation methods are designed to speed up the process of
creating new assets and models, allowing the author to
focus on direct visual representation.

2 RELATED WORKS
The most obvious way to create a level of detail is to
simplify the geometry by reducing the number of poly-
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gons, what can be done automatically using various al-
gorithms.

There are various ways to algorithmically generate
simplified polygonal models [GGK02]. For example,
clustering-based algorithms that use different criteria
depending on the required topology accuracy. Sim-
plification is performed by partitioning vertices into
clusters followed by iterative edge collapsing.

Another method is remeshing [Kha+22], where instead
of using existing polygons, new vertices are sampled on
the mesh surface and a completely different mesh is cre-
ated by triangulation. This approach produces a fairly
uniform distribution of triangles of approximately the
same size, but topology details may be compromised
due to the discreteness of the sampling. Therefore, it
is necessary to adjust the parameters and use sufficient
depth and resolution.

LOD generation by mesh resampling can be combined
with vertex data compression and streaming to reduce
memory consumption [NFS22]. After resampling the
mesh, new vertices are merged into patches and the data
is quantized. Later, during rendering, the data is de-
compressed on GPU at the hardware tessellation stage.
For mesh parts close the camera, patches have higher
tessellation factor and it’s decompression version pro-
duces more triangles. Thus, the method reduces both
memory consumption and rendering time.

Completely different way is to use some alternative,
image-based representation, an imposter, instead of the
original polygonal representation. The term imposter
refers to some object that replaces the original geom-
etry and is rendered faster with little noticeable visual
difference [Déc+03]. The method uses very simple geo-
metric objects that can be rendered with a pre-generated
image facing the camera. The disadvantages of this
approach include the dependence of the image on the
angle at which the object is observed. To address this
problem, atlases are used in which the impostor consists
of multiple images, each corresponding to a specific
viewing angle [MFL21]. However, if there is insuffi-
cient variation, intermediate angles can provide a visu-
ally poor substitute for the original geometry. In addi-
tion, given that modern lighting models require material
data, the memory consumption of impostors increases
significantly.

One drawback of the approaches described above is that
there is no unambiguous criterion by which the tran-
sition to the simplified model should be made. It is
unclear at what point this transition can be made im-
perceptibly and when subpixel detail does not affect
the image. To deal with this problem, a triangular
mesh can be broken down into small clusters of ver-
tices – meshlets [Bad+20]. Each meshlet is a set of
connected vertices that represents some part of the ge-
ometry. Using mesh shaders, we can perform occlusion

and LOD selection based on these individual meshlets,
thereby maintaining a constant number of polygons on
the screen. For example, Nanite technology in the Un-
real Engine 5 heavily relies on the cluster mesh rep-
resentation [Kar22]. This technology consists of auto-
matic generation of a cluster representation of the mesh
with levels of detail, a cluster streaming system, soft-
ware rasterization and dynamic switching. In addition,
it uses impostor atlas for the most distant LOD.

Triangular polygons are not the only way to represent
geometry. For example, points can also be used as a
drawing primitive [LW00]. They define the position of
some point in the space in which the object exists, but,
unlike polygons, they do not uniquely define a surface.
Therefore, points must have sufficient density to visu-
ally simulate the continuity of a surface. In addition
to position, a point can have other characteristics such
as normal, tangent, color, metalness and other material
properties.

The idea of using points as impostors was first intro-
duced by Wimmer et al. [WWS01]. Since the screen
resolution is limited, with enough point primitives it
is possible to cover the required number of pixels on
the screen without visible holes. This paper discusses a
method for image-based generating of point cloud us-
ing multiple virtual cameras that perform ray tracing to
produce object samples. Each point is used to sample a
specially filled texture with the point radiance contribu-
tion for the current view. This point cloud is then ren-
dered using the hardware drawing capabilities of point
primitives.

Point primitives in graphics pipeline may be used to
render raw point cloud [Wim15]. The method uses gl-
PointSize for high-quality splatting to get good visual
quality and appropriate surface representation. How-
ever some graphics API do not fully support point size,
leaving us to use only 1 pixel points. Also screen space
filters may be used [PGA11] to remove artifacts due to
low cloud density. But these additional computations
reduce the performance, which is very important for our
usage case.

Our work further develops point cloud representation
of polygon mesh using modern generation method and
rendering techniques.

3 PROPOSED SOLUTION
Cloud generation
To create an alternative representation of geometry in
the form of a point cloud, it is necessary to sample
points on the surface of models in a certain way. The
sampling should provide visual correspondence of the
geometry to the original polygonal mesh from any pos-
sible angles, as well as have a number of properties that
allow to maximize the quality of surface sampling. For
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this task, the distribution based on blue noise is suitable,
the frequency parameters of which allow to reduce the
number of ‘holes‘ or even totally eliminate them. Uni-
form distribution is extremely important because it al-
lows to create the illusion of surface continuity without
using real-time smoothing or restoring filters. Uniform
distribution also has a positive impact on performance,
as fewer points fall within a single pixel, reducing over-
draw. To obtain such a distribution, we modernize the
sampling algorithm using the Poisson sampling algo-
rithm presented in [CCS12].

The cloud generation scheme consists of generating a
pool of points and Poisson disk filtering. The first step
sets the initial cloud surface density D0, on which the
minimum sampling distance will depend, as well as a
density reduction step to specify nested levels of detail.
This results in some set of densities Di and ∀i < j ⇒
Di > D j.

Then we are generating a pool of points by sampling
points on the surface of polygons with the largest den-
sity. The pool may be represented by some spatial hash
container. The algorithm listing 1.

Listing 1: Point sampling
v e c t o r < f l o a t > d e n s i t i e s = {D0 , . . . } ;
f o r ( c o n s t auto &p : p o l yg o n s )
{

f l o a t a r e a = g e t P o l y g o n A r e a ( p ) ;
i n t c o u n t = ( s i z e _ t ) a r e a * D0 ;
c o u n t = max ( count , 1 ) ;
whi le ( count − −)
{

auto sample = polygonSample ( p ) ;
poo l . add ( sample ) ;

}
}
re turn poo l ;

For each density, starting from the lowest density, a
Poisson disk is sampled from the pool of pre-generated
points on the surface of the mesh. Moreover, the set of
points Si corresponding to the smaller density is a sub-
set of the larger density Si ⊂ Si−1. The algorithm listing
2.

Listing 2: Cloud generation
i n t N = d e n s i t i e s . s i z e ( ) − 1 ;
f o r ( i n t l v l = N; l v l >= 0 ; − − l v l )
{

f l o a t d e n s i t y = d e n s i t i e s [ l v l ] ;
f l o a t r = p o i s s o n R a d i u s ( d e n s i t y ) ;
/ / Remove samples from n e x t l o d s
/ / as p a r t o f t h e c u r r e n t l o d
f o r ( i n t i = l v l + 1 ; i <= N; ++ i )

f o r ( sample : samples [ i ] )
poo l . removeSamples ( sample , r ) ;

/ / Then sample what i s l e f t
whi le ( ! poo l . i sEmpty ( ) )
{

auto sample = poo l . pop ( ) ;
s ample s [ l v l ] . push_back ( sample ) ;
poo l . removeSamples ( sample , r ) ;

}
poo l . r e s t o r e ( ) ;

}
re turn sample s ;

After sampling, we have a list of sets samples, where
samplesi corresponds to Si \ Si−1. We can combine all
sets into a single list, where first ni points of set S0 cor-
respond to a cloud of set Si with surface density Di.

Since the points are sampled on the surface of polygons,
all attributes of the corresponding vertices are interpo-
lated. Each point in the cloud has a position, normal and
texture coordinates. So by rendering this cloud using S0
as a vertex buffer, we can sample all the necessary tex-
tures and bake the material into points, which will save
us from having to use textures later. However, this ap-
proach has a couple of difficulties. First, it requires no
randomization of texture coordinates, which can occur
in non-trivial shaders. Second, a point itself does not
provide any derivatives used to compute the mip level
of the material texture. This problem can be solved by
knowing in advance at what distance the cloud will be
further rendered or by calculation based on Poisson ra-
dius. The mip level calculation has not been considered
in detail in this paper. Since the cloud is designed to
be rendered at long distances, the use of some constant
mip level is appropriate in this case.

Dynamic cloud density
As a result of generation, we have a point cloud with all
necessary data for drawing on the screen (Fig 1).

Figure 1: Point cloud list with nested densities

The point cloud with the structure of nested densities al-
lows us to dynamically vary the number of drawn prim-
itives. To do this, we need to find such a density of the
cloud that, when projected on the screen, the density
is sufficient to obtain a complete image without hole
artifacts. Knowing the camera parameters and object
position in view space we can estimate this value indi-
vidually for each instance of the object.
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Let L be the distance to the cloud, znear be the near
plane of the camera frustum, (targetx, targety) be the
render resolution of target texture. Then we can find
the surface density Dtarget that the cloud must have at
distance L and making an angle α with the camera for-
ward vector to completely cover the given area on the
screen without noticeable holes.

Dtarget ≈
targetxtargety

zNearArea
z2

near

L2cos2α
(1)

As a result, it is sufficient to draw only the first ni points
corresponding to the smallest upper bound of the possi-
ble density Di, where Di >= Dtarget and Di−1 < Dtarget .
The calculation of the number of primitives for vertex
input can be performed on the GPU using compute or
mesh shaders, which may give even more performance
benefits to the application.

Rendering
Points can be rendered in two ways: using the compute
or graphics pipeline. The compute method based on 64
bit atomic operation is well described in [SKW22] and
achieves better performance in comparison to the hard-
ware method. However the method has special render
architecture and relies on 64 bit unsigned textures to
perform depth testing and visibility calculation. Since
our approach is a hybrid approach in which polygonal
meshes are used equally with point clouds, we choose
the graphics pipeline as it simplifies the implementation
of the method in classical rendering.

We will look at several optimizations that noticeably
improve performance when rendering point primitives.

Normal culling. Since unlike polygons points have no
face, we need somehow determine orientation to cull
out points, that can’t be visible. In this case, point nor-
mal can be used for culling calculation. So culling can
be done by the hardware in a a view port clipping by set-
ting the position of a point in the vertex shader outside
the boundary of the clip space. The condition is that
the point-to-camera vector and the normal vector must
point in different direction. This reduces the number
of fragment shader invocations and allows us for sig-
nificant performance improvements in case of not too
dense clouds.

Software vertex fetching. To perform transformation
and normal culling, it is not necessary to have infor-
mation about the material, which is always fetched by
the input assembly. To get only the necessary data, we
obtain the data by sampling vertex buffer directly with
an empty vertex shader input. This optimization saves
us memory bandwidth and reduces the total number of
read operations, since the vertex shader gets only the
position and normals. Subsequently, only for points that
have not been culled, the fragment shader fetch infor-
mation about the shading material.

Conservative rasterization. Some graphics API allow
conservative rasterization for point primitives, which
is very useful for our method, since it increases point
screen coverage. In this mode, a single primitive can
produce up to 4 fragments. This means that visually
the surface density increases by the same number of
times. That is, we can render significantly fewer primi-
tives while relatively preserving the same image.

4 EXPERIMENTAL RESULTS
As a demonstration of the method, a cloud was gen-
erated for a high-polygonal geometrically small mesh.
Performance measurements was performed on the RTX
3060 at 1920x1080 screen resolution and using the
Vulkan API. Additionally, the renderer uses temporal
anti-aliasing, which works great for point primitives.
The density steps for the point cloud are degrees of two.
Along with performance comparison, we compared im-
ages using mean square error (MSE) and structural sim-
ilarity index measure (SSIM).
A highly polygonal mesh consists of 60k triangles,
while the cloud at maximum density contains ten times
fewer primitives, which is already sufficient for mid-
range display with comparable visual quality (Fig. 2).
Point cloud has significantly better performance com-
pared to the high-polygonal mesh, and render time
tends to decrease gradually (Fig. 3). The tendency has
clear steps where cloud density switches to a lower level
of detail (60m, 80m, 120m, 160m).

Figure 2: High polygonal mesh. Image comparison at
50 meters

MSE and SSIM metrics has pretty low variation and
confirm the similarity of the rendered images (Fig. 4
Fig. 5).
A low-polygon mesh contains 1k polygons, and the
cloud for it contains 41k points (Fig. 6). Since the
triangles are quite large, the point cloud loses at short
and medium ranges in terms of performance (Fig. 7),
and only at large distances (250m) does the cloud gain
an advantage. This result is not surprising since the
cloud has much more compute pressure on the vertex
processing stage. However, hardware conservative ras-
terization can significantly reduce the number of vertex
shader calls, allowing the cloud to have fewer rendered
primitives, but at the cost of losing visual detail.
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Figure 3: High polygonal mesh. Performance compari-
son

Figure 4: High polygonal mesh. MSE

Figure 5: High polygonal mesh. SSIM

MSE and SSIM metrics for point cloud rendered with
conservative rasterization shows less image similarity,
but the overall scores trend is identical (Fig. 8 Fig. 9).

In the presence of multiple rendering optimizations, the
bottleneck of the current rendering method is the ras-
terization stage, which limits the SM occupancy of the
vertex stage. Comparing the images using MSE and
SSIM scores, it can be seen that, the point cloud im-
age tends to degrade due to the rasterization of points
at the edge of the cloud, which slightly expands the sil-
houette of the model. Full distance range image com-
parisons for high-polygonal mesh (Fig. 10a) and for a
low-polygonal large mesh (Fig. 10b).

Figure 6: Low polygonal mesh. Image comparison at
50 meters of mesh, point cloud and conservative point
rasterization

Figure 7: Low polygonal mesh. Performance compari-
son

Figure 8: Low polygonal mesh. MSE

5 CONCLUSION
We presented a method for rendering and generating
a special type of level of detail that significantly opti-
mizes the long-range rendering of high-polygonal mod-
els with non-critical image changes. Due to dynamic
density, each mesh has a distance at which point cloud
may replace the image with performance gains. The
point cloud level of detail shows significant perfor-
mance advantages for highly polygonal models even at
medium distances. In this method, low-polygon meshes
can be replaced at the large distances at which im-
posters are typically used. Therefore, the point cloud
can be considered as 3d impostors that can incorporate
mesh detailing and impostor performance.
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Figure 9: Low polygonal mesh. SSIM

The disadvantages of point clouds are the small image
changes that can be noticeable, especially with conser-
vative rasterization, due to the difference between point
and triangle rasterization and the difference in mip lev-
els between mesh rendering and point sampling.

Another drawback is the dependence on screen reso-
lution, so we need to draw more points to match the
screen space density, losing performance due to redun-
dant vertex invocations. However compute rasterization
and point size in some API are able to mitigate this lim-
itation, by increasing the screen primitive size.

Moreover, by increasing the size of primitives and de-
creasing their number, we can adjust the ratio between
image quality and performance. Finding the optimal
ratio between quantity and size is a task for future re-
search.
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(a) Image comparison. Left is a high polygonal mesh. Right is
a point cloud

(b) Image comparison. Left is a low polygonal mesh. Middle is
a point cloud. Right is conservative rasterization for point cloud
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