
Agents Based Visualization and Strategies

Nicolas Roard
Swansea University

csnicolas@swansea.ac.uk

Mark W. Jones
Swansea University

m.w.jones@swansea.ac.uk

ABSTRACT

This paper describes a flexible visualization architecture based on software agents, which enables the abstraction
and reuse of rendering strategies. Using a reification of the rendering environment, the system is able to add new
rendering strategies (such as distributed rendering or progressive rendering) to an existing pipeline, without any
modification of the other components (controls components, display components, rendering algorithms, etc. ). The
ability of changing strategies on the fly leads to a better adaptability to runtime constraints. The system uses an
agent-based graphic pipeline, where each agent/component can be located on different computers; communications
between agents use XML/RPC and data stream in order to easily integrate existing code in the system. Agents can
add specific behavior to graphic pipelines, such as saving environments to reuse them, adapt information and
knowledge from another pipeline, and generally modify and improve the entire system. Various visualization and
control clients exist, enabling collaboration between platforms such as PDAs, Windows, Linux, MacOS X, and
Web (using Java applets).

Keywords Distributed Visualization, Software Agents, Volume Rendering

1 INTRODUCTION
Although individual graphical capacities continually im-
prove on workstation or desktop computers, visualiza-
tion at interactive frame rates is still a problem with
very large datasets or complex rendering algorithms.
This is particularly evident in scientific visualization,
such as medical data or simulation of fluid dynamics;
high-performance computing facilities organized in a
distributed infrastructure need to be used to achieve
reasonable rendering times in those cases [HEvLRS03,
BBC+05].

Such distributed visualization systems are required to
be more and more flexible; they need to be able to
integrate heterogeneous hardware (both for rendering
and display), span through different networks or the in-
ternet, and easily reuse existing software. They also
need to allow complex user interactions like collabora-
tion [MF00], and easy customization to answer specific
needs.

Complex distributed software systems tend to be hard to
administrate, and tend to respond poorly to faults (hard-
ware or software). The Autonomous Computing grand
challenge initiated by IBM [KC03, IBM] aims to build
software systems that are as autonomous as possible to
simplify implementation and administration.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2006 conference proceedings, ISBN 80-86943-03-08
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Our system is a reflective middleware [KCBC02] based
on agents, which we used to implement a distributed
graphic pipeline. We worked on a Volume Rendering
pipeline, as Volume Datasets by nature tend to be both
large and slow to render, and are thus good candidates
for testing a distributed visualization system.

We will first review related systems and present the gen-
eral architecture of our system. We will then present
some examples showing the reflective nature of the sys-
tem, first by talking about the Visualization Strategy
pattern, then by introducing added behavior to generic
pipelines.

2 RELATED WORK
Sharing computing resources is an old idea in com-
puter science, but the advance of Internet and Web Ser-
vices now permit the building of interoperable, cross-
platformdistributed services. The Grid Initiative [FK99,
FKT01] and projects like the Globus Toolkit [FK97,
Fos05] provide toolkits and infrastructure to deploy
such grid computing systems.

Visualization systems using the grid have their own set
of requirements [SWB03, BBC+05], and are an ongo-
ing research subject (see [ADK+99, BDG+04, KHRV04,
GAW05, RWB+05] for some of the existing visualiza-
tion systems using the grid). These systems implement
a distributed graphic pipeline following the established
modular dataflow model [UFJK+89, Dye90, Cam95]
using grid technologies.

Multi-Agent Systems (MAS) are a particular architec-
ture of distributed systems. They tend to be more flex-
ible and reliable than traditional distributed systems, as
Software Agents can work and react at a local level,
providing a decentralized intelligence. As such, they

WSCG2006 Full Papers proceedings 63 ISBN 80-86943-03-8



seem an interesting research idea to obtain autonomic
systems, and more reliable and flexible distributed sys-
tems [JJZ+04, ZM05, GFB05, MGR+99].

Some research projects follow an interesting approach,
combining an agent system with a distributed rendering
system [HEvLRS03, RKACM03].We followed a simi-
lar direction, although our orientation is slightly differ-
ent than those systems. We wanted a flexible research
tool, with reflective capabilities [KCBC02, ASA01], to
experiment how we can use thoses capabilities to build
intelligent applications.

3 GOALS AND PHILOSOPHY
Our principal goal was to obtain a flexible system for
experimenting with ideas and architectures. We believe
that using loosely coupled, dynamic systems and lan-
guages, leads to simpler and more powerful systems,
which are easier to prototype.

The design thus focused on building a layered system
(Figure 1), with each layer kept simple.

7 Autonomic System
6 Intelligent Applications
5 Reflective System
4 Graphic Pipeline
3 Agents
2 Distributed System
1 Processes

Figure 1: System layers

Remote Processes (1) interact in a Distributed System
(2) by sending messages. On top of this Distributed
System we build an Agent infrastructure (3) – in fact
we consider everything to be an agent in our system,
which gives the next layers a range of useful functional-
ities (creation, discovery, etc. ). Using Agents, we then
implemented a graphic pipeline (4). Agents are aware
of their environment and can modify it, in essence cre-
ating a Reflective System (5). The agents environment
comprises not only the graphic pipeline, but also the
complete system. We then take advantage of this Re-
flective System and the autonomic nature of Agents to
build Intelligent Applications (6). Our final objective is
to build an Autonomic Visualization System based on
the existing layers (7).

Our current interest and what we describe in this paper
is in exploring the Intelligent Applications layer – how
can we take advantage of the Reflective nature of the
system to build applications or interesting architectures.

4 SYSTEM ARCHITECTURE
4.1 Core System
The core system is a very simple distributed architec-
ture, composed of a naming service and agents, where
agents communicate using XML/RPC [Win99]. Each
agent is associated to a quintuplet {location, port, name,
type, status}. Ports can be shared among agents.

Using XML/RPC gives us a simple solution for sending
remote messages, which uses very common standards
(TCP/IP, XML, HTTP). An immediate benefit of this
simplicity is the fact that most mainstream computing
languages have a working implementation of XML/RPC
(e.g. [Mül03, ASF05] ). It is therefore a simple task to
transform existing code into a component of our sys-
tem.

Transfer 
Service

Factory Factory

Remote 
Manager

Factory 
Manager

Agents

NameServer

NameServer Delegates

Creation 
Manager

Figure 2: Architecture overview

An agent can be duplicated easily or moved to another
machine, which gives us a very flexible network topol-
ogy. Furthermore, the system is very dynamic and re-
flexive, as agents can modify the system at runtime, re-
quest information or meta-information about the system
or the graphic pipeline, and add new information to the
system.

Figure 2 shows an overview of the basic architecture.
On each machine we have a NameServer which keeps
track of all the objects on the local machine and of re-
mote NameServers. A Transfer Service agent can be
used by agents to move data from one machine to an-
other. Factories (Agents that create other agents) are
handled via a Factory Manager. The Remote Manager
agent is used to manage a network of machines and for-
ward requests. The Creation Manager is in charge of
managing the population of agents on the available ma-
chines. The following sections detail each component.

4.2 Naming Service
A new agent which wants to register with the sys-
tem contacts the local Naming Service (using a default
port). The Naming Service then returns an available lo-
cal port to the agent. The agent can then initialize and
finish its registration.

4.2.1 Extending the Naming Service
Additional agents can register to the local Naming Ser-
vice as delegates, providing a Naming Service them-
selves. Then, in case of an unsuccessful request to the
local Naming Service, these agents are called and can
answer the request (see Sections 4.4.1 and 4.5). In our
current systems those delegates are the Factory Man-
ager, the Remote Manager and the Creation Manager.

WSCG2006 Full Papers proceedings 64 ISBN 80-86943-03-8



4.3 Transfer Service
The Transfer service is an agent providing simple trans-
fer methods, able to send data/binaries from a machine
to another. It is needed by the Replication mechanism
as well as Data management.

4.4 Agents
Agents are autonomous software that can interact with
their environment. In our system, we also need to be
able to replicate agents easily and create them on de-
mand.

4.4.1 Agents Creation: Factories

Factories create new agents of a certain type on de-
mand. Factories are implemented as normal agents an-
swering a certain protocol (a protocol beeing a set of
messages) with the type FACTORY. A Factory Manager
agent registers as a delegate to the NameServer. Each
Factory is automatically registered to it.

When an agent is requested, the NameServer searches
to see if an available instance exists in the system. If
not, the request is delegated to the Factory Manager,
which in turn calls the corresponding Factory and asks
it to create a new agent. This new instance is then reg-
istered to the NameServer and returned.

A Factory cannot create an agent if the system is over-
loaded (in which case other machines can possibly han-
dle the creation).

4.4.2 Replication

The process of replication of an agent is twofold; first,
we consider the agent binary (or sourcecode if the agent
is a script). Second, we also need to replicate the
agent’s state if we want to move an agent rather than
create an agent of the same type. Replication helps with
the autonomic aspect of the system – i.e. self repair.

In our current system the agent’s state is determined
by the pipeline and the environment (see Section 4.6),
so we do not need to manage the serialization of the
agent’s state. We only need to register the new agent
to the pipeline, and restart it. The start method in the
agent will use the pipeline to initialize itself.

4.5 Managing Multiple Machines
Using Factories and Replication, we can have a remote
creation process to use multiple machines in our archi-
tecture. The Creation Manager agent use the Transfer
& Replication services to create new Factories on avail-
able machines, depending on their state (e.g. CPU load,
disk space).

The naming mechanism is extended via a NameServer
delegate (similar to the Factory Manager), called the
Remote Manager. Machines are organized in a hierar-
chical way (Figure 3) where each child machine regis-
ters to the Remote Manager.

Name
Server

Name
Server

Name
Server

Name
Server

AgentAgent Name
Server

Name
Server

Factory

Machine A

Machine B Machine C Machine D

Machine E Machine F

(1) Request an Agent

(2) Agent location

Figure 3: Remote creation

When the NameServer gets a request for an available
agent, and none is found locally, it forwards the request
to its delegates. If a delegate doesn’t return an agent’s
address, the next delegate is called. Figure 3 shows this
mechanism.

For example, if the Factory Manager doesn’t return an
agent (because it doesn’t have a corresponding factory,
or because the maximum number of agents is reached,
or the CPU load is too high), the Remote Manager is
called and try to answer the request. The Remote Man-
ager maintains a list of the machine’s children, and a
cache of their factories types. It then forwards the re-
quest to a child having the corresponding factory. If the
Remote Manager itself can’t handle the request (e.g. no
corresponding factory) the Creation Manager is called
and using the Transfer & Replication service can create
new Factories.

4.6 Visualization Architecture
We implemented a distributed graphic pipeline using
our system, where each pipeline component is an agent.
Figure 4 shows the general structure of a pipeline.

Environment Rendering VisualizationControls

Pipeline Data Agent

Image

USER SYSTEM DISPLAY

Figure 4: Visualization System Architecture

ARendering agent gets its data information from a Data
agent, and uses a "rendering environment" given by the
Environment agent to render an image. The image is
then sent to a Visualization client.

The Environment contains all the information for the
rendering – quality, specific settings, camera position,

WSCG2006 Full Papers proceedings 65 ISBN 80-86943-03-8



etc. – and can be modified by other agents, like a Con-
trol agent to move the camera.

The Visualization and the Controls are in general sim-
ple clients to the system, not real agents, and thus can
be completely externalized, which permit for example
to run them through a web page (using applets), or in a
client application (Section 4.8).

Other agents in the pipeline need to be fully integrated
(shown on Figure 4 by the gray outline) in the system.
Agents in a pipeline are registered in a Pipeline agent
and can be reached and manipulated by other agents
through it.

Agents communicate by sending XML/RPC messages
(synchronous and asynchronous) and direct socket trans-
fer for transmitting data. The overhead of XML/RPC is
not a problem in general, specifically by using asyn-
chronousmessages whenever it’s possible1 and limiting
the number of necessary messages in the architecture.

4.7 Data Management
Data needs to be duplicated and moved along with the
rendering components of the pipeline. Data agents are
in charge of that task, and use the transfer facilities to
move or duplicate a dataset to another machine. In the
future we envision intelligent agents and data place-
ments using planning agents, but for the moment the
data management simply transfer data from the original
pipeline to cache it locally.

4.8 Clients and User Interface
As explained in Section 4.1, XML/RPC permitted a
quick development of the system and an easy inte-
gration of existing components. A good example is
how we were able to program visualization and control
clients for various platforms, taking advantage of spe-
cific languages/frameworks allowing quick prototyp-
ing. We used GNUstep [FSF] and Cocoa [App] frame-
works to program a crossplatformObjective-C/OpenGL
client running onWindows,MacOSX and Linux. Squeak
[Squ] (a Smalltalk environment) was used to prototype
the system and provides a PDA implementation, and
Java was used for the web client. Figure 5 shows the
PDA and Java clients, while Figure 6 shows the Squeak
environment used for prototyping. Figure 7 shows the
GNUstep client.

In parallel to this project, we participate in another
project which will integrate this agent system using the
grid toolkit in order to access the security framework
provided by that system.

4.8.1 Modifying the User Interface
One problemwith adding unplanned, “intelligent” func-
tionalities to a graphic pipeline as proposed in Section 7
is obviously that the user interface needs to be changed

1 while XML/RPC doesn’t specify asynchronous messages, many im-
plementations provide them, as it is a very simple modification

Figure 5: The PDA and Web clients, with the PDA
acting as a remote control on the left, and as a visu-
alization and control client on the right

Figure 6: The Squeak User Interface with two dif-
ferent datasets, linked by a mediator agent

Figure 7: GNUstep visualization client on Linux

to use them. At the moment we mostly use a Squeak
UI for rapid prototyping (Figure 6 shows the mediator
agent along with the viewpoint agent described in Sec-
tion 7) which make it easy to add new elements to the
user interface, but we plan to extend our current web
client to automatically generate the user interface for a
pipeline (currently the web interface uses two java ap-
plets, one for visualizing the results of a pipeline, and
one for controling the point of view), as html combined
with java applets would gives us a very customizable
and extensible user interface.

5 APPLICATIONS OF THE SYSTEM
The previous sections detailed the general system ar-
chitecture. We will now introduce some applications of
the reflective nature of the system.

The graphic pipeline is reificated through different agents;
agents can use this architecture to gather information,

WSCG2006 Full Papers proceedings 66 ISBN 80-86943-03-8



or even modify the architecture. The following sections
show some examples of this approach:

• Section 6 “Visualization Strategies” details the Vi-
sualization Strategy pattern and its applications.

• Section 7 “Modifying the pipeline” introduce exam-
ples customizing the pipeline with additional agents
adding new functionalities.

6 VISUALIZATION STRATEGIES
6.1 Presentation
If we look at the architecture for a standard rendering
loop, Figure 4 can be simplified as shown in Figure 8.

Environment Rendering Image

Figure 8: Simplification of the architecture

In this architecture, we consider a Rendering process as
a Rendering agent using an Environment to generate an
Image.

6.1.1 Visualization Strategies
A Visualization Strategy is a specific visualization pro-
cess, like splitting the viewing output in different im-
ages, or distributing a rendering. We encapsulate such
visualization patterns into a single agent. This agent an-
swers the same rendering protocol as a “real” rendering
agent, and can thus be used without any modification
in place of a rendering agent – the other parts of the
pipeline (e.g. the visualization client or the controls in
Figure 4) are left untouched.

6.1.2 Genericity and Composition of Strategies
In general, Strategies do not provide a rendering algo-
rithm themselves, but use existing rendering agents im-
plementing the algorithms.

As long as an agent answers the rendering protocol it
can be used transparently in a Strategy; which means
that, for a given Strategy, any of the available rendering
algorithms can be used. Conversely, we can say that
Strategies are generic behaviors: a new rendering algo-
rithm will be able to transparently take advantage of the
existing strategies in the system.

As Strategies respond to the rendering protocol, they
are considered by the system as Rendering Agents, and
can thus be composited: in a given Strategy, instead of a
“real” Rendering Agent, another Strategy can be used.

One needs to take care of the composition cost when
building complex composited pipelines as performance
can be impacted by the communication overhead.

The following sections demonstrate some of the strate-
gies we created.

6.2 Progressive Rendering Strategy
Progressive rendering is a mechanism that computes a
rendering in a low resolution, then gradually increments
the resolution to improve the quality. Figure 9 shows an
example of a 3-step progressive rendering for a volume
dataset.

Figure 9: Progressive rendering

Although progressive rendering is a longer process to
get the final image than calculating the final image di-
rectly (unless it is distributed by the pipeline), it’s a very
useful mechanism, as it allows the user to have a quick
feedback of what will be the final result. Moreover, the
low quality rendering can be fast enough to achieve in-
teractive frame rates.

Low quality 
Rendering

High quality 
Rendering

Progressive
Rendering

Medium 
quality 

Rendering

Environment Environment Environment

Environment Image

Figure 10: Using a strategy: progressive rendering

To create a progressive rendering strategy, we use an
agent answering the rendering protocol, which will get
the environment and where visualization clients can
connect to.

This agent implements a three-step progressive render-
ing, and so requests three rendering agents for its needs.
When receiving a rendering request, it modifies the res-
olution in the rendering environment, and then passes
the new environment to the rendering agents. The pro-
gressive rendering agent is registered as a visualization
client to each of the rendering agent. When it gets a
result, it forwards it to the “real” visualization client.

Figure 10 shows the architecture of this progressive ren-
dering agent – as can be seen on this diagram, the only
modification lies “in” the rendering agent, and consists
of only modifying the environment. All the other parts

WSCG2006 Full Papers proceedings 67 ISBN 80-86943-03-8



of the pipeline are left untouched, an important charac-
teristic of the Visualization Strategy pattern.

6.3 Distributed Rendering Strategies
The general approach to Distributed Rendering con-
sists of splitting the computation load of a rendering on
multiple machines, creating several partial results, then
merge them to get the final result.

We implemented two approaches to distribute a render-
ing process, by using image-space methods or object-
spacemethods to split the computation load, thenmerge
the rendered isolated fragments in a single image as a
final step.

The general idea is that once you have a process that
can adequately split the rendering over multiple agents
and then merge the result, the agents can easily be scat-
tered on different machines, and their distribution con-
trolled by another agent depending on specific parame-
ters (e.g. taking in account the load of the machines).

6.3.1 Image-Space Splitting

We consider here the rendered image as our work space.
We want to split it in multiple parts, where each part of
the final image is rendered by a separate agent.

Environment Distributed 
Rendering

Image

Rendering Rendering

RenderingRendering

Figure 11: Image-space distributed rendering

To do that, we simply need to compute four different
camera viewpoints that match the desired parts of the
image. We do that in a strategy agent that gets the
original rendering environment and extracts the camera
viewpoint from it. It then sends corresponding com-
puted viewpoints and “look-at” points to the four dif-
ferent rendering agents it requested (Figure 11 shows
the architecture).

6.3.2 Compositing of Image-Space Parts
Merging the resulting partial images is very simple in
that case, as we only need to build the final image by
aggregating the different parts at their correct position.

6.3.3 Object-Space Splitting
With Object-Space Splitting, the idea is to render only
a part of the dataset instead of the complete dataset
in each agent. The dataset can be either physically
split into multiple parts and each part sent to render-
ing agents, or alternatively have a rendering algorithm
that accepts to render a part of a dataset (the right ap-
proach depends on the size of the dataset; we only im-
plemented the selective part rendering for now).

Dataset

Splitted 
datasets

rendering 
agents

rendered 
fragments

composited 
fragments

Environment Distributed 
Rendering

Image

Figure 12: Object-space distributed rendering

Figure 12 shows the general architecture. A rendering
strategy agent is used in a pipeline. This agent then
computes the different data segments and sends them
to the rendering agents. Each rendering agent will ren-
der a partial dataset into an image. Renderers need to
generate the alpha channel for the image.

6.3.4 Compositing of Object-Space Parts
We obtain the final image by merging the partial images
in the rendering strategy agent, using a simple back-to-
front rendering algorithm.

7 MODIFYING THE PIPELINE
One of the differentiating aspects of our system is its
reflective nature – agents can inspect the system and
modify it. The following sections detail some examples
of how agents can be added to a graphic pipeline to add
functionalities.

7.1 Framerate Steering
As a first example, we would like to have a pipeline
where the resolution of the image is tied to the framer-
ate; that is, automatically set the resolution to match the
desired framerate as close as possible.

WSCG2006 Full Papers proceedings 68 ISBN 80-86943-03-8



Environment Rendering Image

Framerate 
Agent

Figure 13: Framerate steering agent

We can do that by adding a single agent to a standard
pipeline (Figure 13). The agent registers as an observer
to the rendering agent, to monitor the rendering times.
This framerate agent can then create a feedback loop by
modifying the image size in the pipeline environment
until the minimum framerate is reached.

This simple behavior could be extended by choosing
among different rendering agents instead of fixing the
image size.

7.2 Saving Viewpoints
In a graphic pipeline, the immediate agents’ environ-
ment is the pipeline itself and the associated agents (see
Figure 4).

One application we developed is a method to save the
current camera position (viewpoint) and retrieve a list
of the saved positions, so the user can build its own cus-
tomized list of usual positions for a particular dataset.

Environment Saving 
viewpoints

List of viewpoints Viewpoints 
provider

U
S

E
R

S
Y

S
T

E
M

Controls Save Button Viewpoints 
list

Figure 14: Saving and using viewpoints

Figure 14 shows the architecture enabling this function-
ality. We add three agents (framed on the figure) on
the system side, one holding the viewpoints list (a data
agent), one that can add a viewpoint to the list by check-
ing the current viewpoint in the pipeline environment,
and the third one that can returns the list of viewpoints.
On the user side, we need two clients, one to request the
addition of the current viewpoint, one to request the list
of viewpoints.

This system can be used in any pipeline and, albeit it’s
a simple example, highlights how agents can add new
knowledge to a pipeline and how they can use it.

7.3 A Mediator Agent
Another example of how agents can interact with a
pipeline and extend its functionalities is a mediator

agent, which can transform automatically some coor-
dinates (e.g. camera position) used to visualize one vol-
umetric dataset into equivalent coordinates for another
volumetric dataset.

We can then manipulate one pipeline and have the
movements replicated on a second pipeline, in real
time, after transformation.

The current prototype can be used as the start of a col-
laboration mechanism, and we also want to use it in the
future coupled with the “saving viewpoints” agents to
automatically use viewpoints saved for one dataset with
another, which can be useful for medical applications.

Environment (A) Rendering (A)

Environment (B) Rendering (B)

Dataset (A)

Dataset (B)
Mediator

Image (A)

Image (B)

Controls (A)

Figure 15: A mediator agent

Figure 15 shows the actual architecture of the system.
We use here two pipelines running in parallel, with a
mediator agent coupling the pipelines’ environments;
the mediator agent is registered as a listener to the en-
vironment agent of the Environment A and knows the
deltas between both environments (after a calibration
step). Using the controls of Pipeline A will update
Environment A; the Mediator is then notified of the
change, and will update Environment B (see Figure 6
for a screenshot of the current system).

8 PERFORMANCES
For the 2563 data sets rendered in these examples, all
these agents work in real-time, and achieve high frame
rates when distributed (> 25 fps). We aim in the fu-
ture to use UDP instead of the current TCP based trans-
mission mechanism in order to augment the perfor-
mances and improve the latency of the system, particu-
larly when dealing with bigger datasets.

9 CONCLUSION
The use of web services and XML/RPC gave us the op-
portunity of mixing different languages and programs
in a common system, allowing us to take advantage of
each language’s/platform’s strong points.

Focusing on a simple, dynamic, agents architecture and
building our system on top of it proved to be very use-
ful during the conception of the architecture. This dy-
namism also allowed us to create new architectures and
discover interesting patterns.

WSCG2006 Full Papers proceedings 69 ISBN 80-86943-03-8



The current system is already a useful research tool to
test new ideas and architectures, although there is dif-
ferent aspects that we would like to improve:

• use rendering agents that utilise GPU instructions,
thus enabling a fully featured GPU cluster using the
existing distributing and performance agents.

• extend the reflective system to have an “intelligent
user interface” that agents can modify, by partly
specifying it in a pipeline.

• implement planning agents and in general more au-
tonomous algorithms – add intelligent behavior to
the distributing mechanism

• implement ontologies on top of the current system
would be interesting to provide another information
level agents could leverage

• work on collaboration scenarios, taking advantage
of the current PDA client and Web client

• extend the current Volume Rendering pipeline to a
more general graphic rendering pipeline (polygons)

Acknowledgements
Financial support for this work was provided by the UK Engineer-
ing and Physical Sciences Research Council through grant numbers
GR/S46567/01, GR/S46574/01 and GR/S46581/01.

REFERENCES
[ADK+99] Martin Aeschlimann, Peter Dinda, Loukas Kallivokas,
Julio López, Bruce Lowekamp, and David O’Hallaron. Prelimi-
nary report on the design of a framework for distributed visualiza-
tion. Parallel and Distributed Processing Techniques and Appli-
cations, pages 1833–1839, 1999.

[App] Apple. Cocoa. http://developer.apple.com.

[ASA01] Mark Astley, Daniel C. Sturman, and Gul A. Agha. Cus-
tomizable middleware for modular distributed software. Commu-
nications of the ACM, 44(5):99–107, 2001.

[ASF05] Apache Software Foundation ASF. Apache xml-rpc.
http://ws.apache.org/xmlrpc/, 2001-2005.

[BBC+05] Ken Brodlie, John Brooke, Min Chen, David Chisnall,
Ade Fewings, Chris Hughes, Nigel W. John, Mark W. Jones,
Mark Riding, and Nicolas Roard. Visual supercomputing: Tech-
nologies, application and challenges. Computer Graphics Forum,
24(2):217–245, 2005.

[BDG+04] Ken Brodlie, David Duce, Julian Gallop, Musbah Sagar,
Jeremy Walton, and Jason Wood. Visualization in grid computing
environments. IEEE Visualization, pages 155–162, 2004.

[Cam95] Gordon Cameron. Modular visualization environments:
Past, present, and future. Computer Graphics, 29(2):3–4, 1995.

[Dye90] Scott D. Dyer. Visualization: A dataflow toolkit for visu-
alization. IEEE Computerr Graphics and Applications, 10(4):60–
69, 1990.

[FK97] Ian Foster and Carl Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Supercomputer Ap-
plications, 11(2):115–128, 1997.

[FK99] Ian Foster and Carl Kesselman. The Grid: Blueprint for a
New Computing Infrastructure, chapter 2, "Computational Grids".
Morgan-Kaufman, 1999.

[FKT01] Ian Foster, Carl Kesselman, and Steve Tuecke. The
anatomy of the grid: Enabling scalable virtual organizations. In-
ternational Journal of Supercomputer Applications, 15(3):200–
222, 2001.

[Fos05] Ian Foster. Globus toolkit version 4: Software for service-
oriented systems. In proceedings of the IFIP International Con-
ference on Network and Parallel Computing, pages 2–13, 2005.

[FSF] FSF. GNUSTEP, a FSF implementation of the OPENSTEP
APIS. http://www.gnustep.org.

[GAW05] Ian J. Grimstead, Nick J. Avis, and David W. Walker. Vi-
sualization across the pond: How a wireless pda can collaborate
with million-polygon datasets via 9,000km of cable. In Web3D
’05: Proceedings of the tenth international conference on 3D Web
technology, pages 47–56, 2005.

[GFB05] Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adap-
tive replication of large-scale multi-agent systems – towards
a fault-tolerant multi-agent platform. In Proceedings of the
fourth international workshop on Software engineering for large-
scalemulti-agent systems, pages 1–6, 2005.

[HEvLRS03] Hans Hagen, Achim Ebert, Hendrik van Lengen Rolf,
and Gerik Scheuermann. Scientific visualization – methods and
applications –. In Proceedings of the 19th spring conference on
Computer Graphics, pages 23–33, 2003.

[IBM] IBM. Autonomic deployment model. http://www-306.
ibm.com/autonomic/levels.shtml.

[JJZ+04] Hu Jun, Gao Ji, Huang Zhongchao, Liao Beishui,
Li Changyun, and Chen Jiujun. A new rational model of agent
for autonomic computing. In Proceedings of the 2004 IEEE Inter-
national Conference on Systems, Man and Cybernetics, volume 6,
pages 5531–5536, 2004.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic com-
puting. IEEE Computer, pages 41–50, 2003.

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H.
Campbell. The case for reflective middleware. Communications
of the ACM, 45(6):33–38, June 2002.

[KHRV04] Dieter Kranzlmüller, Paul Heinzlreiter, Herbert Ros-
manith, and Jens Volkert. Grid-enabled visualization with gvk.
Across Grids 2003, LNCS 2970:139–146, 2004.

[MF00] Isabel Harb Manssour and Carla Maria Dal Sasso Freitas.
Collaborative visualization in medicine. In Proceedings of The
International Conference in Central Europe on Computer Graph-
ics, Visualization And Interactive Digital Media (WSCG), pages
266–273, 2000.

[MGR+99] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Kriko-
rian, and Pattie Maes. Hive: Distributed agents for networking
things. In Proceedings of the First International Symposium on
Agent Systems and Applications / Third International Symposium
on Mobile Agents, page 118, 1999.

[Mül03] Marcus Müller. XML/RPC framework for objective-
c. http://www.mulle-kybernetik.com/software/
XMLRPC/, 2002-2003.

[RKACM03] R. Rangel-Kuoppa, C. Aviles-Cruz, and D. Mould.
Distributed 3d rendering system in a multi-agent platform. Com-
puter Science, 2003. Proceedings of the Fourth Mexican Interna-
tional Conference on, pages 168–175, September 2003.

[RWB+05] Mark Riding, Jason D. Wood, Ken W. Brodlie, John M.
Brooke, Min Chen, David Chisnall, Chris Hughes, Nigel W. John,
Mark W. Jones, and Nicolas Roard. e-viz: Towards an integrated
framework for high performance visualization. In UK e-Science
All Hands Meeting 2005, pages 1026–1032, 2005.

[Squ] Squeak. http://www.squeak.org.

[SWB03] John Shalf and E. Wes Bethel. The grid and future vi-
sualization system architectures. IEEE Computer Graphics and
Applications, 23(2):6–9, 2003.

[UFJK+89] Craig Upson, Thomas Faulhaber Jr., David Kamins,
David Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz,
and Andries van Dam. The application visualization system:
A computational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9(4):30–42, 1989.

[Win99] Dave Winer. XML/RPC specification. http://www.
xmlrpc.com/spec, June 1999.

[ZM05] Avelino Francisco Zorzo and Felipe Rech Meneguzzi. An
agent model for fault-tolerant systems. In Proceedings of the 2005
ACM symposium on Applied Computing, pages 60–65, 2005.

WSCG2006 Full Papers proceedings 70 ISBN 80-86943-03-8


	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

