FAST MESH RENDERING THROUGH EFFICIENT
TRIANGLE STRIP GENERATION

Murilo Vicente Gongalves da Silva

Oliver Matias van Kaick

Hélio Pedrini

Department of Computer Science
Federal University of Parana
81531-990 Curitiba-PR, Brazil
{murilo, oliver} @pet.inf.ufpr.br helio@inf.ufpr.br

ABSTRACT

The development of methods for storing, manipulating, and rendering large volumes of
data efficiently is a crucial task in several scientific applications, such as medical image
analysis, remote sensing, computer vision, and computer-aided design. Unless data re-
duction or compression methods are used, extremely large data sets cannot be analyzed
or visualized in real time. Polygonal surfaces, typically defined by a set of triangles, are
one of the most widely used representations for geometric models. This paper presents
an efficient algorithm for compressing triangulated models through the construction of
triangle strips. Experimental results show that these strips are significantly better than
those generated by the leading triangle strip algorithms.

Keywords: triangle strips, geometry compression, rendering, mesh representation

1 INTRODUCTION

Polygonal surfaces are probably the most
used representation in several scientific ap-
plications, since they are flexible and sup-
ported by the majority of modeling and ren-
dering packages. Hardware support for poly-
gon rendering is also becoming more avail-
able. A polygonal surface is a piecewise-
linear surface defined by a set of polygons,
typically a set of triangles.

Due to demand for larger and more detailed
geometric datasets, a fundamental problem

is to construct a compact encoding of tri-
angular meshes in order to be able to store,
transmit, and render them efficiently.

A common encoding scheme uses trian-
gle strips, which exploits spatial coher-
ence of the simplicial complex structure,
enumerating the mesh elements in a se-
quence of adjacent triangles to avoid repeat-
ing the vertex coordinates of shared edges.
Triangle strips are supported by several
graphics libraries, including IGL [Cassi91],
PHIGS [ISO89], Inventor [Werne94], and
OpenGL [Neide93].

The set of triangles shown in Figure 1(a)
can be described using the vertex sequence
(1,2,3,4,5,6,7), where the triangle ¢; is de-
scribed by the vertices v;, v;;11, and v;;o in
this sequence. Such triangle strip is referred
to as a sequential triangle strip, in which the
shared edges follow alternating left and right
turns. A sequential triangle strip allows ren-
dering of ¢ triangles with only ¢ 4 2 vertices
instead of 3¢ vertices, resulting in significant
saving for memory storage and transmission
bandwidth.

A more general form of strips is given by
generalized triangle strips, where we do not
have an alternating left/right turn, but each
new vertex may correspond either to a left
turn or to a right turn in the pattern (Fig-
ure 1(b)). To represent such triangle se-
quence with generalized triangle strips, the
two vertices of the previous triangle can be
swapped. This can also be seen as the repe-
tition of a vertex when two successive turns
have the same orientation. Thus, the triangle
sequence in Figure 1(b) can be represented
as (1,2,3,4,5,4,6,7).

7
2 4 6 2 4§ % ;6
1 3 5 701 3 5
{a) {b)

Figure 1: Triangle strips.

A crucial problem is to obtain the optimal
partition of a mesh into triangle sequences
S1, ..., Sy, that is, a partition that minimizes
t. Ideally, a single triangle strip covering the
mesh completely should be obtained, how-
ever, this is not possible in general because
the dual graph is not always Hamiltonian'.
It has been proved that the problem of con-
verting a given triangle mesh into the mini-

A path in a graph is called Hamiltonian when it
visits all nodes in the graph exactly once.

mal set of triangle strips covering the mesh
is NP-complete [Evans96al].

In this paper, we present an efficient algo-
rithm for constructing triangle strips from
triangulated models. Experimental results
show that our method is significantly bet-
ter than other existing approaches [Akele90,
Evans96b].

In Section 2, we summarize some relevant
previous work on triangle strips. Section 3
presents our method for generating triangle
sequences using a local heuristic. In Sec-
tion 4, the proposed method is applied to
several data sets. Implementation issues and
experimental results are presented and dis-
cussed. Finally, Section 5 concludes with fi-
nal remarks and direction for future work.

2 RELATED WORK

Several methods for compressing triangu-
lar meshes have been proposed in literature.
Such methods usually address two differ-
ent tasks, the compression of numerical in-
formation associated with each vertex (such
as position, elevation, texture, normal vec-
tors) and the compression of information de-
scribing the connectivity between the surface
components. These approaches are gener-
ally referred to as geometry compression and
topology compression, respectively.

Geometric data associated with each ver-
tex are usually reduced using lossy methods
based on quantization, and lossless methods
based on entropy encoding such as Huffman
or arithmetic coding.

A simple way to represent connectivity is to
use a triangle-vertex incidence table, which
associates each triangle with its three bound-
ing vertices. Since the number of triangles
is approximately twice the number of ver-
tices, the use of efficient techniques for com-
pressing the triangle-vertex incidence table
becomes an important issue. A representa-

tion storing each triangle as a list of 12-bit
integer coordinates for each one of its three
vertices would require 108 bits per triangle.
Since the location of a vertex is repeated six
times on average, it becomes expensive to
store multiple representations of each vertex.
An alternative is to store a table containing
the vertex data in a sequence and a table con-
taining three vertex references for each tri-
angle. A vertex reference uniquely identi-
fies the position of a vertex in the vertex data
table. Since we need at most [log, n| bits
per vertex reference in a triangulation with
n vertices, this scheme requires a connec-
tivity cost of 3log, n bits per triangle. Bar-
Yehuda and Gotsman show that a buffer size
of 12.72+/n suffices to render any triangular
mesh with n vertices, such that each vertex is
transferred only once. Rossignac [Rossi99]
estimates that this improvement leads to a
connectivity cost of 1.25log, n + 9.75 bits
per triangle.

Progressive meshes, developed by
Hoppe [Hoppe96, Hoppe98], provide a
technique for transferring a mesh progres-
sively, starting from a coarse approximation
and then iteratively inserting a sequence of
new vertices. A new vertex is created by
expanding a vertex into an edge, which is the
inverse of the edge collapse operation used
in many mesh simplification techniques.
Each vertex is transferred only once and 5
bits are used to identify two vertices among
those adjacent, giving a total connectivity
cost of approximately ([log, n] + 5)n bits.

An efficient method for compressing con-
nectivity of 3D triangular meshes is pre-
sented by Rossignac [Rossi99]. This
scheme, called Edgebreaker, produces re-
sults between 1.3 and 2 bits per trian-
gle in simply connected manifold triangular
meshes. It also supports meshes with holes
and handles by using additional storage.

Akeley, Haeberli, and Burns [Akele90]
developed a program to convert triangle
meshes into strips. The sequence is con-

structed by selecting the next triangle as the
one adjacent to the least number of neigh-
bors. Speckmann and Snoeyink [Speck97]
computes a minimum spanning tree of the
adjacency graph to generate long triangle
strips. The straightforward use of trian-
gle strips does not result in high compres-
sion rates. Each vertex is encoded twice
on average, and it is also difficult to obtain
long strips from a generic mesh [Evans96b].
Long strips are desirable since the first
two bits are the overhead for each strip.
Deering [Deeri95] proposes the use of a
buffer of vertices to avoid that a vertex
is encoded more than once. Following
this idea, Evans et al. [Evans96b] dis-
cuss the impact of buffer sizes on triangle
strip performance, and Chow [Chow97] pro-
poses heuristics to improve the decomposi-
tion of triangular meshes into triangle strips.
Rossignac [Rossi99] suggests modifications
to the idea of using a buffer of 16 positions
proposed by Deering, estimating a connec-
tivity cost of 3.75 4 0.062 log, n bits per tri-
angle, when a vertex is used twice on aver-
age.

3 PROPOSED METHOD

The proposed method seeks to minimize the
number of vertices to be sent to the graphic
pipeline. Two heuristics were considerated.
One seeks to minimize the number of ver-
tices reducing the number of strips, gener-
ating output to a hardware and a graphic li-

hrary that ciinnort ewan withont recendine a
ULuLJ Lian \Jutltl\llb [SRAl “tl yyiuuiuvun 1\/0\.«11\41116 <«

vertex. The number of necessary vertices is
defined as t+2k, where t 1s the number of tri-
angles in the mesh, and k& the number of gen-
erated strips. The other heuristic minimizes
the number of vertices, avoiding swap gener-
ation, producing output for a graphic library
(e.g., OpenGL) that simulates swap resend-
ing a vertex.

Although our implementation is sequential,
it has also investigated the generation of mul-
tiple strips simultaneously at several places

of the mesh, doing the concatenation if pos-
sible.

3.1 Local Algorithm

The algorithm for choosing the next tri-
angle to be inserted in a strip is simi-
lar to other greedy algorithms [Akele90,
Evans96b]. The proposed algorithm ana-
lyzes the dual graph of the mesh taking prior-
ity for inserting triangles, which have many
adjacent triangles in strips. In case of tie, our
algorithm uses different look-ahead strate-
gies, depending on the heuristic under con-
sideration.

A description in more details of the local al-
gorithm is now presented. Let the degree of
a triangle be the number of adjacent triangles
that do not belong to any strip. The selection
of the next triangle is performed by using the
following steps:

o if atriangle in the candidate list has de-
gree 0, it is added immediately in or-
der to avoid the occurrence of a single-
ton strip (strip containing only one tri-
angle).

e if there is no candidate triangle with
degree O, triangles with degree 1 have
now priority. In case of several candi-
dates with this degree, a look-ahead test
is performed. If the adjacent triangle
has degree 1, it is inserted immediately.
If all the adjacent triangles have degree
2 or 3, the algorithm seeks to insert a
candidate that does not generate swap,
in case of minimizing swaps. Other-
wise, it is inserted the triangle which
has an adjacent one with lower degree.

e if all the candidates have degree 2, the
choice of the next triangle is also per-
formed according to the heuristic un-
der consideration. In case of strip
minimization, it is inserted the triangle
which has an adjacent one with lower

degree. In case of swap minimization,
the next triangle is one that does not
generate swap.

Whenever a new strip is created, a low-
degree triangle is chosen as the starting one.

3.2 Multiple Strip Construction

The method uses a strategy based on a simul-
taneous construction of strips. The algorithm
maintains s strips being built and at each step
adds an adjacent triangle to one of the strips.

Figure 2 exemplifies a case of four strips be-
ing created at same time. In this example, the
next triangle to be added is chosen among the
list of candidates 73,75, ...,Ty. The candi-
date is inserted in a strip according to Sec-
tion 3.1. If the triangle chosen is 75, strips
1 and 4 can be concatenated together. Case
this concatenation occurs, the strip 1 encom-
passes the strip 4, and another strip is created
in order to maintain the number of strips in
construction. The location of the new strip
is chosen based on a restriction that the start
triangle of the new strip is not adjacent to the
extremities of an existing strip, avoiding the
immediate concatenation of the new strip. If
there is no more candidate triangle for inser-
tion to any strip extremity, then s new strips
are created for construction.

If s > 1 and a triangle having either degree
0 or 1 is inserted, two strips may be concate-
nated together. The possible cases to be con-
sidered are:

e insertion of triangle with degree 0 (7}
in strip 1 shown in Figure 3, cases (a),
(b), and (c)).

Case 1: the other two triangles adja-
cent to 77, besides strip 1, are strip
extremities. Strip 1 is concatenated
to one that contains fewer triangles.

strip 1 strip 2

T)i
T
L
T,
Ts ;
T T,
Ng |
T9
T
strip 4 strip 3

Figure 2: Simultaneous strip construction.

Case 2: only one triangle adjacent to
T is extremity of other strip The
concatenation is straightforward.

Case 3: there are no extremities of
other strips adjacent to 77. No con-
catenation is performed.

e insertion of triangle with degree 1 (7}
in strip 1 shown in Figure 3, case (d))

Case 4: If 7' has degree 1, then there
is a triangle 75 that does not belong
to any strip. The concatenation is
performed in case of 75, having de-
gree greater than 1. Otherwise, this
union will generate a singleton strip,
therefore the strips will not be joined.

Our algorithm for generating triangle strips
has been tested on a number of data sets in
order to illustrate its performance. The ex-
periments have been performed on a PC Pen-
tium III 450 MHZ with 128 Mbytes RAM,
running LINUX operating system. The
source code is available upon request to the
authors.

We compared our algorithm against
STRIPE 2.0 [Evans96b], which is the

. strip 2
strip 2 P

trip 1
strip 1 S

trip 3
strip 3 =P

(a) Case 1 (b) Case 2

strip 2

(c) Case 3 (d) Case 4

Figure 3: Strip concatenation.

best known publicly available program. In
all tests, our algorithm generated better re-
sults for all parameters under consideration,
producing lower number of vertices, lower
number of strips, less memory usage, and
less CPU time. It is worth mentioning that
I/0O operations have been excluded from tim-
ing in order for STRIPE and our algorithm
to report the same type of statistics data.

The experiments used data sets available
from Stanford Graphics Lab, United States
Geological Survey, Georgia Institute of
Technology, and Viewpoint DatalLabs. Ta-
ble 1 shows the number of vertices and trian-
gles for ten data models used in our tests.

The results of comparison between our
method and STRIPE are summarized in Ta-
ble 2 and Table 3, which show the total num-
ber of vertices and number of strips required
to represent the models using two different
heuristics, one that seeks to minimize the
number of vertices while reducing the num-
ber of strips (default mode) and other that
seeks to minimize the number of swaps, re-

Model Vertices Triangles
bunny 35947 69451
cow 2904 5804
crater 107903 214808
dragon 437645 871414
cannyon 20000 39885
buddha 543652 1087716
horse 48485 96966
champlain 100000 198996
foot 2154 4204
hand 327323 654666

Table 1: Sample of models.

Model Stripe Ours
Strips Vertices Strips Vertices

bunny 918 91705 599 85831

cow 102 7646 80 7607

crater 4194 310800 3561 297879

dragon - - 16222 1216698
cannyon 891 58293 798 55743
buddha 20071 1520115

horse 1630 124403 842 122324
champlain 3946 289593 3372 275452
foot 1100 6048 82 5668
hand - - 8440 866729

Table 2: Comparison of triangle strip algo-
rithms minimizing strips.

spectively. It is worth observing that the
number of vertices shown in Table 2 corre-
sponds to the OpenGL cost model. In case of
models having built-in swap, the actual num-
ber of vertices can be trivially calculated by
t+ 2k.

Table 4 reports the execution times required
to construct the representations. Our algo-
rithm behaves linearly with respect to the in-
put size. Table 5 shows no significant change
in the number of strips as multiple strips
are constructed simultaneously. The values
shown in Tables 2, 3, and 4 were obtained by
using s = 1. Figure 4 presents the results for
four different data sets.

Model Stripe Ours
Vertices Strips Vertices Strips

bunny 82128 1230 81856 1147

cow 7123 137 7092 137

crater 283804 5860 283047 5320

dragon - - 1139294 23427
cannyon 52258 1188 52110 1089
buddha - - 1421383 29128

horse 117621 1918 117506 1867
champlain 260712 5505 260169 5010
foot 5417 121 5363 114
hand - - 816267 14662

Table 3: Comparison of triangle strip algo-
rithms minimizing vertices.

Model Stripe. Ours
bunny 2.01670 0.21096
cow 0.14076 0.01599
crater 4.72040 0.66261
dragon - 2.53687
cannyon 0.83277 0.12145
buddha 3.15003

horse 2.47020 0.29593
champlain 4.42200 0.61523
foot 0.06577 0.01189
hand - 1.79598

Table 4: Execution times in seconds.

Model 1 2 4 8 16
bunny 599 575 601 591 601
cow 80 78 73 83 90

crater 3561 3428 3461 3519 3449

dragon 16222 16402 16304 16281 16313
cannyon 798 789 772 772 794
buddha 20071 19878 19993 19891 19921
horse 842 806 811 884 868
champlain 3372 3374 3357 3426 3390
foot 82 88 101 119 131
hand 8440 8318 8227 8156 7980

Table 5: Results for different values of s.

S CONCLUSION AND
WORK

FUTURE

We have presented an efficient method for
constructing triangle strips from triangulated
models. The method is fast and significantly
reduces the number of vertices used to de-
scribe a given triangulation, allowing lower
memory bandwidth for real-time visualiza-
tion of complex data sets.

Future work includes the investigation of
new local heuristics, a more detailed study of
simultaneous generation of a variable num-
ber of strips.

6 ACKNOWLEDGEMENTS

This work was partially supported by a
grant from Conselho Nacional de Desen-
volvimento Cientifico e Tecnolégico, CNPq,
Brazil. The authors would also like to
thank the Programa Especial de Treinamento
(PET) (Special Training Program) of the
Computer Science Department.

REFERENCES

[Akele90] K. Akeley, P. Haeberli, and
D. Burns. tomesh.c: Program on
SGI Developer’s Toolbox CD, 1990.

[Cassi91] R. Cassidy, E. Gregg, R. Reeves,
and J. Turmelle. IGL: The Graphics
Library for the i860, 1991.

[Chow97] M. M. Chow. Optimized geom-
etry compression for real-time render-
ing. In Proceedings of IEEE Visual-
ization’97, pages 347-354, 1997.

[Deeri95] M. Deering. Geometry compres-
sion. In SIGGRAPH’95 Conference
Proceedings, Annual Conference Se-
ries, pages 13-20, Los Angeles, Cali-
fornia, USA, 1995.

[Evans96a]l F. Evans, S. Skiena, and
A. Varshney. Completing sequential
triangulations is hard. Technical
report, Department of Computer

Science, State University of New
York at Stony Brook, USA, 1996.

[Evans96b] F. Evans, S. Skiena, and
A. Varshney. Optimizing triangle
strips for fast rendering. In Proceed-
ings of IEEE Visualization’96, pages
319-326, 1996.

[Hoppe96] H. Hoppe. Progressive
meshes. In Computer Graphics,
SIGGRAPH’96 Proceedings, pages
99-108, New Orleans, Louisiana,
USA, 1996.

[Hoppe98] H. Hoppe. Efficient implemen-
tation of progressive meshes. Com-
puter & Graphics, 22(1):27-36, 1998.

[ISO89] ISO. Information Processing Sys-
tems - Computer Graphics - Program-
mer’s Hierarchical Interactive Graph-
ics System (PHIGS). Technical Re-
port ISO/IEC 9592, International Or-
ganization of Standardization, 1989.

[Neide93] Jackie Neider, Tom Davis, and
Mason Woo. OpenGL Programming
Guide: The Official Guide to Learn-
ing OpenGL. Addison-Wesley, New
Jersey, 1993.

[Rossi99] J. Rossignac. Edgebreaker: Con-
nectivity compression for triangle
meshes. [EEE Transactions on Vi-
sualization and Computer Graphics,

5(1):47-61, 1999.

[Speck97] B. Speckmann and J. Snoeyink.
Easy triangle for TIN terrain mod-
els. In Canadian Conference on Com-
putational Geometry, pages 239-244,
1997.

[Werne94] J. Wernecke. The Inventor Men-
tor. Addison-Wesley, 1994.

Figure 4: Results for four data sets.

