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ABSTRACT
We inspect the ability to reproduce spectral (color) composition in random field-based texture models, test when it
can neglect spectral correlation, and simplify these random models without visibly depreciating their visual quality.
These probabilistic models present essential two or three-dimensional factors for modeling seven-dimensional
Bidirectional Texture Function (BTF) - the most advanced representation currently used in real-world material
visual properties modeling. They can seamlessly approximate original measured massive data and extend them
to an arbitrary size or simulate unmeasured ones. Using extensive test data sets and a small set of setup control
parameters, these models reach a vast compression ratio while maintaining the visual quality of measurements,
and thus, they are the only viable alternative for BTF practical usage.
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1 INTRODUCTION
Enhancing Photorealism in Virtual Reality (VR) scenes
necessitates the meticulous application of textures that
accurately depict natural material surfaces, ensuring a
seamless fusion of visual elements. In the realm of
computer graphics, achieving lifelike material appear-
ances relies on visual textures, conceptualized as man-
ifestations of a mathematically-defined random field
(RF) possessing spatially uniform attributes. This tex-
ture model manifests as a discrete RF, comprising ran-
dom vectors predominantly arranged on a rectangular
lattice grid. The vector space’s dimensionality corre-
sponds to the spectral planes within the texture, delin-
eating the richness and complexity of the visual repre-
sentation.

Real-world materials exhibit intricate physical char-
acteristics, with their micro-structures intricately in-
fluencing both reflectance and overall visual presen-
tation. While imperceptible to the naked eye, these
micro-structures significantly impact how materials re-
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flect light under various viewing and illumination con-
ditions. The most advanced representation currently
available for quantifying and modeling these complex-
ities is the Bidirectional Texture Function (BTF), in-
troduced in [Dan97a]. BTF data serves as the most
precise digital emulation of real-world material visual
properties, offering analytical insights that elude alter-
native, less comprehensive visual measurement tech-
niques. The BTF is a seven-dimensional function that
encompasses four parameters related to illumination
and viewing angles, including azimuthal and elevation
angles, one parameter indexing spectral channels, and
two parameters representing planar coordinates. This
comprehensive model accurately preserves all visual
effects inherent to natural materials, including self-
occlusions, self-shadowing, inter-reflections, and sub-
surface scattering, ensuring a faithful representation of
real-world surfaces.

Numerous applications (automotive, airspace, safety,
architecture, interior design, entertainment industry,
movies, computer games, advertising, material recog-
nition) [Hai06a, Sca09a, Vac09a, Vac10a] require
to analyze or visualize real-world material visual
properties. BTF data are the most advanced and
accurate digital representation of real-world material
visual properties to date, and their analysis provides
information about the measured materials that mainly
cannot be attained using any alternative visual measure-
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ments or representations. Results of multidimensional
textures-related research are also applicable to medical
applications [Cul04a, Hai07a, Hai08b, Gri09a] and
varied image processing problems, such as image
restoration [Hai02a], cultural heritage preservation
[Mal01a, Has11a]. Moreover, psychophysical studies
of these data [Fil08a] have shown that analyzing of
different BTF samples can help understand human
perception of real-world materials.

BTF is represented by thousands of given material
surface images taken in different combinations of
light sources and observation positions during mea-
surement. BTF data size can reach up to several
terabytes [HFV12a] even for a limited number of
combinations of illumination and viewing angles and
small planar size of the measured material, usually
several square centimeters [Hai13a]. These restrictions
exclude the direct use of measured BTF in applications,
and accordingly, some compression and enlargement
are necessary. Two enlargement alternatives exist -
sampling methods and mathematical models. Sampling
methods require storing parts of the original mea-
surements, cannot avoid seams, and offer a minimal
compression ratio. Mathematical models generate
unlimited enlarged versions of the original texture
directly from their small fixed set of parameters, thus
offering extreme data compression without seams but
may compromise visual quality.

Such quality compromise is hard to express as fully
automatic texture quality assessment and mutual
similarity evaluation of two or more of them present
a significant but complex problem that needs to be
solved. Validation of the state-of-the-art texture fidelity
criteria [Hai14a] based on the online benchmark 1

demonstrated that none of already published ones, i.e.,
CW-SSIM [Wan09a], (STSIM-1, STSIM-2, STSIM-
M) [Zuj13a] can be reliably used for such task at all.
Psycho-physical evaluations are a trustworthy alterna-
tive, but they are extremely impractical, expensive, and
generally demanding. A pressing need is for a reliable
criterion to support texture model development, which
would be able to compare the original texture with
synthesized or reconstructed ones and identify the best
result and, therefore, corresponding optimal model
parameter settings for specific models. Such criterion
also plays a vital role in efficient content-based image
retrieval, e.g., from digital libraries or multimedia
databases.

This paper answers whether we can model a BTF tex-
ture using mathematical models on spectrally decorre-
lated data. We compare random fields-based texture
models using their spectral quality, i.e., we investigate
how individual models can represent color information

1 http://tfa.utia.cas.cz

of the original data. We propose a novel criterion that
allows us to predict when monospectral decorrelated
channels can be modeled by a set of simpler 2D random
fields and when fully spectrally correlated 3D models
with more than no_spectral_channels× parameters
are required compared to 2D models.

2 BTF RANDOM FIELD MODELS
The size of BTF data prohibits its direct integration
into graphic applications, necessitating compression for
practical usage. Additionally, BTF data is typically ac-
quired under a limited set of illumination and viewing
conditions, mandating reconstruction of the BTF space
for real-world application. Furthermore, given the rel-
atively small planar size of the measured sample from
which BTF data originates, seamless texture enlarge-
ment becomes imperative. These essential considera-
tions collectively fall under the umbrella of BTF model-
ing, which encompasses techniques to address the chal-
lenges posed by data size, reconstruction, and texture
enlargement, ensuring effective utilization of BTF data
in graphics applications. In addition to probabilistic
BTF models, there is an alternative approach to ap-
proximate BTF data using pixel-wise generalizations of
existing BRDF models, known as SVBRDF. However,
this method comes with trade-offs, as it sacrifices vi-
sual quality by omitting critical features such as self-
occlusions, self-shadowing, inter-reflections, and sub-
surface scattering. Furthermore, it cannot achieve the
same level of compression efficiency as fully proba-
bilistic BTF models, which offer significantly higher
compression ratios and arbitrary size texture generation
without visible discontinuities.

Modeling BTF based on probabilistic models neces-
sitates the utilization of multi-dimensional models.
However, such models are not prevalent and encounter
various unresolved theoretical challenges, as noted in
[Hai13a]. One potential workaround involves spec-
trally and spatially factorizing the BTF space, enabling
its representation through a series of lower-dimensional
models. Unfortunately, real data are correlated and can
be spectrally factorized only approximately, which can
lead to a loss of spectral information.

Using 2D models [Hai23a] for multi-spectral material
data requires the input to be spectrally de-correlated us-
ing the Karhunen-Loève Transformation (KLT) so that
resulting mono-spectral factors can be modeled inde-
pendently. The 2D - 3D models compression ratio for
the measured BTF space in our representation (6 561
measurements) is 1 : 19 683. However, this step leads
to an inevitable loss of information. The approximation
error is proportional to the extent of the color space con-
tained in the modeled texture.

The original data space Ỹ is transformed into the new
one with coordinate axes Y . The new basis consists
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of the eigenvectors of the second-order statistical mo-
ments matrix Σ = E{ỸrỸ T

r } where r denotes a multi-
index r = (r1,r2), r ∈ I, with the row and column in-
dices, • all possible values of the corresponding in-
dex, I is a finite discrete 2D rectangular M×N index
lattice, and d is the number of spectral bands. The
projection of a d × 1 random vector Ỹr onto the KLT
coordinate system uses transformation matrix T , which
consists of eigenvectors of Σ. If the measured data are
Gaussian, then the transformed data are independent,
and thus, each mono spectral factor can be modelled in-
dependently [Hai23a]. Although this assumption gen-
erally does not hold, practical results show that it may
be taken into account without a significant impact on
the visual quality of achieved results.

The texture pixels are defined as intensity values (2D)
or intensity vectors (3D) on multiple finite M×N 2D
lattice. The 3D multiindex is r = {r1,r2,r3} with spa-
tial ( r1,r2 ) and spectral ( r3 ) indices. For mathemati-
cal simplicity, all lattices are defined as double toroidal
[Hai13a]. Markovian neighboring lattice locations are
the set of relative lattice locations called Contextual
Neighbourhood (CN) Ir. The selection of an appropri-
ate CN influences the overall model performance: CN
containing too few elements cannot capture all texture
details. On the other hand, including the unnecessary
elements adds to the computational burden and can de-
grade the model’s performance as an additional noise
source.

2.1 2D Causal Auto-Regressive Model
The Causal Auto-Regressive (CAR) RF is a collection
of random variables with a joint probability density on
the set of all possible realizations Y of the M ×N
lattice I [Hai23a]:

p(Y |γ,σ−2) = (2πσ
2)−

(MN−1)
2 (1)

exp

{
−1

2
tr

{
σ
−2
(
−α

γT

)T

VMN−1

(
−α

γT

)}}
,

where α is a vector of unities, γ = [a1, . . . ,aη ] is a
parameter vector, η denotes the cardinality of a causal
contextual neighbourhood IC

r , σ is variance of Gaus-
sian distribution and

Vt−1 = Ṽt−1+V0 =

(
Ṽyy(t−1) Ṽ T

xy(t−1)
Ṽxy(t−1) Ṽxx(t−1)

)
+V0 , (2)

Ṽxx(t−1) =
t−1

∑
k=1

XkXT
k Ṽxy(t−1) =

t−1

∑
k=1

XkY T
k ,

Ṽyy(t−1) =
t−1

∑
k=1

YkY T
k Xk = [Y T

k−s : ∀s ∈ IC
k ]

T .

Simplified notation t, t −1, . . . denotes the process po-
sition in I, i.e., t is the index of the sequence of multi-
indices ((r1,r2)t)

MN
t=1. The order of indices (r1,r2) = r

depends on the order in which the analyzed texture pix-
els are processed. The data from model history obtained
during adaptation are denoted as Y(t−1). For the sake of
proper model adaptation, the standard exponential for-
getting factor technique can be utilized [Hai23a]. The
2D CAR model can be expressed as a stationary causal
uncorrelated noise driven 2D auto-regressive process
with correlation structure [Hai23a]:

E{eres}=
{

σ2
i s = r,

0 otherwise.
(3)

Unlike 2D Gaussian Markov random field model,
the parameters of 2D CAR model can be estimated
analytically without simplifying approximations using
the maximum likelihood, the LS or Bayesian methods
[Hai02c]. The Bayesian parameter estimations of the
model with the normal-Wishart parameter prior which
maximizes the posterior density are [Hai23a]:

γ̂
T
t−1 = V−1

xx(t−1)Vxy(t−1) , (4)

σ̂
2
t−1 =

λ(t−1)

β (t)
, (5)

λ(t−1) = Vyy(t−1)−V T
xy(t−1)V

−1
xx(t−1)Vxy(t−1) , (6)

β (t) = β (0)+ t −1, β (0)> 1 , (7)

and Vxx(0), Vxy(0), Vyy(0) are from normal-gamma pa-
rameter prior. The 2D CAR synthesis can be easily per-
formed [Hai23a].

2.2 3D Causal Auto-Regressive Model
The 3D CAR RF is a collection of random variables
with a joint probability density on the set of all possible
realizations Y of the M ×N × d lattice I, subject to
the condition [Hai23a]:

p(Y |Θ,Σ−1) = 2π
− d(MN−1)

2 |Σ−1|
MN−1

2 (8)

exp

{
−1

2
tr

{
Σ
−1
(
−I
ΘT

)T

VMN−1

(
−I
ΘT

)}}
,

where I is identity matrix, Σ is covariance matrix of
Gaussian distribution and Θ is d×dη parameter ma-
trix Θ= (A1, . . . ,Aη) where ∀i∈ {1, . . . ,η} [Hai23a]:

Ai =

 ai
1,1 . . . ai

1,d
...

. . .
...

ai
d,1 . . . ai

d,d

 . (9)

The 3D CAR model can be expressed as a station-
ary causal uncorrelated noise driven 3D auto-regressive
process [Hai23a]:

Yr = ΘXr + er , (10)
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with correlation structure [Hai13a]:

E{eres}=
{

Σ s = r,
0 otherwise, (11)

The estimates of model parameters are [Hai23a]:

Θ̂
T
t−1 = V−1

xx(t−1)Vxy(t−1) , (12)

Σ̂t−1 =
λ(t−1)

β (t)
. (13)

where Vxx(0), Vxy(0), Vyy(0) are from normal-Wishart
parameter prior. The model can be directly generated
from the model equation (10).

2.3 Moving Average Model
2D MA texture model assumes that the modeled mono
spectral factor is an output of a specific underlying sys-
tem that completely characterizes it in response to a 2D
uncorrelated random input, and that is a sample from
2D RF defined on an infinite 2D lattice. The impulse
response of a linear 2D filter can represent this system.
Therefore, a convolution of an uncorrelated 2D RF can
generate the mono spectral factor with this 2D filter.

Supposing that the mono spectral factor Y is the out-
put of the underlying linear system which completely
characterizes it in response to the 2D uncorrelated ran-
dom input er, then Yr,i is determined by the following
difference equation [Li92a]:

Yr,i = ∑
s∈Ir

as,i er−s,i , (14)

where as are constant coefficients. Ir determines the
causality or non-causality of the model.

To fit the model to a given mono spectral factor Y , the
parameters as have to be estimated. This may be done
using a method [Li92a] similar to the one-dimensional
(1D) Random Decrement Technique [Col73a]. The
estimation procedure begins by arbitrarily selecting a
threshold ξ usually chosen as some percentage of the
standard deviation of the intensity values of the mono
spectral factor. Generally, higher value of ξ leads to
the synthesized textures with higher contrast and vice
versa. Unfortunately, there does not exist any method
for an automatic determination of the optimal value of
ξ , i.e., the value at which the result that is visually the
most similar to the original is achieved.

During the model parameter estimation process every
pixel of the analyzed mono spectral factor is examined.
If the intensity value of the examined pixel Yr is higher
than the value of the threshold ξ and among the four
adjacent pixels to the pixel Yr at least one in the same
row and at least one in the same column are lower than
ξ , i.e., Y(r1,r2)> ξ and ( Y(r1,r2−1) < ξ or Y(r1,r2+1) < ξ

and Y(r1−1,r2) < ξ or Y(r1+1,r2) < ξ ) holds then the
pixel Yr is referred to as significant. For each sig-
nificant pixel Yr, the intensity values of pixels whose
pixel-relative position to Yr is defined by Ir form a
vector ϒ of length which equals the number of ele-
ments of Ir. It is assumed that there is a unambiguous
correspondence between components of ϒ, parameters
as and the elements of Ir. Vectors ϒυ of all significant
pixels of Y are summed and divided by the number of
significant pixels (g) to obtain the estimate of the model
parameters, i.e., [Li92a]:

âs =
1
g

g

∑
υ=1

ϒυ . (15)

The model assumes that the modelled texture is the RF
realization with zero mean therefore, it is necessary to
estimate the mean value of the pixel intensity levels.
Estimated mean value is saved together with estimated
model parameters for the texture synthesis purposes.

2D MA texture model is able to generate synthetic
mono spectral factor of arbitrary size from the model
parameters as according to the model equation (14). It
has been proven that the result of the synthesis closely
approximates the first and second order statistics of the
original when er is the white noise [Li92a].

2.4 Extended Moving Average Model
It is possible to extend the approach described in
Sec. 2.3 to obtain 3D MA texture model as suggested
in [Hav15a]. Using a 3D model avoids spectral
de-correlation of analyzed multi-spectral texture with
possible loss of certain portion of the information
which is a certain advantage over the 2D MA texture
model. The 3D MA texture model assumes that the in-
put is a stochastic multi-spectral texture and the output
of certain underlying system which completely charac-
terizes it in response to a 3D uncorrelated random input
er,i. 3D MA model equation represents an extended
version of (14) allowing simultaneous modelling of
all texture spectral planes. Yr,i is determined by the
following difference equation [Hav15a]:

Yr,i =
d

∑
j=1

∑
s∈Ir

as,i, j er−s,i , (16)

where as,i, j are constant coefficients. The geometry
of Ir determines the causality or non-causality of the
model.

Parameters as,i, j have to be estimated to fit the model
equation (16) to certain multi-spectral texture Y per-
forming extended variant of the method used for 2D
MA texture model parameter estimation. The estima-
tion procedure begins by selecting thresholds ξk, k ∈
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{1, . . . ,d}, usually chosen as some percentage of the
standard deviation of the pixel intensity values of the
corresponding spectral planes. Generally, higher values
of ξk leads to the synthesized textures with higher con-
trast and vice versa. For simplicity and possible com-
parison with 2D MA, all ξk were set equal and denoted
ξ there. There does not exist any method for an auto-
matic determination of the optimal values of ξk, i.e.,
the value at which the result that is visually the most
similar to the original is achieved.

During the model parameter estimation process every
pixel of the analyzed multi-spectral texture is exam-
ined. Individual parameters as,i, j are estimated inde-
pendently but at the same time. If Y(r1,r2),i > ξi and (
Y(r1,r2−1), j < ξ j or Y(r1,r2+1), j < ξ j and Y(r1−1,r2), j < ξ j
or Y(r1+1,r2), j < ξ j ) holds then the pixel Yr is referred
to as significant for as,i, j. For each significant pixel Yr
for as,i, j, the intensity values in j-th spectral plane of
pixels whose pixel-relative position to Yr is defined
by Ir form a vector ϒi j of length which equals the
number of elements of Ir. It is assumed that there is a
unambiguous correspondence between components of
ϒi j, parameters as,i, j and the elements of Ir. Vectors
ϒ

i j
υ of all pixels significant for as,i, j are summed and

divided by their number (denoted as gi j) to obtain the
estimate of the model parameters, i.e., [Hav15a]:

âs,i, j =
1

gi j

gi j

∑
υ=1

ϒ
i j
υ . (17)

The model assumes that the modelled multi-spectral
texture is the RF realization with zero mean therefore,
it is necessary to estimate the mean value of the pixel
intensity levels of individual spectral planes.

The 3D MA model is able to generate synthetic multi-
spectral texture of arbitrary size from the model param-
eters as,i, j according to (16).

2.5 Multi-Spectral Simultaneous Auto-
Regressive Model

The Multi-Spectral Simultaneous Auto-Regressive
(MSAR) model [Hai12a] is based on the (MSAR)
texture model [Ben98a]. The MSAR model can
be expressed as a stationary, non-causal correlated
noise-driven 3D auto-regressive process [Ben98a]:

Yr,i =
d

∑
j=1

∑
s∈Ii j

r

as,i, jYr⊕s, j +
√

σiεr,i , (18)

where Ii j
r denotes the CN relating intensity values in

the i-th spectral plane to the neighbouring ones in the
j-th ( j ∈ {1, . . . ,d}) spectral plane, as,i, j are the corre-
sponding parameters which define the dependence of
Yr,i on its neighbours defined by Ii j

r . Symbol ⊕

denotes modulo addition in each index of the multi-
indices r, i.e., modulo addition of M for r1 and
modulo addition of M for r2 and s = (s1,s2). The
driving noise εr,i are i.i.d. random variables distributed
normally with zero mean and constant but unknown
variance σi. Rewriting (18) in matrix form the MSAR
model equations become [Ben98a]:

ΨY = ε , (19)

Ψ =


Ψ11 Ψ12 . . . Ψ1d
Ψ21 Ψ22 . . . Ψ2d

...
...

. . .
...

Ψd1 Ψd2 . . . Ψdd

 , (20)

Y = {Y1,Y2, . . . ,Yd}T , (21)
ε = {

√
σ1ε1,

√
σ2ε2, . . . ,

√
σdεd}T , (22)

where both Yi and εi are vectors of
length M × N of lexicographic ordered ar-
rays of Yr,i and εr,i, respectively, i.e., Yi =
{Y(1,1),i,Y(1,2),i, . . . ,Y(1,M),i,Y(2,1),i,Y(2,2),i, . . . ,Y(M,M),i}
and similarly for εi. The transformation matrix Ψ is
composed of M2 ×M2 block circulant sub-matrices
[Ben98a]:

Ψi j =


Ψ1

i j Ψ2
i j . . . ΨM

i j
ΨM

i j Ψ1
i j . . . Ψ

M−1
i j

...
...

. . .
...

Ψ2
i j Ψ3

i j . . . Ψ1
i j

 , (23)

where each element Ψk
i j, k ∈ {1, . . . ,M}, is an M ×

M circulant matrix whose (m,n)-th element is given by
[Ben98a]:

Ψ
k
i, j(m,n) =


1, i = j, m = n, k = 1,
−as,i, j, s1 = k−1,

s2 = ((n−m) mod M),

(s1,s2) ∈ Ii j
r ,

0, otherwise.
(24)

Rewriting (19) as Y = Ψ−1ε , the covariance matrix is
obtained as [Ben98a]:

ΣY = E{ Ψ
−1

εε
T

Ψ
−T } = Ψ

−1
Σε Ψ

−T ,(25)

Σε = E{εε
T}=


σ1I 0 . . . 0
0 σ2I . . . 0
...

...
. . .

...
0 0 . . . σdI

(26)

where I is the identity matrix. The positive definite
property required of ΣY is ensured if Ψ is nonsin-
gular. MSAR model parameters can be estimated using
the Least Square (LS) approach. The estimate of the
MSAR model parameters is obtained by equating the
intensity values in individual pixel spectral planes of the
analyzed texture to the expected ones predicted by the
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model, leading to the independent systems of equations
[Ben98a]:

Yr,i = E{Yr,i|γi}= XT
r,iγi , (27)

γi = [γi1,γi2, . . . ,γid ]
T , (28)

Xr,i =
[
{Yr⊕s,1 : s ∈ Ii1

r }, . . . ,{Yr⊕s,d : s ∈ Iid
r }
]T
(29)

where γi j = [as,i, j : ∀s ∈ Ii j
r ]. The LS solution γ̂i and

σ̂i can be found as [Ben98a]:

γ̂i =

(
∑
r∈I

Xr,iXT
r,i

)−1(
∑
r∈I

Xr,iYr,i

)
, (30)

σ̂i =
1

M2 ∑
r∈I

(Yr,i − γ̂i
T Xr,i)

2 . (31)

The model assumes that the modeled texture is the RF
realization with zero means; therefore, estimating the
mean value of the pixel intensity levels of individual
spectral planes is necessary. There are several possi-
bilities existing for the MSAR texture model synthe-
sis. Considering the double toroidal boundary condi-
tions, the Discrete Fast Fourier Transform (DFFT) is
the most effective method. The MSAR model equations
(18) may be expressed in terms of the Discrete Fourier
Transform (DFT) of each spectral plane as [Ben98a]:

Ỹt,i =
d

∑
j=1

∑
s∈Ii j

r

as,i, jỸt, je
√
−1ωst +

√
σiε̃t,i , (32)

where Ỹt,i and ε̃t,i are the 2D DFT coefficients of Yr,i
and εr,i, respectively, at the discrete frequency index
t = (m,n) and ωst =

2π(ms1+ns2)
M . The equations (32)

can be written in matrix form as [Ben98a]:

Ỹt = Λ
−1
t Σ

1
2 ε̃t , , (33)

Ỹt = {Ỹt,1,Ỹt,2, . . . ,Ỹt,d}T , (34)

ε̃t = {ε̃t,1, ε̃t,2, . . . , ε̃t,d}T , (35)

where the matrices Σ and Λt are defined as [Ben98a]:

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σd

 , (36)

Λt =


λt,11 λt,12 . . . λt,1d
λt,21 λt,22 . . . λt,2d

...
...

. . .
...

λt,d1 λt,d2 . . . λt,dd

 , (37)

λt,i j =

{
1−∑s∈Ii j

r
as,i, j e

√
−1ωst i = j ,

−∑s∈Ii j
r

as,i, j e
√
−1ωst i ̸= j .

(38)

The MSAR model will be stable and valid if Λt is a
non-singular matrix f ort ∈ I. A M ×M texture can

be synthesized from the estimated model parameters
according to the following algorithm [Ben98a]:
1) Generate d noise 2D arrays εr,i using a pseudo
random number generator.
2) Calculate the 2D DFFT of each noise array sepa-
rately.
3) For each discrete frequency index t compute:
Ỹt = Λ

−1
t Σ

1
2 ε̃t .

4) Perform the 2D inverse DFFT of each Ỹt,i separately.

2.6 Multi-Spectral Markov Random Field
Model

The BTF Multi-Spectral Markov Random Field (BTF-
MMRF) model is based on (MMRF) factor texture
model [Ben98a]. A multi-spectral texture can be con-
sidered Markovian with respect to Ii j

r if it has follow-
ing property [Ben98a]:

p(Yr,i |Ys, j, ∀ j ∈ {1, . . . ,d} : j ̸= i,∀s ∈ Ii j
r : s ̸= r)

= p(Yr,i |Ys, j, ∀ j ∈ {1, . . . ,d},∀s ∈ Ii j
r ) . (39)

As the conditional distributions of Yr,i given {Ys, j, ∀ j ∈
{1, . . . ,d} : j ̸= i,∀s ∈ Ii j

r : s ̸= r} and Yr,i given
{Ys, j, ∀ j ∈ {1, . . . ,d},∀s ∈ Ii j

r } are the same, the best
linear estimator of Y can be written as [Ben98a]:

Yr,i =
d

∑
j=1

∑
s∈Ni j

r

as,i, jYr⊕s, j + εr,i, , (40)

where as,i, j are taken as the coefficients of the Mini-
mum Mean Square Error (MMSE) estimate of Yr,i and
εr,i denotes the estimation error. From the orthogonal-
ity property of the MMSE estimates [Ben98a]:

E{Yr,iεs, j}=
{

σi i = j, s = r ,
0 otherwise ,

(41)

the correlation structure of the stationary noise εr,i is
[Ben98a]:

Ψ
s
i j = E{εr,iεr⊕s, j}=

 −as,i, jσ j s ∈ Ii j
r ,

σ j s = 0, i = j ,
0 otherwise .

(42)
Because the correlation functions have the symmetry
property Ψs

i j = Ψ
−s
ji , there is an implicit requirement

that Ii j
r and the associated coefficients are symmetric,

i.e., s ∈ Ii j
r ⇐⇒ −s ∈ I ji

−r and σ jΨ
s
i j = σiΨ

−s
ji . Equa-

tion (40) can be rewritten in matrix form as: ΨY = ε

and equations (41) and (42) can be expressed using ma-
trix notations as [Ben98a]:

Σε = E{Y ε
T} =


σ1I 0 . . . 0
0 σ2I . . . 0
...

...
. . .

...
0 0 . . . σdI

 ,(43)

Σe = E{εε
T} = E{ΨY ε

T}= ΨΣε . (44)
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The model parameters must be chosen such that Σe is
positive definite. Using (19) and (44), the MMRF co-
variance matrix can be found as [Ben98a]:

ΣY = E{YY T}= E{Ψ
−1

εε
T

Ψ
−T}

= Ψ
−1

ΣeΨ
−T = Ψ

−1
Σε . (45)

Matrix ΣY will be admissible covariance matrix if all
model parameters are chosen such that ΣY is positive
definite which is consistent with the requirement that
matrix Σe be positive definite, since ΣY = Σε Σ−1

e Σε .
MMRF model parameters can be estimated using an ap-
proach based on the LS method similar to the MSAR
model parameter estimation. Due to the symmetry
property of (42), the LS estimates are inherently non-
linear, and it is necessary to solve for all model pa-
rameters simultaneously. As in the case of the MSAR
model parameter estimation, LS estimates are obtained
by equating each pixel spectral intensity value to the
expected value of one of the model equations. An iter-
ative approach can be used to obtain the LS solutions
[Ben98a]:

γ̂i,t+1 =

(
∑
r∈I

Qr,i,tQT
r,i,t

)−1(
∑
r∈I

Qr,i,tYr,i

)
, (46)

σ̂i,t+1 =
1

M2 ∑
r∈I

(Yr,i −QT
r,i,t γ̂i,t)

2 , (47)

Qr,i,t =


qr,11 qr,12 . . . 0 0

0 σ̂2,t qs,21
σ̂1,t

0 . . . 0
...

...
...

...
...

0 0 0 σ̂d,t qr,dd−1
σ̂d−1,t

qr,dd


T

,

qr,i j =


{Y(r⊕s), j +Y(r⊕−s), j : s ∈ Ni j

r } i = j ,
{Y(r⊕s), j : s ∈ Ii j

r } i < j ,
{Y(r⊕−s), j : s ∈ Ii j

r } i > j ,

with σ̂z,1
σ̂z−1,1

= 1 ,z ∈ (2, . . . ,d), where t ∈ {1, . . . ,+∞}
denoting the order of the iteration. Although no proof
of convergence exists for this procedure, experimental
results indicate that a sufficiently accurate estimate is
achieved in less than ten iterations. If the results of two
consecutive iterations are the same within the achiev-
able accuracy of the rounding on the used system, then
such results are considered sufficiently accurate esti-
mates. It should be noted that the LS estimate repre-
sents only a very rough approximation of the MMRF
model parameter estimate. The algorithm for the syn-
thesis of the MMRF model is identical to that one for
the MSAR model, except the calculations in the third
step which replaces citeBen97a: Ỹt = Λ

−1
t (ΛtΣ)

1
2 ε̃t .

The MMRF model will exist and be stable if ΛtΣ is
positive definite ∀t ∈ I.

2.7 Pseudo Markov Random Field Model
The BTF Pseudo Markov Random Field (BTF-PMRF)
model [Hav12a] is based on the (PMRF) texture model
[Ben98a]. The PMRF model represents an approxima-
tion of the MMRF model. The apparent motivation for
deriving this approximation was to avoid an iterative
parameter estimation method. The PMRF model was
derived from the MMRF model by subtly modifying the
correlation structure given in (42). The PMRF and the
MMRF model equations are identical with one excep-
tion: the PMRF stationary noise er,i is assumed to have
the following correlation structure [Ben98a]:

E{εr,iεs⊕r, j}=

 −as,i, j
√

σiσ j s ∈ Ii j
r ,

σ j s = 0, i = j ,
0 otherwise .

(48)

The main difference between the MMRF model and
the PMRF model and the significant advantage of the
PMRF model is the fact that the estimate γ̂ is linear and
independent of the estimate σ̂ . The LS estimates of the
PMRF model parameters are the same as those of the
MMRF model, for t = 1. Therefore, the model param-
eter estimation does not require an iterative process, un-
like the case of the MMRF model parameter estimation,
which reduces the computational burden. Employing
the same method used for the MMRF model synthesis
in the case of the PMRF model, the calculations in the
third step of the synthesis procedure become [Ben98a]:

Ỹt = Λ
−1
t Σ

1
2 Λ

1
2
t ε̃t . The PMRF model will exist and be

stable if Λt is positive definite ∀t ∈ I.

3 COLOR QUALITY CRITERIA
3.1 Spectral Decorrelation Criterion

κ(cmax) =
1

cn
max

det(Σ) , (49)

where Σ is a n × n material texture spectral covari-
ance matrix, cmax is the maximal possible spectral value
per channel. If the criterion κ(cmax) ≤ 3, we can
replace a 3D random field model with its Karhunen-
Loeve decorrelated version and model each decorre-
lated single spectral band with a 2D random field model
without significant MEMD error (50), i.e., with negli-
gible color loss.

3.2 Color Composition Comparison
The Mean Exhaustive Minimum Distance (MEMD)
[Hav19a] is used to compare the spectral composition
of two textures and the cardinalities of the same col-
ors but ignoring the locations of individual pixels. The
comparison is performed by individually taking pixels
from the first image and searching for the most simi-
lar, i.e., the closest in certain vector metric sense, to the
ones in the second image. The pixel from the second
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image identified as the most similar is removed from
the stack representing the second image, and the local
spectral error is recorded. The MEMD criterion is as
follows:

ζ (A,B) =
1
M ∑

(r1,r2)∈⟨A⟩
min

(ŕ1,ŕ2)∈N

{
ρ
(
Y A

r1,r2,•,Y
B
ŕ1,ŕ2,•

)}
,

(50)
where M = min{♯{A}, ♯{B}}, ♯{A} is the number of
pixels in A and similarly for ♯{B}, min{ /0} = 0,
(r1,r2) denotes the location in A, ⟨A⟩ represents
the set of all pixel indices of A, (ŕ1, ŕ2) is the loca-
tion in B, N is the set of unprocessed pixel indices of
B, ρ is an arbitrary vector metric and Y A

r1,r2,• rep-
resents the pixel at (r1,r2) in A, where • denotes
all corresponding spectral indices, similarly for Y B

ŕ1,ŕ2,•.
The term ζ (A,B) is evaluated using raster scanning
of A. The algorithm stops when all pixels of A are
scanned, or N becomes an empty set (see details in
[Hav19a, Hav21a, Hav23a]).

4 TEST DATA
We used BTF MAM2014 Dataset 2 [Fil18a]. This
dataset consists of 16 BTF of materials presented at the
Workshop on Material Appearance Modelling (MAM)
2014. The BTF datasets consist of a collection of ma-
terial images taken for lighting and viewing directions
with an angular sampling of 81 × 81. The uncom-
pressed HDR data (32-bit float) are represented in CIE
XYZ colorspace. The spatial resolution of the datasets
is 353.3 dpi. They included widely different natural, ar-
tificial, matte or glossy materials are mica, sand-fine,
sand-coarse, burlap, cork, towel, green cloth, green
felt, basketball, flocked paper, silver gold, brown tile,
glass tile, blue-black-gold tile, crinkle paper, and bas-
ketweave. This texture set is illustrated in Fig. 1.

5 RESULTS
We used the same setup for all tested models, i.e., the
number and type of used neighborhood sets. Using 16
BTF materials, each consisting of 6,561 images, test-
ing ten random field models, and trying eight different
neighborhood sets, each with three different Gaussian-
Laplacean pyramid setups, we created 20,155,392 syn-
thesized images, which were all compared with corre-
sponding original data in total. The best result, i.e.,
the synthesized image most similar to the original us-
ing the MEMD criterion, was identified, and its cor-
responding MEMD value was used for the presented
statistics. The mean MEMD of the best results and stan-
dard deviation for each tested model are counted for
individual used materials and the whole test set. The
results are the mean difference from original data in %

2 http://btf.utia.cas.cz

Figure 1: BTF MAM204 Dataset presentation (from
upper-left to bottom-right): mica, sand-fine, sand-
coarse, burlap, cork, towel, green cloth, green felt, bas-
ketball, flocked paper, silver gold, brown tile, glass tile,
blue-black-gold tile, crinkle paper, and basketweave.

and its corresponding standard deviation, summarized
in Table 1 (MEMDmax = 255), that shows significantly
larger spectral error for large κ(256) ≥ 3 values for
silver gold, flocked paper, mica, and basketweave. 2D
random field models can approximate all other materi-
als after the KLT decorrelation with an acceptably mi-
nor spectral error.

6 CONCLUSIONS
We presented a criterion allowing us to predict when
a vast BTF data space can be modeled using a set of
2D random field models (κ(·) < 3) instead of more
demanding 3D random field models without significant
loss of spectral quality. This quality prediction allows
avoiding demanding computing experiments with both
types of models, spectrally decorrelated 2D and fully
correlated 3D as well as circumvent the main problem
with still non-existent reliable texture quality criteria.
These mathematical models represent attractive mod-
eling alternatives offering extreme data compression as
only tens parameters must be stored instead of the origi-
nal acquired data. They can reconstruct BTF space, i.e.,
predict the material’s visual appearance under unmea-
sured conditions and synthesize textures of arbitrary
size without disturbing visual artifacts and with pre-
served overall visual impressions. On the other hand,
they can only approximate original data, which may re-
sult in visual quality compromise.

We performed robust experiments involving random
field BTF models, analyzing and synthesizing under
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mica fine coarse burlap cork towel green green basketball
sand sand cloth felt

Model Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
2D CAR 3% 9% 5% 2% 5% 4% 5% 2% 2% 1% 3% 1% 3% 1% 5% 2% 5% 4%
2D MA 10% 27% 11% 6% 10% 13% 8% 3% 4% 1% 6% 17% 5% 2% 11% 4% 10% 13%
2D MSAR 4% 10% 5% 2% 5% 2% 6% 2% 3% 1% 2% 1% 3% 1% 4% 1% 5% 2%
2D MMRF 4% 10% 5% 2% 5% 2% 6% 2% 3% 1% 2% 1% 3% 1% 4% 1% 5% 2%
2D PMRF 4% 10% 5% 2% 5% 2% 6% 2% 3% 1% 2% 1% 3% 1% 4% 1% 5% 2%
3D CAR 3% 9% 4% 2% 4% 4% 4% 2% 2% 1% 2% 1% 2% 1% 3% 1% 4% 4%
3D MA 4% 10% 5% 3% 5% 4% 4% 1% 2% 1% 3% 4% 2% 1% 5% 3% 5% 4%
3D MSAR 4% 10% 7% 3% 6% 5% 7% 4% 4% 2% 4% 2% 5% 2% 5% 1% 6% 5%
3D MMRF 4% 9% 5% 2% 5% 4% 6% 2% 3% 1% 3% 1% 4% 2% 5% 1% 5% 4%
3D PMRF 4% 9% 5% 2% 5% 4% 6% 2% 3% 1% 3% 1% 4% 2% 5% 1% 5% 4%
κ(256) 3.18 2.42 1.14 4.3e-02 1.87e-03 7.3e-03 8.9e-04 6.3e-02 1.14

flocked silver brown glass blue-black crinkle basketweave all
paper gold tile tile -gold tile paper materials

2D CAR 5% 4% 8% 8% 4% 5% 1% 4% 3% 5% 1% 4% 9% 6% 4% 5%
2D MA 9% 6% 23% 22% 10% 19% 4% 19% 10% 19% 2% 12% 17% 10% 9% 15%
2D MSAR 5% 4% 10% 7% 4% 3% 1% 2% 4% 4% 1% 0% 11% 7% 4% 5%
2D MMRF 5% 4% 10% 8% 4% 2% 1% 2% 4% 4% 1% 0% 11% 7% 4% 5%
2D PMRF 5% 4% 10% 9% 4% 2% 1% 1% 4% 4% 1% 0% 11% 7% 5% 5%
3D CAR 4% 4% 8% 8% 3% 5% 1% 4% 3% 5% 1% 4% 8% 5% 4% 5%
3D MA 4% 3% 9% 9% 4% 5% 2% 6% 4% 6% 1% 6% 9% 6% 4% 6%
3D MSAR 6% 4% 9% 8% 4% 6% 2% 6% 4% 6% 1% 4% 11% 7% 5% 6%
3D MMRF 6% 5% 9% 9% 4% 5% 1% 4% 4% 5% 1% 4% 10% 7% 5% 5%
3D PMRF 6% 5% 9% 9% 4% 5% 1% 4% 4% 5% 1% 4% 10% 7% 5% 5%
κ(256) 18.8 91.9 7.33e-01 5.04e-07 2.07e-02 1.07e-05 3.70

Table 1: Mean values and standard deviations percentual MEMD∗ = 100∗MEMD/MEMDmax values error corre-
sponding to the best-achieved results for individual models and materials.

various conditions. All synthesized data were com-
pared with corresponding original ones using texture
color composition criterion MEMD. Achieved results
confirmed that BTF measurements of materials with a
limited range of colors predicted with the κ() criterion
from one perpendicular illuminated and observed angle
can be reliably reconstructed using a set of simpler 2D
random field models. The only exception with tested
models is the oversimplified 2D MA model, which has
mostly poor spectral performance.
Results of multidimensional textures related research
are also applicable in medical applications and varied
image processing problems, such as image restoration,
cultural heritage preservation. BTF data are useful in a
study of shadow casting by material structure and the
analysis of material dimensionality. Analysis of differ-
ent BTF samples can help understand human percep-
tion of real-world materials.
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