AN INTELLIGENT HYBRID APPROACH FOR
DESIGN-BY-FEATURES

Lian Ding and Yong Yue

Department of Computing and Information Systems
University of Luton
Park Square, Luton LU1 3JU, United Kingdom
Email: lian.ding@luton.ac.uk, yong.yue@luton.ac.uk
Website: www.luton.ac.uk

ABSTRACT

This paper presents a new methodology for design-by-features. After a brief background study of design-
by-features, a new architecture with a feature library, feature-based model, feature library management
and feature-based model management is introduced. A standard feature class is defined for the feature
library. Automatic feature-based model management covering interactive functions, identification of
feature interaction and maintenance of the model validity is described. Implementation of the work and
testing with sample components are presented. Finally, conclusions are drawn and further research

summarised.

Keywords: design-by-features, feature-based model, feature interaction, feature library, and validity

constraints.

1. INTRODUCTION

Design-by-features, which is one of the two main
methods in feature technology, offers the user a
library of features to represent components. This
method makes computer aided design (CAD) more
meaningful and easier to integrate with computer
aided process planning (CAPP). Although it does
not eliminate the need for feature recognition, the
amount of work for recognising features is reduced
remarkably [Gindy et a/ 1998]. A major problem
with design by features is feature interactions.
Feature interactions which occur inevitably when a
design model is manipulated, have an important
effect on the features involved and consequently on
the validity of the feature-based model. The model
validity, in turn is very important for process
planning applications. Although there has been a
considerable amount of research effort, the problem
has not been well resolved due to the complexity and
lack of sophisticated algorithms.

This paper presents an intelligent hybrid
methodology for design-by-features taking into
account feature interactions and validity constraints.
The next section provides a brief survey of previous

work on design-by-features. Section 3 proposes a
new architecture of a design-by-features system.
Section 4 describes feature library and feature-based
model. Section 5 discusses the feature validity
maintenance with the feature-based model
management. Section 6 presents the implementation
and test results. The last section summarises the
work and draws conclusions.

2. PREVIOUS WORK

Design-by-features can be broadly classified into two
categories [Lee and Kim 1998]: Destruction by
machining features and synthesis by design features.
With the destruction by machining features method,
a design model is built by subtracting depression
features from a raw stock and the machining features
are derived simultaneously. The synthesis by design
features method generates a design model by adding
protrusion features and subtracting depression
features.

Various design-by-features systems have
been implemented since the mid-1980s. Shah and
Rogers [1988] developed an expert form feature
modelling shell which supports user definition of

form features. Chang [1989] proposed a feature-
based design and process planning system using a
solid modeller. Chan and Nhieu [1993] proposed a
framework for implementing a feature-based
application with a CAD system, in which a user-
defined external feature database was built, based on
a hierarchical structure containing all feature
information for the downstream application. De
Martino et al [1994] introduced a method to
recognise and update features after each feature-
based design procedure by separating the interacting
features. Lee and Kim [1998] employed an
incremental approach for extracting machining
features from a feature-based design. Tseng [1999]
presented a modular modelling approach by
strengthening the technical support provided to the
designer. Hounsell and Case [1999] applied a
method to identifying structured geometric spatial
feature interactions based on a broad multilevel
classification. = Bidarra and Bronsvoort [2000]
proposed a semantic feature modelling approach to
defining and maintaining the semantics of feature
during all the modelling operations. However, the
problems of conventional design-by-features method,
such as feature interactions have not been fully
resolved.

3. ARCHITECTURE OF THE DESIGN-BY-
FEATURES SYSTEM

The proposed design-by-features system has been
implemented in four parts: feature library, feature-
based model, feature library management and feature
model management. The feature library is composed
of a set of standard feature classes used for designing
the feature-based model. The feature-based model is
used to design and store a component directly with
features. The feature library management maintains
the feature library functions, such as adding,
modifying and deleting feature classes. The feature-
based model management provides an interface
between the user and the system applications, which
consists of interactive functions to create and
manipulate the feature-based model, specifying
feature class, maintaining and recovering model
validity, identifying feature interactions and so on.

The architecture of system is shown in
Figure 1.

USER INTERFACE

Feature-based model management

Feature library
management

Feature

Model Identification Interactive
validity of feature functions of
maintenance interactions feature model
1 0: Non-connection ~N—
Feature | Feature n 1: Parent-child

......... g

Feature ; Feature-based model

library

2: Connection

Design-by-features

Neural network-based
feature recognition

Architecture of the design-by-features system
Figure 1

4. FEATURE LIBRARY

In the design-by-features system, component models
are created by specifying parameter values for the
standard feature classes in the library. That is, the
feature library is used to set up the context for the
design and the system.

4.1 Feature Class Definition

Feature classes in the system are broadly divided
into two categories: predefined features and user
defined features.

4.1.1 Predefined features

Predefined features refer to a set of standard feature
classes, which are defined as a template in the
feature library. According to the requirements for
integrated CAD/CAM environments, predefined
design features cover the majority of the primitive
features which likely to be of interest for the
application of machining process planning. In the
system, six primitive internal feature classes are
included: round hole, conical hole, general hole, slot,
pocket and step. However, it is possible to add more
primitive features, especially external features in the
future. The feature classification proposed has been
based on the ISO AP224 STEP standards [STEP].
This provides an opportunity to bring the work
towards industrial applications.

As illustrated in Figure 2, the standard
feature class is explicitly described by a hierarchical
data structure, which consists of five parts: Identifier,
Interface Parameters, Validity Constraints,
Machining Attributes and Feature UndiGraph. The
Feature UndiGraph is proposed in order to depict
feature patterns.

Definition:
Feature UndiGraph = (F, R)

where F is a finite non-NULL set of faces the feature
consists of:

F={face; | face; € Feature}; four attributes
are attached to each face: the number of
adjacent Feature Faces (FF), the number of
adjacent Virtual Faces (VF), the shape type
and the normal.

R = {FR}, is a set of relationships between
the faces.

FR is a relationship with no specific
direction between two faces:

FR = {<face;, face | P(face;, face;) A (face;,
face;e F)}

P(face;, face;) is a path with no specific
direction between face; and face;

Here, FR is symmetrical, i.e. <face, face,>
= <face,, face,>

Figure 3 shows examples of Feature
UndiGraph.

4.1.2 User-defined features

If predefined standard features are insufficient, the
user can define his/her own features based on the
standard design features stored in the library. An
example of user-defined features is a compounded
feature consisting of a blind hole and a through hole
as shown in Figure 4.

Feature Class

Identifier Interface Validity Machining Feature
Parameters Constraints Attributes UndiGraph
Name Shape Geometry Machining Process
Code Position Topology Tool Access Direction
Type Orientation Machining Tool Size
Topology Intersections Tool Shape
Machining

Figure 2

Data structure of feature class

90° PLANE

90°
PLANE 90° PLANE
. /l
9Q° 07
Y PLANE K
\‘ /'
AR /
N, v

(90°, 270°)

st

(90°, 270°)

Examples of Feature UndiGraph
Figure 3

N\

A component feature
Figure 4

4.2 Specification of Feature Class

The instantiating of a feature class involves
specifying the parameters of the feature (e.g. shape,
position and orientation), detecting its validity, and
interfacing to the feature-based model.

4.2.1 Parameters of feature class

Feature parameters serve as an interface for the user
to specify the feature class. They are used for
determining not only how a feature class is presented
to the user but also how the user interacts with the
system. A set of parameters of a feature class is
defined based on the requirements for both design
and machining purposes: shape, position and
orientation, and validity constraints. The feature
class in the system, which is either an additive
feature or a subtractive feature, is represented by the
feature volume or its boundary elements as a whole.
The feature can also be either a primitive feature or a
compounded feature. The basis of a feature class is
its shape volume associated with a set of geometric
parameters relating to the corresponding feature

shape, called shape parameters. For example, the
basic shape volume for a hole feature is a cylinder
for which the main geometrical parameters include
the radius and height. Another example is the slot
shown in Figure 5, which is described as a block
with parameters of length, width, depth and angle.
The shape parameter set is sufficient to represent a
feature and uses high level information (feature
shape volume) instead of low level geometrical
information (e.g. vertex and edge) designating the
feature boundaries.

angle

A slot feature
Figure 5

The position and orientation parameters define the
spatial relationships between the feature instance and
the world co-ordinate system by fixing its degrees of
freedom. Machining parameters such as access
direction, tool geometry and tool size are related to
the machining operations correspond to the feature.

4.2.2 Validity constraints

At the feature instantiation stage, the feature validity
is checked automatically based on its validity
constraints. As illustrate in Figure 2, four types of
constraints are involved in defining the feature class:
geometric, topological, machining and interacting
constraints.

e Geometric constraints

Geometric constraints are indispensable for each
feature, which have a standard range for specifying
the value of each parameter for the shape, position
and orientation.

e Topological constraints

The faces of the parameterised shape volume for the
feature can be classified into two types: VF (Virtual
Face) and FF (Feature Face). A VF is not the
boundary of feature, but the boundary of the feature
volume. An FF is the boundary of both the feature
volume and the feature itself. A special topological
relationship of FF and VF exits for each feature
class. Constraints of such property are termed
topological validity constraints. For instance, the
depth of a blind hole must be restricted to be less
than the size of the stock where the hole is to be
added. Otherwise the blind hole would become a
through-hole. The length limit of a blind or through-
slot is another example. In general, the restricted
value can be calculated by algebraic expressions
with the parameters of the feature class. Table 1
presents an example of length limit of a blind slot
when angle o is restricted between 0° and 90°.

e Machining constraints

From the machining point of view, dimension and
tolerance constraints should be applied to the feature
definition. The values of machining constraints
depend on the specific workshop environment (e.g.
machine tools). For instance, the radius and height
of a through-hole may be restricted to a range based
on the manufacturing environment.

e Interacting constraints

Geometrical, topological and machining constraints,
as described above, are insufficient to fully retain
feature validity when feature interactions exist. As
known, feature interactions can cause serious
constraint violations of wvalid feature instances.
Therefore, the constraints for feature interactions
must be defined, such as the dependent properties
between parent and child features.

Table 1. Length limit of a slot

Primitive | L =m0’ + (= 0,)’
variables Bo=arcsin(width/ L)
‘x max— xx‘
oo =arcctgl ——
Y max— Oy‘
Case 1
Lijmi= Li+Lo,
L,=width*tgo.
Lo=(Ymax-0y)/cOSCL
Case 2 A
>
o
(90°-0,9)>0 (90°-01p-Bo)
Liimi= L*COS(9OO-0C-0(,0)
Case 3 A
Olo
0 XX
Xmax X
o
(90°-019)>0= (90°-01p-Bo)
Liimi= L*COS(9OO-0C-0(,0)

5. FEATURE-BASED MODEL
MANAGEMENT

Feature-based modelling allows the user to design a
component directly with features predefined in the
feature library. Unlike conventional geometrical
models, the proposed feature-based model is

designed for high-level data, i.e. feature instances.
Therefore all the modelling operations are feature-
based. As shown in Figure 1, the highest level of the
feature-based model can be presented as a graph,
where the nodes correspond to feature instances and
the arcs store interaction relationships between
feature pairs. Three types of feature relationships
are defined within the feature-based model: parent-
child relationship, connection relationship and non-
connection relationship [Ding et al 2000]. The
proposed feature-based model makes it possible to
trace the modelling process using a top-down
approach based on the hierarchical structure.
Another characteristic of the model is the
consistence of the feature instance. The validity of
the feature instance is kept effectively by the feature-
based model management. The functions of feature-
based model management can be generally grouped
into three categories: interactive functions for
creating and manipulating the feature model,
identification functions for detecting feature
interactions and maintenance functions for keeping
model validity.

5.1 Interactive Functions of Feature-Based
Model

Three main operations are considered for the
interactive functions: adding new feature instance,
editing and deleting existing feature instance.

5.1.1 Adding a new feature instance to the model

With a full set of interface parameter values, a pre-
defined feature class can be initialised as a new
feature instance. Validity check for internal
geometric and topological constraints for the user-
supplied parameters will be operated at the same
time. When the wvalidity check process is
successfully passed, the new feature instance is
added to the feature-based model.

5.1.2 Editing a feature instance in the model

Existing feature instances can be modified by
specifying new values for their parameters. The
process is called editing features. The validity check
and interaction identification are necessary for the
feature being modified. If the feature to be modified
is a parent feature, the validity of all its child features
must be checked and necessary changes to their
feature class or dimensions made. In the example
shown in Figure 6, pocket A is the parent of pocket
B. When the depth of pocket A is shortened, the
depth of pocket B must be changed accordingly, i.e.
increased by the amount by which pocket A is
shortened. After all necessary operations, the data
structure of the feature-based model is updated.

Pocket A

Pocket B

Parent-child relationship between two pockets
Figure 6

5.1.3 Deleting a feature instance from the model

When a feature instance is deleted from the feature-
based model, all its parameters and interaction
relationships with other features will be deleted
completely. However, this is not a straightforward
operation if the feature to be deleted has special
interaction relationship, e.g. parent-child
relationship. For the situation shown in Figure 6, if
pocket A is to be deleted, pocket B will become an
invalid pocket or its feature class and dimension
must be changed accordingly.

5.2 Identification of Feature Interactions and
Maintenance of Model Validity

Although a feature instance inherits all the validity
constraints defined in the feature class, it must be
checked / modified to maintain the feature validity
when feature interactions are present. Feature
interactions are still regarded as a major problem
affecting feature-based models.

The approach proposed in this work
identifies the feature relationships which are defined
in an earlier section. The key mechanism of the
proposed algorithm is to make use of the Interacting
Entity (IE) between feature pairs. The process
applies a search algorithm to traversing all the
features in the hierarchical feature-based model. A
Boolean intersection operation is performed between
the features and an IE is produced as the result. The
IE is analysed to determine the relationship between
feature pairs, which can be parent-child relationship,
connection relationship or non-connection
relationship. ~ With the algorithm, all relevant
interaction situations between feature pairs can be
detected, reported and handled in an appropriate
way. An advantage of the interaction identification
is that it focuses on analysing the interacting entity of
feature pairs instead of the union volume between
the interacting features. Therefore, it is efficient to
tackle situations where an operation with feature
interactions causes some constraint violation of the
model validity.

6. IMPLEMENTATION AND TESTING

The work has been developed using ACIS Release
6.2, SolidWorks 2000 and Matlab 6.0 on a PIII 500
personal computer. The programs are written in
C++ calling to the modellers' Application
Programming Interface (API) functions.

SolidWorks APIs are called to create the feature-
based model by specifying parameterised features
defined in the feature library in a three-dimensional
screen. The ACIS modeller is used to implement the
Boolean operation-based algorithm for searching and
manipulating features, especially checking
interacting features. The interacting features are
dealt with specifically by analysing the IE between
the feature pair. For interacting features, there exist
five conditions: merge, class change, divide,
dimension change and connect. A feed-forward
neural network available in the Matlab neural
network toolbox is utilised to recognise features with
any changes. The output of the system is a feature-
based model, containing the information of all
machining features defining the component, such as
feature type, relationship between feature pairs, etc.
This model can be used to analyse the component
design.

The system developed in this work has been tested
with a number of components. Two examples and
their test results are shown in Figures 7, 8 and 9, and
Figures 10, 11 and 12, respectively.

L

Feature 1: Blind Slot I

T T _—stock [

>

Feature 2: Blind Slot II

Feature 3: Pocket [

g 0O
8 O

Feature 4-7: Hole I--
Hole IV

Example 1
Figure 7

Feature 1 N Feature 3 face: PF-PF

The relationship between Feature 1 and Feature 3 is
Connection.

Feature 2 N Feature 3 face: CF-PF

The class of Feature 2 is changed from Blind Slot to
Through Slot. There is a Parent-child relationship between
Feature 2 (Child feature) and Feature 3 (Parent feature).

Note: Feature Face (FF) is presented as a special face that
actually constitutes the basic shape of a feature.

PF-PF: the intersecting face is regarded as Partial FF (PFF)
for pairs of features.

CF-PF: The intersecting face appears as a whole FF (CFF)
of feature f#; while a PFF of feature f..

Analysis of interacting features of Example 1
Figure 8

Feature 1: Blind Slot

Feature 2: Non-connection Feature 3: Connection
Feature 4: Non-connection Feature 5: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 2: Through Slot

Feature 1: Non-connection Feature 3: Child

Feature 4: Non-connection Feature 5: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 3: Pocket

Feature 1:Connection Feature 2: Parent

Feature 4: Non-connection Feature 5: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 4: Hole

Feature 1: Non-connection Feature 2: Non-connection
Feature 3: Non-connection Feature 5: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 5: Hole

Feature 1: Non-connection Feature 2: Non-connection
Feature 3: Non-connection Feature 4: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 6: Hole

Feature 1: Non-connection Feature 2: Non-connection
Feature 3: Non-connection Feature 4: Non-connection
Feature 6: Non-connection Feature 7: Non-connection
Feature 7: Hole

Feature 1: Non-connection Feature 2: Non-connection
Feature 3: Non-connection Feature 4: Non-connection
Feature 5: Non-connection Feature 6: Non-connection

Result of Example 1
Figure 9

4/stock

Feature 1: Through Slot I

Feature 2: Step [

Feature 3: Hole 1

Example 2
Figure 10

Feature 1 N Feature 2

The dimension of Feature 1 is changed. The relationship
between Feature 1 (Child feature) and Feature 2 (Parent
feature) is Parent-child.

Feature 2 N Feature 3 face: PF-CV
The relationship betweenQature 2 (Parent) and Feature 3
(Child) is Parent-child.

Note:

Virtual Face (VF) means a special face that does not
actually constitute the feature but represents as a virtual face
for the bounding boundary of Spatial Virtual Entity.

CV-PV: The intersecting face represents a whole VF of
feature f#; while a PFF of feature f..

Analysis interacting features of Example 2
Figure 11

Feature 1: Through Slot

Feature 2: Child Feature 3: Non-connection

Feature 2: Step

Feature 1: Parent Feature 3: Parent

Feature 3: Hole
Feature 1: Non-connection Feature 2: Child

Result of Example 2
Figure 12

7. CONCLUSIONS

This paper has presented an intelligent hybrid
design-by-features methodology considering feature
interactions. The method for resolving feature
interactions for design-by-features has been
successful with a range of prismatic components.

Further research will be to enhance the capability
and integrate the work with CAPP applications.
REFERENCES

Bidarra R, Bronsvoort WF, Semantic feature

modelling, Computer-Aided Design, Vol 32,
No 2, pp 201-225, 2000

Chan KC and Nhieu J, A Framework for feature-
based applications, Computers and Industrial
Engineering, Vol 24, No 2, pp 151-164, 1993

Chang TC, Expert Process Planning for
Manufacturing, Addison-Wesley, New York,
1989

De Martino T, Falcidieno B, Giannini F, Hassinger S
and Ovtcharova J, Feature-based modelling
by integrating design and recognition
approaches, Computer-aided Design, Vol 26,
No 8, pp 646-653, 1994

Ding L, Yue Y and Ahemt K, An integrated
approach to integrating = CAD/CAM,
Proceedings of 6th Annual Conference of the
Chinese Automation and computer Society in
the UK, Loughborough, 23-24 September
2000

Gindy NNZ, Yue Y and Zhu CF, Automated feature
validation for creating / editing feature-based
component data models, International
Journal of Production Research, Vol 36,
No 9, pp 2479-2495, 1998

Hounsell MS and Case K, Feature-based interaction:
an identification and classification
methodology, Proceedings of the Institution
of Mechanical Engineers, Part B, Vol 213,
pp 369-380, 1999

Lee JY and Kim K, A feature-based approach to
extracting machining features, Computer
Aided Design, Vol 30, No 13, pp 1019-1035,
1998

Shah JJ and Rogers MT, Expert form feature
modelling shell, Computer Aided Design,
Vol 20, pp 515-524, 1988

STEP, STandard for External representation of
Product data, ISO 10303-224 (Industrial
automation systems and integration. Product
data representation and exchange: mechanical
product definition for process plans using
machining features)

Tseng YJ, A modular modelling approach by
integrating feature recognition and feature-
based design, Computers in Industry, Vol 39,
pp 113-125, 1999

	INTRODUCTION
	PREVIOUS WORK
	ARCHITECTURE OF THE DESIGN-BY-FEATURES SYSTEM
	FEATURE LIBRARY
	Feature Class Definition
	Predefined features
	User-defined features

	Specification of Feature Class
	Parameters of feature class
	Validity constraints

	FEATURE-BASED MODEL MANAGEMENT
	Interactive Functions of Feature-Based Model
	Adding a new feature instance to the model
	Editing a feature instance in the model
	Deleting a feature instance from the model

	Identification of Feature Interactions and Maintenance of Model Validity

	IMPLEMENTATION AND TESTING
	CONCLUSIONS

