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ABSTRACT
Recent advances in graphics processor  architecture  and capabilities have made the development  of fast and 
efficient unstructured volume rendering methods possible. These techniques can be classified into two roughly 
delimited categories: cell projection based methods and GPU raycasting algorithms. However, both approaches 
are subject to limitations, respectively due to the main memory-to-GPU bandwidth for the former and due to the 
GPU  per-fragment  computation  speed  and  memory  size  for  the  latter.  These  potential  bottlenecks  can  be 
particularly limiting for large-size datasets, such as the ones produced by large-scale numerical simulation. In 
this work, we describe an enhancement to the cell-projection rendering method, allowing us to specify each 
tetrahedron with only 4 vertices and their associated data. By using a point sprite primitive, instead of a set of 4 
triangles, we significantly reduce the amount of data transferred from the main memory through the graphics 
port for each frame rendered. We evaluate the impact of the different rendering stages of our method on the 
overall frame rate.
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1. INTRODUCTION
Numerical  simulations  of  unsteady  physical 
phenomena  yield  datasets  comporting  a  very  large 
number  of  elements.  We  are  interested  in  such 
datasets,  usually  sharing  the  following 
characteristics:
• a  very  large  number  of  elements  (typically 

ranging from 106 to 108 elements),
• unstructured  meshes,  with tetrahedra,  hexahedra 

or other types of cells,
• a large number of different time steps,
• a high dynamic range, both in time and space.
Scientific visualization is a way to gain insight into 

the  simulated  phenomena.  However,  efficiently 
visualizing such datasets requires high performance 
techniques  and  methods.  Volume  rendering  of 
unstructured  datasets  is  an  example of  such  an 
advanced  visualization  technique.  Recently, 
performance  and  functionalities  of  commodity 
graphics  processors  have  reached  a  point  enabling 
the  implementation  of  complex  volume  rendering 
algorithms,  dramatically  accelerating  their 
performance  with  respect  to  previous  software 
implementations.  Current  graphics  processors  (or 
GPUs) are able to process several hundred millions 
of vertices per second and several billions fragments 
per  second  [Nvi04a],  allowing  relatively  complex 
user-defined  programs  to  be  applied  to  each 
processed vertex and fragment.
Taking  advantage  of  this  dramatic  performance 
increase,  several  GPU-based  unstructured  volume 
rendering methods have been developed in the past 
years,  allowing  to  render  approximatively  between 
500k and 1 million tetrahedra per second, processing 
only  relatively  modest-sized  datasets.  However, 
given  the  current  size  of  the  datasets  routinely 
produced  by  numerical  simulations,  GPU-based 
volume rendering methods should be able to render 
at least 10 million elements per second to meet the 
visualization needs of computational scientists.
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The projected tetrahedra (PT) technique [Shi90] is a 
well-known  hardware-based  unstructured  cell-
projection volume rendering method. It requires cells 
to be rendered according to a correct visibility order 
(either  front-to-back  or  back-to-front),  which  is 
typically determined on the CPU, prior to rendering, 
using  a  sorting  algorithm.  Volume  cells  are 
decomposed  on  the  CPU into  a  set  of  transparent 
triangles, which in turn are sent to the graphics card 
and blended into the framebuffer.
Recently, several enhancements of this method have 
been  proposed,  taking  advantage  of  the 
programmability features afforded by modern GPUs. 
These methods generally allowed to bypass the CPU 
tetrahedron  decomposition  phase,  resulting  in  an 
additional performance gain. However, most of these 
methods require that each tetrahedron be transmitted 
as a set of four triangles, which can result in a very 
high  bandwidth  consumption  between  the  main 
memory and the graphics card. The ability to specify 
volume  primitives  with  existing  graphics  APIs,  as 
suggested by King et al. [Kin00a] would allow to go 
beyond this restriction.
In  this  work,  we  present  a  GPU-based  volume 
rendering  method,  building  upon  previously 
developed  approaches.  First,  we  describe  related 
work in the field of GPU-based unstructured volume. 
In  the following  section,  we describe  in  detail  our 
point  sprite-based  GPU volume  rendering  method, 
which  optimizes  the  bandwidth  usage  by  reducing 
the amount of data sent for each tetrahedron. Then, 
we  present  an  adjacency  search  method,  partly 
executed on the GPU. After  that,  we present  some 
experimental  results  and  a  comparison  with 
previously published approaches. Finally, we discuss 
some limitations of our implementation.

2. RELATED WORK
The  scope  of  this  section  is  hardware-accelerated 
volume  rendering.  We  classify  the  different 
approaches  into  object-space  or  image-space 
rendering, the OpenGL rendering pipeline being an 
example  of  such  the  former  whereas  raycasting  is 
typical of the latter.
In  order  to  compute  a  correct  image,  graphics 
rendering  usually  requires  to  depth-sort  primitives 
according  to  their  viewpoint  distance.  Surface 
rendering generally only requires to find to nearest 
primitive  (except  if  transparent).  However,  volume 
rendering  requires  to  find  all  the  primitives 
intersected  by  a  given  view ray  (except  if  opaque 
objects allowing early termination are encountered). 
Depending on the optical model used [Max95a], this 
requires  a  visibility  ordering  of  the  primitive  set 
intersecting  any  given  ray.  This  visibility  ordering 
can be done either in objet-space or in image-space.
In  unstructured  volume  rendering,  object-space 
methods  first  sort  primitives  according  to  the 
distance to the viewpoint, then render each primitive 
individually  in  the  visibility  order,  accumulating 
their  contributions  into  the  frame  buffer.  Image-
space  methods  process  each view ray  sequentially. 

For  a  given  ray,  all  the  intersecting  primitives  are 
determined,  ray  segments are  computed  and sorted 
into  the  correct  visibility  order  and  finally 
accumulated to determine the final pixel color.

Shirley et al. [Shi90a] developed the first hardware-
accelerated  unstructured  volume  rendering  method. 
Their projected tetrahedra (or  PT) method used the 
alpha-blending  capabilities  of  the  then  existing 
graphics  boards  to  accelerate  the  rendering  of 
tetrahedral cells. In this method, each tetrahedron is 
projected on the view plane and decomposed into a 
set  of  (up  to  four)  non-overlapping  triangles, 
according  to  a  projection  class  depending  on  the 
point of view, with a thick vertex at the longest ray 
segment-tetrahedron  intersection.  The  triangles  are 
then  transmitted  to  the  graphics  accelerator  and 
rendered into the frame buffer using alpha-blending 
to  implement  transparency.  The  thick  vertex  color 
and opacity are determined by a transfer function and 
hardware  linear  interpolation  is  used  to  compute 
color  and  opacity  at  each  rasterized  fragment. 
However,  opacity  usually  does  not  vary  linearly 
across a tetrahedron, resulting in approximations.

Wylie  et  al. [Wyl02a]  developed  a  GPU-based 
implementation of  the projected tetrahedra  method. 
They developed  a vertex program algorithm which 
executed  the  triangle  set  determination  step  of  the 
original  PT method. As a vertex program performs 
the same computations on every vertex, they used a 
fixed topology graph, mapped to each tetrahedra and 
corresponding to a triangle fan primitive. By using a 
look-up  table,  their  algorithm  then  determines  the 
correct  projection  class,  generating  zero-area 
triangles in certain projection cases. Using a triangle 
fan allowed to transmit only the data relevant to the 
four tetrahedral vertices, allowing to render a 1000k 
tetrahedra mesh at 500k tetrahedra per second with a 
GeForce  4  GPU.  However,  they  used  an 
approximation to compute the thick vertex color.

Weiler et al. [Wei02a] developed a ray-casting based 
rendering  method  of  individual  tetrahedra  on  the 
GPU,  performing  projection  in  a  view-independent 
way.  They  used  a  vertex  program  to  compute  the 
ray-segment  exit  intersection  parameter  with  each 
face plane at each vertex. The intersection parameter 
and vertex scalar values are then linearly interpolated 
by the graphics hardware to provide at each fragment 
the  coordinates  addressing  a pre-computed  volume 
integral  texture.  They  were  able  to  render  a  220k 
mesh at 480k tetrahedra/s, on an nVidia GeForce 4. 
However,  computing  ray  intersections  per-vertex 
instead of at each fragment (due to GPU limitations) 
resulted  in  artifacts,  especially  along  tetrahedra 
edges.

More  recently,  Kraus  et  al. [Kra04a]  reviewed  the 
major  causes  of  artifacts  in  the  PT  method  and 
related  algorithms.  They  identified  incorrect  ray 
segment  length  perspective  interpolation  as  being 
one of the main causes of artifacts and implemented 
the  correct  interpolation  method,  using  vertex  and 
fragment processing programs. They also identified 
linear  mapping  between  ray  length  and  the  third 
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coordinate  of  the  pre-integrated  transfer  function 
texture  as  a  source  of  artifacts,  due  to  an 
insufficiently  accurate  sampling  of  the  volume 
integral  for  small  ray  lengths.  Using  a logarithmic 
mapping  allowed  them  to  reduce  the  sampling 
interval  for  small  ray  lengths,  eliminating  edge 
artifacts due to the use of linear mapping. Coupling 
this  to  the  use  of  floating-point  alpha-blending 
virtually  eliminated  all  major  sources  of  rendering 
errors.
The previously described methods require an object-
space visibility sorting. Several object-space sorting 
methods have been developed, the best-known being 
the adjacency graph sorting method MPVO (Meshed 
Polyhedra Ordering Visibility) [Wil92a], using either 
a  Depth-First  Search  or  Breadth-First  Search 
algorithm.  Cook  et  al. [Coo04a]  improved  MPVO, 
allowing  it  to  generate  an  image-space  correct 
visibility  ordering.  For  each  different  graph 
connected  component,  their  method  executes  the 
MPVO topology ordering.  Then, it rasterizes every 
boundary face on the CPU, storing the coordinates of 
every boundary face fragment into an A-buffer. This 
allows  to  define  new  adjacency  relationships, 
between two consecutive  fragments  in  a  pixel  list, 
belonging  to  the  boundary  faces  of  two  different 
cells. These adjacency relationships are then used to 
extend  the  MPVO  adjacency  graph.  The  authors 
showed  that  a  depth-first  search  of  this  extended 
graph  generates  an  image-space  correct  visibility 
ordering.  Adjacency  graph  sorting  methods  are 
typically executed sequentially on the CPU prior to 
rendering, which can be costly, especially for large 
datasets.  Reducing  this  cost  might  increase  the 
overall rendering performance.

Weiler  et al. [Wei03a] implemented ray-casting of a 
convex  tetrahedral  mesh  entirely  on  the  GPU,  by 
using fragment processing programs. Using floating-
point  textures,  they  were  able  to  store  the  whole 
mesh  (vertices,  face  normals  and  connectivity)  in 
graphics memory, after convexification during a pre-
processing  phase.  They  implemented  a  multi-pass 
raycasting  rendering  method.  During  a  given  pass, 
each ray traverses a single cell, accumulates the cell 
contributions  into  the  framebuffer  and  proceeds  to 
the exit point adjacent cell. They were able to render 
between  500k  and  600k  tetrahedra/s,  on  an  ATI 
Radeon 9700 graphics card with 128 MB of memory. 
However, the maximum size of the mesh was limited 
by the graphics memory size (up to 600k tetrahedra 
with a 5122 frame buffer).

More recently,  Bernardon  et al. [Ber04a] improved 
Weiler  et  al.'s  approach  by  using  a  depth-peeling 
technique  in  order  to  correctly  render  non-convex 
meshes,  eliminating  the  need  to  perform  a  costly 
convexification  pass.  Their  technique  extracts 
successive  boundary  faces  layers,  starting  the 
raycasting phase afresh from the currently extracted 
layer.  Furthermore,  using  a  static  screen  tiling 
scheme,  they  were  able  to  reduce  the  number  of 
raycasting passes. They reported to be able to render 
up  to  1.3  Mtetrahedra/s  on a 187 ktetrahedra  non-
convex dataset.

Callahan  et al. [Cal04a] developed a hybrid image-
space/object-space method, performing a coarse per-
primitive sorting step on the CPU then a subsequent 
per-fragment refined step on the GPU. They used the 
multiple output buffer capability of modern GPUs in 
order  to  implement  a  fixed-depth  sorting  network, 
storing, for each pixel, an unsorted depth sequence of 
up to 4 fragments. Fragments determined to be the 
closest  to  the  viewpoint  are  used  to  compute  the 
contributions of a corresponding ray segment. They 
reported to be able to render between 1 and 2 million 
tetrahedra  per  second.  However,  in the case where 
the  difference  of  the  submitted  fragment  unsorted 
order  and  the  correct  one  exceeds  4,  an  incorrect 
visibility  order  is  determined  and  artifacts  will 
appear, which can be frequent for unstructured data 
sets, where cells can vary greatly in size and shape.

Weiler  et al. [Wei04a], improving on their previous 
work,  were  able  to  store  unstructured  meshes into 
graphics  memory  in  a  compressed  form  using 
tetrahedral  strips  and  pre-rendering  stripification 
algorithms.  Furthermore,  using  a  depth  peeling 
technique akin to the one described in [Ber04a], they 
were  able  to  correctly  render  non-convex  meshes. 
They reported to be able to store  up to 17 million 
tetrahedra on a 256 MB graphics card, and up to 3 
million with speed optimizations.

3. TETRAHEDRA PROJECTION 
WITH POINT SPRITES

As  we  saw  earlier,  most  tetrahedron  projection 
implementations describe each tetrahedron  by a set 
of four triangles, which is required by graphics APIs, 
which  are  not  designed  for  the  rendering  of 
unstructured  volume primitives.  As a consequence, 
for  a  given  tetrahedron,  there  is  an  overall 
duplication factor  of up to 3 concerning per-vertex 
data (vertex coordinates, scalar field value) and per-
face data (e.g. face plane equations). As the graphics 
port  downstream  bandwidth  is  limited 
(approximately 2.1 GB/s for AGP8x), this can result 
in a potential bottleneck and decrease the rendering 
performance.  Ideally,  for  a  given  tetrahedron,  its 
associated  data  should  be  transmitted  without  any 
duplication.
Here,  we  propose  an  enhancement  to  GPU-based 
tetrahedra  projection  methods  allowing  to  transmit 
only  the  required  data.  To  each  tetrahedron,  we 
associate  a  point  sprite  primitive  instead  of  four 
triangles.  For  each  of  a  given  tetrahedron's  four 
vertices, we specify the vertex (x, y, z) coordinates 
and scalar field value as point sprite vertex attributes, 
amounting to a total of 16 floating-point values per 
tetrahedron.
To  each  rasterized  fragment  of  the  sprite,  we 
associate a ray. We use a vertex processing program 
in  order  to  perform  per-tetrahedron  constant 
computations,  such as edge line equations,  whereas 
we  use  a  fragment  program  to  compute  ray-
tetrahedron  intersection  point  depths,  using  the 
intermediary results computed by the vertex stage.
As a point sprite has fixed maximum dimensions, we 
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assume  for  the  remainder  of  this  section  that  the 
tetrahedron projection's axis-aligned bounding box is 
included within the point sprite footprint. Also note 
that  we  consider  only  the  case  of  orthographic 
projections.
The two vertex  and  fragment  processing  programs 
describe each tetrahedron as a set of four faces, each 
face  being  represented  by  a  set  of  three  co-edges, 
connected into a loop. For any given front-face (in 
world space), its projection's co-edges normals point 
towards the center of the face, whereas for any given 
back-facing  face,  the  normals  point  towards  the 
exterior  of  the  face.  Using  this  property,  we  can 
determine for any fragment whether it belongs to a 
given  back-face  or  front-face,  by  computing 
fragment position-face edge equations dot products. 
We  can  then  determine  the  two  faces  (one  front-
facing and one back-facing) whose projections cover 
the fragment,  giving  the  ray  entry  and  exit  points. 
Figure 1 shows how intersected faces are determined.

The  pseudo-code  below  describes  vertex  stage 
computations:

• Transform  the  tetrahedron  four  vertices  into  window 
space

• Compute the point sprite bounding box dimensions

• Compute the line equations (in window coordinates) of 
each  co-edge  pair  (corresponding  to  each  projected 
tetrahedron edge)

• For  each  face  vertex,  compute  the  reciprocal  of  the 
result of its opposite co-edge line equation applied to the 
vertex

This  amounts  to  the  computation  of  six  line 
equations, and twelve reciprocals (3 for each of the 4 
faces).  The  second  co-edge  equations  are  deduced 
from the first  ones simply by changing their  signs. 
As the result  of  these computations is constant for 
any  fragment,  they  can  be  done  during  the  vertex 
processing stage instead of the fragment stage. The 
computed values are then written to output.
The following pseudo-code describes fragment stage 
computations:

• Compute the unnormalized window-space 2D distance 
of the fragment to each of the twelve co-edges

• For each of the 4 projected faces:

• Compute the interpolated fragment depth 

• Compute the interpolated scalar value

• Determine  if  the  fragment  is  inside  the 
projected face and whether it is a front-face or 
a back-face

• Determine the respective identities of the front-face and 
the back-face (if any)

• Compute the ray-segment length, subtracting the entry 
face z coordinate from the exit face's one

• Determine color and transparency values using the ray-
segment length and write them to output

• If  no  intersected  faces  are  found,  write  color  and 
transparency values (0, 0, 0, 1) to output

Normalized  Barycentric  (NB)  coordinates  are 
computed,  as  illustrated  in  Figure  2,  in  order  to 
determine the interpolated z and scalar values at the 
entry and exit points.

The  unnormalized  distance  from  the  fragment 
position  to  each  edge  e  is  computed.  It  is  then 
multiplied  by  the  reciprocal  of  the  relevant  edge-
opposite vertex v distance to produce a normalized 
barycentric  coordinate  nbcv(f).  NB coordinates  are 
then  used  to  compute  the  interpolated  depth  and 
scalar values at the fragment: zint = nbca' za' + nbcb' zb' 

+  nbcc' zc',  where  nbca',  nbcb',  nbcc' are  the  NB 
coordinates,  za',  zb',  zc',  the 3 face vertices window-
space z coordinate and zint the fragment interpolated z 
coordinate. Note that this equation is correct only for 
an  orthographic  projection.  A  perspective-correct 
interpolation  formula  should  be  used  with 
perspective projection in order to get a correct result 
(see [Seg03a] and [Kra04a]).
We use the same formula in order to interpolate the 
per-vertex  scalar  values  across  the  entry  and  exit 
faces:  sint = nbca' sa' + nbcb' sb' + nbcc' sc'.  The  two 
scalar values at segment extremities and the segment 
length are used as a 3D texture coordinate to perform 
a  lookup  into  a  pre-integrated  volume  integral 
texture,  giving  the  color  and  transparency 
contributions of the ray segment.

4. GPU-ENHANCED BREADTH-FIRST 
SEARCH

During  a  given  breadth-first  search  pass,  the 
successor determination of currently examined nodes 
is  performed  sequentially  on  the  CPU,  only  one 
node's  neighborhood  being  explored  at  the  same 

Figure 2. NB coordinates computation
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time.  However,  as  each  node  examination  can  be 
performed independently from the others, it  is well 
suited  to  a  parallel  implementation,  especially  on 
modern  GPUs,  which  are  able  to  process  many 
independent data elements at the same time.
We present a multi-pass CPU-GPU hybrid breadth-
first  search  implementation,  executing  successor 
determination  on  the  GPU  and  subsequently 
determining  visited  nodes  on  the  CPU,  using  the 
previously  GPU-computed  successor  list.  A  pre-
search phase on the GPU determines the adjacency 
of each graph node.

An adjacency graph is an oriented graph defined as 
{N,  E},  respectively  a  set  of  nodes  and  oriented 
edges, associated to an unstructured mesh. To each 
mesh cell corresponds a node in the node list N. Two 
adjacent cells share a common face f which is used to 
define an ordering relationship, relatively to the face 
normal vector N, as depicted in Figure 3.
This ordering relationship allows us to compute an 
adjacency  relationship,  that  is,  to  determine  which 
one of the two adjacent cells is in front of the other 
one, relatively to the viewing direction v. The whole 
set of adjacency relationships is required to compute 
a correct depth order of the mesh by a graph search. 
To each adjacency relationship corresponds an edge 
e  in  the  graph  edge  list.  Note  that  the  adjacency 
graph  must  be  determined  at  each  view parameter 
change. The edge list E is determined using the node 
and mesh faces lists.

Adjacency determination phase
Each  list  is  stored  into  graphics  memory  as  two 
different  floating  point  2D  textures  (RGBA  and 
luminance). For each list, the dimensions of the two 
textures are the same. A node list element i stores the 
node's 4 face indices f,  addressing the face list, and 
the node identifier.  A face list  element j stores the 
face normal vector Nj and the indices of the two “in” 
and “out” nodes sharing the faces.
The  adjacency  information  is  determined  by  the 
fragment  program described  below,  using  the  four 

textures  as  an  input.  For  each  graph  node,  the 
program  determines  its  successor  nodes  and  its 
number of entering edges (in-degree), relative to the 
viewing direction and writes them to output. A full-
screen  quadrilateral  is  rendered,  each  fragment 
rasterized  corresponding  to  a  single  graph  node  i. 
The following pseudo-code describes the operations 
performed:

• Set entering edges number to zero

• Fetch the node face indices and identifier from textures 
1 and 2

• Translate the 4 1D face indices f1D into 4 sets  of 2D 
texture coordinates f2D

• For each face f

• Fetch f's information from face list using f2D

• Determine  the  successor  node  (if  any) 
corresponding  to  face  f  relative  to  the  viewing 
direction

• If  f  is  not  a  boundary  face,  add  one  to  the  total 
entering edges number

• Write successor information (cell indices) to first output 
color

• Write number of entering edges to 2nd output color

Figure 3 describes in greater detail the determination 
of successor nodes through a given face f.
After  the  end  of  this  phase,  we  copy  back  the 
computed successor information from the first output 
buffer  into  a  floating-point  texture,  the  adjacency 
texture,  that  will  be  used  as  an  input  during  the 
search phase, whereas the entering edges information 
is read back from the second output buffer into main 
memory.

Breadth-First Search phase
During  the search,  the graph  node list  is  stored  in 
main memory, storing each node's state (unvisited or 
visited) and number of entering unvisited edges. The 
list of nodes currently examined is stored into a list 
on the GPU, which also maintains a search buffer. 
The  pseudo-code  below  gives  an  outline  of  the 
search algorithm:
• Compute unvisited nodes count

• While unvisited nodes count greater than zero

• Perform a search pass

• Subtract  visited  nodes count  from unvisited nodes 
count

Source nodes (nodes having no entering edges) are 
initially  set  as  visited  whereas  all  the  other  graph 
nodes are initially unvisited. They are also put into 
the list of currently examined nodes and subtracted 
from  the  unvisited  nodes  count.  The  following 
pseudo-code describes the execution of a given pass, 
and the operations performed for the two GPU and 
CPU steps:

For each given pass:

GPU:

• For each currently examined node (fragment)

• Read its  identifier,  translate  it  into 2D coordinates 

Figure 3. Ordering, adjacency and successor 
determination

View direction v

Face normal N

A
B

Face f

●N points outwards A, defined as the «  out  » cell
●N points inwards B, defined as the «  in  » cell
●A is behind B, relative to face f (ordering)
●B is in front of A, relative to v (adjacency)

●(N.v) < 0
●s

A
 > 0, thus s

A
(N.v) < 0, A's successor through f is B

●s
B
 < 0, thus s

B
(N.v) > 0, B has no successor through f

●B has one entering edge through f
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id2D

• Use id2D to read the four successor nodes IDs from 
the adjacency texture

• Write them to output

CPU:

• Read back the search buffer

• For each node found, decrease the number of unvisited 
entering edges in the main list

• If number equals 0

• Mark node as visited with the pass number

• Push node into the sorted list of nodes

• Push  node  into  the  list  of  the  nodes  to  be 
examined during the next pass

• Send the list of nodes to be examined back to the GPU

The  GPU  successor  determination  phase  is 
implemented by a fragment processing program (as 
outlined  by  the  pseudo-code  above).  During  this 
phase,  we  render  a  quadrilateral  such  as  each 
fragment  rasterized  corresponds  to  a  node  in  the 
currently examined node list. Successor information, 
read  from  the  previously  computed  adjacency 
texture, is written to output into the search buffer.
After  the  GPU  phase,  a  sequential  search  of  the 
readback  search  buffer  is  done  on  the  CPU, 
examining each successor node and updating the list 
of nodes to be examined during the next pass. This 
list is then transmitted back to the GPU by updating 
the corresponding texture.
When  the  search  main  loop  is  over,  the  sorted 
identifier list is used as an element buffer in order to 
specify the mesh cells in the computed depth order.

5. RESULTS
We  present  results  of  our  breadth-first  search 
implementation  and  then  of  our  point  sprite-based 
tetrahedron  rendering  method.  We  performed 
measurements  on  an  Intel  3.0  Ghz  Xeon-based 
workstation with 1 GB RAM, an Nvdia NV40-based 
GeForce  6800  GT  graphics  board  with  256  MB 
RAM on an AGP8x graphics port, and Redhat Linux 
Enterprise  4  as  an  operating  system.  We used  the 
1.0-7664  version  of  the  Nvidia  Linux  graphics 
drivers.  The  OpenGL library  was  used  for  all  our 
implementations.

Breadth-first search
We  implemented  the  GPU  part  of  our  GPU-CPU 
BFS  method  with  the  ARB_fragment_program 
OpenGL extension assembly language, using specific 
instructions  made  available  by  the 
NV_fragment_program2 OpenGL extension, such as 
conditional execution or return instructions. In order 
to evaluate potential gains, we also made a software 
implementation of the breadth-first search algorithm, 
including  the  adjacency  determination  method  and 
the actual search algorithm.
To test our implementations, we generated a simple 
dataset  corresponding  to  a  regular  hexahedra  grid 
that  we  converted  into  tetrahedra  as  described  in 
[Shi90a], each tetrahedron corresponding to a single 

graph node. We used several grids of increasing size. 
For each grid,  we performed a sequence of several 
searches,  alternatively  specifying  two  different 
viewing  direction  vectors.  Table  1  gives  adjacency 
computation and search times as well as the number 
of sorted nodes per second as a function of grid size, 
for the CPU-GPU and software-based methods.

Grid size 403 503 593 703

Nodes 0.32x106 0.63x106 1.03x106 1.72x106 

CPU-GPU search results

tadjacency (s) 0.05 0.08 0.11 0.95

tsearch (s) 0.05 0.09 0.14 0.25

Sorted 
nodes/s 2.6x106 2.8 x106 3.4x106 1.3x106 

Software search results

tadjacency (s) 0.04 0.08 0.13 0.22

tsearch (s) 0.02 0.05 0.11 0.23

Sorted 
nodes/s 5.1 x106 4.6 x106 4.1 x106 3.7 x106 

Table 1. Graph search performance

We remark that the CPU-GPU search performance, 
in sorted nodes/s, increases as the grid  size grows. 
However,  for  a  grid  size  of  703,  it  decreases 
dramatically to 1.3x106 nodes/s. This might be due to 
the size of the data textures, consuming nearly all the 
available  graphics  memory.  On  the  contrary, 
software  search  performance  decreases  as  the  grid 
size grows, as for each pass more nodes have to be 
examined,  still  in  a  sequential  way,  therefore 
increasing the quantity of work to do.

Point-sprite Based Tetrahedron 
Rendering
We used the Cg graphics programming language in 
order  to  implement  the  algorithms  described  in  3, 
using an FP40 rendering profile.
In  order  to  perform the  object-space  pre-rendering 
cell  sort,  we used the software  breadth-first  search 
implementation we mentioned above. Rendering was 
made  using  immediate  mode,  specifying  each 
tetrahedron with 1  glVertexAttrib3f call for each of 
the  4  vertices  (x,  y,  z)  coordinates  sets  and  one 
glVertexAttrib4f call  for  the  tetrahedron's  4  per-
vertex scalar values.
The  dataset  used  for  our  tests,  a  tetrahedrized 
rectilinear grid, stems from a numerical simulation of 
the  propagation  of  seismic  waves.  We  used  the 
magnitude of displacement vector as the scalar field. 
Volume  rendering  reveals  the  spatial  structure  of 
wave  amplitude  (Figure  4).  For  each  single 
measurement,  we  rendered  a  sequence  of  100 
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images,  rotating  the  view  point  rotation  about  the 
center  of  the  dataset.  We  measured  the  average 
sorting  (including  adjacency  determination), 
rendering, and total frame time, the latter being used 
to  compute  rendering  performance.  We  activated 
linear filtering of the pre-integrated transfer function 
texture, which was computed separately by an offline 
process.  The  number  of  tetrahedra  rendered  per 
second was measured as a function of resolution.
Table  2  represents  execution  times  of  respectively 
the cell sorting step and the rendering step, the frame 
total time, and the number of tetrahedra rendered in 
the 106 unit per second.

Resolution 2562 5122 7682 10242

tsorting (s) 0.33 0.33 0.33 0.33

trendering (s) 0.36 0.86 1.74 2.92

tframe (s) 0.7 1.21 2.09 3.29

Tetra/s (x106) 1.78 1.03 0.6 0.38

Table 2. Rendering speed as a function of 
resolution

We  observe  that  for  a  resolution  of  5122 pixels, 
rendering  speed  is  about  1.0x106 tetrahedra 
rendered/s.  Sorting  time  is  constant  whatever  the 
resolution, at it is only dependent on the mesh size 
and viewing direction.
We performed  measurements  in  order  to  highlight 
the cost of fragment processing, disabling the sorting 
step  and  using  a  null  fragment  program  doing  no 
computations,  only writing the color (1, 1, 1, 1) to 
output. Table 3 indicates the average rendering time 
and  speed  as  a  function  of  resolution.  We  also 
indicate the ratio between the rendering time shown 
in Table 2 and the rendering time with no fragment 
processing.
We  observe  that  for  a  resolution  of  2562 pixels, 
rendering  speed  is  about  6.3x106 tetrahedra/s. 
Rendering  speed decreases with resolution  whereas 

the  rendering  time  ratio  increases,  only  slightly 
decreasing from 5122 to 7682.

Resolution 2562 5122 7682 10242

trendering (s) 0.2 0.2 0.2 0.27

Tetra/s(x106) 6.27 6.31 6.14 4.64

Rendering time ratio 1.8 4.3 8.7 10.8

Table 3. Rendering speed with no fragment 
processing

The  fact  that  the  time  ratio  is  high,  even  for  low 
resolutions,  indicates  that  the  fragment  processing 
cost  seems  to  be  the  bottleneck  of  our  rendering 
method.  The  increase  of  the  rendering  time  is 
probably  due  to  the  increasing  rasterization  costs 
(including alpha-blending).
Finally,  in order  to evaluate the bandwidth used to 
transmit the whole mesh from main memory to the 
graphics  card,  we  used  a  null  vertex  processing 
program,  keeping  only  the  vertex  projection  and 
sprite  size  computation.  We  also  disabled  sorting. 
Table  4  represents  rendering  time as a  function  of 
resolution.

Resolution 2562 5122 7682 10242

trendering (s) 0.2 0.2 0.19 0.2

tframe (s) 0.2 0.2 0.2 0.2

Bandwidth (MB/s) 405 398 408 399

Table 4. Bandwidth with no vertex processing

We  compute  bandwidth  as  the  amount  of  data 
transmitted over the rendering time, that is, the ratio 
between mesh size times tetrahedron size (64 bytes) 
and  the  average  frame  time.  A  glFinish command 
ensures that all data be transmitted between the start 
and  the  end  of  the  rendering.  Bandwidth does  not 
vary  with  resolution,  as  fragment  processing  is 
disabled,  and  is  lesser  than  1/4th of  the  AGP8X 
theoretical maximum  bandwidth.  However, 
rendering  time  with  no  vertex  and  fragment 
processing  is  lesser  than  rendering  time  with 
processing activated (see Table 2),  which seems to 
indicate  that  bandwidth  is  not  a  limiting  factor. 
Further  investigation is necessary in order  to see if 
the fragment processing and data transmission times 
balance better with larger meshes.

6. DISCUSSION
As  we  precedently  showed,  our  point-sprite  based 
rendering method significantly decreases the amount 
of data transmitted through the graphics port with 64 
bytes  transmitted  per  tetrahedron.  Furthermore,  it 
decreases  the  number  of  vertices  processed  by  the 
vertex stage to only one per tetrahedron, allowing to 
perform  more  complex  computations.  However,  it 
appears to be limited by the fragment stage, as the 

Figure 4. 1250k tetrahedra dataset, 
512x512 pixels
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quantity of computations done for each fragment is 
quite important. Computations that are done at each 
fragment,  such  as  multiplying  each  face  vertex  z 
coordinate and scalar value by the reciprocal value of 
the distance to the opposite edge could be done in the 
vertex  stage,  saving  a  significant  amount  of 
computation. Interpolated scalar values and fragment 
depths  have  to  be  explicitly calculated  by  the 
fragment  program  whereas  triangle-based  view-
independent  methods  by  specifying  them  at  each 
triangle  vertex  can  determine  them  by  using 
hardware linear interpolation. Also note that the size 
of any projected tetrahedron is limited by the point 
sprite  maximum  size.  Tetrahedra  with  a  larger 
footprint  will  be  incorrectly  processed.  However, 
GPU  fragment  processing  power  has  dramatically 
increased  in  the  past  few  years,  whereas  graphics 
port bandwidth has undergone a much slower rate of 
growth. We think that this will still be the case for at 
least several  years  to  come.  Therefore,  it  might  be 
likely that our method's performance will scale better 
with the increasing GPU fragment processing power 
that  the  performance  of  other  projection  methods 
which  might  become  limited  by  graphics  port 
bandwidth. Future software and hardware evolutions 
might also eliminate the point sprite size limitation. 
Moreover  let  us remind  that  GPU-based raycasting 
methods such as described in [Wei03a] or [Ber04a] 
require  to  store  the  whole  geometry  in  graphics 
memory.  Tetrahedron  projection  methods  are  not 
subject  to  this  severe  limitation  since  they  allow 
streaming from main memory.
The  partly  GPU-based  BFS  method  we  described 
takes  advantage  of  the  multiple  fragment  units  of 
GPUs  in  order  to  speed  up  the  successor 
determination.  However  it  performs  a  readback  of 
successor information into main memory in order to 
update the global node list, which costs graphics port 
bandwidth and CPU time. Nevertheless, for a 1.7x106 

node graph, the search time for the GPU-CPU based 
method and the purely CPU-based one are about the 
same,  indicating  that  GPU successor  determination 
might  be  fast  enough  to  compensate  for  the  read-
back  and re-send  penalty as  well  as  the  additional 
CPU cost. Eliminating the readback and performing 
the CPU work on the GPU might increase the CPU-
GPU BFS performance in a significant way, allowing 
it to sort large meshes (with more than 2x106 cells).

7. CONCLUSION AND FUTURE 
WORK

After this first implementation of point sprite-based 
tetrahedron projection method, we intend to test the 
rendering of larger  datasets,  with at least 106 cells, 
and compare its performance with other GPU-based 
tetrahedron  projection  method.  We  also  plan  to 
improve  our  partly  GPU-based  BFS  method  by 
eliminating  the  CPU  visited-node  determination, 
using “render to vertex array” capabilities.
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