REAL-TIME RECURSIVE SPECULAR REFLECTIONS ON PLANAR
AND CURVED SURFACES USING GRAPHICS HARDWARE

Kasper Hgy Nielsen

Niels Jgrgen Christensen

Informatics and Mathematical Modelling
The Technical University of Denmark
DK 2800 Lyngby, Denmark
{khn,njc} @imm.dtu.dk

ABSTRACT

Real-time rendering of recursive reflections have previously been done using different techniques. How-
ever, afast unified approach for capturing recursive reflections on both planar and curved surfaces, as well
as glossy reflections and interreflections between such primitives, have not been described. This paper
describes a framework for efficient ssmulation of recursive specular reflections in scenes containing both
planar and curved surfaces. We describe and compare two methods that utilize texture mapping and en-
vironment mapping, while having reasonable memory requirements. The methods are texture-based to
alow for the simulation of glossy reflections using image-filtering. We show that the methods can render
recursive reflectionsin static and dynamic scenesin real-time on current consumer graphics hardware. The
methods make it possible to obtain arealism close to ray traced images at interactive frame rates.

Keywords: Real-time rendering, recursive specular reflections, texture, environment mapping.

1 INTRODUCTION

Mirror-like reflections are known from ray tracing,
where shiny objects seem to reflect the surrounding
environment. Rays are continuously traced through
the scene by following reflected rays recursively un-
til a certain depth is reached, thereby capturing both
reflections and interreflections. Although common in
ray traced images, the redlistic shading of highly re-
flective surfaces is seldomly seen in real-time virtua
reality applications. However, pipeline rendering fea
tures available in consumer graphics hardware, such
as texture mapping and environment mapping, can be
used to approximate some of these effects.

Environment mapping methods are normally used to
achieve effects that resemble ray tracing on curved
surfaces (e.g. a sphere), by modelling reflections as
distant. Standard environment mapping methods are
only afunction of direction and therefore ignore mo-
tion paralax and self reflection, i.e. environment
mapping only takes the reflection direction into ac-
count and ignores the position of the reflected ray.
This can be noticeable for reflections of objects close
to the reflector, since every point on an environment

mapped surface sees the exact same surroundings re-
gardless of its position. Static precalculated environ-
ment maps can be used to create the notion of reflec-
tion on shiny objects. However, for modelling reflec-
tions similar to ray tracing, reflections should capture
the actual synthetic environment as accurately as pos-
sible, while still being feasible for interactive render-
ing. In dynamic scenes, reflections need to be updated
to match the actual state of the scene.

Although environment mapping techniques can be
used to render reflections on planar surfaces (e.g. a
floor), this is normally not used in practice, since it
can lead to severe artifacts. As an environment map
captures the surrounding environment with respect to
asingle fixed viewpoint, an environment mapped pla-
nar reflector will miss important motion parallax ef-
fects. Instead planar reflections are traditionally cap-
tured by rendering reflected geometry from a mirror
viewpoint.

The recursive concept in ray tracing can generaly be
adapted to pipeline rendering in a simplified form.
Recursive reflections allow reflective objects to ap-
pear in other reflections. Instead of achieving this ef-

Viewpoint ~

2nd order
B reflection
1st order /
reflection —~ 4 :
V?rtual) Virtual
Viewpoint 1 Viewpoint 2

Figure 1. Second order recursive planar reflection:
The reflected view generated by reflector A sees an-
other reflector B and processes this reflection in are-
cursive manner.

fect by tracing individual rays recursively through a
scene as in ray tracing, reflective objects can be ren-
dered explicitly into reflection images of other reflec-
tors. By extending existing reflection methods, this
means rendering other planar or curved reflections
into previously generated reflection images in a re-
cursive manner. See Fig. 1 and Fig. 2. We will refer
to this concept as reflection tracing [Niels00]. Asin
ray tracing, the maximum recursion depth can be de-
termined to limit the maximum number of interreflec-
tions to be rendered.

Previous work have performed hardware rendering of
recursive reflections using different techniques, yet
have not described an approach for capturing recur-
sive reflections on both planar and curved surfaces, as
well asinterreflections between such primitives. This
paper addresses this topic. The goa is to design a
method that:

1. Efficiently captures reflections and interreflec-
tions on both planar and curved surfaces.

2. Uses texture-based techniques in order to ap-
proximate glossy reflections by low-pass filter-
ing reflection images.

3. Works in both static and dynamic environ-
ments.

4. Uses rendering features available in low-end
consumer graphics hardware.

5. Integrates easily into virtual reality applica-
tions.

To achieve our goal, we design a novel recursive
texture-based method for capturing recursive planar
reflections. We then extend this method to also cap-
ture recursive curved reflections, by using two differ-
ent existing environment mapping techniques. We de-
scribe and compare these two closely related meth-
ods that meet our goals. In the next section, we dis-
cuss previous work and their limitations, and con-
duct a detailed discussion of existing methods related
to our approach. Section 3 describes our approach,
and section 4 discusses the results. Finally, section
5 draws the conclusion and points out directions of
future work.

2nd order
reflection

Viewpoint ~

1st order
reflection

Figure 2: Second order curved mirror reflection in a
scene with two reflective spheres. Object A contains
object B in its reflection. By recursion, object B also
contains object A in itsreflection.

2 PREVIOUS WORK
2.1 Overview

The use sphere, cube and dual paraboloid mapping
for rendering mirror reflections on curved surfaces
(both convex and concave) isthoroughly described in
the literature [Green86, Voorh94, Heidr98, Heidr99,
Kilga99a, Kilga99b, McRey00, Watt00]. A good
discussion of their pros and cons can be found in
[McRey00]. A visua comparison of environment
mapping versus ray tracing can be found in [Watt0Q].
Other methods have been proposed for rendering re-
flections: Warped Geometric Reflections [Ofek98],
Tetrahedron Environment Mapping [Forte00], and
Extended Environment Mapping [Cho00]. [Ofek98]
and [Cho00] can capture recursive reflections. How-
ever, unlike sphere, cube and dua paraboloid envi-
ronment mapping, these methods are not supported by
graphics hardware today, but could well be candidates
for future hardware implementations. While meth-
ods have been developed for capturing recursive re-
flections on curved surfaces using sphere [Kilga99a]
and cube mapping [McRey0Q], none of these meth-
ods consider planar surfaces. Planar recursive re-
flections are captured using either the stencil-buffer
[Diefe97, Kilga99c, McRey00] or texture mapping
[McRey0Q]. An interesting alternative is suggested in
[Basto98], but it cannot run on todays graphics hard-
ware due to the use of forward mapping. An approx-
imate technique that uses ray-sphere intersections to
calculate environment map lookups is also described
in [Gritz01]. Finally, the use of reflection map-
ping techniques to approximate more general BRDF-
based reflection models have been addressed by sev-
eral authors [Mille84, Green86, McRey00, Cabra99,
Heidr99, Basto99, Wynn00, Kautz00]. In the next
two subsections we conduct a detailed discussion of
existing methods related to our approach.

2.2 Planar Reflections

The methods for capturing recursive reflections on
planar reflectors [Diefed7, McRey0Q] are generally
based on beam tracing [Heckb84]. The entire view

frustrum of a planar reflector is bent and the mirrored
view is followed in a recursive manner (see Fig. 1).
Given a scene with n reflective surfaces and a recur-
sion depth of d, the method has a time complexity
of O(n4*+1). However, as pointed out by Diefenbach
[Diefe97], culling can greatly reduce the actual num-
ber of n for each iteration.

Using multi-pass rendering, reflections are imple-
mented by first rendering the scene without the mir-
rored surfaces. A second rendering is performed for
each reflected viewpoint, and the resulting image is
applied to the reflector. This process can be repeated
recursively in scenes with multiple reflectors. Sten-
cil operations are arranged so the reflected images are
masked by the stencil buffer.

McReynolds et al. [McRey00] a so describe how tex-
ture maps can be used to store the final reflection
images. The stencil buffer is used for rendering in-
terreflections into the reflection textures (reflection
maps), and texture mapping is used for rendering the
final image. [McRey00] state that one of the advan-
tages of the texture mapping technique compared to
the stencil technique, is that it may be acceptable to
use reflection textures with the contents from the pre-
vious frame in a dynamic environment.

2.3 Curved Reflections

Recursive reflections on curved surfaces can be ap-
proximated using environment mapping techniques.
By pre-generating environment maps for reflected ob-
jects, these can be used for rendering interreflections
into other environment maps [Kilga99a, McRey00]
(see Fig. 2). The regeneration of many environ-
ment maps can however be computationally expen-
sivein adynamic environment, especially when using
complex environment map representations (e.g. cube
maps). This needs to be solved in order to make our
algorithm efficient.

One solution is to use a simpler representation, such
as a (view-dependent) sphere map. A sphere map
should normally be generated by warping a view-
independent environment map, yet approximate tech-
nigues can aso be used. One technique is to only
generate a single distorted projection of the reflec-
tion as seen from the reflecting object in the direction
of the virtual viewer, and use this as an approximate
sphere map [Palli99]. The projection can be generated
by using a high field-of-view and/or post-warping the
rendered view using non-linear distortion. This tech-
nigue does not produce an accurate environment map
since the back and parts of the sides of the environ-
ment are disregarded, and since the generated image
does not accurately model a sphere. Still, the tech-
nique can produce acceptable results.

An aternative solution, described by [McReyQ0], ap-
proximates interreflections by taking advantage of
view-independent environment mapping and frame-
to-frame coherence. The method can be described as:
When rendering a frame, we generate top-level (i.e.
recursion level 0) environment maps for each reflect-
ing object in the scene, one at atime. During gener-
ation of an environment map F, we determine the set
of reflecting objects that will be visible in this envi-
ronment map. For each object we check:

1. If an environment map has aready been gener-
ated for this object in the current frame, we use
this environment map for rendering the object
into environment map E.

2. If such an environment map does not exist, we
check if an environment map has been gener-
ated for this object in the previous frame. If so,
we use thisinstead for rendering the object into
environment map E.

3. If no environment map has been generated we
draw the interreflecting object into £ without
reflection. Note, that this is only the case the
first time an object appears, e.g. in the first
frame.

The method uses previously generated environment
maps to approximate reflections of interreflecting ob-
jects. At frame ¢ the method captures between (i * n)
and (i * n + n — 1) interreflections, where n is the
number of reflectorst. Thus, the method does not
make use of recursion. In dynamic environments
the method regenerates n environment maps for each
frame, and therefore has a time-complexity of O(n).
In static environments the method runs in constant
time, after initializing the environment maps with the
desired number of interreflections. Asthe method re-
lies on previously generated environment maps for
rendering interreflections, there will be a small er-
ror in the rendered interreflections compared to real
recursive interreflections, when using the method in
a dynamicaly changing environment. The error is
largest for the first environment map rendered, as all
interreflections here are based on previous frames,
and smallest for the last environment map, as al re-
flections here are based on environment maps gener-
ated in the current frame. The error depends on the
frame rate and the speed of dynamic changes. How-
ever, in general it can be hard to distinguish flaws in
secondary reflections on curved objects. Furthermore,
the higher the frame rate is on a real-time system,
the smoother the animation is, and the smaller the er-
ror will be between successive interreflections. Thus,
there is a good chance that such errors hardly will be
noticeable on a system exhibiting smooth, fluid ani-
mation.

1with the exception of n = 1, where the number of interreflec-
tions equals 0, regardless of <.

3 OUR APPROACH

By using beam-tracing principlesit is possible to cap-
ture specular interreflections. Yet, the method is re-
stricted to planar surfaces, and cannot account for in-
terreflections on curved surfaces. Methods exist for
capturing approximate interreflections on curved sur-
faces using environment mapping. However, none of
these methods consider planar surfaces.

While beam-tracing can be computationally expen-
sive, this concept appears to be the only accurate way
to simulate recursive planar reflections using graph-
ics hardware. McReynolds et a. [McRey00] have
shown how to capture planar interreflections using
texture mapping. Yet, as interreflections are captured
using the stencil-buffer, the method does not alow
for glossy interreflections. Furthermore, because such
textures need to be of relatively high resolution to cap-
ture reflections accurately, the method can be memory
intensive as a reflection map is generated for each re-
flecting object before rendering.

We propose an alternative planar method that does
alow for glossy interreflections and which has con-
stant low memory requirements that depend on the se-
lected recursion depth. We extend this method to also
capture curved reflections and interreflections using
environment mapping. We design two variations of
our algorithm: One, based on a view-dependent en-
vironment representation, and one based on a view-
independent representation. Both have advantages
and disadvantages which we discuss in section 5. For
simplicity we first describe our planar method (sec-
tion 3.1), and then extend the method to curved sur-
faces (section 3.2).

3.1 Planar Reflections

The concept of our planar reflection tracing method
issimple: For each rendering of the scene we gener-
ate a reflection map for each reflecting surface, and
apply it onto the reflector during rendering. As each
reflection map in itself isarendered view of the scene
from amirror viewpoint, this process can be repeated
recursively until a certain depth d is reached.

Because of the limited amount of texture memory, it
is generally wasteful to compute the reflections be-
fore rendering. Instead we propose that reflections
are computed during rendering, thereby minimizing
memory requirements. Using this scheme, only one
reflection map is required for each recursion level,
as illustrated in Fig. 3. Note, that the method im-
plicitly requires render-to-texture capabilities as the
back-buffer constantly is occupied by the contents of
the current frame. When a reflecting surface is met,
during rendering of the polygons in a scene, the ren-

Reflection Tree
L
2
1 1
2 0
2 2
1 2
7N

Reflection Maps

!

3

Figure 3: Examplereflection tree, showing the assign-
ment of one reflection map for each recursion level.
The number of reflections encountered at each node
is shown circled, while the recursion level isshownin
italics.

DrawScene (vi ew, depth) {
Clear frame buffer
for (each object i in scene) {
if ((object is reflector) &&
(depth < maxdepth)) {
Select refl.map n = depth as
render-target
Setup mrror_view
DrawScene (m rror_view, depth + 1)
Restore render-target
Apply refl.map N to object

}

Draw object i

Figure 4: Pseudo code for rendering a scene with
recursive planar reflections. DrawScene renders the
scene from a previously defined view. When areflect-
ing object is met, DrawScene is called recursively.
The recursion depth is passed as a parameter and
used to determine the render-texture level n, and ter-
mination of the reflection tracing branch, based on
maxdepth. An initial call of DrawScene(view, 0) is
used for rendering the entire scene.

dering task is immediately discontinued and the cor-
responding reflection map is generated. After gener-
ation, control isreturned to the rendering task, the re-
flection map is applied to the reflector, and the render-
ing task is continued. Reflection maps are thus gen-
erated, used, and discarded, and the texture space can
therefore be reused for subsequent rendering of re-
flections. The pseudo code for the algorithm is shown
in Fig. 4. The time complexity for this algorithm
is O(n * (n — k)%), where n is the total number of
objects, and k is the number of non-reflecting ob-
jects. The method can therefore be computationally
expensive, particularly for deep recursion levels, e.g.
d > 3. However, asin [Diefed7], the actual runtime
of the method can be improved by using culling tech-
nigques. Moreover, to further reduce scene complex-
ity, it can be advantageous to use low |level-of-detail
objects (LODs) when rendering interreflections. The
resolution of the generated reflection maps can aso
be dynamically scaled, based on the projected area of
the reflector, thus minimizing rendering overhead for

distant reflections. Finally, asin ray tracing, good re-
sults can be achieved with low recursion depths (e.g.
d < 3), depending on the specularity of surfaces.
For surfaces exhibiting subtle specular reflections, re-
flection contributions are diminished significantly for
each recursion level, and it may be acceptable to ter-
minate areflection tracing branch if the specular level
goes below a certain threshold.

We note that the described scheme precludes any use
of reflection coherence between successive frames, as
the reflection maps are discarded after use. We choose
to trade speed for memory, because planar reflections
are only rotation-invariant and must be regenerated
for new viewpoints, causing the practical use of co-
herence to be somewhat limited.

3.2 Planar and Curved Reflections

The described reflection tracing process can be ex-
tended to also handle curved reflections, by gener-
ating environment maps for curved reflectors instead
of planar reflection maps. This can be achieved by
generating view-dependent environment maps, e.g.
sphere maps through warped cube maps, or by using
approximate sphere mapping techniques.

For generating an environment map for a reflecting
object, that object is normally hidden to avoid self-
reflection. Yet, for letting each environment map con-
tain interreflections of both planar and curved sur-
faces, the environment map must be generated by re-
cursion. As the hidden object should be visible at
deeper recursion levels, it is necessary to account for
the hidden objects during the recursion process. With
thisin mind, the planar algorithm can be extended to
also handle curved objects by using the pseudo code
shownin Fig. 5.

Still, since some environment mapping methods are
view-independent, it seems reasonable to exploit this
during the reflection tracing process. Unlike planar
reflection maps, view-independent environment maps
can draw reflections seen from different viewpoints
and can therefore be reused for generating different
views of the same reflector.

It is advantageous to use a view-independent pa-
rameterization for top-level reflections, as these can
be re-used for successive frames in momentarily
static scenes. For interreflecting objects, the view-
independence means that an environment map only
needs to be generated once per frame, and that a re-
flecting object that seesitself through another reflect-
ing object, in theory can use the same environment
map to generate the interreflection. However, this
poses a problem: For generating an environment map
for an object that sees itself through another reflect-

DrawScene (vi ew, depth, objref) {
Clear frame buffer
for (each object i in scene) {
if ((object is reflector) &&
(depth < maxdepth)) {
if (objref) Unhide object objref
Select refl.map n = depth as
render-target
if (curved object) {
Hide object
Setup env_vi ew
DrawScene (env_vi ew, depth + 1, i)
Unhide object
else { // planar
Setup mrror_view
DrawScene (m rror_vi ew,depth + 1,NULL)

—

Restore render-target
Apply refl.map N to object
if (objref) Hide object objref
}
Draw object
}
1

Figure 5: Pseudo code for rendering a scene contain-
ing recursive planar and curved reflections, where a
single approximate view of the environment is used
as a view-dependent environment map representation
for curved reflectors. Again, the recursion depth is
passed as parameter. An extra objref parameter en-
sures that an object, hidden during environment map
generation, is made visible during recursive render-
ing. Aninitial call of DrawScene(view, 0, NULL) is
used for rendering the entire scene.

ing object, we may actualy attempt to use the envi-
ronment map that we are currently working on. One
solution isto first render al the non-reflecting geom-
etry into the environment map, thereby ensuring that
the environment map can be used as a reflection, but
it will still miss one of more interreflections. Another
approach is to take advantage of temporal coherence
by using previously generated environment maps to
approximate higher order reflections. The method de-
scribed by McReynolds et al. [McRey0Q] is advan-
tageous, since it has a linear time-complexity, while
still capturing deep levels of interreflections in both
static and dynamic environments. We extend the pro-
posed planar algorithm to include curved surfaces by
using this method. This requires generation of view-
independent environment maps for each curved re-
flector, before rendering the main frame (recursion
level 0). Since recursive calls might access the en-
vironment map currently being generated, a com-
plete representation of the environment map should
be available at all times. To achieve this, an environ-
ment map should first be updated when rendering of
the entire map is completed, i.e. similar to a dou-
ble buffering scheme. Using this technique, the com-
bined algorithm for capturing both curved and pla-
nar reflections is as shown in Fig. 6. As the planar
recursion is dominant, the time-complexity becomes
O(n*(n—k—c)?), wheren isthetotal number of ob-
jects, k isthe number of non-reflective planar objects,
and ¢ is the number of curved objects.

DrawScene (vi ew, depth, objref) {
Clear frame buffer
// create view-indep. environment maps
if (depth == 0) {
for (each reflecting curved object i) {
Hide object
Assign unique cube map to object
for (each cube face j) {
Select cube face j as render-target
Setup env_vi ew for cube face]
DrawScene (env_vi ew, depth + 1, i)
} Restore render-target
Unhide object
Update cube map

// draw the objects
for (each object i in scene) {
if ((object is planar reflector) &&
(depth < maxdepth)) {
if (objref) Unhide object objref
Select refl.map n = depth as
render-target
Setup mrror_view
DrawScene (mrror_view, depth + 1, NULL)
Restore render-target
Apply refl.map N to object
if (objref) Hide object objref
} else if (object is curved reflector) {
) Apply assigned cube map to object

Draw object

Figure 6: Pseudo code for rendering a scene con-
taining both planar and curved reflectors, where cube
maps are used as environment map representations for
curved reflectors. An environment map is generated
for each curved reflector before rendering the actual
scene (at depth 0). Again, depth and objref are passed
asaparameters. Aninitial call of DrawScene(view, O,
NULL) is used for rendering the entire scene.

4 RESULTS AND DISCUSSION

We have implemented both variations of our ago-
rithm: A view-dependent method (Fig. 5) and aview-
independent method (Fig. 6). Both have been used to
render reflections in scenes containing different num-
bers of planar and curved reflectors, at fixed recursion
depths. The results are shown in Fig. 7, and the mea-
sured performance statistics are shown in Table 1.

All tests were conducted on an Intel Pentium 111 450
MHz PC, with 128 MB RAM, running Windows,
and equipped with a GeForce 3 graphics accelera
tor. The test program was written in C++ using Di-
rectX 8.0. The view-dependent method used an ap-
proximate sphere-mapping technique, whilethe view-
independent method used cube mapping. Planar re-
flection maps and sphere maps were drawn into tex-
ture maps with a 256 x 256 texel resolution and a 32
bit pixel representation. The cube map resolution was
set to 128x128. For a fair comparison, our imple-
mentation did not use LODs or any culling besides
backface culling. Instead, we have used simple test-
scenes. However, the use of simple frustrum culling
improves the frame rates by afactor of 2 to 3.

Scene @ (b) © (d)
Recursion depth 2 2 2 3
Planar objects 6 1 2 3
Curved objects 1 3 2 1
Trianglesin scene 1078 1106 3890 1002
View dependent method:

Generated refl. 38 16 16 46
Fps, static/dyn. 19fps | 32fps | 29fps 13 fps
Used texturemem. | 0.5MB | 0.5MB | 0.5MB | 0.8MB
- Traditional 18MB | 1.0MB | 1.0MB | 1.0MB
View independent method:

Gen. planar refl. 62 (26) 19 (1) 28 (4) | 69 (15)
Gen. curved refl. 6*1 6*3 6*2 6*1
Fps, dynamic 10fps | 17fps 8 fps 7fps
Fps, static 21fps | 97fps | 44fps 27 fps
Used texturemem. | 0.9MB | 1.6MB | 1.3MB | 1.1IMB
- Traditional 19MB | 14MB | 1.3MB | 1.1MB

Table 1. Measured performance statistics for each
method run for each of the tested scenes. The table
shows the number of generated reflections, the mea-
sured frame rates, and the amounts of used texture
memory. The number of planar reflections generated
in static scenes is written in parenthesis. For com-
parison, the memory used when using a traditional
method is also shown.

We observe that both planar and curved recursive re-
flections can be captured using the proposed meth-
ods. The results show that the methods can be com-
putationally expensive for deep recursion levels, due
to the recursive nature of the algorithms. However,
this was expected as the algorithms are based on
beam-tracing principles. Still, real-time frame rates
have been achieved for al of the tested scenes. Al-
though the methods are based on texture-based re-
flection techniques, they exhibit reasonable memory
requirements. In the view-dependent implementa
tion, the requirements solely depend on d, due to the
utilization of render-to-texture functionality. In the
view-independent implementation, the memory re-
quirements depend on d for planar objects, and the
number of curved objects n, as a view-independent
environment map is allocated for each curved object.
Thus, in most cases both methods show a reduction
in memory requirements compared to methods where
reflections are pre-generated for each object before
rendering into the frame buffer. The savings are most
significant in scenes with many reflectors. The view-
dependent method is the least memory intensive.

By comparing the visual quality and performance of
the two methods in practice, we observe that they
both have advantages and disadvantages. The view-
dependent method is computationally cheap in scenes
with few reflections at low recursion depths, as only
one view is generated for each reflector. However,
because the method requires regeneration of environ-
ment maps for viewpoint changes, it suffers from
the same computational cost in both static and dy-
namic environments, making it difficult to capture

deep interreflections in real-time. Furthermore, the
use of approximate sphere mapping results in inaccu-
rate curved reflections.

The view-independent method is more expensive in
dynamic scenes, due to the updates of a complex en-
vironment map. Yet, the method is very computa
tionally cheap in static scenes, and appears to cap-
ture infinite recursive reflections on curved objects.
The approximation of interreflections, achieved by re-
cycling environment maps, yields good results with
fluid, smooth, dynamic animation (high frame rates),
but bad results for fast or jerky animation (low frame
rates). Given a less complex environment map rep-
resentation than cube mapping (e.g. dual-paraboloid
mapping), the view-independent method would make
it possible to capture deep recursive reflections faster
than the view-dependent method. The method runs
in linear time with respect to the number of curved
reflectors in dynamic scenes, and in constant time
in static scenes. Because the method efficiently ex-
ploits both view-independence and coherence, cap-
tures deep interreflections in both static and dynamic
scenes, and has potentia for being faster than the
view-dependent method, it isin our opinion the most
advantageous of the two.

In general, the environment mapping approximation
works well for reflectors that are small compared to
the surrounding environment, but it can be very inac-
curate when a reflector’s curvature is large or when
reflected objects are very close to the reflector. This
is a problem that our method cannot solve. To do so,
we need hardware support for more sophisticated en-
vironment mapping methods, e.g. [Ofek98, Cho00].
Furthermore, the use of texture-based techniques can
cause texture related magnification artifacts, result-
ing in a blocky looking appearance when moving too
close to a reflector or using low resolution textures.
Similarly, minification artifacts can arise when look-
ing at areflector from afar or when using high resolu-
tion textures. Both artifacts can be partialy reduced
by scaling the resolution to the projected screen area
of a reflector. However, this reduces the sampling
interval and can result in temporal aiasing, and as
the maximum size of textures is limited, magnifica-
tion artifacts cannot be completely eliminated. Thus,
for large reflectors the method produces inferior re-
sults compared to e.g. stencil buffer reflections. Still,
the lack of quality should be weighted against the fact
that texture reflections let us use filtering to simulate
glossy reflections.

Finaly, the methods use common pipeline rendering
features, and combine well with existing rendering
methods, e.g. bump mapping and texture mapping,
and are therefore easily integrated into a virtual real-
ity system.

5 CONCLUSION AND FUTURE WORK

We have described a texture-based approach for cap-
turing recursive reflections on planar and curved sur-
faces in both static and dynamic environments. It
takes advantage of hardware texture mapping, render-
to-texture and environment mapping capabilities.

We have designed two variations of our basic al-
gorithm. Both use beam-tracing principles to cap-
ture planar reflections, but differ with respect to the
parameterization used for curved surfaces. A view-
dependent method, which uses a view-dependent en-
vironment map representation, generated recursively
as in the planar case. And a view-independent
method, which uses a view-independent environment
map representation, pre-generated before each frame
and used for rendering al reflections of a single ob-
ject, including interreflections in successive frames.
Due to exploitation of render-to-texture functional-
ity, both algorithms reuse reflection maps when gen-
erating recursive reflections, thereby reducing mem-
ory requirements. Finaly, because the methods are
texture-based, glossy interreflections can be simu-
lated by filtering reflection images.

The results show that the algorithms can be expensive
for deep recursion levels. For only capturing low lev-
els of recursive reflections, the view-dependent algo-
rithm is found to be fastest. However, we find that
the view-independent algorithm is the most advan-
tageous of the two, since it captures deep levels of
recursive reflections, runs in constant time in static
scenes (for curved surfaces only), and will be faster
than the view-dependent method in dynamic scenes,
when given a simpler environment map representa-
tion that allows for fast regeneration.

Future work should examine extensions of the pro-
posed methods and test their behavior in more com-
plex scenes. It would be interesting to examine other
environment mapping parameterizations for curved
surfaces, e.g. dual paraboloid mapping or a more ac-
curate view-dependent parameterization. One could
aso investigate ways to use different (preferably
view-independent) parameterizations for planar sur-
faces, which would yield a faster algorithm. For
faster rendering, different LODs and culling schemes
should also betested. Finally, it should be straightfor-
ward to extend the methods to also capture (approx-
imate) recursive refraction, as well as ssmulate more
sophisticated BRDF based reflections.

6 ACKNOWLEDGEMENTS

The authors would like to thank Tomas Méller for
his encouragement and helpful comments. Thanks
to Scott Cutler and Chris Wynn for additional help.
Thiswork was supported in part by the STVF project
DMM and the Nordunit2 project NETGL.

Figure 7: Test scenes containing both planar and curved reflectors. Here, scene () is shown rendered using the
view-dependent method, while scenes (b,c,d) are rendered using the view-independent method. Scene (b) simulates

aglossy floor. The static illumination in these scenes (shadows, etc.) is pre-calculated using radiosity.

REFERENCES

[Basto98] Bastos, R., Sturzlinger, W.: Forward Mapped
Planar Mirror Reflections. Univ. of North Carolina
at Chapel Hill, Computer Science Technical Report
TR98-026, 1998.

[Basto99] Bastos, R., Hoff, K., Wynn, W., Lastra, A.:
Increased Photorealism for Interactive Architectural
Walkthroughs. Symposium on I nteractive 3D Graphics,
pp. 183-190, 1999.

[Cabra99] Cabral, B., Olano, M, Nemec, P: Reflection
Space Image Based Rendering. Computer Graphics
(SIGGRAPH'99 Proceedings), 1999.

[Cho00] Cho, F. S.: Rendering Reflective and Refractive
Objects with Extended Environment Mapping. Com-
puter Science Division, Berkeley, 2000.

[Diefe97] Diefenbach, P. J, Badler, N.: Multi-Pass
Pipeline Rendering: Realism For Dynamic Environ-
ments. Symposium on Interactive 3D Graphics, Pro-
ceedings, 1997.

[ForteOO] Fortes, T.. Tetrahedron Environment Maps,
Master's Thesis, Department of Computing Science,
Chamers University of Technology, Gothenburg, Swe-
den, 2000.

[Green86] Greene, N.: Environment Mapping and Other
Applications of World Projections, |EEE Computer
Graphics and Applications, pp. 21-29, 1986.

[Gritz01] Gritz, L., Apodaca, T., Pharr, M., Hery, C.
Bjorke, K., Treweek, L. : Advanced RenderMan 3:
Render Harder, SIGGRAPH 2001 Course 48, 2001.

[Heckb84] Heckbert, P. S., Hanrahan, P: Beam Tracing
Polygonal Objects, Computer Graphics (SIGGRAPH
' 84 Proceedings), 1984.

[Heidr98] Heidrich, W., Seidel, H. P: View-independent
Environment Maps. SIGGRAPH, Workshop on Graph-
ics Hardware, pp. 39-44, 1998.

[Heidr99] Heidrich, W., Seidel, H. P: Redlistic, hardware-
accelerated shading and lighting. Computer Graphics
(SIGGRAPH ' 99 Proceedings), 1999.

[KautzO0] Kautz, J.,, McCool, M. D.: Approximation of
Glossy Reflection with Prefiltered Environment Maps.
Graphics Interface 2000, pp. 119-126, 2000.

[Kilga99a] Kilgard, M. J.: Real-time Environment Reflec-
tions with OpenGL, Slides, nVidia Corp.,1999.

[Kilga99b] Kilgard, M. J.: Perfect Reflections and Specu-
lar Lighting Effects With Cube Environment Mapping,
Technical Brief, nVidia Corp., 1999.

[Kilga99c] Kilgard, M. J.: Improving Shadows and Reflec-
tions via the Stencil Buffer, Technical Report, nVidia
Corp., 1999.

[McRey00] McReynolds, T., Blythe, D., Grantham, B.,
Nelson, S.: Advanced graphics programming tech-
niques using OpenGL. SIGGRAPH 2000 Course 32,
2000.

[MilleB4] Miller, G. S, Hoffman, C. R.: Illumination and
Reflection Maps: Simulated Objects in Simulated and
Real Environments. Course Notes for Advanced Com-
puter Graphics Animation, SIGGRAPH’ 84, 1984.

[Niels00] Nielsen, K. H.: Real-Time Hardware-Based
Photorealistic Rendering. Master's Thesis, Informatics
and Mathematical Modelling. Technical University of
Denmark, 2000.

[Ofek98] Ofek, E., Rappoport, A.: Interactive reflections
on curved objects. Computer Graphics (SIGGRAPH
"98 Proceedings), pp. 333-342, 1998.

[Palli99] Pdlister, K.: Rendering to Texture Surfaces Us-
ing DirectX7, Gamasutra, 1999.

[Voorh94] Voorhies, D., Foran, J.: Reflection vector shad-
ing hardware. Computer Graphics (SIGGRAPH '94
Proceedings), pp. 163-166, 1994.

[Watt00] Waett, A.. 3D Computer Graphics, Addison-
Wesley, 3rd edition, 2000.

[Wynn0O] Wynn, C.: Real-Time BRDF-based Lighting us-
ing Cube-Maps, nVidia Corp., 2000.

