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ABSTRACT

In constructive solid geometry (CSG), highly smooth and manageable blending operations are always desirable. In
this paper, we propose two novel ways to blend implicitly defined geometric objects using smooth unit step func-
tions. With the proposed techniques, not only is it direct to build an implicit blending operation with controllable
blending range, but also the blending operation can be constructed to whatever level of smoothness. In addition,
the mathematical descriptions of the techniques are quite simple and elegant.
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1 Introduction object can be regarded as the result of a series of set-
theoretic operations acting on a set of primitive

Modelling computer graphics objects as implicit func- geometric solids. Assume that two objectsB are

tions has received more and more attention in recentrepresented implicitly by'4 (P) > 0 andF'z(P) > 0.

years. Unlike parametric geometric objects, an im- Then, the uniom U B, the intersectiomd N B, and the

plicit shape inR" is represented by a mapping : subtractiond — B of setA and B can be represented

R™ — R as the 0-contour of, or as the setd = by functionsF4up(P), Fans(P), andFa_p(P) re-

{P € R* : f(P) > 0}. The implicitly represented  spectively, which are defined using a binary blending

shapes have advantages over the parametric shapes perationmax(z, y) in the following way:

several aspects. First of all, when an object is modelled

implicitly, one can directly tell whether a point lies in-

side or outside the shape and the problem of boundary Faup(P) = max{Fa(P),Fp(P)}, (1)
detection can be easily solved. Secondly, the surface  Fanp(P) =— max{—Fa(P),—Fg(P)}, (2)
normals are easy to compute. Thirdly, the most com- Fa_g(P) =— max{—F(P),FP)}. 3

monly used geometric shapes, such as spheres, cylin-

ders, and ellipsoids, take very simple forms. In addi- One major problem with the blending operation

tion, the value of an implicit function at a point can be max(z,y) is that it is not smooth enough. As a bivari-

used to approximate the signed distance from the pointate function, the surface of = max(z,y) changes

to the surface. sharply at liney = z. The blended shapes based
In computer graphics, one of the most extensively On this function always have a sharp edge at the

used implicit modelling techniques has been the CSGJoint. Many solutions have been proposed to cope with

[Ric, MS85, Roc89, BW90, Hof93, PASS95, GP02, the problem[MS85, Roc89, BW90, Hof93, PASS95,

HLO2]. With this technique, a complex geometric GP02, HLOZ]. However, two problems still exist.
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to lists, requires prior specific permission and/or a fee. say, with derivatives up to 3 or 4, is still a tough task.

WSCG SHORT Communication papers proceedings In this paper, we present two new blending opera-

WSCG'2004, February 2-6, 2004, Plzen, Czech Republic. tions for implicitly represented geometric objects. The
Copyright UNION Agency-Science Press proposed blenders are not only direct to built, but the

(¢}




blending operations built in this way can be highly  Then it can be shown directly that all theBg, (),
smooth and manageable. The key idea here is the use = 1,2, . . ., satisfy the three conditions given in def-
of what we have called the smooth unit step functions. inition 2. Hence, they are smooth unit step functions.
The rest of the paper is organized as follows. In sec- Furthermore, it can also be verified that the smooth
tion 2, we introduce the concept of smooth unit step unit step function,, (t) is C™~!-smooth. Obviously,
functions and their construction. In section 3, two new any of these smooth unit step functions are piecewise
ways of constructing blending operations are proposedpolynomials.

using the smooth unit functions. This is followed by

some examples and the conclusion of the paper. . . .
P pap 2.1.2 Smooth unit step functions as the integra-

tion of uniform B-spline basis functions

2 The smooth unit Step functions Another way to obtain smooth piecewise polynomial

and their construction unit step functions is to integrate the uniform B-spline
basis functions. LeN,,(t) be them!" order uniform
Definition 1 Let Hy : R — [0, 1] be defined by B-spline basis function with suppdrt1, 1]. Then we
. can construct a smooth unit step function by comput-
0, <0 ing the integral defined by:
Ho(t) =1 5. t=0; @ '
1, t>0.
Then,Hy(t) is called the Heaviside unit step function. Bo(t) = % /t Noo(s)ds, @

Definition 2 Lety : R — [0, 1] be a function satisfy-
ing following conditions: where

(1) p(t) =0, whent < —1; 1

0= N,.(s)ds,
(2) p(t) =1, whent > 1; /_1 (s)ds
(3) w(t) is continuous and nondecreasing over real

line R B,,(t) is obviously nonnegative monotonic increas-

ing and takes value 0 far< —1 and value 1 fot > 1.
Then,u(t) is called a smooth unit step function. SinceN,, (t) is C™~2-smooth,B,, (t) is thus aC™1-
smooth function. For instance, the cubic smooth unit

2.1 The construction of smooth unit step ~ SteP function constructed in this way is:

functions
There are a number of wa i 3(t+1)
ys to construct smooth unit Bs(t) = f( ), (8)
step functions. In this section, four methods have been 2
proposed with three of them to be constructive. Any \unere
of these approaches allow us to construct a unit step
function with desired degree of smoothness. 0, t<0;
3, 0<t<I1;
2.1.1 Piecewise polynomial smooth unitstep func- f(t) =< —3+3t—1(t—32)3, 1<t<2;
tions 1—3(3—1)3, 2 <t<3;
1, t> 3.

A smooth unit step function can be constructed using
piecewise polynomials. LekH(t) be the Heaviside
unit step function, and let

which is aC2-smooth function.

2.1.3 Smooth unit step functions as a special type

fot) = Ho(t), () of rising cutoff functions
t t

fa®) = —far(®) + (L= ) faa(t = 1), Another constructive way of generating smooth unit
n=123---. step functions is to use what have been called “ris-

ing cutoff functions”, which is introduced by Wick-

Set erhauser in [Wic94]. In wavelet theory, rising cutoff
oo = n(t+1) 6 functions are used to construct localized trigonomet-
n(t) = ful 2 ), ) ric functions which are then combined into a library of

n=12,3---. orthonormal bases.



In [Wic94], a rising cutoff function has been defined Example 1 [Wic94] One of the simplest continuous
as a complex functiop(t) with a real argumentthat f—functions can be given by
satisfies the conditions that:

0 t<—1
@) + [u(=t)> =1 9) Oo(t) =q F(1+1) -1<t<1 (15)
5 t>1.

for all t € R, and that
With this initial #—function, a set of smooth unit step

u(t) = 0, ift<—1 (10)  functions can be constructed according to (14).
1, ift>1.
. o . Ri(t) = sinfo(t)
It can be seen that any function satisfying this condi- 0 fe 1
tion must be of the form _ sin(T(141) —1<t<1
u(t) = sin 0(t) e, (11) 1 t>1,
_ T po
wheref(t) is a real function satisfying bi(t) = §R1(t)
o if . 0 t< -1
0(t) +0(—t) = x/2, 0@ —=4 @ Mi<-— = { T(14sinZ) —1<t<1
5, ift>1, 3 > 1
(12) 2 -
ande(t) is a real function satisfying = fp(sin 5t),
= 2’17/7'('7 if + < -1 (13) Rg(t) = Sinal(t)
(1) = 2mm, ift>1. 0 t<—1
= Ri(singt) —1<t<1
As can be seen from the definition, the rising cutoff 1 t>1,
function is not necessarily real and monotone. Thus, _
this type of function does not fully fit our purposes. In and in general, we have
this paper, we are only interested in a special type of
isi i i 0 t< -1
rising cutoff functions, namely, the smooth unit step o
functions, any of which is real and non-decreasing. ~ fn+1(t) = Rp(singt) —1<t<1 (16)
Therefore, this type of rising cutoff functions will al- 1 t=>1
ways take the formu(t) = sin(6(t)), wheref(t) is .
Y Ma(?) sin(0(¢)) ®) Obviously, R, (t), (n = 1,2,---) constructed

non-decreasing and satisfies equation (12).

Note that for any smooth unit step functiqiit),
the function defined by(t) = % ?(t) satisfies equa-
tion (12). Therefore, smooth unit step functions can be
constructed iteratively. To construct a smooth unit step X / 9/
function, we can first begin with a simple monotonic smooth unit step functions. HoweveR. (t) is an-

. . A : .
increasing functior, (¢) satisfying the condition (12) gsilmmeérgzl at()jqut thﬁ point, 5)'dWh'Ch pLQV'deS a
with its values in0, Z]. Then fork — 1,2,---, the alanced blending when it is used to combine two im-

)9 .. .
smooth unit step functionsy (¢) can be defined recur- plicit functions.

sively in the following way:

above are all non-decreasing. Furthermore, it can be
shown thatR,,(t) has2"~! — 1 vanishing derivatives
att=1andt=—-1forn=1,2,---.

In practice, bothR,,(t) and R2(t) can be used as

2.1.4 Approximating a smooth unit step function

Lk (t) = sin Gk_l(t) using He%‘“
n gr (14) In practice, we can also use following function to rep-
Op(t) = gui(t) resent approximatively a smooth unit step function:
The interesting fact is that the degree of smoothness Sa(t) = ;, a> 0. (17)
of the unit step function from the procedure will in- L+e ot

crease with the increase in times of recursion whenthe  Unlike the smooth unit step functions constructed
initial 6y(t) is continuous everywhere and is differen- from the first three methods, this function has a rising
tiable except at the points= +1. range from—oo to oo rather than—1,1]. However,
a smooth unit step function can be well approximated
Here is an example of a set of smooth unit step func- by S, (¢). In fact, for any given small number 0 <
tions constructed in this way. € < 1, select ax such thaty > In % Then we have



Sa(t) < ewhent < —1, andS,(t) > 1 — e when
t>1.

Obviously, S, (t) is differentiable at any point and
to any order.

2.2 Smooth unit step functions with arbi-
trary rising range

Definition 3 Let u(t) be a smooth unit step function
with rising range[—1, 1], and lete be a positive real
number. The real functiop(%), denoted byu.(t), is
called a smooth unit step function with rising range
parametere.

Obviously, a smooth unit step function with rising
range parameterhas a rising rangg-e, €|.

A (C3-continuous smooth piecewise polynomial unit
step function constructed from the first method is dis-
played in figure 1 with different rising parameters. As

can be seen later, the rising range parameter can be

used to control the size of the transition area between
two blending objects.
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Figure 1: AC3-continuous smooth unit step function
with different rising range parameter (a)e = 1;(b)
e = 0.5;(c) e = 0.2;(d) e = 0.05.

3 The applications of smooth unit
step functions in blending im-
plicit objects

In this section, two techniques, which we called ex-
terior blending and interior blending respectively, are

C°-smooth functiommax(x, ) using smooth unit step
functions. They offer different features in blending
two implicit objects. With the exterior blending, the
blended solid union will generally contain the solids
to be blended as its subsets. In contrast, with the inte-
rior blending, the blended solid union will always be a
subset of the union of the two solids to be blended.

3.1 Exterior blending

In this section, we discuss the exterior blending tech-
nique. The basic idea is to approximate the absolute
function|t| with a much smoother functiofi,;s () us-

ing smooth unit step functions.

Letd > 0 and letu.(t) be a smooth unit step func-
tion with rising parameter, and let

22 4
fe)y = % + 3 (18)
g1 (t) = Ue(t + 5)
g2 (t) = ,U/e(t - 6)
We define
Sabs (t, 5, 6) = (91 (t) + g2 (t) — ].)t (19)

+ ()1 = g2() £ (D).

Since g, (t) is a smooth unit step function at=
—4, and go(t) a smooth unit step function at =
5, Saps(t,0,€) has approximately such properties:
Saps(t,0,€) = —twhent € (—oo, =0]; Saps(t,9,€) =
t whent € [0, 00]; Saps(t) = f(t) whent € (=46, 0),
where f(t) is a parabola passing both poiritsd, )
and (¢, 4) with derivative—1 at (—4,6), and deriva-
tive 1 at (6,0). Thus, Sqs(t,d,€) can be regarded
as a smooth approximation to the absolute function
s(t) = |t|, whered is used as a parameter to control
the accuracy of the approximation. Figure 2 shows the
shapes of such a function with different

5=0.1 3=0.5
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Figure 2: The shapes o, (¢, d, €) with differentd.
(@) = 0.1; (b)d = 0.5; (c)o = 1.

presented to realize a smooth and blending range con-

trollable implicit shape blending. Each of the two tech-
nigues is obtained by constructing a highly smoothed
bivariate functionf(z,y) that well approximates the

With function S.;4(t, 6, €), we define following ap-
proximation tomax(zx, y):



a C3-continuous blending operation in this way, we
need only use &3-continuous smooth unit step func-
T+ Y+ Sans(x—y,0,6) tion in (19) to defineSu,. (4) When the implicit
(20) shapest's (P) and F5(P) are both polynomials and
Saps(t, d,€) used in (20) is defined by the piecewise
smooth unit step function, the blended shapes from any
blending operations defined in (21) to (23) will be the
oS ‘ ‘ 0-contours of piecewise polynomials.

1 1 1
\\ max(x,y)=0 0 ] 0
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Extmax (:Cv Y, 57 6) =

Figure 3 shows the O-contour &fxt, .. (z,y,J, €)
with e = 0.1 and different values aof.

Figure 4: The blending union of two discs using oper-
ators defined in (21) with = 0.25 and different: (a)
§=0.5;(b)o=1;(c)d =5.
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Figure 3: The shapes dxt,,q.(x,y,0,€¢) = 0 with
e = 0.05 and different values aof.

2 2 2

5=0.01 &1 3=2
For two implicit shapesd : F4(P) > 0 andB : ! ) ! e !
Fp(P) > 0, we define the set-theoretic operations as ° O o O o O
follows: o : o o
Union: 2 0 PR o ;% o 2

(a) (b) ©
FAug(P) :Extmax(FA(P),FB(P),(S,G). ) ) ) ) )
(21) Figure 5: The blending intersection of two discs us-
ing the operators defined in (22) with= 0.25 and

Intersection: differentd: (a)§ = 0.01; (b) § = 1; (c) § = 2.
FA("B (P) = —E.]?tmax(—FA(P), —Z'TB(P)7 (5, 6).
(22) : 5=0.2 : 51 : 52
Abstraction: ! @ ' : @ : @
FAfB(P) = _Extmax(_FA(P)v FB(P)a 67 6)- -1 -1 -1
23 > 2
Figure 4 - 6 demonstrate how the blending union, @ ® ©

the blending intersection, and the blending subtraction

can be managed by changing the paramétr the Figure 6: The blending subtraction of two discs using

blending operations. the operators defined in (23) with= 0.25 and differ-
The key features of the blending operations defined €ntd: ()4 = 0.2; (b)§ = 1;(c) 6 = 2.

above are that: (1) The blended union object from op-

eration defined in (21) will contain the objects to be

bIended as its sqbsets, 'unless the rising range params 5 |nterior blending

eter is set too big. This can be seen directly from

the definitions ofS.;s(t) and Ext,a. (2, ). (2) Two We have defined in previous section some blending

completely separated solids can be blended in differ- operations using a highly smooth blending function

ent blending range by varying the parametérand Extna.(z,y). As have been discussed, the blending

€ (see figure 7). (3)The blending operatiofAs 3, union will generally contain the objects to be blended

Finp, Fa_p can be built to whatever degree of as its subsets. In this section, we are going to define

smoothness one wishes if only the smooth unit stepanother blending function[nt, .. (z,y). As will be

function is smooth enough. For example, to define seen later, the blending union operation derived from



(@) (b) ©

Figure 7: The blending union of two completely sep-
arated discs using operators defined in (21) wits
0.25 and differents: (a) 6 = 0.25; (b) 6 = 0.35; (c)

J =6.

the functionInt, ... (z, y) will always be contained in
the union of the objects to be blendebut,, .. (z,y)
is defined as follows:

Intmam(xa Y, E) = (1 - Me(y - l’))l’ + Me(y - CC)y
(24)
wherep.(t) is a smooth unit step function with ris-
ing range parameter
Figure 8 shows the 0-contour dfnit,,q.(z,y,€)
with different values ot.
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Figure 8: The shapes @ht,,q.(x,y, ) = 0 with dif-
ferent values ot.

For implicit shapes described by functiont :
F4(P) > 0andB : Fg(P) > 0, following soft blend-
ing operations can be defined usih@t ... (=, y):

Union:

FAUB(P) = Intmam(FA(P)a FB (P)7 6)' (25)

Intersection:

FAﬂB (P) - _Intmax(xa y)(—FA(P), _FB(P)7 6)’
(26)

Subtraction:

Fa_p(P) = —Intme(x,y)(—Fa(P), Fp(P),¢).
(27)
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Figure 9: The blending union of two discs using the
operators defined in (25) with different rising range pa-
rameters: (a)e = 1/4; (b) e = 5; (¢) e = 10.

Figure 9-11 demonstrate how two discs are com-
bined using the three operations.

Unlike the operations derived from function
Extna(x,y), where the blending range is mainly
controlled by adjusting parametey, the blending
range using operations defined in (25)-(27) is mainly
controlled by varying the rising range parameten
the smooth unit step functions: the smaller the pa-
rametere, the larger the surface range of the objects
to be blended will be preserved (see Figure 9-11). It
also can be observed from the figures that no mat-
ter what a rising parameter is used, the joints of the
shapes to be blended always lie on their blending.
This is obviously implied in the blending function
Intmaee(z,y). Consequently, blending operations de-
fined byInt,,..(z,y, €) can only be used to blend in-
tersecting implicit objects.

e=1/4

(a) (b) ()

Figure 10: The blending intersection of two discs us-
ing the operators defined in (26) with different rising
range parametees (a)e = 1/4; (b) e = 5; (c) e = 20.

Another feature of the blending technique, as can be
seen from the figure 9, is that the blended solid union
using operation defined in (25) will always be a subset
of the union of the solids to be blended. Contrary to the
union, the intersection of the blended object from func-
tion (26) always contains the intersection of the solids
to be blended. Figure 9- 11 also demonstrate how the
transition area can be controlled by adjusting the rising
range parameter in the smooth unit step functioft).



£=20

(@ (b) ©)

Figure 11: The blending subtraction of one disc from
another using the operators defined in (27) with differ-
ent rising range parameters(a)e = 1/4; (b) e = 5;

(c) e = 20.

4 Examples and discussions

In this section, we present a few examples of implicitly
represented graphical objects to demonstrate the effi
ciency and the effectiveness of the proposed blending
algorithms. All these objects are constructed by blend-
ing a set of simple algebraic surfaces. Piecewise cubic
polynomial smooth unit step function has been used to
define the blending operations. Therefore, the implicit
functions corresponding to all these figures aré
continuous. Suppose the object to be designed involv-
ing implicit surfacesF;(P) = 0,7 = 0,1,2,---,n.
Then the general procedure in producing the object is
performed in an iterative way and can be described as
follows:

F(P)=Fy(P);
for (i = 1ton){

F(P) = blending(F(P), F;(P));
}

whereblending(-, ) represents a general blending op-
eration.

Teapot in Implicit Surface

Figure 12: The shape of a teapot is represented as
C?-smooth function by blending a set of simple alge-
braic surfaces

Figure 12 presents an implicit teapot constructed us-
ing some commonly known algebraic surfaces. The
teapot body and lid are built using spheres. The handle
is represented by a torus, and the nozzle of the teapot
is a blend of three cylinders and a plane using different
rising range parameters in the smooth unit step func-
tions. The blending operations used are those derived
from bivariate function nt,,q. (x, y).

Figure 13 presents an implicitly represented sea
shail. It is constructed using a set of spheres and a
plane using blending operations defined by function
Intma.(x,y). The spheres are evenly located along
a 3D spiral curve with increasing radius. They are
blended to represent the body of the shell. To obtain
a closed surface, the shell body is then blended with a
closed half sphere, which is obtained by subtracting a
3D plane from the sphere.

Figure 13: The shape of a sea snail is represented as a
C2-smooth function by blending a set of spheres and a
3D plane.

Figure 14 presents an implicitly represented hand-
written number. The implicit shape is obtained by
blending a set of equal-sized spheres located along
a curve which represents the skeleton of the charac-
ter. The Blending operation defined in (21) using
Extpma(z,y) is used and the parametérin func-
tion S, (t) is specified roughly equal to the distance
between the center of two adjacent spheres. This ex-
ample exploits the property of the union blending op-
eration that two completely separated objects can be
blended together with expected blending volume. This
technique can be used in practice to approximately rep-
resent some convolution surfaces.

Figure 15 demonstrates the key difference in blend-
ing implicitly represented surfaces. In general, there
are no visual differences at all when blending parame-
ter§ ande are very small. However, with the increase
in the values ofs ande, the union blending opera-



given integem. Two new types of blending operations
for implicit objects are proposed. The typical features
of the presented techniques are, firstly, that they enable
us to build an implicit blender to have whatever degree
of smoothness one wishes. Secondly, the blending op-
erations derived from this technigue are more flexible
in controlling the blending range and smoothness. Fur-
thermore, the mathematical descriptions of the tech-
niques are simple and elegant.
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5 conclusion

In this paper, we introduced a new technique to define
implicit shape blending operations using smooth unit
step functions. Four methods have been given to de-
rive aC™-continuous smooth unit step function with a



