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ABSTRACT

In constructive solid geometry (CSG), highly smooth and manageable blending operations are always desirable. In
this paper, we propose two novel ways to blend implicitly defined geometric objects using smooth unit step func-
tions. With the proposed techniques, not only is it direct to build an implicit blending operation with controllable
blending range, but also the blending operation can be constructed to whatever level of smoothness. In addition,
the mathematical descriptions of the techniques are quite simple and elegant.
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1 Introduction

Modelling computer graphics objects as implicit func-
tions has received more and more attention in recent
years. Unlike parametric geometric objects, an im-
plicit shape inRn is represented by a mappingf :
Rn → R as the 0-contour off , or as the setA =
{P ∈ Rn : f(P) ≥ 0}. The implicitly represented
shapes have advantages over the parametric shapes in
several aspects. First of all, when an object is modelled
implicitly, one can directly tell whether a point lies in-
side or outside the shape and the problem of boundary
detection can be easily solved. Secondly, the surface
normals are easy to compute. Thirdly, the most com-
monly used geometric shapes, such as spheres, cylin-
ders, and ellipsoids, take very simple forms. In addi-
tion, the value of an implicit function at a point can be
used to approximate the signed distance from the point
to the surface.

In computer graphics, one of the most extensively
used implicit modelling techniques has been the CSG
[Ric, MS85, Roc89, BW90, Hof93, PASS95, GP02,
HL02]. With this technique, a complex geometric
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object can be regarded as the result of a series of set-
theoretic operations acting on a set of primitive
geometric solids. Assume that two objectsA,B are
represented implicitly byFA(P) ≥ 0 andFB(P) ≥ 0.
Then, the unionA∪B, the intersectionA∩B, and the
subtractionA − B of setA andB can be represented
by functionsFA∪B(P), FA∩B(P), andFA−B(P) re-
spectively, which are defined using a binary blending
operationmax(x, y) in the following way:

FA∪B(P) = max{FA(P ), FB(P)}, (1)

FA∩B(P) = − max{−FA(P ),−FB(P)}, (2)

FA−B(P) = − max{−F1(P ), F2(P)}. (3)

One major problem with the blending operation
max(x, y) is that it is not smooth enough. As a bivari-
ate function, the surface ofz = max(x, y) changes
sharply at liney = x. The blended shapes based
on this function always have a sharp edge at the
joint. Many solutions have been proposed to cope with
the problem[MS85, Roc89, BW90, Hof93, PASS95,
GP02, HL02]. However, two problems still exist.
Firstly, while one is able to construct efficient and ef-
fective smooth manageable blenders, their mathemat-
ical descriptions are becoming more and more com-
plex. They lack mathematical simplicity and elegancy.
Secondly, with present approaches, the construction of
a blending operation with high degree of smoothness,
say, with derivatives up to 3 or 4, is still a tough task.

In this paper, we present two new blending opera-
tions for implicitly represented geometric objects. The
proposed blenders are not only direct to built, but the



blending operations built in this way can be highly
smooth and manageable. The key idea here is the use
of what we have called the smooth unit step functions.
The rest of the paper is organized as follows. In sec-
tion 2, we introduce the concept of smooth unit step
functions and their construction. In section 3, two new
ways of constructing blending operations are proposed
using the smooth unit functions. This is followed by
some examples and the conclusion of the paper.

2 The smooth unit step functions
and their construction

Definition 1 LetH0 : R→ [0, 1] be defined by

H0(t) =





0, t < 0;
1
2 , t = 0;
1, t > 0.

(4)

Then,H0(t) is called the Heaviside unit step function.

Definition 2 Let µ : R → [0, 1] be a function satisfy-
ing following conditions:

(1) µ(t) = 0, whent < −1;

(2) µ(t) = 1, whent > 1;

(3) µ(t) is continuous and nondecreasing over real
lineR.

Then,µ(t) is called a smooth unit step function.

2.1 The construction of smooth unit step
functions

There are a number of ways to construct smooth unit
step functions. In this section, four methods have been
proposed with three of them to be constructive. Any
of these approaches allow us to construct a unit step
function with desired degree of smoothness.

2.1.1 Piecewise polynomial smooth unit step func-
tions

A smooth unit step function can be constructed using
piecewise polynomials. LetH0(t) be the Heaviside
unit step function, and let

f0(t) = H0(t), (5)

fn(t) =
t

n
fn−1(t) + (1− t

n
)fn−1(t− 1),

n = 1, 2, 3, · · · .
Set

Hn(t) = fn(
n(t + 1)

2
), (6)

n = 1, 2, 3, · · · .

Then it can be shown directly that all theseHn(t),
n = 1, 2, . . ., satisfy the three conditions given in def-
inition 2. Hence, they are smooth unit step functions.
Furthermore, it can also be verified that the smooth
unit step functionHn(t) is Cn−1-smooth. Obviously,
any of these smooth unit step functions are piecewise
polynomials.

2.1.2 Smooth unit step functions as the integra-
tion of uniform B-spline basis functions

Another way to obtain smooth piecewise polynomial
unit step functions is to integrate the uniform B-spline
basis functions. LetNm(t) be themth order uniform
B-spline basis function with support[−1, 1]. Then we
can construct a smooth unit step function by comput-
ing the integral defined by:

Bm(t) =
1
δ

∫ t

−∞
Nm(s)ds, (7)

where

δ =
∫ 1

−1

Nm(s)ds,

Bm(t) is obviously nonnegative monotonic increas-
ing and takes value 0 fort ≤ −1 and value 1 fort ≥ 1.
SinceNm(t) isCm−2-smooth,Bm(t) is thus aCm−1-
smooth function. For instance, the cubic smooth unit
step function constructed in this way is:

B3(t) = f(
3(t + 1)

2
), (8)

where

f(t) =





0, t ≤ 0;
1
6 t3, 0 < t ≤ 1;
− 5

8 + 3
4 t− 1

3 (t− 3
2 )3, 1 < t ≤ 2;

1− 1
6 (3− t)3, 2 < t ≤ 3;

1, t > 3.

which is aC2-smooth function.

2.1.3 Smooth unit step functions as a special type
of rising cutoff functions

Another constructive way of generating smooth unit
step functions is to use what have been called “ris-
ing cutoff functions”, which is introduced by Wick-
erhauser in [Wic94]. In wavelet theory, rising cutoff
functions are used to construct localized trigonomet-
ric functions which are then combined into a library of
orthonormal bases.



In [Wic94], a rising cutoff function has been defined
as a complex functionµ(t) with a real argumentt that
satisfies the conditions that:

|µ(t)|2 + |µ(−t)|2 = 1 (9)

for all t ∈ R, and that

µ(t) =
{

0, if t < −1
1, if t > 1.

(10)

It can be seen that any function satisfying this condi-
tion must be of the form

µ(t) = sin θ(t) eiφ(t), (11)

whereθ(t) is a real function satisfying

θ(t) + θ(−t) = π/2, θ(t) =
{

0, if t < −1
π
2 , if t > 1 ,

(12)
andφ(t) is a real function satisfying

φ(t) =
{

2nπ, if t < −1
2mπ, if t > 1 .

(13)

As can be seen from the definition, the rising cutoff
function is not necessarily real and monotone. Thus,
this type of function does not fully fit our purposes. In
this paper, we are only interested in a special type of
rising cutoff functions, namely, the smooth unit step
functions, any of which is real and non-decreasing.
Therefore, this type of rising cutoff functions will al-
ways take the formµ(t) = sin(θ(t)), whereθ(t) is
non-decreasing and satisfies equation (12).

Note that for any smooth unit step functionµ(t),
the function defined byθ(t) = π

2 µ2(t) satisfies equa-
tion (12). Therefore, smooth unit step functions can be
constructed iteratively. To construct a smooth unit step
function, we can first begin with a simple monotonic
increasing functionθ0(t) satisfying the condition (12)
with its values in[0, π

2 ]. Then fork = 1, 2, · · ·, the
smooth unit step functionsµk(t) can be defined recur-
sively in the following way:

µk(t) = sin θk−1(t)
⇑ ⇓ (14)

θk(t) =
π

2
µ2

k(t)

The interesting fact is that the degree of smoothness
of the unit step function from the procedure will in-
crease with the increase in times of recursion when the
initial θ0(t) is continuous everywhere and is differen-
tiable except at the pointst = ±1.

Here is an example of a set of smooth unit step func-
tions constructed in this way.

Example 1 [Wic94] One of the simplest continuous
θ−functions can be given by

θ0(t) =





0 t < −1
π
4 (1 + t)) −1 ≤ t ≤ 1
π
2 t > 1.

(15)

With this initial θ−function, a set of smooth unit step
functions can be constructed according to (14).

R1(t) = sin θ0(t)

=





0 t < −1
sin(π

4 (1 + t)) −1 ≤ t ≤ 1
1 t > 1,

θ1(t) =
π

2
R2

1(t)

=





0 t < −1
π
4 (1 + sin π

2 t) −1 ≤ t ≤ 1
π
2 t > 1

= θ0(sin
π

2
t),

R2(t) = sin θ1(t)

=





0 t < −1
R1(sin π

2 t) −1 ≤ t ≤ 1
1 t > 1,

and in general, we have

Rn+1(t) =





0 t ≤ −1
Rn(sin π

2 t) −1 < t < 1
1 t ≥ 1.

(16)

Obviously, Rn(t), (n = 1, 2, · · ·) constructed
above are all non-decreasing. Furthermore, it can be
shown thatRn(t) has2n−1 − 1 vanishing derivatives
at t = 1 andt = −1 for n = 1, 2, · · ·.

In practice, bothRn(t) andR2
n(t) can be used as

smooth unit step functions. However,R2
n(t) is an-

tisymmetric about the point(0, 1
2 ), which provides a

balanced blending when it is used to combine two im-
plicit functions.

2.1.4 Approximating a smooth unit step function
using 1

1+e−αt

In practice, we can also use following function to rep-
resent approximatively a smooth unit step function:

Sα(t) =
1

1 + e−αt
, α > 0. (17)

Unlike the smooth unit step functions constructed
from the first three methods, this function has a rising
range from−∞ to ∞ rather than[−1, 1]. However,
a smooth unit step function can be well approximated
by Sα(t). In fact, for any given small numberε, 0 <
ε < 1, select aα such thatα > ln 1−ε

ε . Then we have



Sα(t) < ε when t < −1, andSα(t) > 1 − ε when
t > 1.

Obviously,Sα(t) is differentiable at any point and
to any order.

2.2 Smooth unit step functions with arbi-
trary rising range

Definition 3 Let µ(t) be a smooth unit step function
with rising range[−1, 1], and letε be a positive real
number. The real functionµ( t

ε ), denoted byµε(t), is
called a smooth unit step function with rising range
parameterε.

Obviously, a smooth unit step function with rising
range parameterε has a rising range[−ε, ε].

A C3-continuous smooth piecewise polynomial unit
step function constructed from the first method is dis-
played in figure 1 with different rising parameters. As
can be seen later, the rising range parameter can be
used to control the size of the transition area between
two blending objects.
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Figure 1: AC3-continuous smooth unit step function
with different rising range parameterε. (a) ε = 1;(b)
ε = 0.5;(c) ε = 0.2;(d) ε = 0.05.

3 The applications of smooth unit
step functions in blending im-
plicit objects

In this section, two techniques, which we called ex-
terior blending and interior blending respectively, are
presented to realize a smooth and blending range con-
trollable implicit shape blending. Each of the two tech-
niques is obtained by constructing a highly smoothed
bivariate functionf(x, y) that well approximates the

C0-smooth functionmax(x, y) using smooth unit step
functions. They offer different features in blending
two implicit objects. With the exterior blending, the
blended solid union will generally contain the solids
to be blended as its subsets. In contrast, with the inte-
rior blending, the blended solid union will always be a
subset of the union of the two solids to be blended.

3.1 Exterior blending

In this section, we discuss the exterior blending tech-
nique. The basic idea is to approximate the absolute
function|t| with a much smoother functionSabs(t) us-
ing smooth unit step functions.

Let δ > 0 and letµε(t) be a smooth unit step func-
tion with rising parameterε, and let

f(t) =
x2

2δ
+

δ

2
. (18)

g1(t) = µε(t + δ).
g2(t) = µε(t− δ).

We define

Sabs(t, δ, ε) = (g1(t) + g2(t)− 1)t (19)

+ g1(t)(1− g2(t))f(t).

Sinceg1(t) is a smooth unit step function att =
−δ, and g2(t) a smooth unit step function att =
δ, Sabs(t, δ, ε) has approximately such properties:
Sabs(t, δ, ε) = −t whent ∈ (−∞,−δ]; Sabs(t, δ, ε) =
t whent ∈ [δ,∞]; Sabs(t) = f(t) whent ∈ (−δ, δ),
wheref(t) is a parabola passing both points(−δ, δ)
and (δ, δ) with derivative−1 at (−δ, δ), and deriva-
tive 1 at (δ, δ). Thus, Sabs(t, δ, ε) can be regarded
as a smooth approximation to the absolute function
s(t) = |t|, whereδ is used as a parameter to control
the accuracy of the approximation. Figure 2 shows the
shapes of such a function with differentδ.
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Figure 2: The shapes ofSabs(t, δ, ε) with different δ.
(a)δ = 0.1; (b)δ = 0.5; (c)δ = 1.

With functionSabs(t, δ, ε), we define following ap-
proximation tomax(x, y):



Extmax(x, y, δ, ε) =
x + y + Sabs(x− y, δ, ε)

2
.

(20)
Figure 3 shows the 0-contour ofExtmax(x, y, δ, ε)

with ε = 0.1 and different values ofδ.
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Figure 3: The shapes ofExtmax(x, y, δ, ε) = 0 with
ε = 0.05 and different values ofδ.

For two implicit shapesA : FA(P) ≥ 0 andB :
FB(P) ≥ 0, we define the set-theoretic operations as
follows:

Union:

FA∪B(P) = Extmax(FA(P), FB(P), δ, ε).
(21)

Intersection:

FA∩B(P) = −Extmax(−FA(P),−FB(P), δ, ε).
(22)

Abstraction:

FA−B(P) = −Extmax(−FA(P), FB(P), δ, ε).
(23)

Figure 4 - 6 demonstrate how the blending union,
the blending intersection, and the blending subtraction
can be managed by changing the parameterδ in the
blending operations.

The key features of the blending operations defined
above are that: (1) The blended union object from op-
eration defined in (21) will contain the objects to be
blended as its subsets, unless the rising range param-
eter is set too big. This can be seen directly from
the definitions ofSabs(t) andExtmax(x, y). (2) Two
completely separated solids can be blended in differ-
ent blending range by varying the parametersδ and
ε (see figure 7). (3)The blending operationsFA∪B ,
FA∩B , FA−B can be built to whatever degree of
smoothness one wishes if only the smooth unit step
function is smooth enough. For example, to define

a C3-continuous blending operation in this way, we
need only use aC3-continuous smooth unit step func-
tion in (19) to defineSabs. (4) When the implicit
shapesFA(P) andFB(P) are both polynomials and
Sabs(t, δ, ε) used in (20) is defined by the piecewise
smooth unit step function, the blended shapes from any
blending operations defined in (21) to (23) will be the
0-contours of piecewise polynomials.
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Figure 4: The blending union of two discs using oper-
ators defined in (21) withε = 0.25 and differentδ: (a)
δ = 0.5; (b) δ = 1; (c) δ = 5.
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Figure 5: The blending intersection of two discs us-
ing the operators defined in (22) withε = 0.25 and
differentδ: (a) δ = 0.01; (b) δ = 1; (c) δ = 2.
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Figure 6: The blending subtraction of two discs using
the operators defined in (23) withε = 0.25 and differ-
entδ: (a) δ = 0.2; (b) δ = 1; (c) δ = 2.

3.2 Interior blending

We have defined in previous section some blending
operations using a highly smooth blending function
Extmax(x, y). As have been discussed, the blending
union will generally contain the objects to be blended
as its subsets. In this section, we are going to define
another blending function,Intmax(x, y). As will be
seen later, the blending union operation derived from
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Figure 7: The blending union of two completely sep-
arated discs using operators defined in (21) withε =
0.25 and differentδ: (a) δ = 0.25; (b) δ = 0.35; (c)
δ = 6.

the functionIntmax(x, y) will always be contained in
the union of the objects to be blended.Intmax(x, y)
is defined as follows:

Intmax(x, y, ε) = (1− µε(y − x))x + µε(y − x)y.
(24)

whereµε(t) is a smooth unit step function with ris-
ing range parameterε.

Figure 8 shows the 0-contour ofIntmax(x, y, ε)
with different values ofε.
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Figure 8: The shapes ofIntmax(x, y, ε) = 0 with dif-
ferent values ofε.

For implicit shapes described by functionsA :
FA(P) ≥ 0 andB : FB(P) ≥ 0, following soft blend-
ing operations can be defined usingIntmax(x, y):

Union:

FA∪B(P) = Intmax(FA(P), FB(P), ε). (25)

Intersection:

FA∩B(P) = −Intmax(x, y)(−FA(P),−FB(P), ε).
(26)

Subtraction:

FA−B(P) = −Intmax(x, y)(−FA(P), FB(P), ε).
(27)

−2 0 2
−2

−1

0

1

2

−2 0 2
−2

−1

0

1

2

−2 0 2
−2

−1

0

1

2
ε=1/4 ε=5 ε=10 

(a) (b) (c) 

Figure 9: The blending union of two discs using the
operators defined in (25) with different rising range pa-
rametersε: (a) ε = 1/4; (b) ε = 5; (c) ε = 10.

Figure 9-11 demonstrate how two discs are com-
bined using the three operations.

Unlike the operations derived from function
Extmax(x, y), where the blending range is mainly
controlled by adjusting parameterδ, the blending
range using operations defined in (25)-(27) is mainly
controlled by varying the rising range parameterε in
the smooth unit step functions: the smaller the pa-
rameterε, the larger the surface range of the objects
to be blended will be preserved (see Figure 9-11). It
also can be observed from the figures that no mat-
ter what a rising parameter is used, the joints of the
shapes to be blended always lie on their blending.
This is obviously implied in the blending function
Intmax(x, y). Consequently, blending operations de-
fined byIntmax(x, y, ε) can only be used to blend in-
tersecting implicit objects.
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Figure 10: The blending intersection of two discs us-
ing the operators defined in (26) with different rising
range parametersε: (a) ε = 1/4; (b) ε = 5; (c) ε = 20.

Another feature of the blending technique, as can be
seen from the figure 9, is that the blended solid union
using operation defined in (25) will always be a subset
of the union of the solids to be blended. Contrary to the
union, the intersection of the blended object from func-
tion (26) always contains the intersection of the solids
to be blended. Figure 9- 11 also demonstrate how the
transition area can be controlled by adjusting the rising
range parameter in the smooth unit step functionµε(t).
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Figure 11: The blending subtraction of one disc from
another using the operators defined in (27) with differ-
ent rising range parametersε: (a) ε = 1/4; (b) ε = 5;
(c) ε = 20.

4 Examples and discussions

In this section, we present a few examples of implicitly
represented graphical objects to demonstrate the effi-
ciency and the effectiveness of the proposed blending
algorithms. All these objects are constructed by blend-
ing a set of simple algebraic surfaces. Piecewise cubic
polynomial smooth unit step function has been used to
define the blending operations. Therefore, the implicit
functions corresponding to all these figures areC2-
continuous. Suppose the object to be designed involv-
ing implicit surfacesFi(P) = 0, i = 0, 1, 2, · · · , n.
Then the general procedure in producing the object is
performed in an iterative way and can be described as
follows:

F (P)=F0(P);

for (i = 1 to n){

F (P) = blending(F (P), Fi(P));

}

whereblending(·, ·) represents a general blending op-
eration.

Figure 12: The shape of a teapot is represented as a
C2-smooth function by blending a set of simple alge-
braic surfaces

Figure 12 presents an implicit teapot constructed us-
ing some commonly known algebraic surfaces. The
teapot body and lid are built using spheres. The handle
is represented by a torus, and the nozzle of the teapot
is a blend of three cylinders and a plane using different
rising range parameters in the smooth unit step func-
tions. The blending operations used are those derived
from bivariate functionIntmax(x, y).

Figure 13 presents an implicitly represented sea
snail. It is constructed using a set of spheres and a
plane using blending operations defined by function
Intmax(x, y). The spheres are evenly located along
a 3D spiral curve with increasing radius. They are
blended to represent the body of the shell. To obtain
a closed surface, the shell body is then blended with a
closed half sphere, which is obtained by subtracting a
3D plane from the sphere.

Figure 13: The shape of a sea snail is represented as a
C2-smooth function by blending a set of spheres and a
3D plane.

Figure 14 presents an implicitly represented hand-
written number. The implicit shape is obtained by
blending a set of equal-sized spheres located along
a curve which represents the skeleton of the charac-
ter. The Blending operation defined in (21) using
Extmax(x, y) is used and the parameterδ in func-
tion Sabs(t) is specified roughly equal to the distance
between the center of two adjacent spheres. This ex-
ample exploits the property of the union blending op-
eration that two completely separated objects can be
blended together with expected blending volume. This
technique can be used in practice to approximately rep-
resent some convolution surfaces.

Figure 15 demonstrates the key difference in blend-
ing implicitly represented surfaces. In general, there
are no visual differences at all when blending parame-
ter δ andε are very small. However, with the increase
in the values ofδ and ε, the union blending opera-



Figure 14: A hand-written character is represented as
aC2-smooth function by blending a set of spheres.

tion defined usingExtmax tends to generate a bulge
around the surface intersection, while the one defined
usingIntmax tends to contract near the intersection.

(a)

(b)

Figure 15: (a)The union blending operation defined
using Extmax tends to generate a bulge around the
surface intersection; (b) The union blending operation
defined usingIntmax tends to contract near the sur-
face intersection.

5 conclusion

In this paper, we introduced a new technique to define
implicit shape blending operations using smooth unit
step functions. Four methods have been given to de-
rive aCn-continuous smooth unit step function with a

given integern. Two new types of blending operations
for implicit objects are proposed. The typical features
of the presented techniques are, firstly, that they enable
us to build an implicit blender to have whatever degree
of smoothness one wishes. Secondly, the blending op-
erations derived from this technique are more flexible
in controlling the blending range and smoothness. Fur-
thermore, the mathematical descriptions of the tech-
niques are simple and elegant.
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