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ABSTRACT 
Reverse subdivision consists in constructing a coarse mesh of a model from a finer mesh of this same model. In 
this paper, we give formulas for reverse Catmull-Clark subdivision. These formulas allow the constructing of a 
coarse mesh for almost all meshes. The condition for being able to apply these formulas is that the mesh to be 
reversed must be generated by the subdivision of a coarse mesh. Except for this condition, the mesh can be 
arbitrary. Vertices can be regular or extraordinary and the mesh itself can be arbitrary (triangular, 
quadrilateral…). 
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1. INTRODUCTION 
Subdivision surfaces were introduced in 1978 by 
Catmull-Clark [Cat78] and Doo-Sabin [Doo78] as an 
extension of the Chaikin algorithm [Cha74]. These 
surfaces are widely used in character animation (such 
as Geri's Game © or Finding Nemo ©) to smooth out 
models. Indeed, from a coarse mesh, successive 
refinements give finer meshes. A sequence of 
subdivided meshes converges towards a smooth 
surface called limit surface. Since the earliest 
subdivision surfaces in 1978, many subdivision 
schemes were proposed. Some are approximating and 
others are interpolating (i.e. control vertices of 
successive meshes belong to the limit surface). 
The main advantage of the Catmull-Clark scheme 
over the triangle based subdivision such as the Loop 
scheme [Loo87] is that the control mesh faces can 
have an arbitrary number of edges. This is an 
important feature in modeling because most of the 
time designers build their model by symmetry as 

shown in Figure 1. Moreover subdivision surfaces are 
more and more used in CAGD and in this field; most 
meshes are quadrilateral, in coherence with 
parametric surfaces (Bezier, B-splines, NURBS…). 
Subdivision methods produce an increasingly fine 
sequence of meshes. On the contrary, it can be 
interesting to pass quickly from a mesh to a coarser 
one according to the point of view for example. 
Using a local formula for decreasing the resolution of 
a mesh is a crucial element for the implementation of 
multiresolution surfaces. It reverses the subdivision 
process. While formulas for subdividing meshes are 
local, the existence of local formulas for the 
respective reverse subdivision is less evident.  
 

  
Figure 1. A character head build by symmetry.  

 
There are several global methods such as 
multiresolution methods [Lou97], as Loop reverse 
subdivision [Mon04]. The interest for the local 
methods however is new. Samavati and Bartels 
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determined the local reverse subdivision masks for 
the Butterfly and Loop scheme restricted to regular 
vertices (valence 6) in [Sam02]. Samavati et al. 
focused on the Doo-Sabin scheme for arbitrary 
meshes in [Sam02]. Samavati, Pakdel, Smith and 
Prusinkiewicz [Sam03] propose a local method for 
the Loop scheme which consists in locally reversing 
the formula for a given set of vertices.  

In this paper, we focus on Catmull-Clark and develop 
a local method to reverse this subdivision. Section 2 
overviews the Catmull-Clark scheme. Then, we 
present our method for reversing Catmull-Clark 
scheme in Section 3. Thus obtained results are shown 
in Section 4, illustrating different cases that can 
occur.  

 

2. BACKGROUND 

The Catmull-Clark subdivision scheme 
The Catmull-Clark subdivision scheme generalizes 
the generation algorithm of cubic B-splines to 
surfaces; it is based on the tensor product bicubic 
spline [Dyn90]. The rules of Catmull-Clark were first 
defined for meshes with quadrilateral faces but they 
can easily be generalized to arbitrary polygonal 
meshes. The valence of a vertex is the number of 
vertices connected to this vertex by an edge. In the 
case of Catmull-Clark, if the vertex valence is not 
four the vertex is denoted as an extraordinary vertex. 
Even if the initial mesh is not quadrilateral, meshes 
generated at each subdivision level are quadrilateral.  

Let kM  be the mesh at the subdivision level k . 
Each vertex of k 1M +  can be associated to a face, an 
edge or a vertex of kM . These vertices are 
respectively called face point, edge point or vertex 
point. 

• A face point denoted 1k
jf +  is computed as the 

average of the vertices of this face: 
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• An edge point 1k
je +  is computed as the 

average of the endpoints of this edge and the 
face points of the two incident faces of this 
edge : 
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where kv  and k
je  are the endpoints of the 

edge on the thk  subdivision level and 1
1

k
jf +
−  

and 1k
jf +  are the newly computed face points 

of the faces incident to this edge. 
• A vertex point is a weighted average of its 

incident vertices of the same level and of the 
face points of the incident faces 
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where 1k
jf +  are the newly computed face 

points, k
je  are the neighbours of kv  on the 

same subdivision level and n  is the valence of 
the vertex kv . 
 

Figure 2 illustrates these notations for a vertex kv  
with valence n . 
 

 

Figure 2. Catmull-Clark Subdivision for a vertex 
kv  with valence of n . 

 
The valence of a vertex point remains the same after 
subdivision i.e. 1# #k kv v +=  and 1# #k k

j jv v +=  where 

#  denotes the valence of a point. The valence of 
edge points are always four and the valence of face 
points corresponds to the number of edges of the 
face. Figure 3 shows the successive meshes obtained 
with the Catmull-Clark subdivision. 
 

 
Figure 3. Catmull-Clark subdivision applied on a 

torus mesh. 
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Boundaries 
The formulas used for vertices on a mesh boundary 
are different from those for interior vertices. The 
notations used are the same than previously but this 
time kv , 0

ke  and 1
ke  form a boundary of the mesh 

(Figure 4). 
The formula used for computed boundary vertices 
with Catmull-Clark scheme are those of cubic B-
spline curves: 
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Figure 4. kv , 0

ke  and 1
ke  form a boundary of the 

mesh. 
 

3. Reverse formula for Catmull-Clark 
subdivision 
 

Method 
For the reverse subdivision process, it is necessary to 
expand a formula in which kv  is only determined 
from 1kv +  and its neighbourhood 1k

je + , 1k
jf +  

0, 1j n∈ −  with n  the valence of 1kv + . Let kv  be 

a vertex with valence n  and kM  be an arbitrary 
mesh as shown in Figure 5.  

 

 
Figure 5. General neighbourhood for an 

extraordinary vertex. 
 

Ordinary and extraordinary vertices 
In the reverse problem, we know vertices of the level 

1k +  and we want to find the vertex kv  using a 
formula which respects the following conditions: 

• The formula is an affine operation 
• The neighbours 1k

je +  of  1kv +  in the formula 

must have the same weight as in Equation (3) 
and the centroid 1k

jf +  of faces iF  incident to 
1kv +  in the formula must also have the same 

weight 
• The application of the reverse formula must 

exactly reconstruct kv  i.e. the subdivision of 
the vertex kv  generates the vertex 1kv +  and 
the reverse subdivision of the vertex 1kv +  
gives kv . 

 
The second condition yields to the diagram shown in 
Figure 6. This diagram is called mask and shows the 
coefficient to apply on vertices. 
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Figure 6. Reverse Mask corresponding to the 
general neighbourhood of Figure 5. 
 
Let α , β , γ  be respectively the coefficients for the 
vertex point, edge points and face points. For the 
third condition presented above, the following 
equation must hold: 
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From Equation (1) to (3), we obtain: 
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This equation yields to the following system: 
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This can be written with matrix: 
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The determinant of the matrix A is
3det( )

4
nA

n
−= . 

So the system can be solved only when 3n ≠ . 

For 3n ≠ , we find: 

( ) ( ) ( )
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Finally, for an ordinary or extraordinary vertex with 
valence 3n ≠ :  
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This allows to compute kv  in most of the cases. 
 

Vertices with valence 3n =  
If 3n = , the system of the previous section cannot be 
reversed because the determinant is equal to zero. So, 
we have to find another way to construct kv . The 
solution we chose is to perform the rebuilding of the 
mesh at the level k  in two stages: 

• First, vertices of valence 3n ≠  are 
constructed 

• Then, vertices with valence 3n =  are treated 

Let kv  be a vertex with valence 3n = . Figure 7 
illustrates notations used in this section. The mesh at 
subdivision level k  is drawn with dotted lines and 
the subdivided mesh is drawn with solid lines. 

 
Figure 7. Notations used in the case 3n = . 
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We now will explain the method used when 3n = . 
The vertex 1k

jv + associated to k
je , 0,2j ∈  at the 

level 1k +  necessarily has the same valence. Thus 
even if  k

je  is not already reconstructed, we know its 
valence. Moreover, from the previous section, we 
know that only vertices with valence 3n =  are not 
reconstructed. This property is used to classify the 
vertices in two categories: 

• Either there is at least one vertex among the 
incident vertices k

je  of the vertex kv , 

0,2j ∈  which is already constructed 
(with valence 3n =  or not) 

• Or there is no vertex among the incident 
vertices k

je  of the vertex kv , 0,2j ∈  
which is already constructed (with valence 

3n =  or not). 

In the first case, i.e. when one of the k
je  is known, the 

coordinates of kv  can easily be computed from the 
Equation (2). The formula can be written as: 

1 1 1
14k k k k k

j j j jv e e f f+ + +
−= − − −  

where the coordinates of 1k
je + , k

je , 1k
jf +  and 1

1
k
jf +
−  

are known. 

In the second case, i.e. when no vertices k
je  are 

constructed, we can construct kv  in the cases that we 
describe below: 

If there is one face jF , 0,2j ∈  such that all 

vertices k
i jf F∈  are already constructed, then we 

can generate a new system from Equation (1) and (2) 
written for this face jF  and the two edge points of 

this face incident to kv : 
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From this, the formula to construct kv  verifies: 
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The only case where we cannot find a formula for kv  
is when there is not adjacent face at the vertex kv  
such as its vertices except kv  are already 
constructed. So we stop here our investigations 
because these results are sufficient for almost all 
cases. Indeed, the Catmull-Clark scheme is generated 
to be applied on quadrilateral meshes with a regular 
valence 4n = . Of course, it is extended to polygonal 
faces and extraordinary valences 4n ≠  in order to be 
able to subdivide a greater number of meshes with 
this subdivision scheme. Indeed, the initial condition 
(a quadrilateral mesh with valence 4n = ) is a too 
restrictive condition. 

However, applying this scheme on a triangular mesh 
is not the goal because there are schemes which are 
better adapted to these meshes. 

The cases for which these formulas are not enough 
are thus those where the valence is 3 for all mesh 
vertices as in the case of the box for example (the 8 
vertices have 3 for valence). Indeed, even in these 
kinds of cases, among the new inserted vertices, edge 
points have a valence equal to 4. Thus, at the next 
level of subdivision, the mesh corresponds to a case 
described above. 

Boundary vertices  
With the same notation as in the part of section 2 on 
boundaries, one formula given by Bartels and 
Samavati in [Bar00] is the following: 

1 1 1
0 1

1 12
2 2

k k k kv e v e+ + += − + −  

This formula can exactly be used as the Equation (4)
we give for the interior vertices with valence 3n ≠ . 

4. RESULTS 
In this section, the method described in the previous 
section is applied to on meshes with different 
features. 

 
Figure 8. Reverse Catmull-Clark subdivision 

applied to on the torus mesh subdivided 3 times. 
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The easier example consists in rebuilding the torus of 
Figure 3 from one of its subdivision: the mesh at the 
third level of subdivision. As the initial mesh consists 
of quadrilateral faces with vertices of valence 4, all 
the new vertices are also of valence 4. The successive 
meshes can so be constructed with the general 
method described in the previous section (Figure 8). 

This second example illustrates a case with 
extraordinary valences. There are valences equal to 3, 
4 and 6. Vertices with valence 4 or 6 are constructed 
from the general method and vertices with valence 3 
from the first formula introduced for valence equal to 
3 because there is always one of the incident vertices 
with a valence not equal to 3. Successive meshes are 
shown in Figure 9. 

 
Figure 9. Reverse Catmull-Clark subdivision 
applied on a mesh with valences equal to 3, 4 or 6. 
Let us consider the cat mesh. This mesh is triangular 
with arbitrary valences except the 3 value. Thus the 
general method can be applied to reconstruct the 
initial level from the first subdivision as shown in 
Figure 10. Indeed, face points are only vertices with 
valence 3 at the first subdivision level; they are 
marked with triangles in Figure 11. By construction, 
face points are computed as the centroid of a face, so 
there are no points which correspond to face points at 
the previous level but a face.  

 

 
Figure 10. Reverse subdivision of the cat mesh at 

the first subdivision level. 
 

 
Figure 11. Zoom on a part of the mesh cat. Face 

points are represented by triangles. 
 

If the mesh is subdivided once more (2 subdivisions), 
we have to construct vertices from vertices with 
valence 3 as illustrated in Figure 12.  

Figure 13 focus on a part of the mesh to show what 
happens. Only the vertices to reconstruct are marked: 
those with valence 3 are represented by circles and 
the other by squares. In this mesh, there is always a 
vertex with a valence not equal to 3 between two 
vertices of valence 3. So the vertices of the previous 
mesh can be constructed from the general method and 
the first formula introduced for valence equal to 3.  

 
Figure 12. Reverse subdivision of the cat mesh at 

the second subdivision level. 
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Figure 13. Zoom on a part of the mesh cat. Circles 

represent vertices with valence 3 and squares 
represent vertices with valence 4. 

 
Let us consider a cube. At the initial level, all faces 
are quadrilateral and valence of vertices is always 3 
(Figure 14 left). From the first level of subdivision, 
formulas explained here do not allow to determine 
vertices of the initial level from the first subdivision 
level because the vertices to construct all have 3 for 
valence (Figure 14 right). The same problem occurs 
with a tetrahedron. 

 

 
Figure 14. One particular example where the 
method fails: the cube starting from the first level 
of subdivision. 

 
However, from the other successive subdivided 
meshes (except the first subdivision level), meshes of 
the previous level can be constructed from the 
general method and the first formula introduced for 
valence equal to 3. Indeed, vertices with valence 3 
are isolated. Thus, Figure 15 shows on the left the 
cube mesh subdivided twice and its reconstructed 
mesh at the previous level. 

 

 
Figure 15. Reverse subdivision of the cube mesh at 

the second subdivision level. 

5. CONCLUSION 
With this method, coarser meshes can be quickly 
computed in almost all cases, with a local reverse 
subdivision mask. As for most reverse subdivision 
processes [Mon04], the locality allows very quick 
reverse subdivision. However, the coarser mesh can 
be found only if the current mesh was generated by 
subdivision. Indeed, if the mesh is not generated by 
refinement, the points (from vertex 1kv + , edge 1ke +  
or face 1kf + ) are not distinguishable from each other 
so the application of the reverse process can be found 
only in particular cases. One reason is that the 
number of vertices is determined by the applied 
subdivision. This drawback can be found in any 
reverse subdivision process whatever the mesh 
(triangular, quadrilateral…) and whatever the 
subdivision rule (Loop, Doo-Sabin, Catmull-
Clark…). 
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