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ABSTRACT

3D meshes are the most common representation of 3D models. However, surfaces represented by 3D
meshes may contain noise or some unrequired details. Multiresolution representations and filtering
techniques are very useful in this case. In this paper, we propose a new and compact representation
for the surface of a general 3D mesh using the spherical harmonics. This representation can be
useful in many applications such as filtering, progressive transmission and compression of 3D sur-
faces. First, we present a basic framework for star-shaped objects. Then, we show how to extend
this framework to general form meshes using certain segmentation techniques in combination with
implicit surface techniques. An interesting feature of our approach is that the computation of the
involved spherical harmonics transform is decomposed into the computation of spherical harmonics
transforms based on elementary triangles which compose the mesh. This feature shows that the
complexity of the computation of the used spherical harmonics transform linearly dependant on the
number of triangles of the mesh. We present some experimental results which demonstrate our technique.
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1 INTRODUCTION

Polygonal meshes remain the primary representa-
tion of 3D models. The recent development tools
for scanning and modelling devices allows these
meshes to contain finer details. However, some ap-
plications need not these high details to be kept,
especially when they cannot be distinguished from
noise. These details add geometric and topological
complexity to the 3D models, which affects model
retrieval applications as well as visualization ap-
plications. Due to this demand, the multiresolu-
tion representation of 3D meshes has been raised in
many research areas, especially in the field of dig-
ital geometry processing (DGP) [SS01]. Further-
more, multiresolution representation is interesting
for compression and progressive transmission pur-
poses.
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Multiresolution representation and surface fil-
tering have received a renewal of interest during
the recent years [Bül02, CDR00, DMSB99, GSS99,
ZBS04]. In signal processing community, the fun-
damental step is based on the construction of the
spectrum of frequencies of the surface with respect
to a set of basis functions. The low frequency com-
ponents in the signal correspond to smooth fea-
tures, and the high frequency components corre-
spond to finer details such as creases, folds and cor-
ners. Retaining just lower frequency components
suffices to represent and to capture the overall per-
ceptual shape of the model.

Analyzing 3D meshes for retrieval purpose us-
ing the spherical harmonics has been developed
during the last decade. As in [FMK+03, KFR03,
KFR04, SV01], the spherical harmonics transform
of spherical functions induced by the mesh can be
calculated using a voxelization of the mesh as a
preprocessing step. However, representing and fil-
tering the 3D models using the spherical harmon-
ics have become very interesting thanks to the ef-
forts of Zhou et al. [ZBS04]. They calculate a
frequency-based representation of 0-genus meshes
using a spherical harmonics transform of spheri-
cal conformal parametrization of the mesh. The
extension to higher genus meshes is performed by

WSCG2006 Full Papers proceedings 193 ISBN 80-86943-03-8



operating a prior surface cutting along some user-
specified closed paths to form a surface with the
same topology as the sphere. However, cracks may
occur along the cutting boundaries after filtering.
Moreover, they consider a separate spherical func-
tion for each coordinate component x, y and z of
the points of the mesh. They filter each function
of x(θ, ϕ), y(θ, ϕ) and z(θ, ϕ) independently of the
others without considering the dependencies be-
tween these three functions on the surface. More-
over, using three independent functions without
regarding the correlation between these functions
on the surface causes information redundancy.

Spherical harmonics are not the only approach
used to represent the surface at several levels of
details. There is also the spherical wavelet tech-
niques [EDD+95, JDBP04] which rely on the same
framework as Zhou et al.[ZBS04] except that they
applied the spherical wavelet transform instead of
spherical harmonics transform. Another exam-
ple is the Laplacian operator [Tau95] which can
smooth large meshes quickly, however, due to the
huge computation of the eigenvectors decomposi-
tion, this method is limited to low pass filtering
and cannot be used for general filter design.

Our contribution

In this paper, the spherical harmonics transform of
a radial function induced by a mesh is computed
in a cumulative manner. That is, the transform is
applied independently to each triangle represent-
ing the mesh and then the results are summed up.

0-genus object can be represented by a set of
three spherical functions [ZBS04] thanks to a pre-
vious conformal parametrization, however, in the
case of a star-shaped object, a single spherical
function is enough and does not require any pre-
vious parametrization. Therefore, there no infor-
mation redundancy as the case of using three in-
dependent spherical functions in [ZBS04]. More-
over, it allows to exploit the correlation between
the x, y and z coordinates on the surface. In case
that the object is not star-shaped, we decompose
it into star-shaped parts by a robust segmentation
method, and show how a frequency-based descrip-
tion of the whole object can be obtained from the
frequency-based description of the parts. For that,
we revert to an implicit formulation for each part
and blending techniques to extend to the entire
object.

This paper is organized as follows. Section 2
recalls a brief mathematical background of the
spherical harmonics. Section 3 shows how to rep-
resent star-shaped objects using the spherical har-
monics transform that is calculated directly on
the mesh without voxelization. Section 4 gives

a generalization of our method to represent gen-
eral meshes using the spherical harmonics by the
means of the segmentation and the implicit frame-
work techniques. Section 5 shows the use of our
surface representation to filter general models us-
ing the spherical harmonics. We give some exper-
imental results that demonstrate our approach in
section 6. Finally, we conclude in section 7.

2 BACKGROUND
Spherical harmonics {Y m

l (θ, ϕ) : |m| ≤ l ∈ N}
are special functions defined on the unit sphere S2

[Bye59, Hob55] as :

Y m
l (θ, ϕ) = (−1)mkl,mP m

l (cos θ)eimϕ (1)

where θ ∈ [0 π], ϕ ∈ [0 2π], kl,m is a constant,
and Pm

l is the associated Legendre polynomial.
The spherical harmonics are orthonormal func-
tions such that:Z 2π

0

Z π

0

Y m
l (θ, ϕ)Y

m′

l′ (θ, ϕ) sin(θ)dθdϕ = δl,l′δm,m′ (2)

where δu,v is the Kronecker delta function defined
as the following :

δu,v =


1 if u = v;
0 otherwise.

(3)

Therefore, any spherical function f : S2 −→ R can
be expanded as a linear combination of spherical
harmonics :

f(θ, ϕ) =

∞X
l=0

lX
m=−l

cl,mY m
l (θ, ϕ) (4)

where the coefficients cl,m are uniquely determined
by :

cl,m =

Z 2π

0

Z π

0

f(θ, ϕ)Y
m
l (θ, ϕ) sin(θ)dθdϕ (5)

Since f is a real valued function, the coefficients
cl,m are related to each other by the following re-
lation :

cl,−m = (−1)mcl,m (6)

3 SPHERICAL HARMONIC
REPRESENTATION OF STAR-
SHAPED OBJECTS

Let M denote a triangulated mesh of an object em-
bedded in R3. M is said to be star-shaped if there
exists a point c ∈ R3 such that every line segment
drawn from c in any direction intersects the sur-
face of M at exactly one point. Considering that
c is the center of the spherical coordinate system,
the radial function induced by M and c is a well-
defined spherical function f : S2 −→ R+, where S2

is the unit sphere. More formally, this function is
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defined as the following: for each (θ, ϕ) let p be the
intersecting point with M in the direction (θ, ϕ)

f(θ, ϕ) = d(c, p) (7)

where d is the euclidean distance.
In this section, we will show how to represent a

star-shaped object using the spherical harmonics.
To do this, we propose to represent the object by
its radial function f(θ, ϕ) with respect to a centre
c. The spherical harmonics transform (SHT) is
applied to this radial function taking into account
that the surface is made of triangles.

3.1 Spherical harmonics transform
of a star-shaped mesh

Let M denote a star-shaped triangulated mesh
with respect to a point c. In the case that f is
a binary function, standard algorithms [KFR03,
FMK+03] compute a voxelization of M and then
use this discrete approximation to find the coeffi-
cients of the spherical harmonics transform of f .
The discretization introduces uncontrolled errors
in the integrations needed to compute the har-
monic coefficients.

In [MCA] we have proposed a fast and robust al-
gorithm to calculate the spherical harmonics trans-
form of triangulated meshes indicator function
without prior voxelization, extending the decom-
position idea proposed in [ZC01]. The calculations
are performed independently over the triangles of
M and then are summed up to obtain the final
transform of M . We can apply the same algo-
rithm to perform the spherical harmonics trans-
form for the radial function defined by equation 7.
Assuming that fi(θ, ϕ) is the partial radial func-
tion defined over the triangle i with respect to a
point c, the global radial function f(θ, ϕ) can be
decomposed in terms of fi(θ, ϕ) as follows :

f(θ, ϕ) =
X
i∈T

fi(θ, ϕ) (8)

where T is the set of triangles of M . The spherical
harmonics transform of fi is given by :

fi(θ, ϕ) =

∞X
l=0

lX
m=−l

ci
l,mY m

l (θ, ϕ) (9)

Therefore, the expansion of f(θ, ϕ) can be rewrit-
ten as follows :

f(θ, ϕ) =
X
i∈T

 
∞X

l=0

lX
m=−l

ci
l,mY m

l (θ, ϕ)

!
(10)

3.2 Approximating the signal
Theoretically, the expansion of f(θ, ϕ) is an infi-
nite sum of the spherical harmonics. However, the
high order coefficients cl,m obtained by summing
up the ci

l,m are corresponding to finer details of the
surface, and maybe noise. To filter the surface un-
der a given precision, the summation is limited to
a bandwidth bw. We then obtain an approximated
surface.

f̂(θ, ϕ) ≈
X
i∈T

 
bwX
l=0

lX
m=−l

ci
l,mY m

l (θ, ϕ)

!
(11)

We introduce an error measure ε between the
approximated signal f̂(θ, ϕ) and the original signal
f(θ, ϕ). ε is defined as follows :

ε =

sX
j∈V

h
f(θj , ϕj)− f̂(θj , ϕj)

i2
(12)

where V denotes the set of points of M . To have
a more accurate precision, we can take V as the
union of the set of points of M and the set of cen-
troids of the triangles of M . The error ε can be
calculated exactly, it depends on the value of bw.
The greater the value of bw the smaller the value
of ε. Restricting the error measure to the level of
a triangle, we can make it as small as desired by
increasing bw. The value of bw mainly depends on
two factors :

• the distance d between the centroid of the tri-
angle and the point c, Figure 1(a),

• the angle α between the normal of that triangle
and the line connecting c and the centroid of
the triangle, Figure 1(b).

c

d

(a) distance

L

N

c

α

(b) angle

Figure 1: The orientation and the distance of a tri-
angle with respect to the point c.

Figure 2 gives a graphical analysis of the value
of bw with respect to the two previous factors,
for a fixed quality error ε. When the distance d
increases, the projecting area of the triangle on
the unit sphere decreases. Therefore, the band-
width bw has to increase so as to compensate
the distortion of the triangle due to this decreas-
ing of the projecting area. In a similar manner,
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Figure 2: The effect of the distance and the orienta-
tion angle of a single triangle with respect to a fixed
point c.

the bandwidth bw increases when the angle α in-
creases. The triangle has a maximum distortion
when α = π

2 . Figure 3 shows some examples repre-
senting some star-shaped models using the spheri-
cal harmonics. The bandwidth bw in this case has
been fixed to 64 and the center c is the center of
mass of the model. On those examples, we observe
that ε ≤ 0.005 ∗ D

2 , where D is the diagonal of the
bounding box of the model.

(a) ε = 0.001 (b) ε = 0.001

(c) ε = 0.002 (d) ε = 0.005

Figure 3: Star-shaped objects represented by the
spherical harmonics transform of their radial func-
tions, bw = 64.

4 FREQUENCY-BASED REPRE-
SENTATION OF GENERAL
MODELS

In this section, we extend our framework for rep-
resenting general 3D models using spherical har-
monics. This method consists of three main steps.
In the first step, we segment the object into star-
shaped parts using a robust segmentation tech-
nique [DGG03]. In the second step, we apply the
spherical harmonics transform to each part sepa-
rately as described in section 3. In the last step,

we represent each filtered part as an implicit sur-
face, and the whole object is obtained by blending
together these implicit representations.

4.1 Segmentation

There are many decomposition techniques used to
break complex models into convex or star-shaped
sub-models. Lien et al. [LA04] have proposed a
concavity measure to partition the models into ap-
proximately convex pieces, according to that mea-
sure. Dey et al. [DGG03] have decomposed the
volume enclosed by a set of points into smaller
sub-volumes. Their segmentation is based on topo-
logical persistence [ELZ00]. Firstly, they find the
critical points of the distance function to the near-
est point of the model and they classify them as
maxima, minima and saddle points. Then they de-
fine what they call stable manifolds based on those
maxima. Those stable manifolds are compact re-
gions and decompose the interior volume of the
model. Moreover, they are often convex regions.

In this paper, we have used this latter technique.
Its advantage is that it also offers a good candidate
for the choice of a center (the maximum attached
to the region of manifold). However, since further
fusions can be performed by their segmentation al-
gorithm between the obtained parts, the choice of
one center is less direct. This is the reason why we
took the center of mass of the region instead. Nev-
ertheless, this decision could be improved. After
the choice of the center for each part, the latter is
represented by its radial function f : S2 → R with
respect to this center.

Note that the initial object may be star-shaped
with respect to a point c, but a great number of
its triangles may not have a good orientation with
respect to c, see Figure 4. So in this case, it is

Figure 4: Left: bad orientation of some triangles
(red) of a star-shaped object, right: improving the
orientation of the triangles by segmenting the object.

recommended to decompose the object into sim-
pler parts. This case can be detected by determin-
ing the ratio between the farthest and the nearest
points of the object from c. If this ratio is greater
than a threshold, then we decompose the object
using the technique of Dey et al.[DGG03].
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4.2 Conversion into implicit repre-
sentation

The segmentation of the object results in a finite
number of sub-objects, each of which can be repre-
sented by a radial function f : S2 → R with respect
to a center. Consider that {Mi : i = 1, . . . , n}
is the set of sub-parts and let {fi(θ, ϕ) : i =
1, . . . , n} denote their radial functions with respect
to the set of points {ci : i = 1, . . . , n} respectively.
Recall that each fi(θ, ϕ) measures the extent of Mi

from ci in the direction (θ, ϕ).
Consider {gi(r, θ, ϕ) i = 1, . . . , n} as the set of

functions defined as the following : for each point
q ∈ R3 whose coordinates with respect to ci are
(ri

q, θ
i
q, ϕ

i
q)

gi(r
i
q, θ

i
q, ϕ

i
q) = fi(θ

i
q, ϕ

i
q)− d(ci, q)

= d(ci, p)− d(ci, q)
(13)

where p is the intersection point of Mi with the
line −→ciq, and d is the euclidean distance. Each gi

has the following property :

sign(gi(q)) =

8<:
+ if q is inside Mi,
− if q is outside Mi,
0 if q is on Mi.

(14)

Therefore, the surface of Mi can be considered as
the 0-level of the potential function gi. The vol-
ume of the whole object M is the union of the
volumes of these implicit surfaces. The theory of
R-functions [PS95, Rva87] provides a useful set of
operations on the potential functions. The union
operation of two potential functions g1 and g2 is
defined as follows :

g1∪g2 =
1

1 + a

„
g1 + g2 +

q
g2
1 + g2

2 − 2ag1g2

«
(15)

where a(q) = s(g1(q), g2(q)), s is an arbitrary con-
tinuous function satisfying the following condition:

−1 < s(t1, t2) ≤ 1

The max function is a special case with s = 1. Let
M1 and M2 be two neighboring parts represented
by the radial functions f1 and f2 corresponding to
the centers c1 and c2, respectively. Let g1 and g2

denote the corresponding potential functions in-
duced from these radial functions. Therefore, be-
fore applying the spherical harmonics transform,
we have for any point q ∈ R3 :

g1(q) = f1(θ
1
q , ϕ1

q)− d(c1, q) (16)

g2(q) = f2(θ
2
q , ϕ2

q)− d(c2, q) (17)

Using equation 15, the potential function g repre-
senting the union of the parts represented by g1

and g2 is defined as the following:

g = g1 ∪ g2 (18)

Let f̂1 and f̂2 denote the spherical harmonics
transform of f1 and f2, respectively. Therefore
after restricting the frequencies to a bandwidth bw,
we have for any point q ∈ R3 :

ĝ1(q) = f̂1(θ
1
q , ϕ1

q)− d(c1, q) (19)

ĝ2(q) = f̂2(θ
2
q , ϕ2

q)− d(c2, q) (20)

The potential function ĝ representing the union
of the parts represented by ĝ1 and ĝ2 may have
unsmoothness along the boundaries shared by the
parts due to restricting the frequencies to a band-
width bw, as shown in Figure 5(a). To overcome

(a) (b)

Figure 5: Left: unsmoothness along the segmenta-
tion boundaries, right: using the blending.

this problem, we apply the set-theoretic blending
operator based on R-functions [PS94, PS95]. The
corresponding blending operator of the two poten-
tial functions ĝ1 and ĝ2 is defined as follows :

ĝ1 ⊕ ĝ2 = R(ĝ1, ĝ2) + u (21)

where R is the corresponding R-function (the
union in our case), and u(q) = w(g1(q), g2(q)),
w is a displacement function that has a maximal
absolute value w(0, 0); i.e. at the boundary,
and asymptotically approximates a zero value
with increasing absolute values of the argu-
ments. The general form of w is as follows
[PS94, PS95, Rva87]:

w(t1, t2) =
1.0

1 + (t1/a1)2 + (t2/a2)2
(22)

where a1 and a2 are constants which control the
blending operator. We need to choose them opti-
mally with respect to the object.

The error between g = g1 ∪ g2 and ĝ1 ⊕ ĝ2 is
defined as follows:

ε =

sX
v∈V

(g(v)− (ĝ1 ⊕ ĝ2)(v))2 (23)

where V is the set of vertices. By varying the val-
ues of the constants a1 and a2, we can consider ε
as a function of these values. So the objective is
to minimize the error function ε(a1, a2). In this
paper, we use the genetic algorithms [Gol89] as
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a minimization tool on ε(a1, a2) to choose heuris-
tically the two parameters a1 and a2 to remove
the unsmoothness along the boundary of the parts.
This method gives very good results as we can see
in Figure 5(b).

5 APPLICATION : FILTERING
One of the important points of our frequency-
based representation is that it allows to filter the
surface of n-genus 3D object easily. Surface fil-
tering is useful in smoothing and noise removal
[Tau95, GSS99, KG00]. The underlying assump-
tion is that high order frequencies correspond to
noises or finer details of the surface. Therefore,
removing those frequencies yields a removing of
noises or some finer details of the surface. Here,
the required filter is applied separately to each
triangle of the object and the results are com-
bined as explained previously. Zhou et al. [ZBS04]
have presented some interesting frequency filtering
functions h(l, m). For example, the ideal low-pass
filtering can be performed by setting :

h(l, m) =


0 if

√
l2 + m2 > Kl

1 otherwise
(24)

Figure 6 shows smoothing the surface of Armadillo
using the previous low-pass filter.

(a) original (b) Kl = 60

Figure 6: Smoothing the surface of Armadillo using
ideal low-pass filter.

Additionally, surface filtering is also useful for
compression and progressive transmission of 3D
models. The underlying assumption is that a rela-
tively good approximation may be obtained using
only a small number of low-frequency basis func-
tions, see Figure 7. That is, we can send a small
number of low-frequency coefficients through the
network and progressively send the higher ones to
have finer details. Figure 7 shows levels-of-details
of Happy Buddha. These levels-of-details can be
considered as compressed versions of the model.
For example, Figures 7(b) and 7(c) have compres-
sion ratios 87% and 99.3% respectively with re-
gards to an initial OFF (Object File format) repre-
sentation, and without further compression of the
obtained sequence of coefficients.

(a) original (b) Kl = 256 (c) Kl = 60

Figure 7: Several levels-of-details of Happy Bud-
dha using ideal low-pass filter. (a) corresponds to
543,652 points described by doubles and 1,087,716
faces, (b) and (c) correspond to (kl)

2

2 coefficients de-
scribed by complexes. The compression ratios for (b)
and (c) are 87% and 99.3% respectively.

6 EXPERIMENTAL RESULTS
Our method is implemented in C++; we have used
a 3GHz Pentium IV PC with 1GB memory for
the experiments. The input meshes are considered
triangulated. Otherwise, a preprocessing step is
required to triangulate the polygons of the mesh.
The segmentation step does not take more than
4 minutes for each of the models used in this pa-
per. Generally, the number of parts is in aver-
age 50 parts. We have visualized our result by re-
constructing the surfaces of the models using the
marching cube algorithm proposed by Lewiner et
al. [LLVT03]. Table 1 shows a summary of the
experimental results.

Model no. of SHT no. of
triangles time parts

Bunny 69,451 3min 20
Triple Hecate 180,364 5min 30

Victoire 187,072 6min 50
Buddha 1,087,716 8min 50

Armadillo 345,944 7min 50
Hand 654,666 5min 50

Table 1: Summary of the models used in this paper.

Figure 8 presents some examples of general mod-
els, represented using spherical harmonics frequen-
cies. Each model is segmented into subparts, each
of which is transformed into a set of frequencies us-
ing the spherical harmonics. Taking ε ≤ 0.01 ∗ D

2 ,
where D is the diagonal of the bounding box, the
corresponding bandwidths are 128, 256, 256, 128,
256 and 256 for the Bunny, Armadillo, Happy
Buddha, Hand, Triple Hecate and Victoire respec-
tively.
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(a) 20 parts (b) 50 parts

(c) 50 parts (d) 100 parts

(e) 30 parts (f) 50 parts

Figure 8: Some models represented using the spher-
ical harmonics. The bandwidth bw has the following
values (a) 128 (b) 256 (c) 256 (d) 128 (e) 256 and
(f) 256.

7 CONCLUSION AND FUTURE
WORK

This paper presents a new technique to represent
general 3D models using the spherical harmonics.
This representation allows us to filter the surfaces
of these models, although they are not topolog-
ically equivalent to the sphere, and to describe
them compactly. The spherical harmonics trans-
form is computed using a fast, combinatorial and
robust algorithm [MCA]. The implicit framework
techniques guarantee the avoidance of unsmooth-
nesses on the surfaces.

Concerning the segmentation technique, the
technique proposed in [DGG03] is robust and
yields a good segmentation of the objects.
However, we need as well to have an optimal seg-

mentation technique that produces approximately
convex (or star-shaped) sub-parts while keeping
the number of parts as small as possible.

On the other hand, we have chosen the center of
each part as the center of the mass of that part.
Since the radial function of each part is dependent
on the choice of the center, the final representation
is affected by this choice. We work to improve this
choice of the center.
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