
ARCHITECTURE OF SYSTEM FOR CONFIGURABLE GIS DATA
COMPRESSION

Jiri Komzak Pavel Slavik

Department of Computer Science and Engineering
Czech Technical University, Karlovo nam. 13,

 121 35 Prague
Czech Republic

(komzaj1, slavik)@cslab.felk.cvut.cz http://www.cgg.cvut.cz/staff/komzak.php3

ABSTRACT

The paper deals with formal description of data transformation (compression and decompression process).
An adaptive compression tool for different data types (both raster and vector), that is based on finite
automata, is introduced. When using distributed geographic information system (GIS), data of different
types has to be transmitted. The introduced tool enables flexible changes of compression method and
selective loss control during compression process. Finite automata are discussed for several dictionary
and other string-based compression methods. Application of one dimensional compression methods in the
field of computer graphics is discussed.

Keywords: compression, geographic information system, flexible tool, finite automaton, selective
compression, adaptive compression, multidimensional compression, lossy compression, LZW, RLC.

1. INTRODUCTION

The UK’s Open University is one of the world’s
largest Universities, with over 160,000 currently
enrolled distance-learning students distributed
throughout the world. Requirements on development
of a support tool for geographic position
visualisation, off-line analysis and on-line presence
and messaging arose, see [Komzak01]. A specialised
GIS system is used to provide various information
about OU students. Data used is stored in thematic
layers and can be divided into several groups. Spatial
data can be stored in raster or vector form. Since the
system is distributed, the problem of low-cost data
transmission from server to clients arises.

This problem is traditionally solved by data
compression. The system transmits several different
data types, which require specific compression
methods. If each compression method was
implemented separately, a special module would be
needed for each data type or compression method.
Thus a better way could be a general easy-
configurable tool, compressor and decompressor,
that allows usage of appropriate compression
method after its configuration. At the same time, this

approach brings possibility to use other compression
methods without any substantial changes. Such a
tool should also provide instruments for selective
(adaptive) compression; it means selective loss in
various areas of a picture.

Since the designed tool should be as flexible
as possible, the formal description of compression
process is needed for the tool construction and
configuration. Finite automaton is one of the ways,
how to describe in formal way the process of
transformation between input information and output
one. It reads input symbols and produces output
symbols according to its internal state and the
current input symbol.

Typical compression methods can be
divided into three groups according to their principle
[Salomon98]. Statistical compression methods, which
create their models in dependence of probabilities of
short parts (usually simple symbols), belong into the
first group. The second group is constructed of
compression methods, which replace repeated data
with reference to its previous occurrence. The last
group of methods predicts next symbol in
dependence of precedent symbols and stores only
the difference from this prediction. This paper deals

with the second group; the string-based
compression methods and their application to
graphics.

2. CODING-DECODING PROCESS
ARCHITECTURES

As mentioned above, compression methods can be
seen as a transformation of data from an original
language to a resultant one, that both have a certain
form. Suitable tool for unified description of string
based compression methods is finite automaton.
According to described method, the automaton can
be static (data independent), semiadaptive (depends
on data but remains unchanged during the
compression and decompression process) or
adaptive (constructed step by step as new states and
transitions are added during processing).

The general compression process schema is
shown in Fig. 3. Both compressor and decompressor
execute translation by simulating finite automaton
with its inserted transition and output functions. The
system architecture contains features as adaptive
change of transitions, linearization of input etc.
(allows adaptive lossy compression of
multidimensional data), that are discussed in the
following chapters.

LOSSY VARIATIONS OF METHODS
Typical textual compressions are lossless. Another
possibility of data reduction is to use lossy
compression, which uses data loss to obtain better
compression ratio. There is a possibility to transform
a lossless compression principle to a lossy one. It
replaces string by their more suitable representatives,
which answer the condition of ”similarity“ to the
original strings. For details see [Holub00].

When using a nondeterministic finite
automaton for compression process description, it is
necessary to prefer the most precise ending state of
possible states with equal distance from the starting
state. The typical part of system architecture for
lossy variations of compression methods is inserting
of additional lossy transitions into automaton (see
Fig. 3). When using selective loss, activation of
lossy transitions is controlled by currently processed
symbols.

Lossy methods
The lossy methods are based on reduction of data
(for example number of bits per pixel) and have no
lossless variations. Thresholding (pure reduction of
number of bits per symbol) and dithering (special
techniques for global error reduction see [Slavik95])
are the basic ones.

The corresponding finite automata contain
ending states for indices (representatives) reachable
by inputting dictionary phrases (similar to LZW).

Extensions of lossless methods
The lossy RLE modifies symbols to create string of
equal symbols as long as possible. The lossy
variation of method LZW modifies the string of
symbols to be equal to a phrase in the dictionary; it
means already occurred sequences. Following
example shows difference in string modification when
coding cdbdbdabdabc by lossy RLE and LZW
(allowed difference is one; single coded sequences
are distinguished by underlining).

lossy RLE: ccccccaadaac
lossy LZW: cdcdcdacdaac

MULTIDIMENSIONAL DATA
The previously mentioned one-dimensional
compression methods can be extended into more
dimensions to use spatial context either by extension
of methods to work directly with multidimensional
data or by suitable data linearization (conversion of
data from more dimensions into one) and usage of a
known one-dimensional compression method. Not all
one-dimensional methods can be extended to work in
more dimensions (for example LZW). Special space
filling curves are used for linearization preserving
locality of data.

DATA FORMAT
Also other representations of a picture can be used
as for example chain code, which represents only
boundaries of objects. In such case, lossy
compression changes directly shapes of objects.
Modification of chain coded image by a variation of
lossy RLE can be demonstrated by following example
(for 8-directional chain-code).

2,1,2,3,2,3,2,2 -> 2,2,2,2,2,2,2,2

3. FINITE AUTOMATA

Finite automata for several compression methods
(RLE, LZW, lossy RLE, thresholding, dithering and
lossy LZW) were defined. We will describe one of
them to illustrate the principle.

LOSSY TRANSITIONS
Lossy transitions can be used during the entire
compression process or only for some specified
areas. This can lead to a nondeterministic finite
automaton, where the longest accepted string or for
equally long strings the one with smaller error is
used. This nondeterminism can be removed (see
[Holub00]).

Lossy RLE
RLE method replaces strings of equal symbols by
their number and value. Lossy variation of RLE

allows substitution of a symbol by a similar one to
create longer string of equal symbols. Substitutions
are limited by allowed difference in one symbol and
maximal total error per string. The decompression is
identical to the RLE decompression.

In following example an allowed difference
per symbol equal to one is used.

compression
δδ/o a b c

q0 q1 / ε {n=1} q2 / ε {n=1} q3 / ε {n=1}

q1 q1 / ε {n++}
if err <= t

q1 / ε ε {n++}
else fail / a n

fail / a n

q2

if err <= t
q2 / ε ε {n++}
else fail / b n

q2 / ε {n++}
if err <= t

q2 / ε ε {n++}
else fail / b n

q3 fail / c n
if err <= t

q3 / ε ε {n++}
else fail / c n

q3 / ε {n++}

In starting state q0, the first symbol of equal
sequence is read. Following equal or similar (bold
underlined) symbols are counted in state for
appropriate symbol. Similar symbols are accepted
until the total error in sequence (stored in
automaton’s attribute err) is not too large (i.e. bigger
then threshold t). When difference of symbol or total
error are too big the fail function is called and symbol
and its count are output. The fail function returns
automaton to the starting state without reading input
symbol. Special character ‘#’ is used to indicate the
end of input. After its reading, the fail function is
called and symbol and its count are output.

Following example shows coding of string
baaaabc to b3a3c1 (used threshold is 2;
configuration in form (state, input, output, number
attribute, error attribute)).

 (q0, baaaabc#, ε, n=?, err=0) |-
(q2, aaaabc#, ε, n=1, err=0) |-
(q2, aaabc#, ε, n=2, err=1) |-
(q2, aabc#, ε, n=3, err=2) |-
(q0, aabc#, b3, n=3, err=2) |-
(q1, abc#, b3, n=1, err=0) |-
(q1, bc#, b3, n=2, err=0) |-
(q1, c#, b3, n=3, err=1) |-
(q0, c#, b3a3, n=3, err=1) |-
(q3, #, b3a3, n=1, err=0) |-
(q0, #, b3a3c1, n=1, err=0)

Other data types
Chain code representing a contour (for example a
coast contour) can be taken as an example of other
data type. Then, a variation of RLE with special error
evaluation can be used for its compression. The
finite automaton is the same except error attribute

function, which in this case evaluates spatial
distance between original and compressed contour.

4. TESTS

LOSSY CHAIN-CODE COMPRESSION
The compression of chain code was implemented by
a variation of lossy RLE. The threshold attribute is
computed as the distance of compressed point from
the original one.

Lossy RLE of chain coded coast of British island
(original and coded with compression ratio 8.04 and

error/pixel 0.98).
Figure 1

LINEARIZATION
The mentioned linearizations using pass through
rows and Peano and Hilbert curve were implemented.
When using a lossy compression method a
compressed data modification takes place and that is
why so called artefacts appear. These depend on
used curve and compression method.

LOSS CONTROL BASED ON POSITION IN
DATA
In mobile computing, the available bandwidth is
often a limiting factor, especially when images or
multimedia data are used to communicate
information. This leads to selective compression
which allows small or none data loss inside some
regions and bigger outside these regions.

The implemented compression methods
allow loss control based on position in data. The
data space is divided into parts so called regions of
interest. Each region has a loss joint with it.

The Fig. 2 shows a compressed image
divided into three regions with different data losses.
The inner region has no loss. The one in the middle
has 10% loss and the surround has allowed loss
20%. The size of this way selectively compressed
image is one forth of original size.

Image compressed by 2D RLE with controlled loss.
Figure 2

5. CONCLUSION

A general adaptive tool usable for compression and
decompression of different types of data in GIS was
described. The tool uses finite automata for
description of compression and decompression
process for different types of picture data (raster and
vector form).

Due to this approach, there is possibility to
easy configure compressor and decompressor and
use different compression methods. Another very
important possibility is to optionally turn on and turn
off lossy transitions during the compression process
and in such a way to change the data loss even for

each symbol. On the other side, the decompressor is
universal; it means it can decompress data
compressed by both lossless and lossy variation the
same method without reconfiguration. This makes
the tool very flexible. After linearization also
multidimensional data can be compressed as well as
other linear representations of image, for example
chain code.

ACKNOWLEDGEMENTS

Jan Holub provided feedback and advice on the
formal description.

REFERENCES

[Holub00] Holub, J.: Simulation of Nondeterministic
Finite Automata in Pattern Matching. Ph.D.
thesis, Czech Technical University, Prague,
February 2000, p. 118.

[Komzak01] Komzak, J. and Eisenstadt, M.:
Visualisation of entity distribution in very
large scale spatial and geographic information
systems. KMI-TR-113, Knowledge Media
Institute, Open University, Milton Keynes,
UK, June 2001.

[Salomon98] Salomon, D.: Data Compression,
Springer-Verlag New York, 1998

[Slavik95] Slavik, P. and Prikryl, J.: Dithering as a
method for image data compression. Proc.
WSCG95, Vol. II, pp. 283-288.

General system architecture.
Figure 3

