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ABSTRACT

One of the crucial requirements for a Scientific Visualization system is to produce reliable and accurate results. There

are many possible sources of errors that could jeopardise these efforts, such as measurement or simulation errors in the

pre-analysis stage, or errors generated in the visualization process itself. Our focus here is to control errors introduced

during the visualization processes. To this end we propose a conceptual model for visualization known as the Model

Centred Approach (MCA). This new paradigm separates the modelling and viewing processes in visualization, and

this provides the opportunity to consistently utilise a single modelling function throughout the visualization process.

Results show that consistent visualizations are produced by our approach when compared to conventional methods.
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1 Introduction

Scientists of various disciplines face the challenge of

correctly interpreting data collected from experiments

or produced by simulations. Usually, these datasets

are huge and complex in nature, hence the application

of conventional analysis tools is either ineffective or

unsuitable. Scientific Visualization helps tackle this

problem by mapping the raw data set to a graphical

form, which can be effectively processed by our vi-

sual senses. It has also been shown that visualization

can promote data exploration - to uncover new phe-

nomena that are unseen in the raw data.

However, together with the opportunities of visual-

ization, there lurk hidden dangers. In simulation and

measurement, there are well established processes for

controlling error, and the scientist will typically un-

derstand the degree of reliability that can be assigned

to a dataset. However the process of turning data into

visualization is much less understood. As a result

there is a tendency to place greater trust in a visual-

ization than may be warranted. The difficulty with

data visualization, as Fred Brooks has observed, is

that there is typically nothing to compare against - un-

like photorealistic rendering, for example, where the

real world scene can be used as the basis of compari-

son. There is a responsibility therefore to derive mea-

sures of accuracy and reliability in visualization. This

can be used to give confidence measures for a visual-

ization, as is routinely done in statistical work.

It is not easy to quantify errors in visualization. Im-

portant work has been done by Pang et al [Pang96], in

highlighting different points at which errors can occur

in proceeding from data to image. They make a spe-

cial study of flow visualization. In particle tracing,

errors occur when integrating the differential equa-

tions which describe the path. Lopes and Brodlie

[Lopes98a] suggest ways in which these errors may

be displayed, to give an indication of the trust which

may be placed in the particle trace. In contouring,

Lopes and Brodlie [Lopes98b] use similar techniques

to illustrate the reliability of a contour line.

These efforts, however, have tended to focus on a par-

ticular visualization technique, aiming to augment the

visualization with error information. Our approach in

this paper is to address the problem at a higher level.

We re-visit the classical dataflow model for the vi-

sualization pipeline, suggested by Haber and McN-

abb [Haber90]. Rather than have data flow through

a pipeline, we propose a different paradigm: a two-

stage process in which firstly an empirical model of

the data is created as a function of the independent

variables; and secondly a visualization of this empiri-

cal model is produced. By having this single model at

the heart of the process as a unique reference, we pro-

mote greater consistency throughout the visualization

process and a greater understanding of the operations

applied in going from data to picture. We call the new

paradigm the model-centred approach.



This paper is organized as follows: section 2 intro-

duces the concept of accuracy and discusses it in the

context of dataflow systems. Then in section 3, we

present our proposed model for scientific visualiza-

tion; this is then followed in section 5 by a description

of a case study in which we explore and evaluate the

new paradigm. Section 6 discusses how the ideas can

be incorporated within existing visualization systems,

and finally, in section 7 we conclude our findings.

2 Reliability and Accuracy in the Dataflow

Model

The classical model for scientific visualization sys-

tems is the dataflow model. In this model, visualiza-

tion is considered as a sequence of transformations

that converts raw data into a rendered image or anima-

tion. Following Haber and McNabb [Haber90], these

transformations can be categorized into three major

groups - data enrichment/enhancement, visualization

mapping and rendering (see Figure 1).

A detailed inspection of each stage of the dataflow

model will reveal that artefacts or errors are often un-

intentionally introduced during the visualization pro-

cess. The two most common sources of errors stem

from (i) implicit assumptions about the raw data, and

(ii) inconsistent usage of modelling functions in the

dataflow model.

In the data enrichment/enhancement stage, raw data

is normally in discrete form and needs to be filtered

to remove noise, or converted to a format suitable for

later processing - for example, taking scattered data

and returning values on a regular grid. This prepara-

tion will involve building an empirical model of what

we believe the underlying behaviour of the data to be.

In doing this we make implicit assumptions about the

data characteristics - for example we may assume lin-

ear behaviour between data points. We have to make

these assumptions because typically there is no ana-

lytical model available. However it has to be recog-

nised as an important source of error in visualization

- even if it is inevitable. The dataflow model fails to

recognise this crucial step in an explicit manner, since

the empirical model is ‘hidden’ in the data enrichment

stage and invisible to the user. The output from the

data enrichment stage is simply a refined set of data

(for example, re-evaluated on a different mesh), with

no record of the modelling function used.

Similar implicit assumptions also occur in the map-

ping stage - one example is the original Marching

Cubes [Loren87] method for isosurface construction.

The ‘holes’ artefacts (see [Durst88, Niels90]) occur

because there is an implicit assumption of linear be-

haviour on the edges, but no assumed model on the

faces, or in the interior of the cube. An ad hoc de-

cision is used to join up the edge intersection points

to form a triangular representation of the isosurface

- and this ad hoc decision can cause holes when ad-

jacent cubes are handled in different ways. A bet-

ter approach is to create an empirical model of the

data behaviour throughout the volume, and to use that

model consistently in the creation of the isosurface.

This is done for example by Natarajan [Naraj94] and

by Lopes [Lopes99], who both use a trilinear inter-

polant as basis of the interior triangulation.

Thus we find that individual modules in a dataflow

pipeline often make implicit assumptions about the

underlying data behaviour. More seriously, in any

particular pipeline, different modules may make dif-

ferent implicit assumptions, and hence assume differ-

ent underlying models of the data, and this can lead to

inconsistencies. This is clearly unsatisfactory.

We illustrate the problem with a simple example of

contouring from scattered height data. Figure 2 shows

the typical visualization pipeline that would be used

in a dataflow-based system. The pipeline begins with

the input of the scattered data set. The contouring

module requires gridded data, and so an Interpo-

lation module is used to achieve this. From the

scattered data, it will build an empirical model of the

underlying function from which the discrete samples

are assumed to have been taken. It will then output

values of that model on a regular grid. Note that the

modelling function is internal to the module.

The gridded height data then forms the main input

to the Contourmodule which will generate isolines

of equal height. To do this, once again an empirical

model of the underlying function is again created, but

this time from the gridded data. There is no guaran-

tee that the two models used by Interpolation

and Contour are the same. The output is a set of

points lying on the isoline. Once again the modelling

function is internal to the module.

Finally, the Rendermodule generates an image from

the isoline points. Again a model is created - typically

the isoline is assumed to be linear between the points.

In visualization we are attempting to recreate reality

from data sampled at a set of points. The examples

just given show that this recreation step is often con-

fused because different assumptions about underlying

behaviour are made at different points in the pipeline;

and moreover these assumptions are usually implicit

and therefore not understood by the user. This is the

motivation for the work of this paper.
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3 Model Centred Approach

The fundamental idea of the model–based approach is

that an empirical model of the underlying behaviour

of the data set should be considered the central fo-

cus of the visualization process. Rather than con-

ceal the modelling function(s) within modules of a

pipeline, we expose a single empirical model as an

interface between two stages of visualization. These

two stages are modelling and viewing. We term this

new paradigm the Model–Centred Approach (MCA)

and it is shown in Figure 3.

The modelling component is responsible for building

the empirical model from the data set. This modelling

may be interpolation, or approximation, to describe

the general behaviour between sample points. It is

critical to the success of a visualization. Typically we

know the behaviour at the sample points: we have the

numbers. What we are interested in is understand-

ing the behaviour between the data points. The mod-

elling component is where we make our prediction

of what this behaviour is. This modelling component

essentially replaces the filtering stage in the data flow

model. The key difference is that in our MCA the

modelling component produces an expression which

is defined everywhere in the domain, not just at sam-

ple points. This expression can be evaluated to gen-

erate sample data at any resolution whereas in the fil-

tering stage a discrete form of data is produced. A

major advantage of our approach is in the visualiza-

tion of numerical simulations: if the simulation cre-

ates a model as part of its solution, this model can be

‘inherited’ directly rather than having to be evaluated

at a discrete set of points, losing information in the

process.

The viewing component is responsible for choosing a

graphical representation of the model created by the

modelling component. Haber and McNabb refer to

this as an Abstract Visualization Object (AVO). The

difference now is that these abstractions can be based

on complete, rather than partial information. Thus for

3D isosurfacing, we work from an implicit function

definition   !" #" $! " 
 (1)

generated by the modelling component. Similarly,

for particle tracing, we work from a velocity func-

tion rather than velocity data - this removes the error-

generating interpolation step within the numerical in-

tegration of the particle path. The viewing component

is also responsible for display on the graphics device -

thus the viewing component essentially replaces both

the mapping and rendering stages of the traditional

Haber-McNabb pipeline.

4 Potential Benefits of the Model-Based Ap-

proach in Visualization

The distinctive feature of MCA is the identification

and separation of the modelling process in the visual-

ization. The new architecture explicitly decouples the

modelling operation from other processes, and con-

siders it as a fundamental process in its own right.

This separation provides a different way of doing vi-

sualization and offers the following potential benefits

:

1. It provides a better conceptual model for visu-

alization.

2. It facilitates the importing of the model from a

simulation process, and hence to more accurate

results.

3. It allows more opportunity for scientists to ex-

periment with different modelling function(s)

when working with measured data.

4. In some circumstances, it provides a form of

data compression by representing the model in

a mathematical formula which can be stored

compactly.

The following paragraphs look at these benefits in

more detail.

Better conceptual model

The two stage architecture of MCA provides a bet-

ter conceptual model of visualization for scientists

and engineers. Rather than highlighting the extended

steps of image production processes which are more

suitable to graphics experts than scientists, MCA

identifies two stages - modelling and viewing which

are conceptually distinct. It acknowledges the impor-

tance of the underlying field from which the given

data is only a sample, and encourages the scientist

to think carefully about how they wish to predict

behaviour between data points. It promotes greater

accuracy and consistency because there is only one

modelling process, not several. It hides the detail of

the picture production pipeline in a single viewing

component and stresses the requirement to base the

visual construction from the functional representation

created earlier in the modelling component.

Simulation and visualization

In certain applications, there will already exist an em-

pirical model. For example in numerical simulations,

the solution of partial differential equations will typ-

ically be defined as a model, not as data. Of course,

it may not be particularly easy to export the model -



but there has to date been little pressure on computa-

tional scientists to solve this problem, since the inter-

face to analysis software has always been in the form

of data. The MCA approach, by explicitly identifying

the model construction as a separate process, allows a

model to be imported directly and passed directly to

the viewing component. This is not possible in tra-

ditional data flow systems, with the result that certain

valuable information can be lost as the data is reduced

from a continuous model to discrete sample data. As

described before, the model reconstructed from this

sample data is implicit, ill-defined and often inconsis-

tent with the model in the numerical simulation.

Measured data and visualization

The importing of a model is only suitable for cases

when the model of the underlying field is known,

such as in simulation. In the case of data gathered

through experiment or measured/captured by scan-

ning/sensor devices, the model of the underlying field

is unknown. This is the case in many real world ap-

plications such as medicine, chemistry, environmen-

tal studies, etc. The explicit handling of this pro-

cess in the MCA modelling component gives more

opportunity to the scientist to experiment with vari-

ous modelling methods. This contrasts interestingly

with the current paradigm of the data flow model

where scientists are offered a variety of mapping tech-

niques, but typically little freedom to vary the mod-

elling function. Because modelling and mapping are

intertwined, a scientist needs to modify the mapping

module as a whole if they want to experiment with

a different modelling method from the one currently

embedded in the module. In contrast, because MCA

treats modelling as a process in its own right, new

modelling methods can be added independently from

the existing mapping modules.

Data compression

The model constructed in MCA’s modelling compo-

nent can act as a form of data compression. This is

especially true for approximation rather than interpo-

lation. It can be more efficient and economical to ma-

nipulate a model that estimates the relationships, be-

haviours and characteristics of the data set, compared

to processing a large data set itself (a well known

problem in dataflow environments). A good exam-

ple is in surface fitting where we are approximating a

large 2D dataset with say a bicubic spline. The model

consists of coefficients and knots of the spline, giving

good compression over the raw data.

5 Case Study

For a simple case study of the MCA method, we look

at the example of contour plotting in 2D. The case

study extends in an obvious way to isosurfacing in

3D and indeed further examples are can be found in

the thesis of one of the authors [Belat95] (including

the surface fitting example mentioned above).

We shall use the case study to explore the following

aspects:

1. We look at the situation where a model is cre-

ated externally, say in a simulation process, and

a visualization using contouring is required.

We contrast the use of MCA - where the model

may be directly imported, with the use of a

conventional approach - where data is exported

from the simulation and then passed to the con-

tourer. We see the greater accuracy which

comes from using the MCA method.

2. We look next at the situation where data is to

be visualized - rather than a model. We show

the inconsistency that can occur in conventional

contouring - where scattered data is first inter-

polated using method A to get values on a regu-

lar grid, and then contoured from the grid using

interpolation method B. By contrast, MCA uses

one method throughout.

Accuracy in visualizing a simulation model

For simplicity, we take our simulation model as the

‘four peak’ function defined as:  !" #! " $ !!  $ #!" !" # " #%%%$ (2)$ &! " %&'  !    "!#"!"$ !! ($) %&'  !    "!$"! ! !! (3)

In the Model–Centred Approach, we can import this

model directly into a contouring routine that operates

on an implicit function approach - here we have used

the routine j06gff() from the NAG Graphical Li-

brary [NAG]. This contours from a function supplied

as a Fortran subroutine. It works by evaluating the

function on a mesh in order to detect presence of a

contour, and to give a starting point. It then tracks the

contour through the region in small steps, evaluating

the function as it goes.

In the conventional approach, we have to first evaluate

the function on a regular grid of a predefined size, and

pass this data to a grid-based contouring routine. Here

we have used FARBE-2D, a contouring routine devel-

oped by Preusser [Preus89], and available freely from

the ACM Transaction of Mathematics archive. Inter-

nally (hence implicitly) the routine creates a bicubic

patch for every rectangle of the mesh. This bicubic



polynomial is used to track contour lines within each

rectangle.

The difference between the two approaches becomes

clear when we zoom in on an area of interest. Figure 4

shows three sequences of snap-shots that demonstrate

the greater accuracy of the MCA method on zooming.

In each snap-shot of a sequence we zoom in on the

area shown to plot contours in more detail in the suc-

ceeding snapshot. In each case the functional model is

used by j06gff() to define the contours. Through-

out all levels of detail, accuracy is maintained.

By contrast, the conventional approach using

FARBE-2D on an initial grid size of 40x40 is shown

in Figure 5. The same zooming operations are ap-

plied, but each successive snapshot of a sequence is

necessarily based on less data than its predecessor

(the grid size on which the plot is based is shown un-

derneath each snapshot). The result is that the piece-

wise bicubic generated by FARBE-2D steadily be-

comes less and less accurate. Indeed we reach a stage

with a 2x2 grid where we cannot zoom any further

because we have reached the minimum grid size.

This case study shows the advantage of the model–

based approach when a simulation model is available.

The key difference is the point at which discretisation

is carried out: in the conventional approach, the first

step is to discretise the model at some fixed resolution

(as we have seen that gives problems on later zoom-

ing); in the model–based approach, the discretisation

is postponed until as late as possible in the processing

pipeline.

Consistency in visualizing data

We now look at the problem of inconsistent usage of

functional models in a visualization pipeline - again

using contouring as our example. In this case, how-

ever, we suppose we are given a set of scattered, or

unstructured, 2D data, rather than a model. The re-

sults are illustrated in Figure 6.

The conventional approach is to use an interpolation

method (here the Renka and Cline   interpolation

method [Renka84], as implemented in the NAG Li-

brary routine e01saf [NAG]) to derive a regular grid

dataset, which can then be passed to a contouring rou-

tine (here FARBE-2D). The results are shown in the

top right of Figure 6 for a range of different grid sizes.

In the MCA, the Renka-Cline interpolation method

e01saf provides the unique model for the contour-

ing method. A mesh is still needed, but only to detect

the existence of contours, not their position. Two pic-

tures are shown at the bottom of Figure 6 - on the left,

a tracking step of 0.5 is used in j06gff(); on the

right, greater accuracy is achievedwith a smaller step-

size. The mesh size is shown - an advantage of the

finer mesh size is the improved location of the con-

tour intersection with the boundary, and the greater

chance of detecting small closed contours (as can be

seen in the Figure).

Although the results are superficially quite similar, the

MCA with Renka-Cline and j06gff() does give a

more consistent sequence of images. A key aspect

again is the discretisation step: the lower the grid res-

olution, the more that the conventional approach re-

lies on the bicubic approximation within FARBE-2D,

rather than reflecting the Renka-Cline interpolant. By

contrast, reassuringly the MCA will always reflect the

true Renka-Cline interpolant.

6 Using MCA within a Modular Visualization

Environment

In this section we investigate how the MCA con-

cept might be incorporated within existing visual-

ization systems. This is motivated by pragmatism.

One cannot expect established users to abandon their

‘favourite’ visualization system. If we can incorpo-

rate our ideas within existing systems, we have the

potential of reaching a large user population. Thus

we look to see how easy it is to extend current sys-

tems to support the idea of an explicit modelling step.

By exposing the modelling step, it should be possible

to allow a user to try different modelling functions.

A popular class of system is the Modular Visualiza-

tion Environment, or MVE. These are based on the

data flow referencemodel of Haber andMcNabb. The

systems provide a library of predefined modules to

carry out different parts of the pipeline: data enrich-

ment, mapping and rendering. Visual programming

is used to select modules from the library and com-

bine them in a data flow network. Each module takes

data in, processes it, and outputs results downstream.

The systems are also extensible in that users can add

their own modules. Examples of MVEs include IRIS

Explorer [NAG], AVS [AVS] and IBM Data Explorer

[IBM].

We have developed a simple prototype using IRIS Ex-

plorer. The major difficulty to overcome is that only

data, not functions, may flow frommodule to module.

Hence the modelling functions used in data enrich-

ment and mapping modules are never exposed. The

simplest way to incorporate MCA is to build a new

module which incorporates both data enrichment and

mapping into a single unit. The modelling function

becomes a parameter of the module, and can be spec-

ified via the user interface allowing the user to experi-

ment with different choices. By merging the two steps

in one module, we force the use of a uniquemodelling



function. Thus the consistency property of the MCA

approach is realised. Equally, the scientist is still able

to exploit the many useful utilities from IRIS Explorer

- render module, data readers, colour maps and so on.

7 Conclusion

The primary contribution of this work is the develop-

ment of a new framework for scientific visualization

systems based on the concept of the model–centred

approach. This replaces the conventional dataflow

pipeline with a two-stage approach: the first stage cre-

ates an explicit model of the data; the second stage

provides a view of the model. We claim this gives a

clearer conceptual basis to the scientist, emphasising

the central position that modelling plays in building a

representation of the underlying phenomenon that is

being studied.

It promotes accuracy and consistency: accuracy

through allowing an external simulation model to be

directly used in visualization, rather than being first

discretised; consistency through the use of a unique

model of the data throughout the process.

Finally we have shown how the principle of MCA can

be accommodated within a conventional modular vi-

sualization environment.
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Figure 4: The snap shots of four peak function

as zoomed using MCA system.

Figure 5: The snap shots of four peak function

as zoomed using FARBE-2D system.

Figure 6: Consistency results.


