
Multiresolution representation and deformation
of wavelet-based 3D objects

Heurtebise Xavier Thon Sébastien Gesquière Gilles

LSIS: Laboratoire des Sciences de l’Information et des Systèmes
IUT de Provence, Rue Raoul Follerau, Route de Crau

13200 Arles – France
{xavier.heurtebise,sebastien.thon,gilles.gesquiere}@up.univ-mrs.fr

ABSTRACT

In a virtual sculpture project, we would like to sculpt in real-time 3D objects sampled in volume elements
(voxels). The drawback of this kind of representation is that a very important number of voxels is required to
represent large and detailed objects. As a consequence, the memory cost will be very important and the
user/object interaction will be slowed down. In order to allow real-time performance, we propose in this paper a
multiresolution model that represents the object with more or less detailed levels thanks to a 3D wavelet
transform. We use the marching cubes algorithm to display a triangular surface of the 3D object in various
resolutions. To update quickly this surface during sculpture process, we propose a storage method for all the
triangles that allows to rebuild only the modified parts of the 3D object. Moreover, to speed up processing and
user/object interaction, we also propose a cache system to store in memory the most frequently used levels of
details of the 3D object.

Keywords
Computer graphics, virtual sculpture, voxels, levels of details, 3D wavelets.

1. INTRODUCTION
In this paper, we tackle the problem of virtual
sculpture of 3D objects with tools, both represented
with spatial enumerations. Such a spatial
enumeration is a set of volume elements called
voxels, obtained by sampling the volume of a 3D
object. It can be seen as a 3D image composed of
voxels, where a 2D image is an array composed of
pixels. To make a spatial enumeration from a 3D
object, several methods have already been suggested.
The simplest way is a uniform spatial enumeration,
by regularly sampling the 3D object into voxels with
the same size. However, a major drawback of this
representation is the large number of voxels needed
to represent large objects with detailed features. This
entails three main problems. The first one is the
important memory cost to store this uniform spatial

enumeration. The second one is that the display of
these objects become slower. Finally, operations on
these objects such as sculpture actions or
displacements become less and less interactive.

To prevent these inconveniences, adaptive sampling
methods have been developed. Libes [Lib91] uses an
octree to gather groups of adjacent voxels having
same values to reduce the number of elements stored
in memory. It’s very simple to use and to implement
this method. Ferley [Fer02] also works on a n-tree
where each cell can be divided in 27 ones. This
method looks like an octree and allows to reach a
high level of details. However, for an object with
small details, the subdivision level of an octree or
n-tree will be very high. So the processes
(construction and use) will be slow.

Several other sampling methods used in collision
detection propose to modify properties of the voxels,
such as the size, the orientation or even the shape.

With the AABB method (Axis Aligned Bounding
Boxes), Bergen [Ber97] suggests to use voxels with
different sizes. Gottschalk [Got96] proposes to
modify not only the size of the voxels but also their
orientation, with the OBB method (Oriented
Bounding Boxes). Thanks to these two methods, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Short Communications proceedings ISBN 80-86943-05-4
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

WSCG2006 Short Papers Proceedings 69 ISBN 80-86943-05-4

object rendering is optimized because the original
object shape can be approached with less voxels than
with a simple uniform spatial enumeration. The
modeling is finer with OBB tree than AABB tree for
a same number of bounding volumes. However,
AABB tree uses less memory storage than OBB tree
for a same number of bounding volumes. Indeed, an
OBB is represented by using 15 scalars (9 scalars for
the orientation, 6 scalars for position and extent),
whereas an AABB only requires 6 scalars (for
position and extent). Moreover, to optimize the
modeling of the 3D object, these two methods
suggest to reduce overlaps between bounding boxes
and to increase their filling by the object, with the
less possible boxes. This optimization is expensive in
processing time, so we prefer using a uniform spatial
enumeration or an octree, because they are faster
than AABB and OBB methods.

Liu [Liu88] and Hubbard [Hub95] propose to replace
cubes by spheres in an octree to form a spheres tree,
because spheres accelerate collision detection
between objects. Later, Hubbard [Hub95] [Hub96]
and Bradshaw [Bra04] suggest a finer modeling
using spheres tree thanks to an approximated medial-
axis of the 3D object, but this method is slower and
more complicated than an octree.

To further improve the use of spatial enumeration,
several methods of multiresolution representations
have been proposed. So, processing and display
times are adapted with the desired level of details.
Among these methods, there are octree and wavelet
decomposition.

An octree can also be seen as a hierarchical
representation of 3D object. The maximum level of
subdivision of the octree defines the maximum level
of details of a multiresolution representation. Boada
[Boa01] defines a section in an octree that
determines the displayed nodes for a defined level of
details. This method is extended to a n-tree by Ferley
[Fer02].

The second multiresolution method uses wavelet
decomposition. Wavelets are a mathematical tool for
representing functions hierarchically. In our case,
these functions are discrete 3D functions that define
a set of voxels. More information about wavelets will
be given in the section 2.1. Muraki [Mur92] [Mur93]
shows the use of 3D Haar wavelets to represent a 3D
object. Pinnamaneni [Pin02] builds a 3D Haar
wavelet decomposition from a sequence of 1D Haar
wavelet decomposition in each direction of the 3D
voxels grid. Wavelet decomposition allows to display
a 3D object faster according to the level of details. It
also permits to drastically cut down the memory cost,

because high compression ratio can be achieved on
wavelets coefficients, especially if lossy compression
schemes are used.

The previously cited methods are about discrete
representation of 3D objects. Different methods have
already been proposed to sculpt these kinds of
objects.

In the Kizamu project, Frisken [Fri01] uses ADFs
(Adaptively sampled Distance Fields) to model and
to sculpt the matter. A 3D object is sampled
adaptively with a 3D grid according to the details of
the object. Each grid cell contains a scalar specifying
the minimum distance to the object shape. This
distance is signed to distinguish between the inside
and outside of the shape. Ferley [Fer02] also uses
distance fields, stored in a “n-tree” hierarchical
representation where the sampling rate depends on
object’s details. Bærentzen [Bae02] proposes Level-
Set method to deform the matter. This method stores
distance fields around the exterior of a 3D object.

Raffin [Raf04] proposes a model of virtual sculpture
based on a multiresolution representation: the octree.
The artist can create his own tools. Each tool modify
the data in uniform spatial enumeration, so it
modifies the nodes of the octree. This method is
more useful and easier than previous method,
because it operates directly on spatial enumeration.

Finally, Ayasse [Aya01] proposes to perform
sculpture operations by the use of CSG (Constructive
Solid Geometry). Complex objects are created by
successive modifications of the matter with a tool
according to simple operations such as difference,
union or intersection. The object and the tool are
represented by uniform spatial enumerations. Ayasse
proposes to reduce the computation time for each
sculpture operation by using only the effective
voxels of a movement. This method can be useful
because the computation times are reduced.
However, it doesn’t use a multiresolution
representation that could improve the display
performance.

As we can see, many models have been proposed in
order to represent 3D objects as discrete sets of
voxels. However, there remain open issues. The three
main problems are the computation time during
sculpture operations and the display that must remain
real-time, as well as the important memory cost. In
this paper, we propose a model based on 3D wavelets
that tackles these issues. Although wavelets have
already been used to represent discrete 3D objects, it
has never been used in a virtual sculpture context

WSCG2006 Short Papers Proceedings 70 ISBN 80-86943-05-4

where the object must be dynamically updated. Thus,
problems linked to real-time modifications of 3D
wavelets have never been studied.

The use of 3D wavelets allows to solve the three
main problems mentioned above.

- First, we take advantage of the multiresolution
nature of wavelets to manage the interaction time
between the user and the object to obtain real-
time interaction.

- Second, the display of the discrete object is done
thanks to the marching cubes algorithm [Lor87]
that smoothes the rugged aspect of voxels, thus
improving the representation of 3D objects. To
avoid rebuilding the whole triangular mesh after
each sculpture operation, we propose a storage
method for the triangles of the mesh, which
permits to modify locally and rapidly the mesh of
a 3D object. Moreover, the level of details for the
display is automatically selected to satisfy the
conditions about user/object interaction.

- Third, our method tackles memory issues. As the
memory space is limited, we propose a cache
system that offers a compromise between the
processing, preprocessing and display times and
the memory cost. Last but not least, the wavelets
representation of the object allows important
compression ratio to reduce the memory cost,
especially if lossy compression schemes are used.

The remainder of the paper is organized as follows:
in section 2, we present our method in five parts: the
multiresolution model based on 3D Haar wavelets, a
display method, an automatic management of levels
of details to accelerate the display, a cache system
and finally some virtual sculpture operations. We
conclude in section 3. Finally we expose some future
works in section 4.

2. OUR MULTIRESOLUTION MODEL
OF SPATIAL ENUMERATION

2.1 The Model
As the uniform spatial enumeration of a 3D object is
expensive in processing and display times, we
propose a multiresolution model based on 3D Haar
wavelets.

On the following example, we explain Haar wavelet
decomposition on a 1D case. First, consider a
sequence of p values, where p is a power of two
(here, p = 4 = 22):

[]0 9, 7, 3, 5X =

Then, by applying Haar wavelet transform, we can
represent this sequence in terms of a low-resolution
sequence X1 and a set of detail coefficients Y1:

[]1 9 7 3 5
, 8, 4

2 2
X

+ +
= =⎡ ⎤
⎢ ⎥⎣ ⎦

[]1 9 7 3 5
, 1, 1

2 2
Y

− −
= = −⎡ ⎤
⎢ ⎥⎣ ⎦

So, by repeating these operations, we obtain several
sets of coefficients corresponding to different levels
of details, as shown on the following decomposition
table:

level of
details #

low-resolution
coefficients

 detail
coefficients

0 [9 7 3 5]
1 [8 4] [1 -1]
2 [6] [2]

So, the higher the number of the level of details, the
less detailed the sequence. The sequence obtained by
Haar wavelet decomposition has the same size than
the original sequence. Its coefficients are the low-
resolution coefficients of the last level of details and
the different detail coefficients:

Original sequence: [9 7 3 5]
Final sequence: [6 2 1 -1]

The extraction of the original sequence from the final
sequence uses the inverse wavelet transform:

[] []1 6 2, 6 2 8, 4X = + − =

() ()[] []0 8 1,8 1, 4 1 , 4 1 9, 7, 3, 5X = + − + − − − =

LLH HLH

H
H

H

L

HHLH

HLLL

3D Image H

LLL HLL

HHLLHL

Figure 1. 3D Haar wavelet decomposition.

Similarly, we can use this wavelet transformation in
a 3D case. First, the 3D discrete object is defined by
a uniform spatial enumeration. Then, by using the
wavelet transform we build a hierarchical structure
that stores the coefficients of each level of details of
this 3D object.

We use the hierarchical structure proposed by
Pinnamaneni [Pin02]. For each level of details, the
1D Haar Wavelet transformation is applied in x-, y-
and z-direction successively (figure 1).

WSCG2006 Short Papers Proceedings 71 ISBN 80-86943-05-4

For each transformation step, we obtain a bloc ‘L’
with low-resolution coefficients obtained by a low-
pass filter, and a bloc ‘H’ with detail coefficients
obtained by a high-pass filter.

Figure 2. 3D wavelet enumeration for a sphere
in 128x128x128 with 6 levels of details (from 0

to 5, from left to right, and from top to bottom).

The figure 2 shows a 3D Haar wavelet
decomposition for a sphere with 6 levels of details.
Each voxel contains a density value coded in a byte
(from 0 for an empty voxel to 255 for a full one).

Several objects permit us to measure the influence of
the size of a 3D image on the building time (for
wavelet decomposition of the 3D image) and the
extracting time (for extraction of a level of details
from wavelet enumeration). The results given in this
paper have been obtained on a PC with an AMD
3GHz, 1GB of RAM and a NVIDIA Geforce FX
5200 with 128MB video memory.

Extracting Objects Building
(4 levels) Level 0 Level 1

cube 0.04599 s 0.06178 s 0.00181 s
sphere 0.04647 s 0.06228 s 0.00184 s64

x6
4x

64

torus 0.04611 s 0.06268 s 0.00183 s

Extracting Objects Building
(5 levels) Level 0 Level 1

cube 0.69834 s 0.75055 s 0.06286 s
sphere 0.69753 s 0.75292 s 0.06272 s

12
8x

12
8x

12
8

torus 0.70104 s 0.75064 s 0.06252 s

Table 1. Building and extracting times
for 3D Haar wavelet enumerations.

As reported on table 1, the building and extracting
times do not depend on the kind of 3D object. The
building time only depends on the number N of
voxels of the initial uniform spatial enumeration and
on the maximum level n of details of wavelet
enumeration (a is a constant depending on computer
power):

1 0.125building

nt a N= ⋅ ⋅ −⎡ ⎤⎣ ⎦

The extracting time depends on the number N of
voxels of the initial uniform spatial enumeration, the
maximum level n of details of wavelet enumeration
and the extracted level p of details (b is a constant
depending on computer power):

0.125 0.125extracting

p nt b N= ⋅ ⋅ −⎡ ⎤⎣ ⎦

These properties will be useful to estimate the
building and extracting times in section 2.4.

2.2 The Display
To display a 3D discrete object, there are several
methods such as a display with cubes, spheres or
surfels [Sze92]. Nevertheless, the rendering of these
methods has a very rough aspect.

Figure 3. The 15 configurations proposed
by Lorensen and Cline in 1987 [Lor87].

To obtain a smooth surface instead of a set of boxes,
we use the marching cubes algorithm [Lor87] to
build a triangulated surface, by using the different
configurations shown on figure 3 (The voxels are the
eight vertices of the cubes). For each configuration
of full and empty voxels, from 0 to 5 triangles are
generated.

Figure 4. Marching cubes method for an object
in 128x128x128 with 6 levels of details (from 0

to 5, from left to right, and from top to bottom).

In the case of a binary coding of the object, the
marching cubes algorithm would lead to a rather
angular rendering: the surface would always run
exactly in the middle of two inside and outside
voxels, thus generating angles multiple of 45°.
However, as we have values between 0 and 255, we
obtain a smoother set of triangles by an interpolation
of voxels values.

WSCG2006 Short Papers Proceedings 72 ISBN 80-86943-05-4

The marching cubes algorithm is applied on each
level of details of 3D wavelet enumeration, so a
triangulated surface is obtained for each level of
details (figure 4).

Preprocessing times
Level 0 Level 1 Level 2

sphere 0.43098 s 0.06498 s 0.01113 s
torus 0.38808 s 0.05524 s 0.01092 s
brain 0.49629 s 0.08615 s 0.01310 s

Display times
Level 0 Level 1 Level 2

sphere 0.03294 s 0.00824 s 0.00221 s
torus 0.01843 s 0.00473 s 0.00113 s
brain 0.05552 s 0.01268 s 0.00276 s

Number of triangles
Level 0 Level 1 Level 2

sphere 147 968 36 672 9 160
torus 72 368 17 800 4 584
brain 296 416 68 124 13 968

Table 2. Preprocessing and display times
and number of triangles of the triangulated

surface for 3D Haar wavelet enumerations of 3D
objects in 128x128x128.

However, the marching cubes algorithm is a rather
slow process. Using this algorithm to compute the
triangulated surface of a whole 3D object each time it
needs to be displayed would be too time consuming
to achieve real-time display (table 2). The more
detailed the 3D object, the higher the computation
time, as a lot of triangles are computed. In order to
improve computation time during sculpting process
and to have real-time interactions between a user and
the 3D object, we propose the following strategy: we
compute the marching cubes on the whole object
only once, as a preprocessing step before sculpting.
Then, during the sculpting process, the marching
cubes algorithm is only applied to the voxels
modified by the sculpting tools. Thus, we only
compute the new triangles of the surface locally
altered by the tool.

In order to modify locally and rapidly the
triangulated surface during sculpting process, we
propose a method to store the triangles of the surface,
which permits to easily find and modify the triangles
for the modified parts of the 3D object.

This method uses a data structure (figure 5),
composed by:

− A linked list for the storage of triangles of the
surface for each block of 8 voxels.

− A 3D matrix of pointers to improve the access to
the linked list. When the triangulated surface is

created, the 3D image is processed by block of 8
voxels. For each block, a piece of surface is
created with triangles (from 0 to 5) thanks to the
marching cubes algorithm. For 0 triangle, the
pointer of the 3D matrix is NULL. Else, it point
to a item in the linked list containing the
triangles data.

Figure 5. Display structure with a 3D matrix
of pointers (on the left) to a linked list (on the

right) for the storage of triangles of the surface.

2.3 Automatic Management of the Levels
of Details
In order to accelerate the display of a 3D object
defined with our model, we take advantage of its
multiresolution nature given by the wavelets. We
propose an automatic management of the levels of
details that selects the more adequate level of the 3D
object to display. For that, we use the three following
criteria:

− If the user interacts with the 3D object, we
define a frame rate N1, according to the power of
the computer, to display the 3D object in real-
time. Consequently, the greater the frame rate
N1, the faster the display.

− If the user doesn’t interact with the 3D object,
we define a frame rate N2, according to the
power of the computer, to display the 3D object.
In fact, it’s unnecessary to display object in real-
time, but the user can interact rapidly with the
object. So, the frame rate N2 is smaller than N1.

− Finally, we rectify the level of details obtained
by respecting the previous conditions, according
to the proximity between the user and the object.
So, the greater the distance between the user and
the object, the more rough the level of details,
because the details become invisible for the user.
For a very great distance (right of figure 6), the
coarser level of details is displayed. On the
contrary, when the distance is small (left of
figure 6), the most detailed level of details is
displayed.

WSCG2006 Short Papers Proceedings 73 ISBN 80-86943-05-4

Figure 6. Effect of the proximity between the

viewpoint and a 3D object in 128x128x128 with
4 levels of details (from 0 to 3, from left to right).

2.4 The Cache System
Thanks to the automatic management of the levels of
details, the display time is improved. But, as the
memory space is limited, we can’t store in memory
all the levels of details of the 3D wavelet
enumeration. However, in order to preserve access
performance to a given level of details of the 3D
object (to modify it, to display it, etc.), it is crucial to
avoid to extract this level each time we need to use it.
Consequently, we propose a cache system method
that offers a compromise between memory usage and
the performances of processing, preprocessing and
displaying.

Figure 7. Data structure of the cache system.

The principle of our cache system is to store the most
frequently used levels of details of the 3D object. So,
we propose the storage of levels of details in memory
space, according to several criteria:

− maximum memory size allowed;
− frequency of use of each level;
− processing, preprocessing and display times.

The cache system (figure 7) uses a data structure to
store the levels of details of the 3D object. The size
of this structure depends on the maximum level of
details of the 3D wavelet enumeration. Each level of
this structure corresponds to one level of details of

the multiresolution representation. For each level of
details, this structure is composed of:

− if the level of details exists:
− a 3D image;
− a data structure for displaying the object ;
− the memory cost;
− the preprocessing and display times;
− the frequency of use of the level of details;

− else:
− the evaluation of the memory cost;
− the evaluation of the preprocessing and

display times;

Inverse wavelet transformationWavelet transformation

3D Haar wavelet enumeration

level N" less detailed than N

new level N
3D Object

3D Object
level N’ more detailed than N

3D Object

Figure 8. Building the new level

from a more detailed level (on the left) or
from a less detailed level (on the right).

When a new level has to be added to the cache
structure, it is crucial not to extract it from the
wavelet enumeration, but to extract it from a level
already present in the cache, as less reconstruction
steps are needed. For that, the new level is built
from:

− the first existing more detailed level by using the
wavelet transform only for the low-resolution
coefficients;

− the first existing less detailed level by using the
inverse wavelet transform.

We automatically choose between these two methods
the fastest one to rebuild the new level according to
the different existing levels in the cache system
(Figure 8).

2.5 The Virtual Sculpture
In this paper, we propose a simple case of sculpture
of the matter: adding and subtracting voxels to the
3D wavelet enumeration. A major advantage of our
method is that the tool used for virtual sculpture has
the same representation than the matter. So, the user
can create his or her own tools to sculpt another 3D
object. Other tools and the interaction with other
representation (like implicit functions, etc.) will be
studied in future works.

CACHE SYSTEM

− Memory cost

− Preprocessing time

− Display time

− Frequency of use

− Evaluation of memory cost

− Evaluation of preprocessing time

− Evaluation of displaying time

− Memory cost

− Preprocessing time

− Displaying time

− Frequency of use

le
ve

l 0

le
ve

l 1

le
ve

l n

WSCG2006 Short Papers Proceedings 74 ISBN 80-86943-05-4

In this paper, the tool can only be positioned in
translation relatively to the matter, without rotation.
Rotation issues will be studied in future works. In the
case of a tool in translation, a collision test is made
between the bounding boxes of the tool and the
matter to speed up the sculpture time. If there is a
collision, the following operations are performed:

− find the voxels of the matter and the tool which
are in the collision zone;

− find which voxel of the tool intersects which
voxel of the matter in this zone.

0

0 0

0

72

222

90

0

00

0

0

255

222

255

255127

184

128

15090

0

0 0

0

00

0

90 150 255

222128

120 200

100

0

0

0

0 0 0

0

0

255150

128

56

255

255

255

255

d. Subtracting matterc. Adding matter

a. Initial object b. Position tool / object

Figure 9. Adding or subtracting
matter to an object with a tool.

If there is intersection between voxels of the matter
and the tool in the collision zone, the filling
percentage of the voxel of the matter by the one of
the tool is computed. It’s the ratio between the
volume of the intersection between the two voxels
and the volume of the one of the matter. The two
following modes are illustrated in 2D on figure 9:

− in the “Adding matter” mode, if the voxel of the
tool isn’t null, the filling percentage is added to
the value of the voxel of the matter. If this value
becomes greater than 255, it is put to 255;

− in the “Subtracting matter” mode, if the voxel of
the tool isn’t null, the filling percentage is
subtracted to the value of the voxel of the matter.
If this value becomes negative, it is put to 0.

When the computation is made on all the voxels of
the matter in the collision zone, only the images for
the levels of details existing in the cache system and
the 3D wavelet enumeration are updated.

Moreover, for each level of details existing in the
cache system, the triangulated surface is rebuilt only
for the modified parts of the 3D object, to improve
the computation time. First, the coordinates of the
modified voxel are used to access, thanks to the 3D

matrix presented on figure 5, to the items of the
linked list that are deleted. Then, the new triangles
are computed and the linked list as well as the 3D
matrix are updated.

Several examples of sculpture, in 128x128x128, are
illustrated on figures 10, 11 and 12 :

Figure 10. A random sculpture built with a
spherical tool in less than 1 minute.

Figure 11. A sportsman sculpted with 3 spherical
tools at different sizes in less than 5 minutes.

Figure 12. A relic sculpted with a spherical tool
and two ring tools in less than 1 minute.

3. CONCLUSION
We have presented in this paper a model of 3D
object that allows real-time virtual sculpture on an
average PC. This object is represented as a set of
voxels, but we avoid speed and memory issues
inherent to this kind of representation thanks to a
multiresolution approach based on 3D Haar wavelets.
In order to enhance real-time performance, we also
have developed several structures, as follows:

− A management of the interaction time between
the user and the object to obtain real-time
interaction.

− A storage method for the triangles of the mesh,
generated by the marching cubes algorithm, to

WSCG2006 Short Papers Proceedings 75 ISBN 80-86943-05-4

modify locally and rapidly the mesh of a 3D
object after each sculpture operation.

− An automatic management of the level of details
for the display to satisfy the conditions about
user/object interaction.

− Finally, a cache system to offer a compromise
between the memory cost and the processing,
preprocessing and display times.

To verify the applicability of our sculpting system,
using simple sculpture tools, we have conducted
many sculpting sessions which have resulted in
numerous interesting sculptures. Some sculptures
examples are shown on figures 10, 11 and 12,
and several other examples can be seen on
http://www.iut-arles.up.univ-mrs.fr/thon/.

4. FUTURE WORKS
Many improvements of our sculpture system are
possible, as interaction, speed and memory cost will
always be challenging issues.

Concerning interaction, we plan to manage the
rotation of tools relatively to the matter. Moreover,
more sculpture operations will be added. We will
also improve the realism of sculpture actions, by
adding parameters to the voxels to imitate physical
behavior.

In order to accelerate the display when the user
interacts with the matter, different display methods
will be investigated.

Finally, we plan to reduce the memory cost of the
sculpted object by taking advantage of the important
compression ratio allowed by the wavelet
representation.

5. REFERENCES
[Aya01] Ayasse, J., and Müller, H. Interactive

Manipulation of Voxel Volumes with Free-
formed Voxel Tools. In Proceedings of the
Vision Modeling and Visualization Conference
2001, pp.359-366, 2001.

[Bae02] Bærentzen, J.A., and Christensen, N.J.
Volume sculpting using the Level-Set method.
Shape Modelling International 2002, IEEE
Computer Society, pp.175-182, 2002.

[Ber97] Bergen, G.V.D. Efficient collision detection
of complex deformable models using AABB
trees. Journal of Graphic Tools, 2(4), pp.1-13,
1997.

[Boa01] Boada, I., Navazo, I., and Scopigno, R.
Multiresolution volume visualization with a
texture-based octree. Visual Computer, 17,
pp.185-197, 2001.

[Bra04] Bradshaw, G., and O’Sullivan, C. Adaptive
medial-axis approximation for sphere-tree

construction. ACM Transactions on Graphics,
23(1), pp.1-26, 2004.

[Fer02] Ferley, E. Sculpture virtuelle. Ph.D. thesis,
Institut National Polytechnique de Grenoble,
2002.

[Fri01] Frisken, S.F., and Perry, R.N. Kizamu: a
system for sculpting digital characters. Procee-
dings of ACM SIGGRAPH 2001, pp.47-56,
2001.

[Got96] Gottschalk, S., Lin, M.C., and Manocha D.
OBB-Tree: A hierarchical structure for rapid
interference detection. In Proceedings of ACM
SIGGRAPH’96, pp.171-180, 1996.

[Hub95] Hubbard, P. Collision detection for inte-
ractive graphics applications. Ph.D. thesis, Dept.
of Computer Science, Brown University, 1995.

 [Hub96] Hubbard, P. Approximating polyhedra with
spheres for time-critical collision detection. ACM
Transactions on Graphics, 15(3), pp.179-210,
1996.

[Lib91] Libes, D. Modeling dynamic surfaces with
octrees. Computer & Graphics, 15(3), 1991.

[Liu88] Liu, Y., Noborio, J., and Arimoto,
S. Hierarchical sphere model (HSM) and its
application for checking an interference between
moving robots. In Proceedings of the IEEE
International Workshop on Intelligent Robots and
Systems, pp.801-806, 1988.

[Lor87] Lorensen, W.E., and Cline, H.E. Marching
Cubes: a high-resolution 3D surface construction
algorithm. Computer Graphics, 21(4), pp.163-
169, 1987.

[Miz98] Mizuno, S., Okada, M. and Toriwaki,
J. Virtual sculpting and virtual woodcut printing.
The Visual Computer, 14(2), pp.39-51, 1998.

[Mur92] Muraki, S. Approximation and rendering of
volume data using wavelet transforms. In
Proceedings of Visualization ’92, Boston, pp.21-
28, 1992.

[Mur93] Muraki, S. Volume data and wavelet
transforms. IEEE Computer Graphics and
Applications, 13(4), pp.50-56, 1993.

[Pin02] Pinnamaneni, P., Meyer, J., and Saladi,
S. Remote transformation and local 3-D
reconstruction and visualization of biomedical
data sets in Java3D. In Proceedings of Electronic
Imaging Science & Technology Visualization and
Data Analysis Conference, San Jose, CA, pp.44-
54, 2002.

[Raf04] Raffin, R., Gesquière, G., Remy, E., and
Thon, S. VirSculpt: a virtual sculpting
environment. GraphiCon '04 Proceedings,
pp.184-187, 2004.

[Sze92] Szeliski, R., and Tonnesen, D. Surface
modeling with oriented particle systems.
Computer Graphics, 26(2), pp.185-194, 1992.

WSCG2006 Short Papers Proceedings 76 ISBN 80-86943-05-4

	E47-full.pdf

