ENHANCED VECTOR FIELD VISUALIZATION
BY LOCAL CONTRAST ANALYSIS

A. Sanna B. Montrucchio C. Zunino P. Montuschi

Dipartimento di Automatica e Informatica
Politecnico di Torino, C.so Duca degli Abruzzi 24
[-10129 Torino

Italy

{sanna,montru,c.zunino,montuschi }@polito.it

ABSTRACT

Visualizing vector fields is one of the most important and attractive research areas
in scientific visualization. Several techniques are known in the literature; some tra-
ditional approaches use 2D /3D arrows or particle traces, while other methodologies
display vector fields by dense or sparse textures. This paper focuses on the clus-
tering problem arising for dense texture algorithms where some low contrast areas
can appear in images thus reducing the capability of investigating flow details. The
proposed method assigns pixel colors according to a local contrast analysis phase.
In this way streamlines denoting flow characteristics are always well distinguishable.

Keywords: vector field visualization, scientific visualization, texture based algo-

rithms, LIC, local contrast.

1 INTRODUCTION

Texture based algorithms have been
proved to be one of the most effective
way to display vector fields. Almost all
characteristics can be visualized showing
direction, orientation, and magnitude of
the flow; moreover, dense texture based
methodologies use the pixel resolution in
order to show as much as possible vector
field details by providing an efficient tool
for investigating and analyzing flow char-
acteristics. Flow direction is denoted by
integral curves having tangent vectors co-
incident to the vector field (streamlines)
and information about orientation and
magnitude can be coded either by varying

gray tones along each streamline or using
colors. The colors (or gray levels) of the
pixels along a streamline should be highly
correlated in order to show the field line
denoted by the streamline itself and the
correlation among the pixels placed along
directions perpendicular to the field lines
should be low.

One of the main drawbacks of several
dense texture based algorithms known in
the literature, is to assign a starting gray
value in a random way and then varying
this value along the streamline to code ori-
entation and flow. This can lead to visual
artifacts or clustering; if similar values are
assigned to neighbor streamlines, low con-

trast areas (also called macro-structures)
can appear in the image. In these zones
the field details are difficult to be distin-
guished and the quality of the resulting
texture can be also strongly affected.

In this paper a new technique based on the
analysis of the local contrast is proposed.
We start from a dense texture based
algorithm called TOSL (Thick Oriented
Streamline) [Montru01] able to show all
flow characteristics but suffering of clus-
tering problem. After having performed
an analysis phase of pixels close to the one
under computation. In this way, neighbor
streamlines are depicted by different tones
and all details can be well appreciated.

Section 2 presents the main texture based
algorithms and, in particular, reviews the
TOSL algorithm used as a starting point
for the proposed methodology. Section 3
explains the basic idea behind this work,
while the details of the algorithm are
found in Section 4. Finally, examples and
results are presented in Section 5.

2 BACKGROUND

Texture based methods improve spatial
resolution up to the pixel limit (dense tex-
tures). Van Wijk [Wijk91] proposed to
convolve a random (white noise) texture
along a straight segment whose orienta-
tion is parallel to the direction of the flow.
This method (spot noise) was then ex-
tended by bending spot noise, filtering the
image to cut low frequency components,
and using graphic hardware methods, also
on grids with irregular cell sizes (De Leeuw
and Van Wijk [Delee95]). Cabral and Lee-
dom [Cabra93] introduced the Line Inte-
gral Convolution (LIC) algorithm, which
locally filters a white noise input texture
along a streamline. Forssell [Forse94] ex-
tended the LIC to curvilinear grid sur-
faces, by doing calculations in computa-
tional space on a regular cartesian grid,

and displaying results on curvilinear grids
in physical space. As LIC is computation-
ally expensive, Stalling and Hege [Stall95]
improved the speed of LIC (fastLIC) by
more than ten times, by observing that
the LIC value computed for one pixel can
be re-used, with small modifications, from
its neighbor pixels; in this way, the com-
putation is streamline oriented and not
pixel oriented as in the conventional LIC.
Zockler et al. [Zockl97] showed a par-
allel implementation of fastLIC which is
able to run in real-time on particular par-
allel architectures (i.e. on a Cray T3D).
Bi-dimensional LIC images can be ani-
mated to show the orientation of the field
besides the simple direction; this can be
done by changing shape and location of
the filter kernel k£ over time. To avoid
the need for animation, Wegenkittl et al.
[Wegen97a] introduced OLIC (Oriented
Line Integral Convolution) and then We-
genkitt]l and Groller [Wegen97b] FROLIC
(Fast Rendering OLIC). OLIC simulates
the use of drops of ink smeared to the un-
derlying vector field. The algorithm can
be made faster by positioning small and
overlapping disks (FROLIC) in order to
simulate the convolution. The length of
the pixel traces shows vector orientation
and local magnitude of the field. However,
OLIC and FROLIC use sparse textures,
and therefore, small details of the field
may be lost in the visualization. A fast
implementation of a LIC-like algorithm
can be also found in [Risque98|, where
each field line is drawn by using a differ-
ent gray value (the same value along the
whole streamline). However, because of
the constant gray value, this method can-
not show orientation and magnitude of the
field and it is not suitable for animation.
Visualization of dense and oriented flow
field is also performed by Jobard and Lefer
[Jobar97]. The minimization of the num-
ber of the streamlines is performed by an
evenly-spacing algorithm able to produce
a good quality image; however the use of

this algorithm slows down the speed in
comparison to fastLIC. The vector field vi-
sualization can be achieved also using fur-
like textures (Khouas et al. [Khoua99]);
the results are similar to FROLIC, by
sparse textures. An extension to the LIC
algorithm able to visualize unsteady flow
data was proposed by Forssell and Co-
hen [Forse95]. Shen and Kao [Shen98|
improved the algorithm overcoming the
problems of coherence associated with
the pathline convolution (with rather un-
steady flows) and other drawbacks due
to the difficulties of establishing tempo-
ral coherence on the pathline; this new al-
gorithm (UFLIC) can manage LIC using
the time-accurate value scattering and the
successive feed-forward process. Although
several algorithms can map on the tex-
ture the information of direction, orienta-
tion, and magnitude, adding scalar values
such as temperature or pressure can be a
problem; this issue has been addressed by
Sanna et al. in [Sanna0Oa] and [Sanna0l]
by using the bump mapping technique to
code scalar values by bumps and depres-
sions.

2.1 TOSL ALGORITHM

In this section the TOSL algorithm
[Montru01] is briefly reviewed since it is
the starting point for the improvements

introduced by the proposed methodology
ECTOSL.

The TOSL algorithm has been proved to
be one of the most effective algorithm rep-
resenting vector fields by dense textures.
It is able to show almost all flow charac-
teristics: direction, orientation, and mag-
nitude; moreover, examples have shown
TOSL can be faster up to thirty times
than LIC [Cabra93] and three time than
fastLIC [Stall95]. The TOSL algorithm is
split into two parts; during the first phase
only a percentage (previously set by the
user) of the image is filled, while the sec-

ond part provides the filling of the output
texture by computing streamlines for all
the pixels not yet considered. A bidimen-
sional Sobol sequence is used to identify
a set of starting pixels for the streamlines
to be computed in the first part, while in
the second part the filling is provided con-
sidering the pixels in sequence (this is the
only difference between the two phases).
Chosen a starting pixel by using Sobol
sequence, the streamline computation is
performed in the same way as LIC; if the
streamline in the point cannot be com-
puted, for instance because the starting
pixel is placed in a corner of the image
and the vector field has opposite orienta-
tion with respect the field of the neighbor-
ing pixels, a random value is assigned to
the pixel. In order to show the flow speed,
for each pixel of the streamline, the local
magnitude of the vector field is computed.
The maximum value is used to normal-
ize the increment of gray tones between
a pixel and its successor along a stream-
line. A starting gray value is randomly set
and next value along the streamline are
computing adding the previous value to
a normalized increment depending on the
local magnitude. The choice of starting
pixels is the most critical point of the algo-
rithm; the use of a quasi-random Sobol se-
quence attempts to evenly spread stream-
lines over the texture to reduce the prob-
ability of clustering. Clustering occurs
when neighbor streamlines have about the
same gray value; this can lead to macro-
structures in the texture where the vec-
tor field details cannot be appreciated; an
example is shown in Fig. 1 where a set
of macro-structures has been outlined by
white rectangles. Clustering is basically
due to the random choice of the gray value
for the starting pixel and it produces very
low contrast areas in the image; it is im-
portant to note this phenomena does not
affect the whole contrast of the image, as
it can be seen by the uniform distribution
of gray tones in the histogram shown in

Figure 1: Example of a texture ob-
tained by TOSL showing the cluster-
ing problem. White rectangles out-
line clustered areas.

Fig. 2, but it concerns local properties of
the texture.

3 BASIC IDEA

In order to allow users of identifying
streamlines everywhere in a texture, low
contrast areas should be strictly avoided.
If the goal is to assign streamline colors
in such a way every streamline could be
always well distinguished from its neigh-
bors, the color assignment should be per-
formed according to a local contrast anal-
ysis phase and not in a random way. Con-
trast is defined by:

. Lmax - me

Lmaa: + me

(1)

where L,,., is the peak luminance and
Liyin is the minimum luminance [Ware00].
Given an area of m pixels with center
the starting pixel of a streamline, the
maximum local contrast is obtained when
a gray tone maximizing the differences
among it and all n — 1 pixels of the area
is chosen (i.e. it is maximized the numera-
tor of (1)). As gray tones along a stream-
line are coded in the range [0, 255], the

i~ Blue
. Lightness

" Green
I Saturstion

I Red
1. Hue

WV Greyscale

Figure 2: The global histogram of the
picture shown in Fig. 1.

value next 255 is 0, therefore, we can as-
sume to place the value on a circle (see
Fig. 3). Let us assume to consider an area
of two pixels: one value is in the range
[0, 127] (p; in Fig. 3) and the other one
is the starting pixel of the streamline to
be computed. The maximum contrast is
obtained by assigning to the starting pixel
a value to the opposite of the circle, that
is p; + 128. On the other hand, for values
in the range [128, 255], the maximum
contrast is obtained subtracting 128 (or
by adding modulo 128). For larger areas,
average values for pixels in the range [0,
127] and [128, 255] have to be consid-
ered.

4 ECTOSL - ENHANCED CON-
TRAST TOSL

In this section we present the details of
ECTOSL - Enhanced Contrast TOSL;
ECTOSL computes streamline in the
same way as TOSL and uses increments
of gray tones to code local flow mag-
nitude. As for TOSL, the streamline
starting points are chosen by means of
a bidimensional Sobol sequence, but it is
completely different the technique for the

Figure 3: Given a pixel its oppo-
site one the circle provides the max-
imum contrast.

choice of the starting gray value. TOSL
assigns the starting tone in a random way
and this can lead to artifacts as macro-
structures. More complex is the technique
used by ECTOSL where the starting value
is assigned according to an analysis of the
local contrast; a C-like pseudo code of the
procedure for the choice is shown in Fig.
4.

The user has to set a parameter d de-
noting the distance used by the proce-
dure to search for pixels already computed
close to the one under analysis (x,y).
The variable n_less is used to store the
number of pixels having gray tones in
the range]0,127] within a square area
with center in (x,y) and side 2d; in
the same way, n_greater stores the num-
ber of values in the range [128,255].
The value 0 denotes pixels not yet com-
puted. On the other hand, c_less and
c_greater are used to store the aver-
age value of gray tones in the range
10,1271 and [128,255], respectively.
The coordinates (x_start,y_start) and
(x_stop,y_stop) represent the vertices
of a square area where the routine will
search for pixels already computed; if ei-
ther x_start or y_start are negative they
will be set to zero as well as x_stop and
y_stop are limited to the texture resolu-
tion. The search area is analyzed by two
nested cycles and then the average values

are computed for gray tones both in the
range 10,127] and [128,255] (if n_less
and n_greater are not null). This phase is
repeated for every pixel along the stream-
line under analysis. In order to enhance
the local contrast (see Section 3), 128 is
added to the average value in the range
10,127] while is subtracted for the range
[128,255]. If no pixel already computed
has been found in the searching area, a
random gray tone is assigned to the start-
ing pixel of the streamline, otherwise, an
average value is set. Section 5 shows how

choose_color(int d,int x,int y)
{

c_less = c_greater = 0;
n_less = n_greater = 0;
x_start = x - d; x_stop
y_start =y -d; y_stop

x + d;
y +d;

for each pixel of the streamline
for(i=x_start;i<xz_stop;i++)
for (j=y_start;jy_stop;j++) {
if (pixel(di,j) in 10,127])

{
n_less++;c_less+=pixel(i,j);
}

if (pixel(i,j) in [127,2551)

{

n_greater++;
c_greater += pixel(i,j);
} }
if(n_less != 0)
c_less = c_less/n_less + 128;
if(n_greater != 0)
c_greater=c_greater/n_greater-128;
if (not found pixels)
pixel = random_value;
else
pixel = ave(c_less,c_greater);

}

Figure 4: Procedure for the choice
of the starting gray tone.

this analysis of the local contrast avoids
the possibility of low contrast zones where

streamlines could be not distinguishable.
It is worth to note that this phase of choice
of the starting gray tone level could be also
applied to the other texture based algo-
rithms (for instance, [Risque98]) in order
to improve the local contrast.

5 EXAMPLES AND RESULTS

In this section we show three examples
used to compare the proposed algorithm
ECTOSL to TOSL [Montru01]. The first
example (attractor) is shown in Figures 5
and 6; Fig. 5 has been obtained by TOSL
and Fig. 6 by ECTOSL. Although TOSL
texture is well suited to depict orientation,
direction and magnitude of the flow, it
can be noticed several areas where stream-
line color is almost the same (macro-
structures). From the point of view of the
global contrast this is not perceptible, in
fact, by analyzing the histogram of the im-
age all gray levels are evenly distributed
but low contrast zones affect the texture.
On the other hand, these areas strongly
reduce the local contrast and the stream-
lines cannot be well identified. The tex-
ture produced by ECTOSL maintains the
same characteristics in term of ability to
denote direction, orientation and magni-
tude of the flow, moreover, each stream-
line is everywhere distinguishable from its
neighbors and areas of uniform gray val-
ues are avoided. The same result is also
shown by the other two examples: criti-
cal point (see Figures 7 and 8) and two
points (see Figures 9 and 10). For all ex-
amples ECTOSL gives a better and faith-
ful visual representation of vector fields.
All textures have a resolution of 256x256
pixels and the streamline length has been
set to 25 pixels. ECTOSL experienced
to be slightly slower than TOSL as the
local contrast analysis phase is necessary
to assign the pixel color (see Section 4);
computational times strongly depends on
texture resolution [Montru01] and are al-

most similar for all three examples. By
using a 400 MHz Celeron, TOSL textures
have been computed in about 0.37 s, while
ECTOSL ones in 0.5 s. Textures com-
puted by ECTOSL have been obtained
setting a value of distance d to one pixel;
we performed several tests by varying the
value d up to 5 but we did not experi-
enced noticeable improvements, moreover,
higher d values lead to greater computa-
tional times due to the local contrast anal-
ysis phase. Interested readers can test
TOSL, ECTOSL, as well as LIC [Cabra93]
at: www.hipeco.polito.it/wscg2002/;
examples presented in this paper are avail-
able, moreover, users can use their own
test files in order to verify algorithm be-
havior. More than textures, it is possible
to see classical 2D arrow vector field rep-
resentations.

6 CONCLUSION

This paper presents a significant improve-
ment for dense texture based algorithms
suffering of the clustering problem. A lo-
cal contrast phase analysis allows to avoid
areas where streamlines cannot be well
identified; the assignment of the starting
gray tone is performed by checking the
values of the neighbor pixels in order to
maximize the local contrast. Some exam-
ples show how the proposed methodology
can overtake the clustering problem with-
out significantly affecting computational
times. Future work will be aimed to use
local contrast, not only for improving the
quality of the images, but also for cod-
ing further information in the textures, in
fact, contrast levels could be also used to
code scalar values.

REFERENCES

[Montru01] Montrucchio, B., Montuschi,
P., Sanna, A. and Sparavigna,
A.. Visualizing vector fields: the

Figure 5: Example of a vector field

that has only one attractor obtained
by TOSL.

Figure 6: Example of a vector field
that has only one attractor obtained
by ECTOSL.

Figure 7: Example of a vector field
that has only one critical point ob-
tained by TOSL.

thick oriented stream-line algorithm
(TOSL), Computers € Graphics,
Vol. 25 No. 5, pp. 847-855, 2001

[Wijk91] Van Wijk, J.J.: Spot noise-
texture synthesis for data visual-
ization, Proceedings of SIGGRAPH
‘91, Computer Graphics, pp. 309-
318, 1991

[Delee95] De Leeuw, W.C. and Van Wijk,
J.J.: Enhanced spot noise for vec-
tor field wvisualization, Proceedings
of IEEE Visualization 95, pp. 233-
239, 1995

[Cabra93] Cabral, B. and Leedom, L.:
Imaging vector fields using line in-

Figure 8: Example of a vector field
that has only one critical point ob-
tained by ECTOSL.

tegral convolution, Proceedings of
SIGGRAPH ’93, Computer Graph-
ics, pp. 263-272, 1993

[Forse94| Forssell, L.K.: Visualizing flow
over curvilinear grid surfaces us-
ing line integral convolution, Pro-
ceedings of IEEE Visualization ’9/,
pp. 240-247, 1994

[Stall95] Stalling, D. and Hege, H.C.:
Fast and resolution independent line
integral convolution, Proceedings of
SIGGRAPH ’95, Computer Graph-
ics, pp. 249-256, 1995

[Zockl97] Zockler, M., Stalling, D. and
Hege, H.C.: Parallel line inte-

Figure 9: Example of a vector field
that has two singularities obtained by
TOSL.

gral convolution, Parallel Comput-
ing, Vol. 23 No. 7, pp. 975-989, 1997

[Wegen97a] Wegenkittl, R., Groller, E.
and Purgathofer, W.: Animating
flowfields: rendering of oriented line

integral convolution, Computer An-
imation 97, 15-21, 1997

[Wegen97b] Wegenkittl, R. and Groller,
E.: Fast oriented line integral con-
volution for wvector field visualiza-
tion wvia the internet, Proceedings
of IEEE Visualization 97, pp. 309-
316, 1997

[Risque98] Risquet, C.P.: Visualizing 2D
flows: integrate and draw, Proceed-
ings of 9th Eurographics Workshop
on Visualization in Scientific Com-
puting, 1998.

[Jobar97] Jobard, B. and Lefer, W.: Cre-
ating evenly-spaced streamlines of
arbitrary density, Proceedings of the
eight Eurographics workshop on vi-

sualization in scientific computing,
pp. 57-66, 1997

[Khoua99] Khouas, L., Odet, C. and Fri-
boulet, D.: 2D Vector field visual-
ization using furlike texture, Data
Visualization 99, Vienna, pp. 35-
44, 1999

Figure 10: Example of a vector field
that has two singularities obtained by
ECTOSL.

[Forse95] Forssell, L.K. and Cohen, S.D.:
Using line integral convolution for
flow visualization: curvilinear grids,
variable-speed animation, and un-
steady flows, IEEE TVCG, Vol. 1
No. 2, pp. 133-141, 1995

[Shen98] Shen, H.W. and Kao, D.L.: A
new line integral convolution algo-
rithm for wisualizing time-varying
flow fields, IEEFE TVCG, Vol. 4
No. 2, pp. 98-108, 1998

[Sanna00a] Sanna, A. and Montrucchio,
B.: Adding a scalar wvalue to
2D wvector field visualization: the
BLIC (Bumped LIC), FEurograph-
1¢s’2000 Short Presentations Pro-
ceedings, pp. 119-124, 2000

[Sanna01] Sanna, A., Montrucchio, B.
and Montuschi, P.: B2LIC: an algo-
rithm for mapping two scalar values
on texture-based representations of
vector fields, WSCG’2001, pp. 1138-
1145, 2001

[Ware00] Ware, C.: Information Visual-
ization perception for design, Aca-
demic Press, 2000

