Automatic Keyframe Selection for High-Quality
Image-Based Walkthrough Animation
Using Viewpoint Entropy

Pere-Pau Vazquez
Mateu Sbert

Institut d’Informatica i Aplicacions
Universitat de Girona
Campus Montilivi, Edifici P1 EPS, E-17071 Girona, Spain
{pvazquez|mateu }@ima.udg.es

ABSTRACT

The computation of high quality animation sequences is expensive. Generation time
for each frame can take a few hours. Recently, Image-Based Rendering methods
have been proposed to solve this problem. As these techniques obtain new arbitrary
views from precomputed ones at low cost, walkthroughs may be computed faster.
Consequently, the selection of the precomputed images is a very important step.
The initial set of keyframes should fulfill two requirements, it must be small but
provide as much information as possible on the scene. In this paper we review
several keyframe selection strategies and then we propose a new method based on
entropy that achieve similar, and in some cases better, results.

Keywords: High-Quality Walkthrough, Image-Based Rendering, Keyframe Selec-

tion, Entropy

1 INTRODUCTION

Simulating realistic images with the classi-
cal approaches (radiosity, raytracing...) is
a very complex process, it requires a lot of
time and computational resources to ob-
tain high quality images. Improvements in
rendering algorithms (multiresolution ren-
dering, textures, visibility preprocess, and
so on) are continuously challenged by in-
creasing scene complexity.

In contrast to this, there is a group of
methods named Image-Based Rendering

(IBR), that are able to generate in real
time arbitrary views from precomputed
images. IBR techniques rely on the use
of images instead of a geometric represen-
tation. This allows to break the render-
ing computation time dependency on the
number of polygons. Instead, the frame
rate depends mainly on the image resolu-
tion.

In this paper we review several previously
used strategies for selecting keyframes for
an Image-Based walkthrough animation
methods [1], and then we propose a new

method based on entropy which yields
similar and in some cases better results.
The rest of the paper is organised as fol-
lows. In Section 2 we present a high
quality image-based walkthrough method,
in Section 3 we explain previous initial
keyframe placement strategies, later, in
Section 4 we present our new hardware-
based method. In Section 5 we show the
results and, finally, in Section 6 we con-
clude and point out possible future work.

2 HIGH QUALITY IMAGE-
BASED WALKTHROUGH

One of the most relevant stages in walk-
through rendering techniques which use
keyframing is the generation of in between
frames. Our work is strongly based on the
high quality walkthrough that uses IBR
techniques by Myszskowski et al [1]. Tt
consists of three main steps:

e First it performs a 3D warping [2] of
the data, which avoids occlusion ar-
tifacts.

e Then, an adaptive splatting tech-
nique, similar to the one in [3], is used
to reduce the existing gaps.

e And finally, the holes produced by
occluded objects are removed by

blending two different keyframes as
in Mark et al [4].

Once this process has finished there re-
mains a couple of problems to solve: pixels
that are occluded in both images and spec-
ular and glossy effects due to the change in
view direction. The first problem is solved
by tracing the corresponding rays. Spec-
ular and strongly glossy effects are usu-
ally of high contrast, thus they attract the
viewer’s attention, so they must be han-
dled very accurately. In order to enhance
the quality of the image, the perceivable

R AN \‘ \
18 o] 3D Warp RCATEE
e
" r i
.

Pixel § Animation Quality |~
Flow Predictor * proper occl
‘ 1

Listof specular objects
with perocivable error ¥ Butfer

Mask ofbad Mask of [BR "
specular pixels undefined pixcls

)
*

4
l Mask of pixcls to ray trace ;

Figure 1: Frames generation pro-
cess. Courtesy of Karol Myszkowski
and Takehiro Tawara from the
MPI for Computer Science of
Saarbriicken.

errors caused by these pixels are computed
with the aid of a perception-based Anima-
tion Quality Metric [5, 6]. The pixels se-
lected by the AQM method are added to
the ones which are occluded in both im-
ages and are also ray traced. Figure 1 de-
picts the processing of inbetween frames.

3 PREVIOUS KEYFRAMES
PLACEMENT STRATEGIES

In this Section we compare several pre-
vious keyframes placement strategies.
Along this Section we assume a fixed
number of initial keyframes and the goal
will be to minimize the number of pixels
that cannot be properly derived from the
keyframes due to visibility problems.

3.1 Uniform Placement

The simplest choice that can be tested is
an uniform time step. That is, we di-
vide the steps of the path by the spacing
we decide and we choose the first frame
of each segment. Its cost is null and
yields surprisingly good results. However,
this method is only suitable for scenes
where Pixel Flow variation from frame to
frame is low, in these cases, choosing the
keyframes placement according to PF re-
sults in a lower number of wrong pixels.

3.2 Pixel Flow

The occlusion problems that appear when
warping two images together in a new one
are somehow related to the differences be-
tween the camera parameters of the new
position and the reference images. A mea-
sure of such differences can be the Pixel
Flow! between the two frames. When the
reference images minimize the pixel dislo-
cations, the number of pixels that cannot
be computed by warping is also reduced.

Pixel Flow computation is carried out by
using McMillan’s warping technique [2],
which makes its calculation cost negligi-
ble [1]. Computing initial keyframes by
using the Pixel Flow can be done in the
following way: the average of PF for all
frames along the animation path is accu-
mulated. Then, the total accumulated PF
is split into equal intervals, which deter-
mine the keyframe placement. This re-
sults in a well balanced per frame distri-
bution of pixels, which cannot be derived
by warping. However, this method is only
suitable when the variance of PF in a se-
quence is high. If the sequence has little
difference of PF between frames, uniform
placement behaves better. This leads to
define a new strategy which starts from

IPixel Flow is computed as the motion vec-
tor field that measures where each pixel moves to
from frame to frame in an animation sequence [1].

an uniform placement which is modified
according to PF.

3.3 Uniform placement modified
by Pixel Flow

As previous strategies were found to be
useful only for a particular case of walk-
through, Myszkowski et al [1] investigated
a new method that combines the strengths
of both. This method uses a constant ini-
tial spacing between frames equal to A.
Then, this spacing is changed according to
the PF, but the change of spacing is lim-
ited to a maximum size of =AA, where A
is a fixed coefficient, usually taking values
of 0.25 < A < 0.75. Computing the spac-
ing between frames is performed in the
following way. Let p; denote the actual
accumulated PF magnitude between the
currently considered pair of frames and
let P denote the average accumulated PF
for all pairs of keyframes in the sequence.
The fixed spacing A is assumed for p; and
P computation. A new reference location
will be placed at distance d; of the previ-
ous one, with §; = (1 + ;) A. Where «; is
computed as:

a; = P—p
1 T ? 7
and «; is
—A af o; < —A,
a =4 o if —-A<ao <A
A if a; > A

This method allows to reduce the num-
ber of pixels which have to be recomputed
at each frame. The cost of placing the
new reference images is negligible if we
take into account that the Pixel Flow must
be computed anyway as some of the sub-
sequent steps of the animation rendering
(such as AQM [7] processing and pixel re-
projetion) will use it.

4 KEYFRAME SELECTION US-
ING VIEWPOINT ENTROPY

Although the computation of Pixel Flow
can be done using IBR techniques and
therefore its cost is low, there are some
scenarios where this information would
not encode real changes in scene. For ex-
ample, a camera tilt would produce the
Pixel Flow magnitude to grow although all
the pixels previously seen may be visible
in the next image. Thus, Pixel Flow could
produce undesired effects in our keyframe
selection algorithm. In this Section we
present a new technique which addresses
the problem of keyframe selection from a
very different point of view. The selection
of good views is done by only using an ID-
rendering and analyzing the information
contained in the frame-buffer with a mea-
sure called viewpoint entropy. This mea-
sure can be interpreted as the amount of
information obtained from a point. Com-
puting the difference of information be-
tween two frames can somehow indicate
the amount of pixels to recompute from
one frame to another. This difference is
used to determine which reference images
are selected. We will see that this measure
performs well and its computation can be
accelerated by using OpenGL. First we in-
troduce the foundaments of the measure.

4.1 Viewpoint Entropy

Viewpoint entropy [8] is based on an In-
formation Theory measure, the Shannon
Entropy [9, 10]. The Shannon Entropy of
a discrete random variable X with values
in the set {ay, as, ..., a,} is defined as

H(X) ==Y pilogp;

=1

where p; = Pr[X = a;], the logarithms are
taken in base 2 and when p, = 0 we take
pilogp; = 0. As —logp; represents the
information associated with the result a;,

the entropy gives the average information
or the uncertainty of a random variable.
The unit of information is called a bit.

Let a scene S consist of a set of Ny faces.
We are going to use as probability distri-
bution the relative area of the projected
faces over the sphere of directions centered
in the viewpoint p, as in Fig. 2. Thus, the
viewpoint entropy of a point p from a scene
S is defined as:

where A; is the projected area of face ¢ and
41T is the solid angle of the sphere. Hence,
% represents the wvisibility of face i with
respect to the point p. When ¢ = 0, the
area projected is the background. This
is required because when computing en-
tropy we must use a probability distribu-
tion function, otherwise the entropy mea-
sure would not be consistent. On the
other hand, this is not the only reason,
a probability distribution could be built
by normalizing the measures without us-
ing the background. However, such a mea-
sure cannot handle with distances: pro-
jecting the scene under the same direction
but at a different distance would give the
same value. The use of background gives
the objects which are near higher entropy
than the ones which are far. In excep-
tional cases this could lead to small er-
rors, but this can only happen if we com-
pare two different views, one showing all
the faces, including background, with the
same projected area and the second show-
ing all the faces but the background with
the same projected area. The error com-
mited will be of log(N;+1)—logN;, which
for a big value of N; is negligible. How-
ever, this does not happen in practice be-
cause usually a number of faces are not
visible.

sphere of directions

‘ .\

Figure 2: Computation of the view-
point entropy.

4.2 Perspective frustum entropy

In many cases what we really want to mea-
sure is the amount of information provided
from a single image that does not cover all
the sphere of directions, as this is the way
we usually obtain the 2D representations.
In order to do this we must consider the
case where we have a perspective projec-
tion. We only take into account the ob-
jects that are inside the perspective frus-
tum (see Fig. 3). In this case the measure
is called perspective frustum entropy and
it is defined as [8]:

NioA; . A
IFP(Sap) = - _110g_1, (1)
go Ay T Af

where A; is the relative projected area of
face 7 over the sphere that falls into per-
spective frustum Fp, which is a pyramid
of rectangular basis, and Ay is the total
area of the projected image. The pro-
jected areas of each face can be computed
by weighting the pixels of the projection
plane by the solid angle they subtend and
summing up all the pixels belonging to
the same face. Consequently, the result-
ing function will be:

Ny Npia,
S Ay e 545

IFP (Sv p) == Z — A
=0 f
Npimi) .
* log Lo A * SA], (2)
Ag

where N, is the number of pixels that
project face ¢ and SA; is the solid angle
subtended by pixel j.

projection-plane

viewpoint .+

Figure 3: Only the objects inside
the frustum are considered.

4.3 Keyframe selection using per-
spective frustum entropy

To compose our set of keyframes we place
the camera on the steps of the walk-
through. We select the initial frame, and
the next one will be the one which shows
a difference of information with the initial
one higher than a certain threshold. We
have tuned the threshold in order to ob-
tain the same number of keyframes to be
able to compare the results with the ones
obtained with other strategies. Next we
see how we evaluate the difference on in-
formation between two frames.

Ideally, the difference on viewpoint en-
tropy between two frames can be com-
puted wusing the Kullback-Leibler dis-
tance [9, 10], but this is not possible when
having probability values of 0, as it is our
case. Moreover, we only want to take into
account increases on information. A face
seen in frame 7 and not seen in frame ¢+ 1
should not increase the value of the differ-
ence, only the faces which were not seen
in previous frame or the ones which are
seen better in the new frame. Our algo-
rithm computes the perspective frustum
viewpoint entropy for the first camera po-
sition of the segment and, for each frame,
the difference is computed by summing up
the increases of contribution to entropy
for each face. A high value of difference
means that there is a high amount of in-
formation appearing in the current frame
that does not appear in the first one. If
it is over a threshold the current frame is

selected, and set as the initial of the seg-
ment and the process is started again.

Algorithm 1 Selects the reference images
of the walkthrough.

Select a set of points placed in a path
infdiff <— 0; inilmg < 0;
Store the contribution to viewpoint en-
tropy of each face of point 0
for pos = 1..maxViewp do
if pos — iniImg > maxFramesSeg
then
inilmg < pos; Write pos;
else
Store the contribution to viewpoint
entropy of each face of point pos
for all the faces do
if diffContribFaces(curFace,
pos, inilmg) > 0 then
infodiff <« infodif f+
diffContribFaces(cur Face,
pos, inilmg)
end if
end for
if infodiff > threshold then
inilmg < pos; Write pos
end if
end if
end for

Algorithm 1 presents the pseudocode
that we have wused to select the
keyframes for the animation. Func-
tion diff ContribFaces(curFace, pos,
iniImg) returns the difference of the con-
tribution to the entropy of face curFace
for point pos and curFace for point
iniImg. If it is positive it means that in
the current position, face cur Face is pro-
viding a larger value of information than
in position inilmg (i.e. the projected
area of this face at the new frame is larger
than at the initial frame of the segment).

Projections are computed using graphics
hardware. The complexity of the method
depends on the number of frames to ana-
lyze and the resolution of the images. Ide-

ally, the resolution of images should be the
same than the used to render, but if nec-
essary it can be reduced to improve per-
formance. Analyzing an image is fast, and
for a resolution of 400 x 400 a frame rate
of 13 to 14 frames per second is achieved.

5 RESULTS

Several tests have been made with the dif-
ferent strategies. Table 1 depicts the aver-
age percentage of errors for these methods.
Although uniform placement of keyframes
gives good results, the better ones are ob-
tained either with viewpoint entropy dif-
ferences or with a suitable flexibility coef-
ficient with the Uniform Placement mod-
ified by Pixel Flow variation method. On
the other hand, some flexibility coefficient
values can yield better results than our
method in some walkthroughs, as we can
see in Table 1 for value .75. However,
to select the best one, they have to be
tested before, as walkthroughs with dif-
ferent variations on PF could require a
different coefficient. In contrast to this,
with our method the same threshold will
yield similar results regardless the walk-
through. Efficiency improvements can be
obtained by reducing the level of detail.
For instance, reducing the window size to
200 x 200 leads to an improvement of four
in computation time, with similar results
than full resolution as the polygons which
would disappear represent low amount of
information in the view.

In Figure 4 we can see two frames of the
walkthrough. The initial keyframes of the
first walkthrough (Figures (a) and (c))
were generated using the uniform place-
ment plus PF (with a ¢ of 0.75) modifi-
cation. Figures (b) and (d) come from a
walkthrough generated from initial images
computed by our method. The white re-
gions denote the pixels that have to be re-
computed because they do not appear in
any of the keyframes of the segment (the

images were modified with xv to obtain a
good B/W printing).

6 CONCLUSIONS
TURE WORK

AND FU-

We have developed a new method for
the selection of keyframes for walkthrough
renderings. Its cost is low, keyframes are
selected in seconds, as most of the process
can be accelerated using graphics hard-
ware. A further acceleration will come
from the reduction of image size, which
would speed up analysis, with a cost in
accuracy, but we will also seek for mea-
sures that help predict the behaviour of
viewpoint entropy according to the cam-
era movement.

Acknowledgements

The authors want to thank K. Myszkowski
and T. Tawara for the data and the ren-
derings they did for us. We also want to
thank M. Feixas, Ph. Bekaert, and H.
Schirmacher for their continuous support
and advice. This work has been partially
supported by SIMULGEN Open ESPRIT
project #35772, grant BR98/1003 of Uni-
versitat de Girona, and TIC-2001-2416 of
the Spanish government.

REFERENCES

[1] Karol Myszkowski, Przemyslaw
Rokita, and Takehiro Tawara.
Perception-based fast rendering

and antialiasing of walkthrough

sequences. IEEE Transactions
on Visualization and Computer
Graphics, 6(4):360-379, October
2000.

[2] L. McMillan. An Image-Based Ap-
proach to Three-Dimensional Com-
puter Graphics, Ph.D. Dissertation.
PhD thesis, April 1997.

3]

[4]

[5]

[7]

8]

[9]

[10]

L. He J. Shade, S. Gortler and
R. Szeliski. Layered depth images.
In Computer Graphics Proceedings
(Proc. SIGGRAPH ’98), pages 231
242, July 1998.

L. McMillan W. R. Mark and
G. Bishop. Post-rendering 3d warp-
ing. In Proc. of 1997 Symposium on

Interactive 3D Graphics, pages 7-16,
New York, April 1997. ACM Press.

Alan Chalmers, Ann McNamara,
Scott Daly, Karol Myszkowski, and
Tom Troscianko. Image Quality Met-
rics. ACM SIGGRAPH, July 2000.

Karol Myszkowski. The visible dif-
ferences predictor: Applications to
global illumination problems. In
G. Drettakis and N. Max, edi-
tors, Rendering Techniques '98 (Pro-
ceedings of FEurographics Rendering
Workshop '98), pages 233-236, New
York, NY, 1998. Springer Wien.

Karol Myszkowski, Przemyslaw
Rokita, and Takehiro Tawara.
Perceptually-informed acceler-

ated rendering of high quality
walkthrough sequences. In Dani
Lischinski and Greg Ward Larson,
editors, Rendering Techniques ’99,
Eurographics, pages 5-18. Springer-
Verlag Wien New York, 1999.

Pere-Pau Vazquez, Miquel Feixas,
Mateu Sbert, and Wolfgang Heidrich.
Viewpoint selection using viewpoint
entropy. In T.Ertl, B. Girod,
G.Greiner, H. Niemann, and H.-P.
Seidel, editors, Vision, Modeling, and
Visualization 2001, 2001.

R.E. Blahut. Principles and Prac-
tice of Information Theory. Addison-
Wesley, 1987.

T.M. Cover and J.A. Thomas. Fle-
ments of Information Theory. Wiley,
1991.

| Methods | % Wrong Pixels |

Uniform placement 4.04213
Uniform Pixel Flow 4.19657
Uniform Placement + 0.25 x PF 3.39578
Uniform Placement + 0.48 x PF 2.00395
Uniform Placement + 0.75 x PF 1.95706
Uniform Placement + 0.91 x PF 4.97146
Perspective frustum entropy 2.71660

Table 1: Average wrong pixels using different strategies. 0.25 to 0.91 are differ-
ent values for the flexibility coefficient of the segment length. Note that frustrum
entropy behaves similarly or better than Unif. Placement plus Pixel Flow methods.

XN

Figure 4: Comparing errors from different strategies. Figures (a) and (¢) were
generated from the initial sets computed by the Uniform Placement modified by
PF. Figures (b) and (d) were computed using the frames generated by the entropy-
based algorithm. Completely white regions denote the wrong pixels.

